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Abstract

This paper investigates posterior sampling algorithms for competitive reinforce-
ment learning (RL) in the context of general function approximations. Focusing
on zero-sum Markov games (MGs) under two critical settings, namely self-play
and adversarial learning, we first propose the self-play and adversarial generalized
eluder coefficient (GEC) as complexity measures for function approximation, cap-
turing the exploration-exploitation trade-off in MGs. Based on self-play GEC, we
propose a model-based self-play posterior sampling method to control both players
to learn Nash equilibrium, which can successfully handle the partial observability
of states. Furthermore, we identify a set of partially observable MG models fitting
MG learning with the adversarial policies of the opponent. Incorporating the ad-
versarial GEC, we propose a model-based posterior sampling method for learning
adversarial MG with potential partial observability. We further provide low regret
bounds for proposed algorithms that can scale sublinearly with the proposed GEC
and the number of episodes T . To the best of our knowledge, we for the first time
develop generic model-based posterior sampling algorithms for competitive RL
that can be applied to a majority of tractable zero-sum MG classes in both fully
observable and partially observable MGs with self-play and adversarial learning.

1 Introduction

Multi-agent reinforcement learning (MARL) tackles sequential decision-making problems where
multiple players simultaneously interact with the shared environment, affecting each other’s behavior
in a coupled manner. Under a competitive reinforcement learning (RL) setting, the goal of each
player is to maximize (resp. minimize) her own cumulative gains (resp. losses) in the presence
of other agents. Recent years have been tremendous practical successes of MARL in a variety of
application domains, such as autonomous driving [56], Go [58], StarCraft [65], Dota2 [8] and Poker
[10]. These successes are attributed to advanced MARL algorithms that can coordinate multiple
players by exploiting potentially partial observations of the latent states and employ powerful function
approximators (neural networks in particular), which empower us to tackle practical problems with
large state spaces.

Apart from the empirical success, there is a growing body of literature on establishing theoretical
guarantees for Markov games (MGs) [57] – a standard framework for describing the dynamics of
competitive RL. In particular, [71, 16, 33, 28, 77] extend the works in single-agent reinforcement
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learning (RL) with function approximation [29, 60, 67, 34, 5, 11, 19, 31, 21] by developing sample-
efficient algorithms that are capable to solve two-player zero-sum MGs with function approximation.
In addition, as opposed to the aforementioned literature on MGs assuming the state of players is
fully observable, the recent work [41] analyze Markov games under partial observability [41], i.e.,
the complete information about underlying states is lacking. However, most of the existing works
are built upon the principle of “optimism in the face of uncertainty” (OFU) [38] for exploration.
Furthermore, from a practical perspective, achieving optimism often requires explicit construction
of bonus functions, which are often designed in a model-specific fashion and computationally
challenging to implement.

Another promising strand of exploration techniques is based on posterior sampling, which is shown
by previous works on bandits [12] and RL [48] to perform better than OFU-based algorithms.
Meanwhile, posterior sampling methods, unlike OFU-based algorithms [31, 21] that need to solve
complex optimization problems to achieve optimism, can be efficiently implemented by ensemble
approximations [48, 44, 17, 46] and stochastic gradient Langevin dynamics (SGLD) [70]. Despite the
superiority of posterior sampling, its theoretical understanding in MARL remains limited. The only
exception is [73], which proposes a model-free posterior sampling algorithm for zero-sum MGs with
general function approximation. However, [73] cannot capture some common tractable competitive
RL models with a model-based nature, such as linear mixture MGs [16] and low witness rank MGs
[28]. Moreover, their result is restricted to the fully observable MGs without handling the partial
observability of the players’ states. Therefore, we raise the following question:

Can we design provably sample-efficient posterior sampling algorithms for competitive RL
with even partial observations under general function approximation?

Concretely, the above question poses three major challenges. First, despite the success of the OFU
principle in partially observable Markov games (POMGs), it remains elusive how to incorporate the
partial observations into the posterior sampling framework under a MARL setting with provably
efficient exploration. Second, it is also unclear whether there is a generic function approximation
condition that can cover more known classes in both full and partial observable MARL and is
meanwhile compatible with the posterior sampling framework. Third, with the partial observation and
function approximation, it is challenging to explore how we can solve MGs under the setups of self-
play, where all players can be coordinated together, and adversarial learning, where the opponents’
policies are adversarial and uncontrollable by the learner. Our work takes an initial step towards
tackling such challenges by concentrating on the typical competitive RL scenario, the two-player
zero-sum MG, and proposing statistically efficient posterior sampling algorithms under function
approximation that can solve both self-play and adversarial MGs with full and partial observations.

Contributions. Our contributions are four-fold: (1) We first propose the two generalized eluder
coefficient (GEC) as the complexity measure for the competitive RL with function approximation,
namely self-play GEC and adversarial GEC, that captures the exploration-exploitation tradeoff in
many existing MGs, including linear MGs, linear mixture MGs, weakly revealing POMGs, decodable
POMGs. The proposed measures also generalize the recently developed GEC condition [83] from
single-agent RL to MARL, suitably adjusting the exploration policy particularly for the adversarial
setting. (2) Incorporating the proposed self-play GEC for general function approximation, we propose
a model-based posterior sampling algorithm with self-play to learn the Nash equilibrium (NE),
which successfully handles the partial observability of states along with a full observable setup by
carefully designed likelihood functions. (3) We identify POMG models aligned with the form of the
adversarial GEC, which fit MG learning with adversarially-varying policies of the opponent. We
further propose a model-based posterior sampling algorithm for adversarial learning with general
function approximation. (4) We prove regret bounds for our proposed algorithms that scale sublinearly
with the number of episodes T , the corresponding GEC dGEC, and a quantity measuring the coverage
of the optimal model by the initial model sampling distribution. To the best of our knowledge, we
present the first model-based posterior sampling approaches to sample-efficiently learn MGs with
function approximation, handling partial observability in both self-play and adversarial settings.

Related Works. There is a large body of literature studying MGs, especially zero-sum MGs. In
the self-play setting, many papers have focused on solving approximate NE in tabular zero-sum
MGs [6, 7, 71, 51, 43], zero-sum MGs with linear function approximation [71, 16], zero-sum MGs
with low-rank structures [50, 79, 47], and zero-sum MGs with general function approximation
[33, 28, 73]. On the other hand, there are also several recent papers focusing on the adversarial setting
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[71, 61, 33, 28] aim to learn the Nash value under the setting of unrevealed opponent’s policies, where
the adversarial policies of the opponent are unobservable. In addition, another line of adversarial MGs
concentrates on a revealed policy setting, where the opponent’s full policy can be observed, leading to
efficiently learning a sublinear regret comparing against the best policy in hindsight. Particularly, [42]
and [77] develop efficient algorithms in tabular and function approximation settings, respectively. Our
approach focuses on the unrevealed policy setting, which is considered to be a more practical setup.
There are also works studying MGs from various aspects [59, 32, 45, 84, 35, 20, 52, 9, 82, 18, 72, 74],
such as multi-player general-sum MGs, reward-free MGs, MGs with delayed feedback, and offline
MGs, which are beyond the scope of our work. Most of the aforementioned works follow the
OFU principle and differ from our posterior sampling methods. The recent work [73] proposes a
model-free posterior sampling algorithm for two-player zero-sum MGs but is limited to the self-play
setting with fully observable states. Moreover, their work requires a strong Bellman completeness
assumption that is restrictive compared to only requiring realizability in our work, mainly due to the
monotonicity, meaning that adding a new function to the function class may violate it. Many model-
based models like linear mixture MGs [16] and low witness rank MGs [28] are not Bellman-complete,
so they cannot be captured by [73]. Without the completeness assumption, our model-based posterior
sampling approaches can solve a rich class of tractable MGs, including linear mixture MGs, low
witness rank MGs [28], and even POMGs, tackling both self-play and adversarial learning settings.

Our work is related to a line of research on posterior sampling methods in RL. For single-agent RL,
most existing works such as [54] analyze the Bayesian regret bound. There are also some works
[4, 53, 76] focusing on the frequentist (worst-case) regret bound. Our work is more closely related to
the recently developed feel-good Thompson sampling technique proposed by [81] for the frequentist
regret bound, and its extension to single-agent RL [19, 2, 3] and two-player zero-sum MGs [73].

Our work is also closely related to the line of research on function approximation in RL. Such a
line of works proposes algorithms for efficient policy learning under diverse function approximation
classes, spanning from linear Markov decision processes (MDPs) [34], linear mixture MDPs [5, 85] to
nonlinear and general function classes, including, for instance, generalized linear MDPs [69], kernel
and neural function classes [75], bounded eluder dimension [49, 68], Bellman rank [29], witness
rank [60], bellman eluder dimension [31], bilinear [21], decision-estimation coefficient [24, 14],
decoupling coefficient [19], admissible Bellman characterization [15], and GEC [83] classes.

The research on partial observability in RL [27] is closely related to our work. The works [36, 30]
show that learning history-dependent policies generally can cause an exponential sample complexity.
Thus, many recent works focus on analyzing tractable subclasses of partially observable Markov
decision processes (POMDPs), which includes weakly revealing POMDPs [30, 39], observable
POMDPs [26, 25], decodable POMDPs [22, 23], low-rank POMDPs[66], regular PSR [78], PO-
bilinear class [63], latent MDP with sufficient tests [37], B-stable PSR [13], well-conditioned PSR
[40], POMDPs with deterministic transition kernels [30, 62], and GEC [83]. Nevertheless, in contrast
to our work which focuses on the two-player competitive setting with partial observation, these
papers merely consider the single-agent setting. The recent research [41] further generalizes weakly
revealing POMDPs to its multi-agent counterpart, weakly revealing POMGs, in a general-sum multi-
player setting based on the OFU principle. But when specialized to the two-player case, our work
proposes a general function class that can subsume the class of weakly revealing POMGs as a special
case. It would be intriguing to generalize our framework to the general-sum settings in the future.

Notations. We denote by KL(P ||Q) = Ex∼P [log(dP (x)/dQ(x))] the KL divergence and
D2

He(P,Q) = 1/2 · Ex∼P (
√
dQ(x)/dP (x)− 1)2 the Hellinger distance. We denote by ∆X the set

of all distributions over X and Unif(X ) the uniform distribution over X . We let x ∧ y be min{x, y}.

2 Problem Setup

We introduce the basic concept of the two-player zero-sum Markov game (MG), function approxi-
mation, and the new complexity conditions for function approximation. Concretely, we study two
typical classes of MGs, i.e., fully observable MGs and partially observable MGs, as defined below.

Fully Observable Markov Game. We consider an episodic two-player zero-sum fully observable
Markov game (FOMG2) specified by a tuple (S,A,B,P, r,H), where S is the state space, A and

2FOMG is typically referred to as MG by most literature. We adopt FOMG to differentiate it from POMG.
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B are the action spaces of Players 1 and 2 respectively, H is the length of the episode. We denote
by P := {Ph}Hh=1 the transition kernel with Ph(s

′|s, a, b) specifying the probability (density) of
transitioning from state s to state s′ given Players 1 and 2’s actions a ∈ A and b ∈ B at step h. We
denote the reward function as r = {rh}Hh=1 with rh : S ×A× B 7→ [0, 1] being the reward received
by players at step h. We define π = {πh}Hh=1 and ν = {νh}Hh=1 as Markovian policies for Players 1
and 2, i.e., πh(a|s) and νh(b|s) are the probability of taking action a and b conditioned on the current
state s at step h. Without loss of generality, we assume the initial state s1 is fixed for each episode.
We consider a realistic setting where the transition kernel P is unknown and thereby needs to be
approximated using the collected data.

Partially Observable Markov Game. This paper further studies an episodic zero-sum partially
observable Markov game (POMG), which is distinct from the FOMG setup in that the state s is not
directly observable. In particular, a POMG is represented by a tuple (S,A,B,O,P,O, µ, r,H),
where S, A, B , H , and P are similarly the state and action spaces, the episode length, and the
transition kernel. Here µ1(·) denotes the initial state distribution. We denote by O := {Oh}Hh=1
the emission kernel so that Oh(o|s) is the probability of having a partial observation o ∈ O at
state s with O being the observation space. Since we only have an observation o of a state, the
reward function is defined as r := {rh}Hh=1 with rh(o, a, b) ∈ [0, 1] depending on actions a, b and
the observation o, and the policies for players are defined as π = {πh}Hh=1 and ν = {νh}Hh=1,
where πh(ah|τh−1, oh) and νh(bh|τh−1, oh) is viewed as the probability of taking actions ah
and bh depending on all histories (τh−1, oh). Here we let τh := (o1, a1, b1 . . . , oh, ah, bh).
Then, in contrast to FOMGs, the policies in POMGs are history-dependent, defined on all prior
observations and actions rather than the current state s. We define Pπ,ν

h (τh) :=
∫
Sh µ1(s1)∏h−1

h′=1[Oh′(oh′ |sh′)πh′(bh′ |τh′−1, oh′)νh′(bh′ |τh′−1, oh′)Ph′(sh′+1|sh′ , ah′ , bh′)]Oh(oh|sh)ds1:h,
which is the joint distribution of τh under the policy pair (π, ν). Removing policies in Pπ,ν

h , we define
the function Ph(τh) :=

∫
Sh µ1(s1)

∏h−1
h′=1[Oh′(oh′ |sh′)Ph′(sh′+1|sh′ , ah′ , bh′)]Oh(oh|sh)ds1:h.

We assume that the parameters θ := (µ1,P,O) are unknown and thus Ph is unknown as well, which
should be approximated in algorithms via online interactions.

Online Interaction with the Environment. In POMGs, at step h of episode t of the interaction,
players take actions ath ∼ πt

h(·|τ th−1, o
t
h) and bth ∼ νth(·|τ th−1, b

t
h−1, o

t
h) depending on their action

and observation histories, receiving a reward rh(o
t
h, a

t
h, b

t
h) and transitions from the latent state sth to

sth+1 ∼ Ph(· | sth, ath, bth) with an observation oth+1 ∼ Oh(·|sth) generated. When the underlying state
sth is observable and the policies become Markovian, we have actions ath ∼ πt

h(s
t
h) and bth ∼ νth(s

t
h)

and the reward rh(s
t
h, a

t
h, b

t
h). Then, it reduces to the interaction process under the FOMG setting.

Value Function, Best Response, and Nash Equilibrium. To characterize the learning objective
and the performance of the algorithms, we define the value function as the expected cumulative
rewards under the policy pair (π, ν) starting from the initial step h = 1. For FOMGs, we define
the value function as V π,ν := E[

∑H
h=1 rh(sh, ah, bh) | s1, π, ν,P], where the expectation is taken

over all the randomness induced by π, ν, and P. For POMG, we define the value function as
V π,ν := E[

∑H
h=1 rh(oh, ah, bh) |π, ν, θ], with the expectation taken for π, ν, and θ.

Our work studies the competitive setting of RL, where Player 1 (max-player) aims to maximize the
value function V π,ν while Player 2 (min-player) aims to minimize it. With the defined value function,
given a policy pair (π, ν), we define their best responses respectively as br(π) ∈ argminν V

π,ν and
br(ν) ∈ argmaxπ V

π,ν . Then, we say a policy pair (π∗, ν∗) is a Nash equilibrium (NE) if

V π∗,ν∗
= max

π
min
ν

V π,ν = min
ν

max
π

V π,ν .

Thus, it always holds that π∗ = br(ν∗) and ν∗ = br(π∗). For abbreviation, we denote V ∗ = V π∗,ν∗
,

V π,∗ = minν V
π,ν , and V ∗,ν = maxπ V

π,ν , which implies V ∗ = V π∗,∗ = V ∗,ν∗
for NE (π∗, ν∗).

Moreover, we define the policy pair (π, ν) as an ε-approximate NE if it satisfies V ∗,ν − V π,∗ ≤ ε.

Function Approximation. Since the environment is unknown to players, the model-based RL setting
requires us to learn the true model of the environment, f∗, via (general) function approximation. We
use the functions f lying in a general model function class F to approximate the environment. We
make a standard realizability assumption on the relationship between the model class and the true
model.
Assumption 1 (Realizability). For a model class F , the true model f∗ satisfies f∗ ∈ F .
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In our work, the true model f∗ represents the transition kernel P for the FOMG and θ for the POMG.
For any f ∈ F , we let Pf and θf = (µf ,Pf ,Of ) be the models under the approximation function f
and V π,ν

f the value function associated with f . For POMGs, we denote Pπ,ν
f,h and Pf,h as Pπ,ν

h and
Ph under the model f .

MGs with Self-Play and Adversarial Learning. Our work investigates two important MG setups for
competitive RL, which are the self-play setting and the adversarial setting. In the self-play setting, the
learner can control both players together to execute the proposed algorithms to learn an approximate
NE. Therefore, our objective is to design sample-efficient algorithms to generate a sequence of policy
pairs {(πt, νt)}Tt=1 in T episodes such that the following regret can be minimized,

Regsp(T ) :=
∑T

t=1

[
V ∗,νt

f∗ − V πt,∗
f∗

]
.

In the adversarial setting, we can no longer coordinate both players, and only single player is
controllable. Under such a circumstance, the opponent plays arbitrary and even adversarial policies.
Wlog, suppose that the main player is the max-player with the policies {πt}Tt=1 generated by a
carefully designed algorithm and the opponent is min-player with arbitrary policies {νt}Tt=1. The
objective of the algorithm is to learn policies {πt}Tt=1 to maximize the overall cumulative rewards in
the presence of an adversary. To measure the performance of algorithms, we define the following
regret for the adversarial setting by comparing the learned value against the Nash value, i.e.,

Regadv(T ) =
∑T

t=1

[
V ∗
f∗ − V πt,νt

f∗

]
.

3 Model-Based Posterior Sampling for the Self-Play Setting

We propose algorithms aiming to generate a sequence of policy pairs {(πt, νt)}Tt=1 by controlling
the learning process of both players such that the regret Regsp(T ) is small. Such a regret can be
decomposed into two parts, namely

∑T
t=1[V

∗
f∗ − V πt,∗

f∗ ] and
∑T

t=1[V
∗,νt

f∗ − V ∗
f∗ ], which inspires our

to design algorithms for learning {πt}Tt=1 and {νt}Tt=1 separately by targeting at minimizing these
two parts respectively. Due to the symmetric structure of such a game learning problem, we propose
the algorithm to learn {πt}Tt=1 as summarized in Algorithm 1. The algorithm for learning {νt}Tt=1
can be proposed in a symmetric way in Algorithm 3, which is deferred to Appendix A. Our proposed
algorithm features an integration of the model-based posterior sampling and the exploiter-guided
self-play in a multi-agent learning scenario. In Algorithm 1, Player 1 is the main player, while Player
2 is called the exploiter, who assists the learning of the main player by exploiting her weakness.

Posterior Sampling for the Main Player. The posterior sampling constructs a posterior distribution
pt(·|Zt−1) over the function class F each round based on collected data and a pre-specified prior
distribution p0(·), where Zt−1 denotes the random history up to the end of the (t− 1)-th episode. For
ease of notation, hereafter, we omit Zt−1 in the posterior distribution. Most recent literature shows
that adding an optimism term in the posterior distribution can lead to sample-efficient RL algorithms.
Thereby, we define the distribution pt(·) over the function class F for the main player as in Line 3
of Algorithm 1, which is proportional to p0(f) exp[γV ∗

f +
∑t−1

τ=1

∑H
h=1 L

τ
h(f)]. Here, γV ∗

f serves
as the optimism term, and Lτ

h(f) is the likelihood function built upon the pre-collected data. Such
a construction of pt(·) indicates that we will assign a higher probability (density) to a function f ,
which results in higher values of the combination of the optimism term and the likelihood function.
We sample a model f

t
from the distribution pt(·) over the model class and learn the policy πt for the

main player such that (πt, νt) is the NE of the value function under the model f
t

in Line 4, where νt
is a dummy policy and only used in our theoretical analysis.

Posterior Sampling for the Exploiter. The exploiter aims to track the best response of πt to
assist learning a low regret. The best response of πt generated by the exploiter is nevertheless
based on a value function under a different model than f

t
. Specifically, for the exploiter, we define

the posterior sampling distribution qt(·) using an optimism term −γV πt,∗
f and the summation of

likelihood functions, i.e.,
∑t−1

τ=1

∑H
h=1 L

τ
h(f), along with a prior distribution q0(·), in Line 5 of

Algorithm 1. The negative term −γV πt,∗
f favors a model with a low value and is thus optimistic from

the exploiter’s perspective but pessimistic for the main player. We then sample a model f t from qt(·)
and compute the best response of πt, denoted as νt, under the model f t as in Line 7.
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Algorithm 1 Model-Based Posterior Sampling for Self-Play (Max-Player)
1: Input: Model class F , prior distributions p0 and q0, γ1, and γ2.
2: for t = 1, . . . , T do
3: Draw a model f

t ∼ pt(·) with defining pt(f) ∝ p0(f) exp[γ1V
∗
f +

∑t−1
τ=1

∑H
h=1 L

τ
h(f)]

4: Compute πt by letting (πt, νt) be the NE of V π,ν

f
t

5: Draw a model f t ∼ qt(·) with defining qt(f) ∝ q0(f) exp[−γ2V
πt,∗
f +

∑t−1
τ=1

∑H
h=1 L

τ
h(f)]

6: Compute νt by letting νt be the best response of πt w.r.t. V π,ν
ft

7: Collect data Dt by executing the joint exploration policy σt

8: Define the likelihood functions {Lt
h(f)}Hh=1 using the collected data Dt

9: end for
10: Return: (π1, . . . , πT ).

Data Sampling and Likelihood Function. With the learned πt and νt, we define a joint exploration
policy σt in Line 7 of Algorithm 1, by executing which we can collect a dataset Dt. We are able to
further construct the likelihood functions {Lt

h(f)}Hh=1 in Line 8 using Dt. Different game settings
require specifying diverse exploration policies σt and likelihood functions {Lt

h(f)}Hh=1. Particularly,
for the game classes mainly discussed in this work, we set σt = (πt, νt) for both FOMGs and
POMGs. In FOMGs, we let Dt = {(sth, ath, bth, sth+1)}Hh=1, where for each h ∈ [H], the data point
(sth, a

t
h, b

t
h, s

t
h+1) is collected by executing σt to the h-th step of the game. The corresponding

likelihood function is defined using the transition kernel as

Lt
h(f) = η logPf,h(s

t
h+1 | sth, ath, bth). (1)

Furthermore, under the POMG setting, we let the dataset be Dt = {τ th}Hh=1, where the data point
τ th = (ot1, a

t
1, b

t
1 . . . , o

t
h, a

t
h, b

t
h) is collected by executing σt to the h-th step of the game for each

h ∈ [H]. We further define the associated likelihood function as

Lt
h(f) = η logPf,h(τ

t
h). (2)

Such a construction of the likelihood function in a log-likelihood form can result in learning a model
f well approximating the true model f∗ measured via the Hellinger distance.

3.1 Regret Analysis for the Self-play Setting

Our regret analysis is based on a novel structural complexity condition for multi-agent RL and a
quantity to measure how the well the prior distributions cover the optimal model f∗. We first define
the following condition for the self-play setting.
Definition 1 (Self-Play GEC). For any sequences of functions f t, gt ∈ F , suppose that a pair
of policies (πt, νt) satisfies: (a) πt = argmaxπ minν V

π,ν
ft and νt = argminν V

πt,ν
gt , or (b)

νt = argminν maxπ V
π,ν
ft and πt = argmaxπ V

π,νt

gt . Denoting the joint exploration policy as
σt depending on f t and gt, for any ρ ∈ {f, g} and (πt, νt) following (a) and (b), the self-play GEC
dGEC is defined as the minimal constant d satisfying∣∣∣∑T

t=1

(
V πt,νt

ρt − V πt,νt

f∗

)∣∣∣ ≤ [d∑H
h=1

∑T
t=1

(∑t−1
τ=1 E(στ ,h)ℓ(ρ

t, ξτh)
)] 1

2

+ 2H(dHT )
1
2 + ϵHT.

Our definition of self-play GEC is inspired by [83] for the single-agent RL. Then, it shares an
analogous meaning to the single-agent GEC. Here (στ , h) implies running the joint exploration policy
στ to step h to collect a data point ξτh . The LHS of the inequality is viewed as the prediction error and
the RHS is the training error defined on a loss function ℓ plus a burn-in error 2H(dHT )

1
2 + ϵHT that

is non-dominating when ϵ is small. The loss function ℓ and ϵ can be problem-specific. We determine
ℓ(f, ξh) for FOMGs with ξh = (sh, ah) and POMGs with ξh = τh respectively as

FOMG: D2
He(Pf,h(·|ξh),Pf∗,h(·|ξh)), POMG: 1/2 ·

(√
Pf,h(ξh)/Pf∗,h(ξh)− 1

)2
, (3)
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such that E(σ,h)[ℓ(f, ξh)] = D2
He(P

σ
f∗,h,P

σ
f,h) for POMGs. The intuition for GEC is that if hypothe-

ses have a small training error on a well-explored dataset, then the out-of-sample prediction error is
also small, which characterizes the hardness of environment exploration.

Since the posterior sampling steps in our algorithms depend on the initial distributions p0 and q0, we
define the following quantity to measure how well the prior distributions p0 and q0 cover the optimal
model f∗ ∈ F , which is also a multi-agent generalization of its single-agent version [2, 83].
Definition 2 (Prior around True Model). Given β > 0 and any distribution p0 ∈ ∆F , we define

ω(β, p0) = inf
ε>0

{βε− ln p0[F(ε)]},

where F(ε) := {f ∈ F : suph,s,a,b KL
1
2 (Pf∗,h(· | s, a, b)∥Pf,h(· | s, a, b)) ≤ ε} for FOMGs and

F(ε) := {f ∈ F : supπ,ν KL
1
2 (Pπ,ν

f∗,H∥Pπ,ν
f,H) ≤ ε} for POMGs.

When the model class F is a finite space, if let p0 = Unif(F), we simply know that ω(β, p0) ≤
log |F| where |F| is the cardinality of F . Furthermore, for an infinite function class F , the term
log |F| can be substituted by a quantity having logarithmic dependence on the covering number of the
function class F . With the multi-agent GEC condition and the definition of ω, we have the following
regret bound for both FOMGs and POMGs.

Proposition 1. Letting η = 1/2, γ1 = 2
√

ω(4HT, p0)T/dGEC, γ2 = 2
√

ω(4HT, q0)T/dGEC,
ϵ = 1/

√
HT in Definition 1, when T ≥ max{4H2ω(4HT, p0)/dGEC, 4H

2ω(4HT, q0)/dGEC,
dGEC/H}, under both FOMG and POMG settings, Algorithm 1 admits the following regret bound,

E[Regsp1 (T )] := E[
∑T

t=1(V
∗
f∗ − V πt,∗

f∗ )] ≤ 6
√

dGECHT · [ω(4HT, p0) + ω(4HT, q0)].

This proposition gives the upper bound E[Regsp1 (T )] following the updating rules in Algorithm 1
when the max-player is the main player. As Algorithm 3 is symmetric to Algorithm 1, we obtain the
following regret bound of E[Regsp2 (T )] for Algorithm 3 when the min-player is the main player.
Proposition 2. Under the same parameter settings as Proposition 1, Algorithm 3 admits the following
regret bound,

E[Regsp2 (T )] := E[
∑T

t=1(V
∗,νt

f∗ − V ∗
f∗)] ≤ 6

√
dGECHT · [ω(4HT, p0) + ω(4HT, q0)].

Combining the results of Propositions 1 and 2, due to Regsp(T ) = Regsp1 (T )+Regsp2 (T ), we obtain
the following overall regret when running Algorithms 1 and 3 together.
Theorem 1. Under the settings of Propositions 1 and 2, executing both Algorithms 1 and 3 leads to

E[Regsp(T )] ≤ 12
√

dGECHT · [ω(4HT, p0) + ω(4HT, q0)].

The above results indicate that the proposed posterior sampling self-play algorithms (Algorithms
1 and 3) separately admit a sublinear dependence on GEC dGEC, the number of learning episodes
T , as well as ω(4HT, p0) and ω(4HT, q0) for both FOMG and POMG settings. They lead to the
same overall regret bound combining Propositions 1 and 2. In particular, when F is finite with
p0 = q0 = Unif(F), Algorithms 1 and 3 admit regrets of O(

√
dGECHT · log |F|). The quantity ω

can be associated with the log-covering number if F is infinite. Please see Appendix C for analysis.

4 Posterior Sampling for the Adversarial Setting

Without loss of generality, we assume that the max-player is the main agent and the min-player is the
opponent. Under this setting, the goal of the main player is to maximize her cumulative rewards as
much as possible, comparing against the value under the NE, i.e., V ∗

f∗ . We develop a novel algorithm
for this setting as summarized in Algorithm 2. In our algorithm, the opponent’s policy is assumed to
be arbitrary and is also not revealed to the main player. The only information about the opponent is
the current state or the partial observation of her state as well as the actions taken.

We adopt the optimistic posterior sampling approach for the main player with defining an optimism
term as γV ∗

f motivated by the above learning target, and the likelihood function Lt
h(f) with Lt

h(f) :=

η logPf,h(s
t
h+1 | sth, ath, bth) in (1) for FOMGs and Lt

h(f) = η logPf,h(τ
t
h) in (2) for POMGs

7



Algorithm 2 Model-Based Posterior Sampling with Adversarial Opponent
1: Input: Model class F , prior distributions p0, and γ.
2: for t = 1, . . . , T do
3: Draw a model f t ∼ pt(·) with defining pt(f) ∝ p0(f) exp[γV ∗

f +
∑t−1

τ=1

∑H
h=1 L

τ
h(f)]

4: Compute πt by letting (πt, νt) be NE of V π,ν
ft

5: Opponent picks an arbitrary policy νt

6: Collect a trajectory Dt by executing the joint exploration policy σt

7: Define the likelihood functions {Lt
h(f)}Hh=1 using the collected data Dt

8: end for
9: Return: (π1, . . . , πT ).

respectively. The policy πt learned by the main player is from computing the NE of the value
function under the current model f t sampled from the posterior distribution pt. In addition, the
joint exploration policy is set to be σt = (πt, νt) where νt is the potentially adversarial policy
played by the opponent. Thus, we can collect the data defined as Dt = {(sth, ath, bth, sth+1)}Hh=1 and
Dt = {τ th}Hh=1 with τ th = (ot1, a

t
1, b

t
1 . . . , o

t
h, a

t
h, b

t
h) for FOMGs and POMGs respectively, collected

by executing σt to the h-th step of the game for each h ∈ [H].

Remark 1. In Algorithm 2, we define the joint exploration policy σt = (πt, νt), which is the key
to the success of the algorithm design under the adversarial setting, especially for POMGs. Under
the single-agent setting, the prior work [83] sets the exploration policy for a range of partially
observable models subsumed by the PSR model as πt

1:h−1 ◦h Unif(A), i.e., running πt for steps 1
to h − 1 and then sampling the data at step h by enforcing a uniform policy. Such an exploration
scheme fails to work when facing an uncontrollable opponent who does not play a uniform policy
at step h. Theoretically, we prove that employing policies (πt

1:h, ν
t
1:h) for exploration without the

uniform policy, the self-play and adversarial GEC conditions in Definitions 1 and 3 are still satisfied
for a class of POMGs including weakly revealing and decodable POMGs. This eventually leads to a
unified adversarial learning algorithm for both FOMGs and POMGs.

4.1 Regret Analysis for the Adversarial Setting

Before demonstrating our regret analysis, we first define a multi-agent GEC fitting the adversarial
learning scenario. Considering that the opponent’s policy is uncontrollable during the learning, we
let {νt}Tt=1 be arbitrary, which is clearly distinguished from self-play GEC defined in Definition 1.

Definition 3 (Adversarial GEC). For any sequence of functions {f t}Tt=1 with f t ∈ F and any
sequence of the opponent’s policies {νt}Tt=1, suppose that the main player’s policies {µt}Tt=1
are generated via µt = argmaxπ minν V

π,ν
ft . Denoting the joint exploration policy as {σt}Tt=1

depending on {f t}Tt=1, the adversarial GEC dGEC is defined as the minimal constant d satisfying

∑T
t=1

(
V πt,νt

ft − V πt,νt

f∗

)
≤
[
d
∑H

h=1

∑T
t=1

(∑t−1
τ=1 E(στ ,h)ℓ(f

t, ξτh)
)] 1

2

+ 2H(dHT )
1
2 + ϵHT.

Our regret analysis for Algorithm 2 also depends on the quantity ω(β, p0) that characterizes the
coverage of the prior distribution p0 on the true model f∗. Then, we have the following regret bound.

Theorem 2. Letting η = 1
2 , γ = 2

√
ω(4HT, p0)T/dGEC, ϵ = 1/

√
HT in Definition 3, when

T ≥ max{4H2ω(4HT, p0)/dGEC, dGEC/H}, under both FOMG and POMG settings, Algorithm 2
admits the following regret bound,

E[Regadv(T )] ≤ 4
√

dGECHT · ω(4HT, p0).

The above result indicates that we can achieve a meaningful regret bound by a posterior sampling
algorithm with general function approximation, even when the opponent’s policy is adversarial and
her full policies νt are not revealed. This regret has a sublinear dependence on dGEC, the number
of episodes T , as well as ω(4HT, p0). Similarly, when F is finite, Algorithm 2 admits a regret of
O(
√
dGECHT · log |F|). The term log |F| can be the log-covering number of F if it is infinite.
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5 Theoretical Analysis

This section presents several examples of tractable MG classes captured by the self-play and adver-
sarial GEC, the discussion of the quantity ω(β, p0), the proof sketches of main theorems, and the
discussion of limitations.

Examples. We call the class with a low dGEC the low self-play GEC class and low adversarial GEC
class. Next, we analyze the relation between the proposed classes and the following MG classes. We
also propose a new decodable POMG class generalized from the single-agent POMDP. We note that
except for the linear MG, the other classes cannot be analyzed by the recent posterior sampling work
[73]. We defer detailed definitions and proofs to Appendix B.

• Linear MG. This FOMG class admits a linear structure of the reward and transition by feature
vectors ϕ(s, a, b) ∈ Rd as rh(s, a, b) = w⊤

h ϕ(s, a, b) and Ph(s
′|s, a, b) = θh(s

′)⊤ϕ(s, a, b) [71].
We then prove that “linear MG ⊂ low self-play/adversarial GEC" with dGEC = Õ(H3d).

• Linear Mixture MG. This FOMG class admits a different type of the linear structure for the
transition [16] as Ph(s

′|s, a, b) = θ⊤
h ϕ(s, a, b, s

′) with ϕ(s, a, b, s′) ∈ Rd. We prove that “linear
mixture MG ⊂ low self-play/adversarial GEC" with dGEC = Õ(H3d).

• Low Self-Play Witness Rank. [28] defines this FOMG class for self-play by supposing that an inner
product of specific vectors in Rd defined on current models can lower bound witnessed model misfit
and upper bound the Bellman error with a coefficient κwit, which generalizes linear/linear mixture
MGs. We can prove “low self-play witness rank ⊂ low self-play GEC" with dGEC = Õ(H3d/κ2

wit).
• α-Weakly Revealing POMG. This POMG class assumes minh σS(Oh) ≥ α where Oh ∈
R|O|×|S| is the matrix by Oh(·|·) and σS is the S-th singular value [41]. We prove that “α-weakly
revealing POMG ⊂ low self-play/adversarial GEC" with dGEC = Õ(H3|O|3|A|2|B|2|S|2/α2).

• Decodable POMG. We propose decodable POMGs by generalizing decodable POMDPs [23, 22],
assuming that an unknown decoder ϕh recovers states from observations, i.e., ϕh(o) = s. We can
prove “decodable POMG ⊂ low self-play/adversarial GEC" with dGEC = Õ(H3|O|3|A|2|B|2).

Discussion of ω(β, p0). We briefly discuss the upper bound of the quantity ω(β, p0) for FOMGs
and POMGs. We refer readers to Appendix C for more detailed proofs. For FOMGs, according to
Lemma 2 of [2], when F is finite, p0 = Unif(F), then ω(β, p0) ≤ log |F| by its definition. When
F is infinite, it shows that under mild conditions, there exists a prior p0 over F , B ≥ log(6B2/ϵ),
and ν = ϵ/(6 log(6B2/ϵ)) such that ω(β, p0) ≤ βϵ + log(N ( ϵ

6 log(B/ν) )), where N (ϵ) is the ϵ-
covering number w.r.t. the distance d(f, f ′) := sups,a,b,h |D2

He(Pf,h(· | s, a, b),Pf∗,h(· | s, a, b))−
D2

He(Pf ′,h(· | s, a, b),Pf∗,h(· | s, a, b))|. Since we have |D2
He(P,R)−D2

He(Q,R)| ≤
√
2
2 ∥P −Q∥1

for any distributions P,Q, and R, the covering number w.r.t. the distance d can connect to the
more common covering number w.r.t. the ℓ1 distance. Thus, the upper bound of ω(β, p0) can
be calculated for different cases. Additionally, for POMGs, inspired by [2], our work proves
that under similar conditions, ω(β, p0) with finite and infinite F admit the same bounds as
those for FOMGs. The difference is that the covering number is w.r.t. the distance d(f, f ′) =
supπ,ν |D2

He(P
π,ν
f,H ,Pπ,ν

f∗,H) − D2
He(P

π,ν
f ′,H ,Pπ,ν

f∗,H)|, which further connects to the ℓ1 distance de-
fined as d1(f, f ′) := supπ,ν ∥P

π,ν
f,H −Pπ,ν

f ′,H∥1. Such a covering number under ℓ1 distance is further
analyzed in [78]. Our work gives the first detailed proof for the upper bound of ω(β, p0) under the
partially observable setting, which is thus of independent interest.

Next, we outline our proof sketches. Detailed proofs are deferred to Appendices D, E, and F.

Proof Sketch of Theorem 1. To prove Theorem 1, we only need to combine the result in Propositions
1 and 2 via E[Regsp(T )] = E[Regsp1 (T )+Regsp2 (T )]. We thus first give a proof sketch for Proposition
1. We decompose Regsp1 (T ) = Term(i) + Term(ii) where

Term(i) =
∑T

t=1

[
V ∗
f∗ − V

πt,νt

f∗

]
, Term(ii) =

∑T
t=1

[
V

πt,νt

f∗ − V πt,∗
f∗

]
.

Intuitively, E[Term(i)] is the main player’s regret incurred Line 4 of Algorithm 1 and E[Term(ii)] is
the exploiter’s regret incurred by Line 6. We further show

Term(i) ≤
∑T

t=1

[
−∆V ∗

f
t + V

πt,νt

f
t − V

πt,νt

f∗

]
, Term(ii) =

∑T
t=1

[
V

πt,νt

f∗ − V
πt,νt

ft +∆V πt,∗
ft

]
,
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where ∆V ∗
f
t := V πt,νt

f
t −V ∗

f∗ and ∆V πt,∗
ft = V

πt,νt

ft −V πt,∗
f∗ are associated with the optimism terms

in posterior distributions. The inequality above for Term(i) is due to Line 4 such that V πt,νt

f
t =

minν V
πt,ν

f
t ≤ V

πt,νt

f
t . By Definition 1 for self-play GEC, we obtain that

∑T
t=1

(
V

πt,νt

f
t
,1

− V
πt,νt

f∗

)
and

∑T
t=1

(
V

πt,νt

f∗ − V
πt,νt

ft,1

)
can be bounded by[

dGEC

∑H
h=1

∑T
t=1

(∑t−1
ι=1 E(σι

exp,h)
ℓ(ρt, ξιh)

)]1/2
+ 2H(dGECHT )

1
2 + ϵHT,

where ρt is chosen as f
t

or f t respectively. By Lemma 11 and Lemma 12, we prove that for both

FOMGs and POMGs, the accumulation of the losses ℓ(f
t
, ξιh) in (3) connects to the likelihood

function Lt
h defined in (1) and (2). Thus, we obtain E[Term(i)] ≤

∑T
t=1 EZt−1E

f
t∼pt{−γ1∆V ∗

f
t −∑H

h=1

∑t−1
ι=1[L

t
h(f

t
) − Lt

h(f
∗)] + log pt(f

t
)

p0(f
t
)
} + 2H(dGECHT )

1
2 + ϵHT and E[Term(ii)] has a

similar bound based on qt, where Zt−1 is the randomness history. By Lemma 10, the posterior
distributions pt and qt following Lines 3 and 5 of Algorithm 1 can minimize the above upper bounds
for E[Term(i)] and E[Term(ii)]. Therefore, we can relax pt and qt to be distributions defined around
the true model f∗ to enlarge above bounds. When T is sufficiently large and η = 1/2, we have

E[Term(i)] ≤ ω(HT, p0)T/γ1 + γ1dGECH/4 + 2H(dGECHT )
1
2 + ϵHT,

E[Term(ii)] ≤ ω(HT, q0)T/γ2 + γ2dGECH/4 + 2H(dGECHT )
1
2 + ϵHT.

Choosing proper values for ϵ,γ1, and γ2, we obtain the bound for E[Regsp1 (T )] in Theorem 1 via
Regsp1 (T ) = Term(i) + Term(ii). In addition, we can prove the bound of E[Regsp2 (T )] in a symmetric
manner. Finally, combining E[Regsp1 (T )] and E[Regsp2 (T )] gives the result in Theorem 1.

Proof Sketch of Theorem 2. Under the adversarial setting, the policy of the opponent νt is not
generated by the algorithm, which could be arbitrarily time-varying. We decompose Regadv(T ) =∑T

t=1 ∆V ∗
ft +

∑T
t=1[V

∗
ft − V πt,νt

f∗ ] where ∆V ∗
ft := V ∗

f∗ − V ∗
ft relates to optimism. Since (πt, νt)

is NE of V π,ν
ft as in Line 3 of Algorithm 2, we have V ∗

ft = minν V
πt,ν
ft ≤ V πt,νt

ft , which leads to

Regadv(T ) ≤
∑T

t=1 ∆V ∗
ft +

∑T
t=1

[
V πt,νt

ft − V πt,νt

f∗

]
.

We can bound
∑T

t=1[V
πt,νt

ft − V πt,νt

f∗ ] via adversarial GEC in Definition 3 by[
dGEC

∑H
h=1

∑T
t=1

(∑t−1
ι=1 E(σι

exp,h)
ℓ(f t, ξιh)

)] 1
2

+ 2H(dGECHT )
1
2 + ϵHT.

Connecting the loss ℓ(f
t
, ξιh) to the likelihood function Lt

h defined in (1) and (2) via Lemmas 11
and 12, we obtain E[Regadv(T )] ≤

∑T
t=1 EZt−1Eft∼pt{γ

∑T
t=1 ∆V ∗

ft −
∑H

h=1

∑t−1
ι=1[L

t
h(f

t) −
Lt
h(f

∗)] + log pt(ft)
p0(ft)} + 2H(dGECHT )

1
2 + ϵHT . Lemma 10 shows pt in Line 3 of Algorithm 2

can minimize this bound. Thus, relaxing pt to be distribution defined around the true model f∗, with
sufficiently large T and η = 1/2, we have

E[Regadv(T )] ≤ ω(4HT, p0)T/γ + γdGECH/4 + 2H(dGECHT )
1
2 + ϵHT.

Choosing proper values for ϵ and γ, we eventually obtain the bound for E[Regadv(T )] in Theorem 2.

Discussion of Limitations. Our work has studied several but a limited number of tractable MG classes
in both FOMGs and POMGs. It is interesting to further define new MG classes by generalizing
their single-agent counterparts and explore the relation between these MG classes and low self-
play/adversarial GEC classes. It is also intriguing to generalize our method to general-sum settings.
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A Omitted Algorithm in the Main Text

Algorithm 3 Model-Based Posterior Sampling for Self-Play (Min-Player)
1: Input: Model class F , prior distributions p0 and q0, γ1, and γ2.
2: for t = 1, . . . , T do
3: Draw a model f

t ∼ pt(·) with defining pt(f) ∝ p0(f) exp[−γ1V
∗
f +

∑t−1
ι=1

∑H
h=1 L

τ
h(f)]

4: Compute νt by letting (πt, νt) be NE of V π,ν

f
t

5: Draw a model f t ∼ qt(·) with defining qt(f) ∝ q0(f) exp[γ2V
∗,νt

f +
∑t−1

ι=1

∑H
h=1 L

τ
h(f)]

6: Compute πt by letting πt be the best response of νt w.r.t. V π,ν
ft

7: Collect data Dt by executing the joint exploration policy σt

8: Define the likelihood functions {Lt
h(f)}Hh=1 using the collected data Dt

9: end for
10: Return: (ν1, . . . , νT ).

B Computation of Self-Play and Adversarial GEC

In this section, we present the computation of the self-play and adversarial GEC for different FOMG
and POMG classes, including linear MGs, linear mixture MGs, low-witness-rank MGs, weakly
revealing POMGs, and a novel POMG class, dubbed decodable POMGs, newly proposed by this
work.

Note that the GEC dGEC essentially depends on ϵ as shown in Definition 1 and Definition 3 such that
it should be expressed as dϵGEC. For convenience, we omit such a dependence in the notation. In our
main theorems, we set ϵ = 1/

√
HT , and according to our derivation in this section, dGEC has an

O(log(1/ϵ)) = O(· log(HT )) factor which only scales logarithmically in T .

B.1 Linear MG

In this subsection, we show that the linear MG is in the class of MGs with low self-play and adversarial
GEC and further calculate dGEC for the linear MG.

Definition 4 (Linear Markov Game [71]). The linear MG is a FOMG admitting the following linear
structures on the reward function and transition kernel,

rh(s, a, b) = w⊤
h ϕ(s, a, b), Ph(s

′ | s, a, b) = θh(s
′)⊤ϕ(s, a, b),

where there exist a known feature map ϕ : S × A × B 7→ Rd and unknown coefficients wh ∈ Rd

and θh(s
′) ∈ Rd that should be learned in algorithms. We assume that the feature map and the

coefficients satisfy ∥ϕ(s, a, b)∥2 ≤ 1,
∫
S ∥θh(s)∥2ds ≤

√
d, and ∥wh∥2 ≤

√
d.

Then, dGEC for the linear MG can be calculated in the following proposition. We can show that both
low self-play and adversarial GEC classes subsume the class of linear MGs.

Proposition 3 (Linear MG ⊂ Low Self-Play/Adversarial GEC). For linear MGs with ϕ(s, a, b) ∈
Rd as defined in Definition 4, and for ϵ > 0, when T is sufficiently large, choosing ℓ(f, ξh) =
D2

He

(
Pf,h(· | ξh),Pf∗,h(· | ξh)

)
as in (3) with ξh = (sh, ah, bh), we have

linear MG ⊂ MG with low self-play and adversarial GEC
with dGEC satisfying

dGEC = 16H3d log

(
1 +

HT

ϵ

)
.

Proof. Since the value function is defined as V π,ν
f,h (sh) := Eπ,ν,Pf

[
∑H

h′=h rh′(sh′ , ah′ , bh′)|sh]
at step h with denoting V π,ν

f = V π,ν
f,1 (s1) and we also have a relation V π,ν

f =
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Eπ,ν,Pf′ [
∑H

h=1(V
π,ν
f,h (sh) − V π,ν

f,h+1(sh+1))] for any f ′ using the telescoping summation as well
as V π,ν

f,H+1(·) = 0, we thus can decompose the value difference as follows,

V πt,νt

ft − V πt,νt

f∗

= Eπt,νt,Pf∗

[
H∑

h=1

(V πt,νt

ft,h (sh)− V πt,νt

ft,h+1(sh+1))

]
− Eπt,νt,Pf∗

[
H∑

h=1

rh(sh, ah, bh)

]

=

H∑
h=1

Eπt,νt,Pf∗

[
V πt,νt

ft,h (sh)−
(
rh(sh, ah, bh) + V πt,νt

ft,h+1(sh+1)
)]

=

H∑
h=1

Eπt,νt

ft,h , (4)

where we define the following Bellman residual in expectation as

Eπ,ν
f,h := Eπ,ν,Pf∗

[
Qπ,ν

f,h(sh, ah, bh)− Esh+1∼Pf∗,h(·|sh,ah,bh)

(
rh(sh, ah, bh) + V π,ν

f,h+1(sh+1)
)]

.

The Bellman residual for the linear MG can be linearly represented, whose form is

Eπ,ν
f,h = Eπ,ν,Pf∗

∫
S
[Pf,h(s|sh, ah, bh)− Pf∗,h(s|sh, ah, bh)]V π,ν

f,h+1(s)ds

= Eπ,ν,Pf∗

∫
S
[ϕ(sh, ah, bh)

⊤(θf,h(s)− θf∗,h(s))]V
π,ν
f,h+1(s)ds

= Eπ,ν,Pf∗ϕ(sh, ah, bh)
⊤
∫
S
[(θf,h(s)− θf∗,h(s))]V

π,ν
f,h+1(s)ds

= ⟨Eπ,ν,Pf∗ϕ(sh, ah, bh), qh(f, π, ν)⟩,
where we let

qh(f, π, ν) :=

∫
S
[(θf,h(s)− θf∗,h(s))]V

π,ν
f,h+1(s)ds,

such that we have ∥qh(f, π, ν)∥2 ≤ 2
√
dH according to the definition of the linear MG. Therefore,

the value difference term can also be rewritten as

V πt,νt

ft − V πt,νt

f∗ =

H∑
h=1

Eπt,νt

ft,h =

H∑
h=1

[⟨Eπt,νt,Pf∗ϕ(s
t
h, a

t
h, b

t
h), qh(f

t, πt, νt)⟩],

where (sth, a
t
h, b

t
h) can be viewed as sampled data following πt, νt, and Pf∗ .

For simplicity, we denote ϕt
h := Eπt,νt,Pf∗ϕ(s

t
h, a

t
h, b

t
h), qt

h := qh(f
t, πt, νt), and ξth :=

(sth, a
t
h, b

t
h), and define Φt

h := λId +
∑t

ι=1 ϕ
ι
h(ϕ

ι
h)

⊤ with λ > 0 and φt
h := ∥ϕt

h∥(Φt−1
h )−1 . Note

that we have

∥qt
h∥Φt−1

h
=

√√√√t−1∑
ι=1

⟨ϕι
h, q

t
h⟩2 + λ∥qt

h∥22, (5)

where the term ⟨ϕι
h, q

t
h⟩2 can be bounded as

[⟨ϕι
h, q

t
h⟩]2 =

[
Eπι,νι,f∗

∫
S
(Pft,h(s | sh, ah, bh)− Pf∗,h(s | sh, ah, bh))V πt,νt

ft,h+1(s)ds

]2
≤ H2Eπι,νι,f∗∥Pf,h(·|sh, ah, bh)− Pf∗,h(·|sh, ah, bh)∥21
≤ 8H2Eπι,νι,f∗D2

He(Pft,h(·|sh, ah, bh),Pf∗,h(·|sh, ah, bh)), (6)

where the first inequality uses V π,ν
f,h+1(s) ≤ H and the second inequality uses ∥P − Q∥21 ≤

8D2
He(P,Q). Moreover, using a⊤b ≤ ∥a∥A∥b∥A−1 , we also have

⟨ϕt
h, q

t
h⟩ = ⟨ϕt

h, q
t
h⟩(1{φt

h<1} + 1{φt
h≥1})

≤ Hmin
{ 1

H
|⟨ϕt

h, q
t
h⟩|, 1

}
1{φt

h<1} +H · 1{φt
h≥1}

≤ ∥qt
h∥Φt−1

h
min{φt

h, 1}1{φt
h<1} +H · 1{φt

h≥1}, (7)
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where 1{·} denotes an indicator function.

Plugging (5) into (7) and taking a summation from t = 1 to T , we obtain
H∑

h=1

T∑
t=1

∥qt
h∥Φt−1

h
min{φt

h, 1}1{φt
h<1} +H · 1{φt

h≥1}

≤
H∑

h=1

T∑
t=1

√√√√t−1∑
ι=1

[⟨ϕι
h, q

t
h⟩]2 + 4λdH2 ·min{φt

h, 1}1{φt
h<1} +H · 1{φt

h≥1}

≤
H∑

h=1

T∑
t=1


√√√√t−1∑

ι=1

[⟨ϕι
h, q

t
h⟩]2 +

√
4λdH2

 ·min{φt
h, 1}1{φt

h<1} +H · 1{φt
h≥1}

≤

√√√√ H∑
h=1

T∑
t=1

t−1∑
ι=1

[⟨ϕι
h, q

t
h⟩]2

√√√√ H∑
h=1

T∑
t=1

min{(φt
h)

2, 1}1{φt
h<1}

+

√√√√4λdH3T
H∑

h=1

T∑
t=1

min{(φt
h)

2, 1}1{φt
h<1} +H

H∑
h=1

T∑
t=1

1{φt
h≥1}, (8)

where the second inequality uses
√
a+ b ≤

√
a+

√
b and the last inequality is by Cauchy-Schwarz.

According to the elliptical potential lemma (Lemma 15), we have the following bound,
H∑

h=1

T∑
t=1

min{(φt
h)

2, 1} ≤
H∑

h=1

2 log

(
detΦT

h

detΦ0
h

)
≤ 2Hd log

(
1 +

T

dλ

)
, (9)

where the first inequality uses Lemma 15, and the last inequality uses log detΦt
h ≤ d log

tr(ΦT
h )

d ≤
d log λd+T

d . We also note that ϕt
h cannot exceed 1 too many times, as detailed in Lemma 16. By

Lemma 16 and the fact that 1{φt
h≥1} ≤ 1, we obtain

H∑
h=1

T∑
t=1

1{φt
h≥1} ≤ min

{
3Hd

log 2
log

(
1 +

1

λ log 2

)
, HT

}
. (10)

Combining (6), (7), (8),(9), and (10), we obtain∣∣∣∣∣
T∑

t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣∣
≤

√√√√2Hd log

(
1 +

T

dλ

) H∑
h=1

T∑
t=1

t−1∑
ι=1

[⟨ϕι
h, ω

t
h⟩]2

+

√
4λdH3T min

{
2Hd log

(
1 +

T

dλ

)
, HT

}
+min

{
3H2d

log 2
log

(
1 +

1

λ log 2

)
, H2T

}

≤ H

√√√√16Hd log

(
1 +

T

dλ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pft,h(· | ξιh),Pf∗,h(· | ξιh)

)
+ λdH2T +min

{
2H2d log

(
1 +

T

dλ

)
, H2T

}
+min

{
3H2d

log 2
log

(
1 +

1

λ log 2

)
, H2T

}

≤

√√√√16H3d log

(
1 +

T

dλ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pft,h(· | ξιh),Pf∗,h(· | ξιh)

)
+ λdH2T + 2

[
2H2d log

(
1 +

T

dλ

)
∧H2T

]
, (11)
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which further leads to∣∣∣∣∣
T∑

t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣∣ ≤
√√√√16H3d log

(
1 +

HT

ϵ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f t, ξιh)

+ ϵHT + 2

√
2H4Td log

(
1 +

HT

ϵ

)
by x ∧ y ≤ √

xy and setting ϵ = λHd where λ > 0 and ℓ(f, ξh) := D2
He

(
Pf,h(· | ξh),Pf∗,h(· | ξh)

)
with ξh = (sh, ah, bh). Thus, we obtain that when T is sufficiently large, we have

dGEC = 16H3d log

(
1 +

HT

ϵ

)
.

Note that the above results hold for arbitrary policy pair (νt, πt). This implies that linear MGs with
the dimension d is subsumed by the class of MGs with self-play and adversarial GEC dGEC =
16H3d log(1 + HT

ϵ ). This completes the proof.

B.2 Linear Mixture MG

In this subsection, we discuss the linear mixture MG setting, where the transition kernel is a linear
combination of some basis transition kernels and thus admits a linear structure. Specifically, we have
the following definition of the linear mixture MG.
Definition 5 (Linear Mixture Markov Game [16]). There exists a d-dimensional feature map ϕ :
S ×A× B × S 7→ Rd and an unknown coefficient θh ∈ Rd, such that the transition of the Markov
game can be represented by

Ph(sh+1 | sh, ah, bh) = θ⊤
h ϕ(sh+1 | sh, ah, bh),

where ∥θh∥2 ≤ B and ∥
∫
S ϕ(s, a, b, s′)V (s′)ds′∥2 ≤ H for any bounded function V : S 7→ [0, H].

In the context of linear mixture MGs, both self-play and adversarial GEC can be calculated.
Proposition 4 (Linear Mixture MG ⊂ Low Self-play/Adversarial GEC). For linear mixture MGs with
ϕ(s, a, b, s′) ∈ Rd defined as in Definition 4, and for ϵ > 0, when T is sufficiently large, choosing
ℓ(f, ξh) = D2

He

(
Pf,h(· | ξh),Pf∗,h(· | ξh)

)
as in (3) with ξh = (sh, ah, bh), we have

linear mixture MG ⊂ MG with low self-play and adversarial GEC
with dGEC satisfying

dGEC = 16H3d log

(
1 +

TB2

dϵH

)
.

Proof. The proof of GEC bound in a linear mixture Markov game is similar to the one in the linear
Markov game case. We first define the Bellman residual in expectation as

Eπ,ν
f,h := Eπ,ν,Pf∗

[
Qπ,ν

f,h(sh, ah, bh)− Esh+1∼Pf∗,h(·|sh,ah,bh)

(
rh(sh, ah, bh) + V π,ν

f,h+1(sh+1)
)]

.

One can derive the following property of Eπ,ν
f,h by precisely the same derivation as in (4), which is

V πt,νt

ft − V πt,νt

f∗ =

H∑
h=1

Eπt,νt

ft,h .

We next show that in a linear mixture Markov game, the Bellman residual Eπ,ν
f,h can be linearly

represented, whose form is

Eπ,ν
f,h = Eπ,ν,Pf∗

∫
S
[Pf,h(s|sh, ah, bh)− Pf∗,h(s|sh, ah, bh)]V π,ν

f,h+1(s)ds

= Eπ,ν,Pf∗

∫
S
[ϕ(sh, ah, bh, s)

⊤(θf,h − θf∗,h)]V
π,ν
f,h+1(s)ds

= ⟨Eπ,ν,Pf∗

∫
S
ϕ(sh, ah, bh, s)V

π,ν
f,h+1(s)ds,θf,h − θf∗,h⟩

= ⟨ϕ(sh, ah, bh, f, π, ν), qh(f)⟩,
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where we define ϕ(sh, ah, bh, f, π, ν) := Eπ,ν,Pf∗

∫
S ϕ(sh, ah, bh, s

′)V π,ν
f,h+1(s

′)ds′ and qh(f) :=

θf,h − θf∗,h. Note that ∥ϕ(sh, ah, bh, f, π, ν)∥ ≤ H and ∥qh(f)∥ ≤ 2B by Definition 5.

We next define ϕt
h := ϕ(sth, a

t
h, b

t
h, f

t, πt, νt), qt
h := qh(f

t), Φt
h := λId+

1
H2

∑t
ι=1 ϕ

ι
h(ϕ

ι
h)

⊤ and
φt
h := ∥ϕt

h∥(Φt−1
h )−1 . Since we have

|⟨ϕι
h, q

t
h⟩|2 =

∣∣∣∣Eπι,νι,Pf∗

∫
S

(
Pft,h(s | sιh, aιh, bιh)− Pf∗,h(s | sιh, aιh, bιh)

)
V πι,νι

fι,h+1(s)ds

∣∣∣∣2
≤ H2Eπι,νι,Pf∗∥Pft,h(· | sιh, aιh, bιh)− Pf∗,h(· | sιh, aιh, bιh)∥21
≤ 8H2Eπι,νι,Pf∗D

2
He

(
Pft,h(· | sιh, aιh, bιh),Pf∗,h(· | sιh, aιh, bιh)

)
, (12)

where the first inequality is due to V πι,νι

fι,h+1(s) ≤ H and the second inequality is due to ∥P −Q∥22 ≤
8D2

He(P,Q). By utilizing ∥qh(f)∥ ≤ 2B and (12), we further obtain an upper bound of ∥qt
h∥Φt−1

h

as follows,

∥qt
h∥Φt−1

h
≤

√√√√t−1∑
ι=1

[⟨ϕι
h, q

t
h⟩]2 + λ∥qt

h∥22

≤

√√√√t−1∑
ι=1

8H2Eπι,νι,Pf∗D2
He (Pft,h(· | sιh, aιh, bιh),Pf∗,h(· | sιh, aιh, bιh)) + 4λB2.

The rest of the proof is the same as the proof in the linear Markov game, from (5) to (11), except with
a scaling factor. We provide the final result here as follows,∣∣∣∣∣

T∑
t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣∣
≤

√√√√16H3d log

(
1 +

T

dλ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

Eπι,νι,Pf∗D2
He (Pft,h(· | sιh, aιh, bιh),Pf∗,h(· | sιh, aιh, bιh))

+ λB2T +min

{
2H2d log

(
1 +

T

dλ

)
, H2T

}
+min

{
3H2d

log 2
log

(
1 +

1

λ log 2

)
, H2T

}

≤

√√√√16H3d log

(
1 +

T

dλ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

Eπι,νι,Pf∗D2
He (Pft,h(· | sιh, aιh, bιh),Pf∗,h(· | sιh, aιh, bιh))

+ λB2T + 2

[
2H2d log

(
1 +

T

dλ

)
∧H2T

]
,

Note that here (πt, νt) can be any arbitrary policy pair, including the ones required as in Definitions
1 and 3. Moreover, we will see that the above result satisfies the definitions of both self-play
and adversarial GEC when using the inequality x ∧ y ≤ √

xy and choosing λ = ϵH/B2 and
ℓ(f, ξh) = D2

He

(
Pf,h(· | ξh),Pf∗,h(· | ξh)

)
. Therefore, we have

dGEC = 16H3d log

(
1 +

TB2

dϵH

)
for T sufficiently large, which shows that linear mixture MGs with the dimension d is subsumed
by MGs with self-play and adversarial GEC dGEC = 16H3d log(1 + TB2

dϵH ). This completes the
proof.

B.3 Low-Witness-Rank MG

Witness rank is a complexity measure that absorbs a wide range of settings in single-agent RL[60].
The work [28] further studies the witness rank under the MG setting with self-play. In this subsection,
we show that MGs with low self-play GEC subsumes the class of MGs with a low witness rank in the
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self-play setting. Since the witness rank under the adversarial setting was not investigated in prior
works, we here only analyze the self-play setting.

Before presenting our main proposition, we first show the definitions of witnessed model misfit and
witness rank in MGs with self-play [28].
Definition 6 (Witnessed model misfit in Markov game). Suppose that there exists a discriminator
class U with u ∈ U : S × A × B × S 7→ [0, H]. The witnessed model misfit in Markov games
W(f, g, ρ, h) for the models f, g, ρ ∈ F at step h is characterized by

W(f, g, ρ, h) = sup
u∈U

∣∣∣E(sh,ah,bh)∼Pf∗ ,π̆,ν̆

[
Es′∼Pρ,h(· | sh,ah,bh)u(sh, ah, bh, s

′)

− Esh+1∼Pf∗,h(· | sh,ah,bh)u(sh, ah, bh, sh+1)
]∣∣∣,

where π̆ := argmaxπ minν V
π,ν
f and ν̆ := argminν V

π̆,ν
g with f, g ∈ F .

The definition of (π̆, ν̆) matches the requirement for the policy pair in the self-play GEC, i.e.,
condition (1) in Definition 1. We note that condition (2) in our definition of self-play GEC is designed
for Algorithm 3, which is thus a symmetric condition to (1). We define the Bellman residual as

Eπ,ν
f,h := Eπ,ν,Pf∗

[
Qπ,ν

f,h(sh, ah, bh)− Esh+1∼Pf∗,h(·|sh,ah,bh)

(
rh(sh, ah, bh) + V π,ν

f,h+1(sh+1)
)]

.

Then, we have the following definition of witness rank for MGs with self-play.
Definition 7 (Witness Rank for Self-Play). There exist two functions Wh : F × F 7→ Rd and
Xh : F 7→ Rd and constant κ > 0 such that

κwit|E π̆,ν̆
ρ,h | ≤ ⟨Wh(f, g),Xh(ρ)⟩, W(f, g, ρ, h) ≥ ⟨Wh(f, g),Xh(ρ)⟩,

where π̆ := argmaxπ minν V
π,ν
f and ν̆ := argminν V

π̆,ν
g with f, g ∈ F , ∥Wh(·)∥2 ≤ HB for a

constant B, and ∥Xh(·)∥2 ≤ 1 for any step h. Then, the witness rank of MGs with self-play is defined
as the dimension d of the range spaces for functions W and X .

We show that in the self-play setting, dGEC is bounded for MGs with a low witness rank. It is worth
noting that the proof of GEC bound for MGs with a low witness rank generalizes the proof for linear
MGs in Appendix B.1.
Proposition 5 (Low Self-Play Witness Rank ⊂ Low Self-play GEC). For a Markov game
with witness rank d as defined in Definition 7, when T sufficiently large, choosing ℓ(f, ξh) =
D2

He

(
Pf,h(· | ξh),Pf∗,h(· | ξh)

)
as in (3) with ξh = (sh, ah, bh), we have

MG with low self-play witness rank ⊂ MG with low self-play GEC
with dGEC satisfying

dGEC =
4H3d

κ2
wit

log

(
1 +

THB2

4dϵκ2
wit

)
.

Proof. We first give a bound of the model misfit in the Hellinger distance. By 0 ≤ u ≤ H , we have[
Es′∼Pρ,h(· | sh,ah,bh)u(sh, ah, bh, s

′)− Esh+1∼Pf∗,h(· | sh,ah,bh)u(sh, ah, bh, sh+1)
]2

≤ H2
∥∥Pρ,h(· | sh, ah, bh)− Pf∗,h(· | sh, ah, bh)

∥∥2
1

≤ 2H2D2
He

(
Pρ,h(· | sh, ah, bh),Pf∗,h(· | sh, ah, bh)

)
,

where ρ can be f or g as in the definition of self-play GEC. By the definition of W(f, g, ρ, h) and
Jensen’s inequality, we further get

W(f, g, ρ, h)2 ≤ 2H2E(sh,ah,bh)∼Pf∗ ,π̆,ν̆D
2
He

(
Pρ,h(· | sh, ah, bh),Pf∗,h(· | sh, ah, bh)

)
, (13)

where we use supv Exf(x, v) ≤ Ex supv f(x, v) and the definition of (π̆, ν̆). Note that following our
definition of self-play GEC, if we choose f = f t and g = gt in the model misfit, then correspondingly
we have π̆ = πt and ν̆ = νt as in the condition (1) of Definition 1.
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By the definition of Eπ,ν
ρ,h , we can decompose the value difference as

∣∣∣∣∣
T∑

t=1

(
V πt,νt

ρt − V πt,νt

f∗

)∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

H∑
h=1

Eπt,νt

ρt,h

∣∣∣∣∣ .
Hereafter we define W t

h := Wh(f
t, gt), Xt

h := Xh(ρ
t), Σt

h := λI +
∑t

ι=1 X
ι
h(X

ι
h)

⊤, and
φt
h := ∥Xt

h∥2(Σt
h)

−1 . Using the definition of Wh and Xh and Eπt,νt

ρt,h ≤ H , we obtain

∣∣∣∣∣
T∑

t=1

H∑
h=1

Eπt,νt

ρt,h

∣∣∣∣∣ ≤
T∑

t=1

H∑
h=1

Hmin

{
1

Hκwit
⟨Wh(f

t, gt),Xh(ρ
t)⟩, 1

}

=

T∑
t=1

H∑
h=1

Hmin

{
1

Hκwit
⟨Wh(f

t, gt),Xh(ρ
t)⟩, 1

}(
1{φt−1

h ≤1} + 1{φt−1
h >1}

)
≤

T∑
t=1

H∑
h=1

1

κwit
∥W t

h∥Σt−1
h

min
{
∥Xt

h∥(Σt−1
h )−1 , 1

}
1{φt−1

h ≤1}︸ ︷︷ ︸
Term(i)

+H

T∑
t=1

H∑
h=1

1{φt−1
h >1}︸ ︷︷ ︸

Term(ii)

,

where 1{·} denotes the indicator function. For Term(ii), we can apply Lemma 16 to obtain

H

T∑
t=1

H∑
h=1

1{φt−1
h >1} ≤ min

{
3H2d

log 2
(1 +

1

λ log 2
), H2T

}
.

It remains to bound Term(i). We first calculate the sum of ∥W t
h∥2Σt

h
, which is

T∑
t=1

H∑
h=1

∥W t−1
h ∥2Σt

h

=

T∑
t=1

H∑
h=1

(
λ∥W t

h∥22 +
t−1∑
ι=1

⟨W t
h,X

ι
h⟩2
)

≤ H3TB2λ+

T∑
t=1

H∑
h=1

t−1∑
ι=1

⟨W t
h,X

ι
h⟩2

≤ H3TB2λ+ 2H2
T∑

t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pρι,h(· | sh, ah, bh),Pf∗,h(· | sh, ah, bh)

)
,

where the first inequality uses ∥W t
h∥ ≤ HB, and the second inequality uses the definition of witness

rank and (13). We also let ξιh := (sιh, a
ι
h, b

ι
h). We next use Lemma 15 to obtain

H∑
h=1

T∑
t=1

min{φt
h, 1} ≤ min

{
2Hd log

(
1 +

T

dλ

)
, HT

}
.
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Finally, by using the Cauchy-Schwarz inequality, we obtain the bound for Term(i) as

T∑
t=1

H∑
h=1

1

κwit
∥W t

h∥Σt−1
h

min{∥Xt
h∥(Σt−1

h )−1 , 1}1{φt−1
h ≤1}

≤

√√√√ T∑
t=1

H∑
h=1

(
1

κwit
∥W t

h∥Σt−1
h

)2

√√√√ T∑
t=1

H∑
h=1

min{φt
h, 1}

≤ 1

κwit

√√√√λH3TB2 + 2H2

T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pρι,h(· | ξιh),Pf∗,h(· | ξιh)

)
·

√
min

{
2Hd log

(
1 +

T

dλ

)
, HT

}

≤

√λH3TB2

κ2
wit

+

√√√√2H2

κ2
wit

T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pρι,h(· | ξιh),Pf∗,h(· | ξιh)

)
·

√
min

{
2Hd log

(
1 +

T

dλ

)
, HT

}
,

where the first inequality is by Cauchy-Schwarz, and the last inequality is by
√
a+ b ≤

√
a+

√
b.

We further invoke
√
ab ≤ a

4 + b to obtain that

Term(i)

≤ λH2TB2

4κ2
wit

+min

{
2H2d log

(
1 +

T

dλ

)
, H2T

}

+

√√√√4H3d

κ2
wit

log

(
1 +

T

dλ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pρι,h(· | ξιh),Pf∗,h(· | ξιh)

)
.

Finally, we combine the bounds for term(i) and term(ii) to obtain that for T sufficiently large,∣∣∣∣∣
T∑

t=1

(
V πt,νt

ρt − V πt,νt

f∗

)∣∣∣∣∣
≤ λH2TB2

4κ2
wit

+ 2

√
2H4dT log

(
1 +

T

dλ

)

+

√√√√4H3d

κ2
wit

log

(
1 +

T

dλ

) T∑
t=1

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)D
2
He

(
Pρι,h(· | ξιh),Pf∗,h(· | ξιh)

)
,

where we also use the inequality x ∧ y ≤ √
xy. Then, we can see that the above results satisfy

Definition 1 with choosing λ =
4ϵκ2

wit

HB2 . Thus, we conclude that under the self-play setting, we have

dGEC =
4H3d

κ2
wit

log

(
1 +

THB2

4dϵκ2
wit

)
.

This concludes the proof.

B.4 Weakly Revealing POMG

In this section, we consider a weakly revealing POMG. Recall that {Oh}Hh=1 stands for the emission
kernels, which can be viewed in the form of matrices Oh ∈ R|O|×|S|, with the (o, s)-th element
being Oh(o | s) for step h. Similarly, the transition matrix Ph,a,b ∈ R|S|×|S| is such that the (s′, s)-th
element is Ph(s

′ | s, a, b).

24



Here we consider undercomplete POMGs where there are more observations than hidden states,
|O| ≥ |S|. Formally, it can be defined as an α-revealing POMG as follows:

Definition 8 (α-Revealing POMG [41]). A POMG is α-revealing if it satisfies that there exists α > 0
such that minh σS(Oh) ≥ α, where σS(·) denotes the S-th singular value of a matrix with S = |S|.

The α-revealing condition measures how hard it is to recover states from observations. Before
presenting the GEC bound for an α-revealing POMG, we first define some notations. We define
τh:h′ := (oi, ai, bi)

h′

i=h to be a set of observation-action tuples from step h to h′. For simplicity,
we denote τ1:h as τh. We define q0 := O1µ1 ∈ R|O|, where µ1 ∈ R|S| is a vector formed by the
distribution of the initial state. We define q(τh) := [Pr

(
o1:h, oh+1 |do(a1:h, b1:h)

)
]o∈O ∈ R|O|

when τh = (oi, ai, bi)
h
i=1. Here do(a1:h, b1:h) means executing actions ah′ and bh′ at step h′.

In other words, Pr
(
o1:h, oh+1 |do(a1:h, b1:h)

)
describes the probability of receiving observations

o1:h given the actions fixed as (a1:h−1, b1:h−1). We define q̄(τh) := q(τh)/P(τh), which is the
concatenation of the probabilities under condition τh. We have q̄(τh) = [Pr(o | τ1:h)]o∈O, where
Pr(o | τ1:h) means the probability of receiving oh+1 = o under the condition that the previous
trajectory is τh.

Based on the above definitions, we then derive the GEC bound for an α-revealing POMG in the
following proposition.

Proposition 6 (α-Revealing POMG ⊂ Low Self-Play/Adversarial GEC). For an α-revealing POMG
defined in Definition 8, with the loss ℓ(f, ξh) defined in (3) for POMGs, we have

α-revealing POMG ⊂ MG with low self-play and adversarial GEC

with dGEC satisfying

dGEC = O

(
H3|O|3|A|2|B|2|S|2ς

α4

)
,

where ς = 2 log
(
1 + 4|A|2|B|2|O|2|S|2

α2

)
.

For our proof of this proposition, we prove several supporting lemmas presented in Appendix B.4.1.

Proof. For ease of notation, we let S = |S|, A = |A|, B = |B|, and O = |O| in our proof. We
define the following observed operator representation:

Mh(o, a, b) := Oh+1Ph,a,bdiag
(
Oh(o | ·)

)
O†

h ∈ RO×O

for 1 ≤ h ≤ H . One can verify that the previously defined Mh(o, a, b) has the following property,

q(τh) = Mh(oh, ah, bh)Mh−1(oh−1, ah−1, bh−1) . . .M1(o1, a1, b1)q0.

Specifically, P(τH) = MH(oH , aH , bH) . . .M1(o1, a1, b1)q0. For simplicity, we define

Mh′:h(oh:h′ , ah:h′ , bh:h′) := Mh′(oh′ , ah′ , bh′)Mh′−1(oh′−1, ah′−1, bh′−1) . . .Mh(oh, ah, bh).

We also rewrite MH:h+1(oh+1:H , ah+1:H , bh+1:H) as m(oh+1:H , ah+1:H , bh+1:H) to emphasize
that MH:h+1(oh+1:H , ah+1:H , bh+1:H) is a vector since MH(oH , aH , bH) is a vector.

We start by using Lemma 5 to decompose the regret as follows∣∣∣∣∣
T∑

t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣∣
≤

T∑
t=1

H
√
S

α

[ H∑
h=1

∑
τh

∥(M t
h(oh, ah, bh)−Mh(oh, ah, bh))q(τh−1)∥1σt(τh) + ∥qt

0 − q0∥1
]
.
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Combine this with the fact that V πt,νt

ft − V πt,νt

f∗ ≤ H ,we have

∣∣∣∣∣
T∑

t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣∣
≤

T∑
t=1

H
√
S

α

[ H∑
h=1

min
{ α√

S
,
∑
τh

∥(M t
h(oh, ah, bh)−Mh(oh, ah, bh))q(τh−1)∥1σt(τh)

}
+ ∥qt

0 − q0∥1
]
.

where we define

π(τh) =

h∏
h′=1

πh′(ah′ | τh′−1, oh′), ν(τh) =

h∏
h′=1

νh′(bh′ | τh′−1, oh′), σt(τh) = πt(τh)ν
t(τh),

and M t
h and qt0 correspond to the model f t sampled in time step t.

We next focus on
∑

τh
∥(M t

h(oh, ah, bh)−Mh(oh, ah, bh))q(τh−1)∥1σt(τh). By the definition of
q̄ and q, we obtain

∑
τh

∥
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q(τh−1)∥1σ(τh)

= E
τh−1∼Pπt,νt

f∗,h−1

∑
oh,ah,bh

O∑
j=1

|ẽ⊤j (M t
h(oh, ah, bh)−Mh(oh, ah, bh))q̄(τh−1)|σt(oh, ah, bh; τh−1)

= E
τh−1∼Pπt,νt

f∗,h−1

∑
oh,ah,bh

O∑
j=1

∣∣∣ẽ⊤j (M t
h(oh, ah, bh)−Mh(oh, ah, bh))Oh−1O†

h−1

· q̄(τh−1)σ
t(oh, ah, bh; τh−1)

∣∣∣,
where ẽj denotes the j-th standard basis vector in RO, and σt(τh:h′ ; τh−1) := πt(τh:h′ ; τh−1) ·
νt(τh:h′ ; τh−1), where πt(τh:h′ ; τh−1) =

∏h′

h′′=h π
t
h′′(ah′′ | τh′′−1, oh′′), νt(τh:h′ ; τh−1) =∏h′

h′′=h ν
t
h′′(bh′′ | τh′′−1, oh′′). For simplicity, we define wh,t,j,o,a,b := (ẽ⊤j (M

t
h(o, a, b) −

Mh(o, a, b))Oh−1)
⊤ and xτh−1,σ,o,a,b := O†

h−1q̄(τh−1)σ(o, a, b; τh−1). Then, we have

E
τh−1∼Pπt,νt

f∗,h−1

∑
oh,ah,bh

O∑
j=1

|ẽ⊤j (M t
h(oh, ah, bh)−Mh(oh, ah, bh))Oh−1O†

h−1q̄(τh−1)σ
t(oh, ah, bh; τh−1)|

=
∑
o,a,b

E
τh−1∼Pπt,νt

f∗,h−1

O∑
j=1

|w⊤
h,t,j,o,a,bxτh−1,σt,o,a,b|.

Next, we will apply the ℓ2 eluder technique [13, 83] in Lemma 17 to derive the upper bound. We first
analyze the upper bounds of

∑O
j=1 ∥wh,t,j,o,a,b∥2 and E

τh−1∼Pπt,νt

f∗,h−1

∥xτh−1,σt,o,a,b∥22 for the usage

of the ℓ2 eluder technique. According to Lemma 7, for any (o, a, b) ∈ O ×A× B, we have

E
τh−1∼Pπt,νt

f∗,h−1

∥xτh−1,σt,o,a,b∥22 ≤ S,

O∑
j=1

∥wh,t,j,o,a,b∥2 ≤ 2ABd
√
S

α
.
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According to Lemma 17, setting R = α√
S

and R2
xR

2
w ≤ 4A2B2O2S2

α2 in the new ℓ2 eluder technique,
we can obtain

T∑
t=1

min
{ α√

S
, E
τh−1∼Pπt,νt

f∗,h−1

O∑
j=1

∑
o,a,b

|w⊤
h,t,j,o,a,bxτh−1,σt,o,a,b|

}

≤
∑

oh,ah,bh

{
Oς
[α2

S
T +

T∑
t=1

t−1∑
ι=1

E
τh−1∼Pπι,νι

f∗,h−1

(
∥
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q̄(τh−1)∥1

· σι(oh, ah, bh; τh−1)
)2]} 1

2

,

where ς = 2 log
(
1 + 4A2B2O2S2

α2

)
. By Jensen’s inequality, the last term above is further relaxed as{

O2ABς
[OABα2

S
T +

T∑
t=1

t−1∑
ι=1

E
τh−1∼Pπι,νι

f∗,h−1

( ∑
oh,ah,bh

∥
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q̄(τh−1)∥1

· σι(oh, ah, bh; τh−1)
)2]} 1

2

.

Then, invoking Lemma 6, we obtain
T∑

t=1

min
{ α√

S
, E
τh−1∼Pπt,νt

f∗,h−1

O∑
j=1

∑
o,a,b

|w⊤
h,t,j,o,a,bxτh−1,σt,o,a,b|

}

≲

[
O2ABς

(OABα2

S
T +

S

α2

T∑
t=1

t−1∑
ι=1

D2
He

(
Pπι,νι

ft,h ,Pπι,νι

f∗,h

))] 1
2

, (14)

We next focus on ∥qt
0 − q0∥1. Using that ∥qt

0 − q0∥1 ≤ 1 and 2(t− 1) ≥ t when t ≥ 2, we obtain
T∑

t=1

∥qt
0 − q0∥1 ≤ 1 +

T∑
t=2

[2(t− 1)

t
∥qt

0 − q0∥21
] 1

2

≲ 1 +
[ T∑

t=2

2

t

] 1
2
[ T∑

t=2

(t− 1)D2
He(q

t
0, q0)

] 1
2

≲ 1 +
[
log T

T∑
t=1

t−1∑
ι=1

D2
He(q

t
0, q0)

] 1
2

. (15)

Thus, by invoking (14) and (15), we get the regret bound by∣∣∣∣∣
T∑

t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣∣
≲ H

(
OABH

√
OςT +

√√√√O2ABςS2H

α4

H∑
h=0

T∑
t=1

t−1∑
ι=1

D2
He(P

πι,νι

ft,h ,Pπι,νι

f∗,h )

)

≲

[
O2ABςS2H3

α4

H∑
h=0

T∑
t=1

t−1∑
ι=1

D2
He(P

πι,νι

ft,h ,Pπι,νι

f∗,h )

] 1
2

+ (O3A2B2H3ς ·HT )
1
2 .

Since the above derivation is for any policy pair (πt, νt), we can show that α-revealing POMG is
subsumed by the classes of both self-play and adversarial GEC class with a bounded dGEC. We
finally prove

dGEC = O

(
O3A2B2H3S2ς

α4

)
,

where ς = 2 log
(
1 + 4A2B2O2S2

α2

)
. This completes the proof.
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B.4.1 Lemmas for Proof of Proposition 6

Here, we present and prove all the lemmas used for the proof of Proposition 6. All the lemmas
presented here follow the notations of Proposition 6.
Lemma 3. In an α-revealing POMG, for any policy pair (π, ν), any vector x ∈ RO, and any τh−1,
we have ∑

τh:H

|m(τh:H)x|σ(τh:H ; τh−1) ≤
√
S

α
∥x∥1.

Proof. We first obtain∑
τh:H

|m(τh:H)x|σ(τh:H ; τh−1)

=
∑
τh:H

|m(τh:H)OhO†
hx|σ(τh:H ; τh−1)

≤
S∑

i=1

∑
τh:H

|m(τh:H)Ohei| · |e⊤i O
†
hx|σ(τh:H ; τh−1),

where ei ∈ RS denotes the standard basis vector whose i-th element is 1 and 0 for others. Note that∑
τh:H

|m(τh:H)Ohei|σ(τh:H ; τh−1) =
∑

τh:H
Prσ(τh:H | τ1:h−1, si) = 1. Thus we obtain

S∑
i=1

∑
τh:H

|m(τh:H)Ohei| · |e⊤i O
†
hx|σ(τh:H ; τh−1)

= ∥O†
hx∥1 ≤ ∥O†

h∥1 · ∥x∥1 ≤
√
S∥O†

h∥2 · ∥x∥1 ≤
√
S

α
∥x∥1,

which completes the proof.

Lemma 4. In an α-revealing POMG, for any policy pair (π, ν) and any x ∈ RO, we have∑
(oh,ah,bh)∈O×A×B

∥Mh(oh, ah, bh)x∥1σ(oh, ah, bh) ≤
√
S

α
∥x∥1.

Proof. We first obtain∑
(oh,ah,bh)∈O×A×B

∥Mh(oh, ah, bh)x∥1σ(oh, ah, bh)

=
∑

oh,ah,bh

O∑
j=1

|ẽ⊤j Mh(oh, ah, bh)x|σ(oh, ah, bh)

≤
∑

oh,ah,bh

O∑
j=1

S∑
i=1

|ẽ⊤j Mh(oh, ah, bh)Ohei| · |e⊤i O
†
hx|σ(oh, ah, bh),

where ẽj is the j-th standard basis vector in RO and ei is the i-th standard basis vector in RS . Note
that we have ∑

oh,ah,bh

O∑
j=1

|ẽ⊤j Mh(oh, ah, bh)Ohei|σ(oh, ah, bh)

=
∑

oh,ah,bh

O∑
j=1

Pr(oj , oh, ah, bh | si)σ(oh, ah, bh)

=
∑

oh,ah,bh

Pr(oh, ah, bh | si)σ(oh, ah, bh)

≤
∑

oh,ah,bh

σ(oh, ah, bh) = 1.
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Combining the above result, we obtain

∑
oh,ah,bh

O∑
j=1

S∑
i=1

|ẽ⊤j Mh(oh, ah, bh)Ohei| · |e⊤i O
†
hx|σ(oh, ah, bh)

≤
S∑

i=1

|e⊤i O
†
hx|

= ∥O†
hx∥1 ≤ ∥O†

h∥1 · ∥x∥1 ≤
√
S∥O†

h∥2 · ∥x∥1 ≤
√
S

α
∥x∥1,

which completes the proof.

Lemma 5. The value difference in a POMG can be decomposed as

V πt,νt

ft − V πt,νt

f∗ ≤ H
√
S

α

H∑
h=1

[∑
τh

∥(M t
h −Mh)q(τh−1)∥1σt(τh) + ∥qt0 − q0∥1

]
.

Proof. Denoting r(τH) as the sum of rewards from h = 1 to H on τH , we obtain

V πt,νt

ft − V πt,νt

f∗

=
∑
τH

(
Pπt,νt

ft (τH)−Pπt,νt

f∗ (τH)
)
r(τH)

≤ H
∑
τH

|Pπt,νt

ft (τH)−Pπt,νt

f∗ (τH)|

= H
∑
τH

|M t
H:1(o1:H , a1:H , b1:H)qt

0 −MH:1(o1:H , a1:H , b1:H)q0|σt(τH).

Using the triangle inequality, we further obtain

H
∑
τH

|M t
H:1(o1:H , a1:H , b1:H)qt

0 −MH:1(o1:H , a1:H , b1:H)q0|σt(τH)

≤ H
∑
τH

[ H∑
h=1

|mt(τh+1:H)
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q(τh−1)|σt(τH)

+ |mt(τH)(qt
0 − q0)|σt(τH)

]
,

where m(τh+1:H) = MH:h+1(τh+1:H) and q(τh−1) = Mh−1:1(τh−1)q0. Note that Lemma 3
shows that∑

τh+1:H

|mt(τh+1:H)
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q(τh−1)|σt(τh+1:H ; τ1:h)

≤
√
S

α
∥
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q(τh−1)∥1

and

∑
τH

|mt(τH)(qt
0 − q0)|σt(τH) ≤

√
S

α
∥qt

0 − q0∥1.
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Thus we obtain

H
∑
τH

[ H∑
h=1

|mt(τh+1:H)
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q(τh−1)|σt(τH)

+ |mt(τH)(qt
0 − q0)|σt(τH)

]
= H

[ H∑
h=1

∑
τH

|mt(τh+1:H)
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q(τh−1)|σt(τH)

+
∑
τH

|mt(τH)(qt
0 − q0)|σt(τH)

]

≤ H
√
S

α

H∑
h=1

[∑
τh

∥(M t
h −Mh)q(τh−1)∥1σ(τh) + ∥qt

0 − q0∥1
]
,

which completes the proof.

The next lemma gives the bound of training error by Hellinger distances.

Lemma 6. For any model f t and policy σι, we have

H∑
h=1

t−1∑
ι=1

E
τh−1∼Pπι,νι

f∗,h−1

[ ∑
oh,ah,bh

∥
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q̄(τh−1)∥1σι(oh, ah, bh; τh−1)

]2
≲

S

α2

t−1∑
ι=1

H∑
h=1

D2
He(P

πι,νι

ft,h ,Pπι,νι

f∗,h ).

where ≲ omits absolute constants.

Proof. By using (a+ b)2 ≤ 2a2 + 2b2 and the triangle inequality, we decompose the LHS into two
parts to bound them separately. We have

t−1∑
ι=1

E
τh−1∼Pπι,νι

f∗,h−1

[ ∑
oh,ah,bh

∥
(
M t

h(oh, ah, bh)−Mh(oh, ah, bh)
)
q̄(τh−1)∥1σι(oh, ah, bh; τh−1)

]2
≤ 2

t−1∑
ι=1

[∑
τh

∥M t
h(oh, ah, bh)q̄

t(τh−1)−Mh(oh, ah, bh)q̄(τh−1)∥1P(τh−1)σ
ι(τh)

]2
︸ ︷︷ ︸

Term(i)

+ 2

t−1∑
ι=1

[∑
τh

∥M t
h(oh, ah, bh)

(
q̄t(τh−1)− q̄(τh−1)

)
∥1P(τh−1)σ

ι(τh)
]2

︸ ︷︷ ︸
Term(ii)

.

For Term(i), we equivalently rewrite this term as[∑
τh

∥M t
h(oh, ah, bh)q̄

t(τh−1)−Mh(oh, ah, bh)q̄(τh−1)∥1P(τh−1)σ
ι(τh)

]2
=
[

E
τh−1∼Pπι,νι

f∗,h−1

∑
oh

∑
ah,bh

∥M t
h(oh, ah, bh)q̄

t(τh−1)−Mh(oh, ah, bh)q̄(τh−1)∥1

· σι(oh, ah, bh; τh−1)
]2
.
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We first consider the case when h < H . According to the definitions of q̄t
h and q̄h, we obtain

Term(i) =
[

E
τh−1∼Pπι,νι

f∗,h−1

∑
oh

∑
ah,bh

∥M t
h(oh, ah, bh)q̄

t(τh−1)−Mh(oh, ah, bh)q̄(τh−1)∥1

· σι(oh, ah, bh; τh−1)
]2

=
[

E
τh−1∼Pπι,νι

f∗,h−1

∑
oh,ah,bh

O∑
i=1

∣∣∣Prft(oh, oi | τ1:h−1,do(ah, bh))

− Prf∗(oh, oi | τh−1,do(ah, bh))
∣∣∣σι(oh, ah, bh; τh−1)

]2
=
[ ∑
τh−1,oh

|Prπ
ι,νι

ft (τh−1, oh)− Prπ
ι,νι

f∗ (τh−1, oh)|
]2

≤ ∥Pπι,νι

ft,h (·)−Pπι,νι

f∗,h (·)∥21 ≤ 8D2
He

(
Pπι,νι

ft,h (·),Pπι,νι

f∗,h (·)
)
,

where Prπ
ι,νι

ft (τh−1, oh) denotes the probability of (τh−1, oh) if the actions are taken following
(πι, νι) and the observations follow the omission and transition process in the model f t. The first
inequality is by the fact that the L1 difference of two marginal distributions is no more than the
L1 difference of two uniformed distributions, and the second inequality is due to ∥P − Q∥21 ≤
8D2

He(P,Q). Similarly, when h = H , Term(i) can be bounded as

Term(i) =
[

E
τh−1∼Pπι,νι

f∗,h−1

∑
oh,ah,bh

|Prft(oH | τH−1,do(aH , bH))− Prf∗(oH | τH−1,do(aH , bH))|

· σι(oH , aH , bH ; τH−1)
]2

=
[ ∑
τH−1,oH

|Prπ
ι,νι

ft (τH−1, oH)− Prπ
ι,νι

f∗ (τH−1, oH)|
]2

≤ ∥Pπι,νι

ft,H (·)−Pπι,νι

f∗,H(·)∥21 ≤ 8D2
He

(
Pπι,νι

ft,H (·),Pπι,νι

f∗,H(·)
)
.

For Term(ii), Lemma 4 is used to give an upper bound. Specifically, we obtain that

Term(i) =
[∑

τh

∥M t
h(oh, ah, bh)

(
q̄t(τh−1)− q̄(τh−1)

)
∥1P(τh−1)σ

ι(τh)
]2

≤ S

α2

[ ∑
τh−1

∥q̄t(τh−1)− q̄(τh−1)∥1P(τh−1)σ
ι(τh−1)

]2
≤ S

α2
∥Pπι,νι

ft,h −Pπι,νι

ft,h ∥21 ≤ 8S

α2
D2

He(P
πι,νι

ft,h ,Pπι,νι

ft,h ).

Combining the above results completes the proof of this lemma.

Lemma 7. For any (o, a, b) ∈ O ×A× B, we have

E
τh−1∼Pπt,νt

∥xτh−1,σt,o,a,b∥22 ≤ S,

O∑
j=1

∥wh,t,j,o,a,b∥2 ≤ 2ABd
√
S

α
.

Proof. We prove the former statement first. By noting that the O†
h−1q̄(τh−1) = [Pr(si | τh−1)]

S
i=1

and σt(oh, ah, bh; τh−1) ≤ 1, we obtain

∥xτh−1,σt,oh,ah,bh∥22
= ∥O†

h−1q̄(τh−1)σ
t(oh, ah, bh; τh−1)∥22

≤
S∑

i=1

Pr(si | τh−1)
2 ≤ S.
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Therefore the first statement in Lemma 7 is proven. To prove the second statement, we write

O∑
j=1

∥wh,t,j,o,a,b∥2

≤
∑
o,a,b

O∑
j=1

∥wh,t,j,o,a,b∥2

≤
∑
o,a,b

O∑
j=1

∥wh,t,j,o,a,b∥1

=
∑
o,a,b

O∑
i=1

∥(M t
h(oh, ah, bh)−Mh(oh, ah, bh))Oh−1ẽi∥1,

where the second inequality is due to ∥ · ∥2 ≤ ∥ · ∥1, and ẽi stands for the i-th standard basis vector
in RO. Then we apply Lemma 4 to obtain

∑
o,a,b

O∑
i=1

∥(M t
h(oh, ah, bh)−Mh(oh, ah, bh))Oh−1ẽi∥1

≤ 2AB
√
S

α

O∑
i=1

∥Oh−1ẽi∥1 ≤ 2ABO
√
S

α
∥Oh−1∥1 =

2ABO
√
S

α
,

where the second inequality is by ∥Ax∥1 ≤ ∥A∥1∥x∥1. The proof is completed.

B.5 Decodable POMG

In this section, we propose a new class of POMGs, dubbed decodable POMG, by generalizing
decodable POMDPs [23, 22] from the single-agent setting to the multi-agent setting.
Definition 9 (Decodable POMG). We say a POMG is a decodable POMG if an unknown decoder
function ϕh exists, which recovers the state at step h from the observation at step h. We have for any
1 ≤ h ≤ H that

ϕh(oh) = sh.

Given the decoder, we can define the transition from observation to observation as follows,

Ph(oh+1 | oh, ah, bh)

=
∑

sh+1∈S
O(oh+1 | sh+1)P(sh+1 | sh = ϕh(oh), ah, bh).

Our next proposition will show that the class of decodable POMGs is subsumed by the class of MGs
with low self-play and adversarial GEC.
Proposition 7 (Decodable POMG ⊂ Low Self-Play/Adversarial GEC). For a decodable POMG as
defined in Definition 9, with the loss ℓ(f, ξh) defined in Definition 3 for POMGs, we have

Decodable POMG ⊂ POMG with low self-play and adversarial GEC

with dGEC satisfying

dGEC = O(H3|O|3|A|2|B|2ς),

where ς = 2 log
(
1 + 4|A|2|B|2|O|2|S|

)
.

Proof. The proof of this proposition is largely the same as the proof of Proposition 6, except that the
coefficient before ∥x∥1 in Lemma 3 and 4 is changed, from

√
S
α to 1, as is proved in Lemma 8 and

Lemma 9. Following the proof of Proposition 6 and using Lemmas 8 and 9 yields our result.
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B.5.1 Lemmas for Poof of Proposition 7

We present the lemmas for Proposition 7. These lemmas are analogous to Lemma 3 and Lemma 4.
For convenience in analysis, we define some notations as follows.

Similar to the case of α-revealing POMG in Appendix B.4, we define q0, τh:h′ , q(τh) and q̄(τh). We
now define a different observable operator as follows,

Mh(o, a, b) := Ph,a,bdiag(eo),

where eo ∈ RO is the basis vector with only the o-th entry being 1. With these definitions, one can
show that

q(τh) = Mh(oh, ah, bh)Mh−1(oh−1, ah−1, bh−1) . . .M1(o1, a1, b1)q0.

We define Mh′:h(oh:h′ , ah:h′ , bh:h′) := Mh′(oh′ , ah′ , bh′)Mh′(oh′−1, ah′−1, bh′−1) . . .Mh(oh, ah, bh)
and rewrite MH:h+1(oh+1:H , ah+1:H , bh+1:H) as m(oh+1:H , ah+1:H , bh+1:H) to emphasize that
m(oh+1:H , ah+1:H , bh+1:H) is a vector since MH(oH , aH , bH) is a vector.
Lemma 8. For any x ∈ RO, any policy pair (π, ν), and any τh−1, we have∑

τh:H

|m(τh:H)x|σ(τh:H ; τh−1) ≤ ∥x∥1.

Proof. We can first bound the LHS as∑
τh:H

|m(τh:H)x|σ(τh:H ; τh−1)

=
∑
τh:H

|
O∑
i=1

ẽ⊤i xPr(τh+1:H | oi)|σ(τh:H ; τh−1)

≤
∑
τh:H

O∑
i=1

|ẽ⊤i x|Pr(τh+1:H | oi)σ(τh:H ; τh−1),

where ẽi is the i-th basis vector of the space RO. Since
∑

τh+1:H
Pr(τh+1:H | oi)σ(τh:H ; τh−1) ≤ 1,

we further obtain ∑
τh:H

O∑
i=1

|ẽ⊤i x|Pr(τh+1:H | oi)σ(τh:H ; τh−1)

≤
O∑
i=1

|ẽ⊤i x| = ∥x∥1.

This completes the proof.

Lemma 9. For any x ∈ RO, policy pair (π, ν) and τh−1, we have∑
o∈O,a∈A,b∈B

∥Mh(o, a, b)x∥1σ(o, a, b; τh−1) ≤ ∥x∥1.

Proof. We can first show that∑
o∈O,a∈A,b∈B

∥Mh(o, a, b)x∥1σ(o, a, b; τh−1)

=
∑

o∈O,a∈A,b∈B

O∑
i=1

|ẽ⊤i Mh(o, a, b)x|σ(o, a, b; τh−1)

≤
∑

o∈O,a∈A,b∈B

O∑
i=1

|ẽ⊤i x|Pr(oi | o, a, b)σ(o, a, b; τh−1).
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Since
∑

o∈O,a∈A,b∈B Pr(oi | o, a, b)σ(o, a, b; τh−1) ≤ 1, we further obtain

∑
o∈O,a∈A,b∈B

O∑
i=1

|ẽ⊤i x|P(oi | o, a, b)σ(o, a, b; τh−1)

≤
O∑
i=1

|e⊤i x| = ∥x∥1.

This concludes the proof.

C Computation of ω(β, p0)

In this section, we discuss the upper bound of the quantity ω(β, p0) for both FOMGs and POMGs.
For FOMGs, the analysis can be adopted from Lemma 2 in [2]. For POMGs, we give the detailed
analysis to show the bound of ω(β, p0), which is the first proof for the partially observable setting.

C.1 Fully Observable Markov Game

We can adopt the result from Lemma 2 in [2] to give a bound for ω(β, p0) in the context of fully
observable Markov games.
Proposition 8 (Lemma 2 of [2]). When F is finite, p0 is a uniform distribution over F , then
ω(β, p0) ≤ log |F|. When F is infinite, suppose a transition kernel P0 satisfies Pf∗ ≪ P0 and∥∥∥dPf∗

dP0

∥∥∥
∞

≤ B, then for ϵ ≤ 2/3 and B ≥ log(6B2/ϵ), there exists a prior p0 on F such that

ω(β, p0) ≤ βϵ+ log

(
N
(

ϵ

6 log(B/ν)

))
,

where ν = ϵ/(6 log(6B2/ϵ)) and N (ϵ) stands for the ϵ-covering number w.r.t. the distance

d(f, f ′) := sup
s,a,b,h

∣∣D2
He

(
Pf,h(· | s, a, b),Pf∗,h(· | s, a, b)

)
−D2

He

(
Pf ′,h(· | s, a, b),Pf∗,h(· | s, a, b)

)∣∣.
To apply Proposition 8 in FOMGs, we can further show that |D2

He(P,R) − D2
He(Q,R)| ≤√

2D2
He(P,R)| ≤

√
2
2 ∥P − Q∥1 for distributions P,Q,R, so that the covering number under the

distance d can be bounded by the covering number w.r.t. the ℓ1 distance denoted as N1(ϵ), i.e.,

N (ϵ) ≤ N1(
√
2ϵ),

where N1(ϵ) is defined w.r.t. the distance

d1(f, f
′) = sup

s,a,b,h
∥Pf,h(· | s, a, b)− Pf ′,h(· | s, a, b)∥1.

The covering number under the ℓ1 distance is more common and is readily applicable to many
problems.

Taking linear mixture MGs for an instance (defined in Definition 5), we calculate ω(4HT, p0), which
is the term quantifying the coverage of the initial sampling distribution in our theorems. We first
obtain that

sup
s,a,b,h

∥Pf,h(· | s, a, b)− Pf ′,h(· | s, a, b)∥1

= sup
s,a,b,h

∫
s′∈S

ϕ(s′, s, a, b)⊤
(
θf,h − θf ′,h

)
ds′

≤ sup
s,a,b,h

∫
s′∈S

∥ϕ(s′, s, a, b)∥2ds′
∥∥∥θf,h − θf ′,h

∥∥∥
2

≤ sup
h

∥∥∥θf,h − θf ′,h

∥∥∥
2
, (16)
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where the first inequality is by Cauchy-Schwarz, and the second inequality is due to∫
s′∈S ∥ϕ(s′, s, a, b)∥2ds′ ≤ 1. Since the model space is

{
θ : suph ∥θh∥2 ≤ B

}
, under the ℓ2

distance measure of

d2(f, f
′) = sup

h

∥∥∥θf,h − θf ′,h

∥∥∥
2
,

we have

N (ϵ) ≤ N1(
√
2ϵ) ≤

(
1 +

2
√
2B

ε

)Hd

. (17)

according to (16) and the covering number for an Euclidean ball. Combining this result (17) with
Proposition 8 together, we can show that there exists a prior distribution p0 with a sufficiently large T
such that

ω(4HT, p0) ≲ Hd log
(
1 +BT log

(
T log(T )

))
.

C.2 Partially Observable Markov Game

In this subsection, we prove the bound of ω(β, p0) for the partially observable setting, inspired by the
proof of Proposition 8 (Lemma 2 in [2]).

Proposition 9. When F is finite, p0 is a uniform distribution over F , then ω(β, p0) ≤ log |F|. When
F is infinite, suppose a distribution P0 satisfies that for any policy pair (π, ν), Pπ,ν

f∗,H ≪ Pπ,ν
0 and

∥dPπ,ν
f∗,H/dPπ,ν

0 ∥∞ ≤ B, where B ≥ 1. Then for ϵ ≤ 2/3 and B ≥ log(6B2/ϵ), there exists a
prior p0 on F such that

ω(β, p0) ≤ βϵ+ log

(
N
(

ϵ

6 log(B/ν)

))
,

where ν = ϵ/(6 log(6B2/ϵ)) and N (·) is the covering number w.r.t. the distance

d(f, f ′) = sup
π,ν

∣∣∣D2
He(P

π,ν
f,H ,Pπ,ν

f∗,H)−D2
He(P

π,ν
f ′,H ,Pπ,ν

f∗,H)
∣∣∣ .

The assumption in the theorem above covers the case when S is finite, where we choose P0 to be
uniform on S regardless of the policy. We also note that

∥dPπ,ν
f∗,H/dPπ,ν

0 ∥∞ = sup
τH

∣∣∣∣∣dP
π,ν
f∗,H(τH)

dPπ,ν
0 (τH)

∣∣∣∣∣ = sup
τH

∣∣∣∣dPf∗,H(τH)σ(τH)

dP0(τH)σ(τH)

∣∣∣∣ = sup
τH

∣∣∣∣dPf∗,H(τH)

dP0(τH)

∣∣∣∣ ,
which does not depend on the joint policy σ = (π, ν).

To apply the above proposition in POMGs, by the relation between different distances: |D2
He(P,R)−

D2
He(Q,R)| ≤

√
2D2

He(P,R)| ≤
√
2
2 ∥P −Q∥1 for distributions P,Q,R, we can show the covering

number under the distance d can be bounded by the covering number w.r.t. the ℓ1 distance denoted as
N1(ϵ), i.e.,

N (ϵ) ≤ N1(
√
2ϵ),

where N1(ϵ) is defined w.r.t. the distance

d1(f, f
′) := sup

π,ν

∥∥∥Pπ,ν
f,H −Pπ,ν

f ′,H

∥∥∥
1
.

Such a covering number under ℓ1 distance is analyzed in the work [78], generalizing whose
results gives that POMGs with different structures admit a log-covering number logN1(ϵ) =
ploy(|O|, |A|, |B|, |S|, H, log(1/ϵ)). We refer readers to [78] for detailed calculation of log-
covering numbers under d1(f, f

′). Therefore, we can eventually show that ω(4HT, p0) =
ploy(|O|, |A|, |B|, |S|, H, log(HT )). Next, we show the detailed proof for Proposition 9.
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Proof. When F is finite and p0 is the uniform distribution on F , the proof is straightforward as we
have ω(β, p0) ≤ βε+ log |F| for any ε ≥ 0 and a uniform distribution p0. Setting ε to approach 0+

completes the proof.

When F is infinite, we start by setting up a γ-covering C(γ) ⊂ F w.r.t. the distance d(f, f ′) =

supπ,ν

∣∣∣D2
He(P

π,ν
f,H ,Pπ,ν

f∗,H)−D2
He(P

π,ν
f ′,H ,Pπ,ν

f∗,H)
∣∣∣, where γ > 0 is a variable to be specified. Since

f∗ is covered, an f̃ ∈ C(γ) satisfies d(f̃ , f∗) = supπ,ν D
2
He(P

π,ν

f̃,H
,Pπ,ν

f∗,H) ≤ γ. We further define
Cν(γ) := {νP0 + (1 − ν)Pf |f ∈ C(γ)} and also Pf ′ := νP0 + (1 − ν)Pf̃ . We note that

supπ,ν ∥
dPπ,ν

f∗,H

dPπ,ν

f′,H
∥∞ ≤ B

ν . Then, we obtain

D2
He(P

π,ν
f ′,H ,Pπ,ν

f∗,H)

= 1−
∫ √

d(νPπ,ν
0 + (1− ν)Pπ,ν

f̃,H
)dPπ,ν

f∗,H

≤ 1−
(
ν

∫ √
dPπ,ν

0 dPπ,ν
f∗,H + (1− ν)

∫ √
dPπ,ν

f̃,H
dPπ,ν

f∗,H

)
= D2

He(P
π,ν

f̃,H
,Pπ,ν

f∗,H) + ν

∫ √
dPπ,ν

f̃,H
dPπ,ν

f∗,H − ν

∫ √
dPπ,ν

0 dPπ,ν
f∗,H

≤ γ + ν,

where the first inequality uses Jensen’s inequality and the second inequality is by
supπ,ν D

2
He(P

π,ν

f̃,H
,Pπ,ν

f∗,H) ≤ γ and 0 ≤
∫ √

dPdQ ≤ 1. To connect to the definition of F(ε),
we further invoke Theorem 9 from [55] and obtain

KL(Pπ,ν
f∗,H ||Pπ,ν

f ′,H) ≤ ζ(B/ν)D2
He(P

π,ν
f ′,H ,Pπ,ν

f∗,H)

for any policy pair (π, ν), where ζ(b) ≤ max
{
1, b log b

(1−
√
b)2

}
for b > 1. Plugging the above inequali-

ties together, we obtain

KL(Pπ,ν
f∗,H ||Pπ,ν

f ′,H) ≤ ζ(B/ν)(γ + ν). (18)

It remains to find a proper choice of γ and ν to obtain ζ(B/ν)(γ + ν) ≤ ε. We choose ν =
ε/
(
6 log(6B2/ε)

)
and γ = ε/

(
6 log(B/ν)

)
. Given the condition B ≥ log(6B2/ε), we have

ν =
ε

6 log(6B
2

ε )
≤ ε

6B
,

so that

ν =
ε

6 log(6B
2

ε )
≤ ε

6 log(Bν )
= γ. (19)

Given ε ≤ 2/3 and B ≥ 1, we obtain

ν ≤ ε

6B
≤ 1

9B
≤ B

9
,

namely B/ν ≥ 9. We note that when b > 9, it holds that

ζ(b) ≤ b log b

(1−
√
b)2

≤ b log b

b− 2
√
b
≤ 3 log b.

Thus we have ζ(B/ν) ≤ 3 log(B/ν). Finally, we obtain

ζ(B/ν)(γ + ν) ≤ 2γζ(B/ν) =
ε

3 log(Bν )
ζ(B/ν) ≤ ε,

where the first inequality uses (19), the first equation uses the choice of γ, and the second inequality
uses ζ(B/ν) ≤ 3 log(B/ν). Choosing p0 to be a uniform distribution on Cν(γ) completes the
proof.
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D Technical Lemmas for Main Theorems

In this section, we first provide several important supporting lemmas used in the proofs of Theorems
1 and 2. We then present detailed proofs for these lemmas.

D.1 Lemmas

Lemma 10. Let υ be any probability distribution over f ∈ F where F is an arbitrary set. Then,
Ef∼υ(·)[G(f) + log υ(f)] is minimized at υ(f) ∝ exp(−G(f)).

Proof. This lemma is a corollary of Gibbs variational principle. For the detailed proof of this lemma,
we refer the readers to the proof of Lemma 4.10 in [64]. This completes the proof.

The above lemma states that υ(f) in the above-described form solves the minimization problem
minυ∈∆(F) Ef∼υ[G(f) + log υ(f)], which helps to understand the design of the posterior sampling
steps in our proposed algorithms. This lemma is also used in the proofs of the following two lemmas.

The following two lemmas provide the upper bounds for the expectation of the Hellinger distance by
the likelihood functions defined in (1) and (2) for FOMGs and POMGs respectively.
Lemma 11. Under the FOMG setting, for any t ≥ 1, let Zt be the system randomness history
up to the t-th episode, pt(·|Zt−1) be any posterior distribution over the function class F with
p0(·) denoting an initial distribution, and (πt, νt) be any Markovian policy pair for Player 1
and Player 2 depending on f t ∼ pt. Suppose that (sth, a

t
h, b

t
h, s

t
h+1) is a data point sampled

independently by executing the policy pair (πt, νt) to the h-th step of the t-th episode. If we define
Lt
h(f) := η logPf,h(s

t
h+1 | sth, ath, bth) with η = 1/2 as in (1), we have the following relation

H∑
h=1

t−1∑
ι=1

EZt−1Eft∼ptE(πι,νι,h)[D
2
He(Pft,h(·|sιh, aιh, bιh),Pf∗,h(·|sιh, aιh, bιh))]

≤ EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

(
Lι
h(f

t)− Lι
h(f

∗)
)
+ log

pt(f t)

p0(f t)

]
,

where E(πt,νt,h) denotes taking an expectation over the data (sth, a
t
h, b

t
h) sampled following the

policy pair (πt, νt) and the true model Pf∗ up to the h-th step at any t.

Proof. Please see Appendix D.2 for a detailed proof.

Lemma 12. Under the POMG setting, for any t ≥ 1, let Zt be the system randomness history up
to the t-th episode, pt(·|Zt−1) be any posterior distribution over the function class F with p0(·)
denoting an initial distribution, and (πt, νt) be any general history-dependent policy pair for Player
1 and Player 2 depending on f t ∼ pt. Suppose that τ th = (ot1, a

t
1, b

t
1 . . . , o

t
h, a

t
h, b

t
h) is a data point

sampled independently by executing the policy pair (πt, νt) to the h-th step of the t-th episode. If we
define Lt

h(f) := η logPf (τ
t
h) with η = 1/2 as in (2), we have the following relation

H∑
h=1

t−1∑
ι=1

EZt−1Eft∼pt [D2
He(P

πι,νι

ft,h ,Pπι,νι

f∗,h )]

≤ EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

(
Lι
h(f

t)− Lι
h(f

∗)
)
+ log

pt(f t)

p0(f t)

]
,

where Pπ,ν
f,h denotes the distribution for τh = (o1, a1, b1, . . . , oh, ah, bh) under the model θf and the

policy pair (π, ν) up to the h-th step.

Proof. Please see Appendix D.3 for a detailed proof.

The next lemma shows that when the model is sufficiently close to f∗ with the distances employed
in Definition 2, the following value differences are small enough under both FOMG and POMG
settings.
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Lemma 13. If the model f satisfies suph,s,a,b KL
1
2 (Pf∗,h(· | s, a, b)∥Pf,h(· | s, a, b)) ≤ ε for

FOMGs and supπ,ν KL
1
2 (Pπ,ν

f∗,H∥Pπ,ν
f,H) ≤ ε for POMGs, we have that their corresponding value

function satisfies

V ∗
f∗ − V ∗

f ≤ 3Hε, sup
π
(V π,∗

f∗ − V π,∗
f ) ≤ 3Hε, sup

ν
(V ∗,ν

f∗ − V ∗,ν
f ) ≤ 3Hε.

Proof. Please see Appendix D.4 for detailed proof.

Finally, we show that when the model is sufficiently close to f∗, we will obtain that the following
likelihood function difference is small under both FOMG and POMG settings.

Lemma 14. If the model f satisfies suph,s,a,b KL
1
2 (Pf∗,h(· | s, a, b)∥Pf,h(· | s, a, b)) ≤ ε for

FOMGs and supπ,ν KL
1
2 (Pπ,ν

f∗,H∥Pπ,ν
f,H) ≤ ε for POMGs, we have that their corresponding likeli-

hood function defined in (1) and (2) satisfies

|E(Lt
h(f)− Lt

h(f
∗))| ≤ ηε2,

where the expectation is taken with respect to the randomness in Lt
h.

Proof. Please see Appendix D.5 for detailed proof.

D.2 Proof of Lemma 11

Proof. The proof of Lemma 11 can be viewed as a multi-agent generalization of the proof for Lemma
E.5 in [83]. We start our proof by first considering the following equality

EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

(
Lι
h(f

t)− Lι
h(f

∗)
)
+ log

pt(f t)

p0(f t)

]

= EZt−1Eft∼pt

[
H∑

h=1

t−1∑
ι=1

η log
Pf∗,h(s

ι
h+1|sιh, aιh, bιh)

Pft,h(s
ι
h+1|sιh, aιh, bιh)

+ log
pt(f t)

p0(f t)

]
.

Next, we lower bound RHS of the above equality. We define

L
ι

h(f) := η log
Pf,h(s

ι
h+1|sιh, aιh, bιh)

Pf∗,h(sιh+1|sιh, aιh, bιh)
, L̃ι

h(f) := L
ι

h(f)− logE(πι,νι,Pf∗ ,h)[exp(L
ι

h(f))],

where E(πι,νι,Pf∗ ,h) denotes taking an expectation over the data (sιh, a
ι
h, b

ι
h, s

ι
h+1) sampled following

the policy pair (πι, νι) and the true model Pf∗ to the h-th step with sιh+1 ∼ Pf∗,h(·|sιh, aιh, bιh) at
round ι. Then, we will show that EZt−1 [exp(

∑H
h=1

∑t−1
ι=1 L̃

ι
h(f))] = 1 by induction, following from

[80]. Suppose that for any k, we have at k − 1 that EZk−1 [exp(
∑H

h=1

∑k−1
ι=1 L̃ι

h(f))] = 1. Then, at
k, we have

EZk

[
exp

(
H∑

h=1

k∑
ι=1

L̃ι
h(f)

)]
= EZk−1

[
exp

(
H∑

h=1

k−1∑
ι=1

L̃ι
h(f)

)
exp

(
H∑

h=1

L̃k
h(f)

)]

= EZk−1

[
exp

(
H∑

h=1

k−1∑
ι=1

L̃ι
h(f)

)
Efk∼pk

H∏
h=1

E(πk,νk,Pf∗ ,h) exp
(
L̃k
h(f)

)]

= EZk−1

[
exp

(
H∑

h=1

k−1∑
ι=1

L̃ι
h(f)

)]
= 1,

where the second equality uses the fact that the data is sampled independently, the third equality
is due to E(πk,νk,Pf∗ ,h) exp(L̃

k
h(f)) = E(πk,νk,Pf∗ ,h) exp(L

k

h(f))/E(πk,νk,Pf∗ ,h)[exp(L
k

h(f))] = 1

by the definition of L̃k
h(f), and the last equality is by EZk−1 [exp(

∑H
h=1

∑k−1
ι=1 L̃ι

h(f))] = 1 in the
above assumption. Moreover, for k = 1, we have a trivial result that EZ1 [exp(

∑H
h=1 L̃

1
h(f))] =
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Ef1∼p1

∏H
h=1 E(π1,ν1,Pf∗ ,h) exp(L̃

1
h(f)) = 1. Consequently, we conclude that for any k, the above

equality holds. Then, when k = t− 1, we have

EZt−1

[
exp

(
H∑

h=1

t−1∑
ι=1

L̃ι
h(f)

)]
= 1. (20)

Furthermore, we have

EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

L̃ι
h(f

t) + log
pt(f t)

p0(f t)

]

≥ EZt−1 inf
p
Ef∼p

[
−

H∑
h=1

t−1∑
ι=1

L̃ι
h(f) + log

p(f)

p0(f)

]

= −EZt−1 logEf∼p0 exp

[
H∑

h=1

t−1∑
ι=1

L̃ι
h(f)

]

≥ − logEf∼p0EZt−1 exp

[
H∑

h=1

t−1∑
ι=1

L̃ι
h(f)

]
= 0,

where the last inequality is by Jensen’s inequality and the last equality is due to (20). For the first
equality, we use the fact that the following distribution is the minimizer

p(f) ∝ exp

(
H∑

h=1

t−1∑
ι=1

L̃ι
h(f) + log p0(f)

)
= p0(f) exp

(
H∑

h=1

t−1∑
ι=1

L̃ι
h(f)

)

⇐⇒ p(f) =
p0(f) exp

(∑H
h=1

∑t−1
ι=1 L̃

ι
h(f)

)
∫
F p0(f) exp

(∑H
h=1

∑t−1
ι=1 L̃

ι
h(f)

)
df

=
p0(f) exp

(∑H
h=1

∑t−1
ι=1 L̃

ι
h(f)

)
Ef∼p0

[
exp

(∑H
h=1

∑t−1
ι=1 L̃

ι
h(f)

)]
according to Lemma 10, such that plugging in the above distribution leads to the first equality. Thus,
according to the definitions of L̃t

h and L
t

h, we have

EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

η log
Pf,h(s

ι
h+1|sιh, aιh, bιh)

Pf∗,h(sιh+1|sιh, aιh, bιh)
+ log

pt(f t)

p0(f t)

]

≥ EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

logE(πι,νι,Pf∗ ,h) exp

(
η log

Pf,h(s
ι
h+1|sιh, aιh, bιh)

Pf∗,h(sιh+1|sιh, aιh, bιh)

)]
.

Moreover, to further lower bound the RHS of the above inequality, by the inequality that log x ≤ x−1
and the setting η = 1

2 , we have

− logE(πι,νι,Pf∗ ,h) exp

log

√
Pf,h(sιh+1|sιh, aιh, bιh)√
Pf∗,h(sιh+1|sιh, aιh, bιh)


= − logE(πι,νι,Pf∗ ,h)

√
Pf,h(sιh+1|sιh, aιh, bιh)√
Pf∗,h(sιh+1|sιh, aιh, bιh)

≥ 1− E(πι,νι,Pf∗ ,h)

√
Pf,h(sιh+1|sιh, aιh, bιh)√
Pf∗,h(sιh+1|sιh, aιh, bιh)

= 1− E(πι,νι,h)

∫
S

√
Pf,h(s|sιh, aιh, bιh)Pf∗,h(s|sιh, aιh, bιh)ds

= E(πι,νι,h)[D
2
He(Pf,h(·|sιh, aιh, bιh),Pf∗,h(·|sιh, aιh, bιh))],
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where the last equality is by D2
He(P,Q) = 1

2

∫
(
√

dP (x) −
√

dQ(x))2 = 1 −
∫ √

dP (x)dQ(x).
Here E(πι,νι,h) denotes taking expectation over (sιh, a

ι
h, b

ι
h) sampled following the policy pair (πι, νι)

and the true model Pf∗ to the h-th step but without the next state sιh+1 generated by Pf∗,h(·|sιh, aιh, bιh)
at round ι. In the sequel, combining the above results, we have

EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

(
Lι
h(f

t)− Lι
h(f

∗)
)
+ log

pt(f t)

p0(f t)

]

≥ EZt−1Eft∼pt

[
H∑

h=1

t−1∑
ι=1

E(πι,νι,h)[D
2
He(Pf,h(·|sιh, aιh, bιh),Pf∗,h(·|sιh, aιh, bιh))]

]
.

This completes the proof.

D.3 Proof of Lemma 12

Proof. The proof of Lemma 12 is similar to the proof of Lemma 11. We will give a brief description
of the main steps for our proof of Lemma 12. We start our proof by considering the following equality

EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

(
Lι
h(f

t)− Lι
h(f

∗)
)
+ log

pt(f t)

p0(f t)

]

= EZt−1Eft∼pt

[
H∑

h=1

t−1∑
ι=1

η log
Pf∗,h(τ

ι
h)

Pft,h(τ
ι
h)

+ log
pt(f t)

p0(f t)

]
.

Next, we lower bound RHS of the above equality. We define

L
ι

h(f) := η log
Pf,h(τ

ι
h)

Pf∗,h(τ ιh)
, L̃ι

h(f) := L
ι

h(f)− logE(πι,νι,h)[exp(L
ι

h(f))],

where E(πι,νι,h) denotes taking an expectation over the data τ ιh sampled following the policy pair
(πι, νι) and the true model θf∗ to the h-th step at round ι. Then, we can show that

EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

L̃ι
h(f

t) + log
pt(f t)

p0(f t)

]
≥ 0,

following a similar derivation as (20) in the proof of Lemma 11. With setting η = 1
2 , this result

further leads to

− logE(πι,νι,h) exp

(
log

√
Pf,h(τ ιh)√
Pf∗,h(τ ιh)

)

≥ 1− E(πι,νι,h)

√
Pf,h(τ ιh)√
Pf∗,h(τ ιh)

= 1− E(πι,νι,h)

√
Pπι,νι

f,h (τ ιh)√
Pπι,νι

f∗,h (τ ιh)

= 1−
∫
(O×A)h

√
Pπι,νι

f,h (τh)P
πι,νι

f∗,h (τh)dτh

= D2
He(P

πι,νι

f,h ,Pπι,νι

f∗,h ).

In the sequel, combining the above results, we have

H∑
h=1

t−1∑
ι=1

EZt−1Eft∼pt [D2
He(P

πι,νι

ft,h ,Pπι,νι

f∗,h )]

≤ EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

(
Lι
h(f

t)− Lι
h(f

∗)
)
+ log

pt(f t)

p0(f t)

]
.

This completes the proof.
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D.4 Proof of Lemma 13

Proof. We first prove the upper bound of |V π,ν
f∗ − V π,ν

f | for any (π, ν) and f under FOMG and
POMG settings separately.

For FOMGs, we let V π,ν
f∗ = V π,ν

f∗ and V π,ν
f = V π,ν

f . Then, according to the Bellman
equation that Qπ,ν

f,h(s, a, b) = rh(s, a, b) + ⟨Pf,h(·|s, a, b), V π,ν
f,h+1(·)⟩ and also V π,ν

f,h (s, a, b) =

Ea∼πh(·|s),b∼νh(·|s)[Q
π,ν
f,h(s, a, b)], we have∣∣∣V π,ν

f∗ − V π,ν
f

∣∣∣
≤ Eπ,ν

∣∣∣⟨Pf∗(·|s1, a1, b1), V π,ν
f∗,2(·)⟩ − ⟨Pf,1(·|s1, a1, b1), V π,ν

f,2 (·)⟩
∣∣∣

≤ HEπ,ν ∥Pf∗(·|s1, a1, b1)− Pf,1(·|s1, a1, b1)∥1 + Eπ,ν,Pf∗

∣∣∣V π,ν
f∗,2(s2)− V π,ν

f,2 (s2)
∣∣∣

... (recursively applying the above derivation)

≤ HEπ,ν,Pf∗

H∑
h=1

∥Pf∗,h(·|sh, ah, bh)− Pf,h(·|sh, ah, bh)∥1 ,

which further leads to∣∣∣V π,ν
f∗ − V π,ν

f

∣∣∣
≤ HEπ,ν,Pf∗

H∑
h=1

∥Pf∗,h(·|sh, ah, bh)− Pf,h(·|sh, ah, bh)∥1

≤ H2 sup
h,s,a,b

∥Pf∗,h(·|s, a, b)− Pf,h(·|s, a, b)∥1

≤ 3H2 sup
h,s,a,b

KL
1
2 (Pf∗,h(·|s, a, b)∥Pf,h(·|s, a, b)) ≤ 3H2ε,

where the third inequality is by Pinsker’s inequality and the last inequality is by the assumption of
this lemma. On the other hand, we can show that the above result also holds for POMGs. Then, for
this setting, we have∣∣∣V π,ν

f∗ − V π,ν
f

∣∣∣ = ∫
(O×A×B)H

(Pπ,ν
f∗,H(τH)−Pπ,ν

f,H(τH))

( H∑
h=1

rh(oh, ah, bh)

)
dτH

= H

∫
(O×A×B)H

∣∣∣Pπ,ν
f∗,H(τH)−Pπ,ν

f,H(τH)
∣∣∣dτH

= H∥Pπ,ν
f∗,H(τH)−Pπ,ν

f,H(τH)∥1

= 3H sup
π,ν

KL
1
2 (Pπ,ν

f∗,H∥Pπ,ν
f,H) ≤ 3Hε.

To unify our results, we enlarge the above bound by a factor of H and eventually obtain that∣∣∣V π,ν
f∗ − V π,ν

f

∣∣∣ ≤ 3H2ε,

for both FOMGs and POMGs. Moreover, by the properties of the operators min, max, and maxmin,
we have

V ∗
f∗ − V ∗

f = max
π

min
ν

V π,ν
f∗ −max

π
min
ν

V π,ν
f ≤ sup

π,ν
|V π,ν

f∗ − V π,ν
f | ≤ 3H2ε.

sup
π
(V π,∗

f∗ − V π,∗
f ) = sup

π
(min

ν
V π,ν
f∗ −min

ν
V π,ν
f ) ≤ sup

π,ν
|V π,ν

f∗ − V π,ν
f | ≤ 3H2ε.

sup
ν
(V ∗,ν

f∗ − V ∗,ν
f ) = sup

ν
(
∑
π

V π,ν
f∗ −

∑
π

V π,ν
f ) ≤ sup

π,ν
|V π,ν

f∗ − V π,ν
f | ≤ 3H2ε.

This concludes the proof of this lemma.
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D.5 Proof of Lemma 14

Proof. We first prove the upper bound under the FOMG setting. By (1), we know that

Lt
h(f

∗)− Lt
h(f) = η logPf∗,h(s

t
h+1 | sth, ath, bth)− η logPf,h(s

t
h+1 | sth, ath, bth)

= η log
Pf∗,h(s

t
h+1 | sth, ath, bth)

Pf,h(sth+1 | sth, ath, bth)
,

which further leads to

|E(Lt
h(f

∗)− Lt
h(f))| = η

∣∣∣∣E log
Pf∗,h(s

t
h+1 | sth, ath, bth)

Pf,h(sth+1 | sth, ath, bth)

∣∣∣∣
= η

∣∣∣∣E(sth,a
t
h,b

t
h)
Esth+1∼Pf∗,h(·|sth,a

t
h,b

t
h)
log

Pf∗,h(s
t
h+1 | sth, ath, bth)

Pf,h(sth+1 | sth, ath, bth)

∣∣∣∣
≤ η sup

s,a,b
KL(Pf∗,h(· | s, a, b)∥Pf,h(· | s, a, b))

≤ ηε2,

where we use the definition of KL divergence in the first inequality and the last inequality is by the
condition that suph,s,a,b KL

1
2 (Pf∗,h(· | s, a, b)∥Pf,h(· | s, a, b)) ≤ ε.

We next prove the upper bound under the POMG setting. According to (2), we have

Lt
h(f

∗)− Lt
h(f) = η logPf∗,h(τ

t
h)− η logPf,h(τ

t
h) = η log

Pf∗,h(τ
t
h)

Pf,h(τ th)
,

which further leads to

|E(Lt
h(f

∗)− Lt
h(f))| = η

∣∣∣∣Eτt
h∼Pπt,νt

f∗,h
(·) log

Pf∗,h(τ
t
h)

Pf,h(τ th)

∣∣∣∣
= η

∣∣∣∣∣∣Eτt
h∼Pπt,νt

f∗,h
(·) log

Pπt,νt

f∗,h (τ th)

Pπt,νt

f,h (τ th)

∣∣∣∣∣∣
= ηKL(Pπt,νt

f∗,h ∥Pπt,νt

f,h ),

where we use the definition of KL divergence and the relation between Pf,h and Pπ,ν
f,h . Now we

consider to lower bound KL(Pπt,νt

f∗,H∥Pπt,νt

f,H ). We have

KL(Pπt,νt

f∗,H∥Pπt,νt

f,H ) = E
τt
H∼Pπt,νt

f∗,H
(·) log

Pπt,νt

f∗,H(τ tH)

Pπt,νt

f,H (τ tH)

= E
τt
H∼Pπt,νt

f∗,H
(·)

log Pπt,νt

f∗,h (τ th)

Pπt,νt

f,h (τ th)
+ log

Prπ
t,νt

f∗ (τ th+1:H |τ th)
Prπ

t,νt

f (τ th+1:H |τ th)


= KL(Pπt,νt

f∗,h ∥Pπt,νt

f,h ) + E
τt
h∼Pπt,νt

f∗,h
(·)Eτt

h+1:H∼Pπt,νt

f∗,h
(·|τt

h)
log

Prπ
t,νt

f∗ (τ th+1:H |τ th)
Prπ

t,νt

f (τ th+1:H |τ th)

= KL(Pπt,νt

f∗,h ∥Pπt,νt

f,h ) + E
τt
h∼Pπt,νt

f∗,h
(·)KL(Prπ

t,νt

f∗ (·|τ th)∥Pr
πt,νt

f (·|τ th))

≥ KL(Pπt,νt

f∗,h ∥Pπt,νt

f,h ),

where Prπ
t,νt

f denote the probability under the model f and the policy pair πt, νt, the third equality
is by the definition of KL divergence, and the inequality is by the non-negativity of KL divergence.
Therefore, combining the above results and the condition supπ,ν KL

1
2 (Pπ,ν

f∗,H∥Pπ,ν
f,H) ≤ ε, we obtain

|E(Lt
h(f

∗)− Lt
h(f))| ≤ ηKL(Pπt,νt

f∗,H∥Pπt,νt

f,H ) ≤ ηε2.

This concludes the proof of this lemma.
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E Proofs for Algorithms 1 and 3

In this section, we provide the detailed proof for Theorem 1. In particular, our proof is compatible
with both the FOMG and the POMG settings. Thus, we unify both setups in a single theorem and
present their proof together in this section.

To characterize the value difference under models f and f∗ we define the following terms, which are

∆V π,∗
f (s) := V π,∗

f (s)− V π,∗
f∗ (s), (21)

and

∆V ∗
f (s) := V ∗

f (s)− V ∗
f∗(s). (22)

In addition, we define the difference of likelihood functions at step h of time t as

∆Lt
h(f) = Lt

h(f)− Lt
h(f

∗). (23)

Then, the updating rules of the posterior distribution in Algorithm 1 have the following equivalent
forms

pt(f) ∝ p0(f) exp
[
γ1V

∗
f +

t−1∑
ι=1

H∑
h=1

Lτ
h(f)

]
⇐⇒ pt(f) ∝ p0(f) exp

[
γ1∆V ∗

f +

t−1∑
ι=1

H∑
h=1

∆Lτ
h(f)

]
, (24)

and

qt(f) ∝ q0(f) exp[−γ2V
πt,∗
f +

t−1∑
ι=1

H∑
h=1

Lτ
h(f)]

⇐⇒ qt(f) ∝ q0(f) exp[−γ2∆V πt,∗
f +

t−1∑
ι=1

H∑
h=1

∆Lτ
h(f)]. (25)

since here adding or subtracting terms irrelevant to f , i.e., V π,∗
f∗ , V ∗

f∗ , and Lt
h(f

∗), within the power
of all exponential terms will not change the posterior distribution of f .

To learning a sublinear upper bound for the expected value of the total regret, i.e., E[Regsp(T )] =
E
∑T

t=1[V
∗,νt

f∗ − V πt,∗
f∗ ] for the self-play setting, we need to execute both Algorithm 1 and 3, which

are two symmetric algorithms. We can decompose Regsp(T ) as

Regsp(T ) = Regsp1 (T ) + Regsp2 (T ),

where we define

Regsp1 (T ) :=

T∑
t=1

[V ∗
f∗ − V πt,∗

f∗ ], Regsp2 (T ) :=

T∑
t=1

[V ∗,νt

f∗ − V ∗
f∗ ].

In fact, executing Algorithm 1 leads to a low regret upper bound for E[Regsp1 (T )] while running
Algorithm 3 incurs a low regret upper bound for E[Regsp2 (T )]. Since the two algorithms are symmet-
ric, the derivation of their respective regret bounds is thus similar. In the following subsections, we
present the proofs of Proposition 1, Proposition 2, and Theorem 1 sequentially.

E.1 Proof of Proposition 1

Proof. We start our proof by first decomposing the regret as follows

Regsp1 (T ) =

T∑
t=1

[V ∗
f∗ − V

πt,νt

f∗ ]︸ ︷︷ ︸
Term(i)

+

T∑
t=1

[V
πt,νt

f∗ − V πt,∗
f∗ ]︸ ︷︷ ︸

Term(ii)

.
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Our goal is to give the upper bound for the expected value of the total regret, which is E[Regsp1 (T )].
Thus, we need to derive the upper bounds of E[Term(i)] and E[Term(ii)] separately. Intuitively,
according to our analysis below, E[Term(i)] can be viewed as the regret incurred by the updating
rules for the main player in Line 3 and Line 4 of Algorithm 1, and E[Term(ii)] is associated with the
exploiter’s updating rules in Line 5 and Line 6 of Algorithm 1,

Bound E[Term(i)]. To bound E[Term(i)], we give the following decomposition

Term(i) =
T∑

t=1

[V ∗
f∗ − V πt,νt

f
t + V πt,νt

f
t − V

πt,νt

f
t + V

πt,νt

f
t − V

πt,νt

f∗ ]

≤
T∑

t=1

[V ∗
f∗ − V πt,νt

f
t + V

πt,νt

f
t − V

πt,νt

f∗ ]

= −
T∑

t=1

∆V ∗
f
t +

T∑
t=1

[V
πt,νt

f
t − V

πt,νt

f∗ ],

where according to Algorithm 1, we have (πt, νt) = argmaxπ argminν V
π,ν

f
t , i.e., (πt, νt) is the NE

of V π,ν

f
t . Thus, the second equality is by (22), and the inequality is due to

V πt,νt

f
t = min

ν
V πt,ν

f
t ≤ V

πt,νt

f
t .

According to the condition (1) in Definition 1 for self-play GEC and the updating rules in Algorithm
1, setting the exploration policy pair as σt = (πt, νt), and ρt = f

t
for Definition 1, we have∣∣∣∣∣

T∑
t=1

(
V

πt,νt

f
t
,1

− V
πt,νt

f∗

)∣∣∣∣∣
≤
[
dGEC

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(σι,h)ℓ(f
t
, ξιh)

)]1/2
+ 2H(dGECHT )

1
2 + ϵHT

≤ 1

γ1

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t
, ξιh)

)
+

γ1dGEC

4
+ 2H(dGECHT )

1
2 + ϵHT,

where the second inequality is due to
√
xy ≤ 1

γ1
x2 + γ1

4 y2. Combining the above results, we have

Term(i) =
1

γ1

T∑
t=1

H∑
h=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t
, ξιh)

)
−

T∑
t=1

∆V ∗
f
t

+
γ1dGEC

4
+ 2H(dGECHT )

1
2 + ϵHT.

We need to further bound the RHS of the above equality. Note that for FOMGs and POMGs, we have
different definitions of ℓ(f, ξh). Specifically, according to our definition of ℓ(f, ξιh), for FOMGs, we
define

ℓ(f
t
, ξιh) = D2

He(Pf
t
,h
(·|sιh, aιh, bιh),Pf∗,h(·|sιh, aιh, bιh)),

and for POMGs, we have the relation

E(πι,νι,h)ℓ(f
t
, ξιh) = D2

He(P
πι,νι

f
t
,h

,Pπι,νι

f∗,h ).

On the other hand, for the two MG settings, we also define Lt
h(f) as in (1) and (2). According to

Lemmas 11 and 12, unifying their results, we can obtain

EZt−1E
f
t∼pt

[
H∑

h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f
t
, ξιh)

]

≤ EZt−1E
f
t∼pt

[
−

H∑
h=1

t−1∑
ι=1

[Lt
h(f

t
)− Lt

h(f
∗)] + log

pt(f
t
)

p0(f
t
)

]
,
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which further gives

EZt−1E
f
t∼pt

[
−γ1∆V ∗

f
t +

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f
t
, ξιh)

]

≤ EZt−1E
f
t∼pt

[
−γ1∆V ∗

f
t −

H∑
h=1

t−1∑
ι=1

∆Lι
h(f

t
) + log

pt(f
t
)

p0(f
t
)

]

= EZt−1E
f
t∼pt

[
−γ1∆V ∗

f
t −

H∑
h=1

t−1∑
ι=1

∆Lι
h(f

t
)− log p0(f

t
) + log pt(f

t
)

]
.

where ∆Lt
h(f) := Lt

h(f)− Lt
h(f

∗) is defined in (23). Note that in the above analysis, we slightly
abuse the notation of πt and νt, which denote the Markovian policies for FOMG and history-
dependent policies for POMGs. Therefore, according to Lemma 10, we obtain that the distribution

pt(f) ∝ exp

(
γ1∆V ∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f) + log p0(f)

)

= p0(f) exp

(
γ1∆V ∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f)

)

minimizes the last term in the above inequality. As discussed in (24), this distribution is an equivalent
form of the posterior distribution updating rule for pt adopted in Line 3 of Algorithm 1. This result
implies that

EZt−1E
f
t∼pt

[
−γ1∆V ∗

f
t −

H∑
h=1

t−1∑
ι=1

∆Lι
h(f

t
) + log

pt(f
t
)

p0(f
t
)

]

= EZt−1 inf
p
Ef∼p

[
−γ1∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]
.

By Definition 2, further letting p̃ := p0(f) · 1(f ∈ F(ε))/p0(F(ε)), we have

EZt−1 inf
p
Ef∼p

[
−γ1∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]

≤ EZt−1Ef∼p̃

[
−γ1∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]
≤ (3H2γ1 + ηHT )ε− log p0(F(ε))

≤ ω(4HT, p0),

where the second inequality is by Lemma 13 and Lemma 14 as well as ε ≤ 1, and the last inequality
is by our setting that η = 1

2 and Hγ1 ≤ T . Therefore, by combining the above results, we obtain

E[Term(i)] ≤ ω(HT, p0)T

γ1
+

γ1dGECH

4
+ 2H(dGECHT )

1
2 + ϵHT

≤ 4
√
dGECHTω(4HT, p0), (26)

where we set HT > dGEC, ϵ = 1/
√
HT for self-play GEC in Definition 1, and γ1 =

2
√

ω(4HT, p0)T/dGEC. Since we set ϵ = 1/
√
HT , the self-play GEC dGEC is defined asso-

ciated with ϵ = 1/
√
HT by Definition 1. However, our analysis in Appendix B shows that this

setting only introduces log T factors in dGEC in the worst case.
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Bound E[Term(ii)]. Next, we consider to bound E[Term(ii)]. We start by decomposing Term(ii) as
follows,

Term(ii) =
T∑

t=1

[V
πt,νt

f∗ − V
πt,νt

ft + V
πt,νt

ft − V πt,∗
f∗ ]

=

T∑
t=1

[V
πt,νt

f∗ − V
πt,νt

ft ] +

T∑
t=1

∆V πt,∗
ft ,

where the second equality is by (21) and the fact that νt = argminν V
πt,ν
ft .

In addition, according to Definition 1 and the updating rules in Algorithm 1, setting σt = (πt, νt),
ρt = f t, we have∣∣∣∣∣

T∑
t=1

(
V

πt,νt

ft − V
πt,νt

f∗

)∣∣∣∣∣
≤
[
dGEC

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(σι,h)ℓ(f
t, ξιh)

)]1/2
+ 2H(dGECHT )

1
2 + ϵHT

≤ 1

γ2

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

)
+

γ2dGEC

4
+ 2H(dGECHT )

1
2 + ϵHT,

where the second inequality is due to
√
xy ≤ 1

γ2
x2 + γ2

4 y2. Thus, we obtain that

Term(ii) =
1

γ2

T∑
t=1

H∑
h=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

)
+

T∑
t=1

∆V πt,∗
ft +

γ2dGEC

4
+ 2H(dGECHT )

1
2 + ϵHT.

We further bound the RHS of the above equality. By the definitions of ℓ(f, ξh) for FOMGs and
POMGs and also the definitions of Lt

h(f) as in (1) and (2), according to Lemmas 11 and 12, we can
obtain

E
Zt−1,f

t∼ptEft∼qt

[
γ2∆V πt,∗

ft +

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

]

≤ E
Zt−1,f

t∼ptEft∼qt

[
γ2∆V πt,∗

ft −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f

t) + log
qt(f t)

q0(f t)

]

= E
Zt−1,f

t∼pt inf
q
Ef∼q

[
γ2∆V πt,∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

q(f)

q0(f)

]
,

where the expectation for f
t ∼ pt exists due to that πt is computed based on f

t
, and also according

to Lemma 10 and (25), the last equality can be achieved by that the updating rule for the distribution
qt in Algorithm 1, i.e., equivalently

qt(f) ∝ exp

(
−γ2∆V πt,∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f) + log q0(f)

)

= q0(f) exp

(
−γ2∆V πt,∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f)

)
,

can minimize Ef∼q

[
γ2∆V πt,∗

f −
∑H

h=1

∑t−1
ι=1 ∆Lι

h(f) + log q(f)
q0(f)

]
.
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By Definition 2, further letting q̃ := q0(f) · 1(f ∈ F(ε))/q0(F(ε)) with ε ≤ 1, we have

E
Zt−1,f

t∼pt inf
q
Ef∼q

[
γ2∆V πt,∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

q(f)

q0(f)

]

≤ E
Zt−1,f

t∼ptEf∼q̃

[
γ2∆V πt,∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

q(f)

q0(f)

]
≤ (3H2γ2 + ηHT )ε− log q0(F(ε))

≤ ω(4HT, q0),

where the second inequality is by Lemma 13 and Lemma 14 as well as ε ≤ 1, and the last inequality
is by our setting that η = 1

2 and Hγ2 ≤ T . Therefore, combining the above results, we have

E[Term(ii)] ≤ ω(HT, q0)T

γ2
+

γ2dGECH

4
+ 2H(dGECHT )

1
2 + ϵHT

≤ 4
√
dGECHT · ω(4HT, q0), (27)

where we set HT > dGEC, ϵ = 1/
√
HT for self-play GEC in Definition 1, and γ2 =

2
√

ω(4HT, q0)T/dGEC.

Combining Results. Finally, combining the results in (26) and (27), we eventually obtain

E[Regsp1 (T )] = E[Term(i)] + E[Term(ii)] ≤ 6
√

dGECHT (ω(4HT, p0) + ω(4HT, q0)).

This completes the proof.

E.2 Proof of Proposition 2

Proof. Due to the symmetry of Algorithms 1 and 3, we can similarly bound E[Regsp2 (T )] in the way
of bounding E[Regsp2 (T )]. Therefore, in this subsection, we only present the main steps for the proof.
Specifically, by Algorithm 3, we have a decomposition as

Regsp2 (T ) =

T∑
t=1

[V ∗,νt

f∗ − V
πt,νt

f∗ ]︸ ︷︷ ︸
Term(iv)

+

T∑
t=1

[V
πt,νt

f∗ − V ∗
f∗ ]︸ ︷︷ ︸

Term(iii)

.

Bound E[Term(iii)]. To bound E[Term(iii)], we give the following decomposition

Term(iii) =
T∑

t=1

[V
πt,νt

f∗ − V
πt,νt

f
t + V

πt,νt

f
t − V πt,νt

f
t + V πt,νt

f
t − V ∗

f∗ ]

≤
T∑

t=1

[V
πt,νt

f∗ − V
πt,νt

f
t + V

πt,νt

f
t − V ∗

f∗ ]

=

T∑
t=1

∆V ∗
f
t +

T∑
t=1

[V
πt,νt

f∗ − V
πt,νt

f
t ],

where according to Algorithm 3, we have (πt, νt) = argmaxπ argminν V
π,ν

f
t , which thus leads to

V πt,νt

f
t = max

π
V π,νt

f
t ≥ V

πt,νt

f
t .

According to the condition (2) in Definition 1 for self-play GEC and the updating rules in Algorithm
3, setting the exploration policy pair as σt = (πt, νt), we have∣∣∣∣∣

T∑
t=1

(
V

πt,νt

f
t
,1

− V
πt,νt

f∗

)∣∣∣∣∣
≤ 1

γ1

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t
, ξιh)

)
+

γ1dGEC

4
+ 2H(dGECHT )

1
2 + ϵHT.

47



We need to further bound the RHS of the above equality. For FOMGs and POMGs, by their definitions
of ℓ(f, ξh) as well as Lt

h(f), according to Lemmas 11 and 12, we obtain

EZt−1E
f
t∼pt

[
γ1∆V ∗

f
t +

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f
t
, ξιh)

]

≤ EZt−1E
f
t∼pt

[
γ1∆V ∗

f
t −

H∑
h=1

t−1∑
ι=1

∆Lι
h(f

t
) + log

pt(f
t
)

p0(f
t
)

]
,

where ∆Lt
h(f) := Lt

h(f)− Lt
h(f

∗) is defined in (23). According to Lemma 10, we obtain that the
distribution pt defined in Algorithm 3, equivalently

pt(f) ∝ p0(f) exp

(
−γ1∆V ∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f)

)
minimizes the last term in the above inequality. This result implies that

EZt−1E
f
t∼pt

[
γ1∆V ∗

f
t −

H∑
h=1

t−1∑
ι=1

∆Lι
h(f

t
) + log

pt(f
t
)

p0(f
t
)

]

= EZt−1 inf
p
Ef∼p

[
γ1∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]
.

By Definition 2, further letting p̃ := p0(f) · 1(f ∈ F(ε))/p0(F(ε)), we have

EZt−1 inf
p
Ef∼p

[
γ1∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]

≤ EZt−1Ef∼p̃

[
γ1∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]
≤ (3H2γ1 + ηHT )ε− log p0(F(ε))

≤ ω(4HT, p0),

where the second inequality is by Lemma 13 and Lemma 14 as well as ε ≤ 1, and the last inequality
is by our setting that η = 1

2 and Hγ1 ≤ T . Therefore, by combining the above results, we obtain

E[Term(iii)] ≤ ω(HT, p0)T

γ1
+

γ1dGECH

4
+ 2H(dGECHT )

1
2 + ϵHT

≤ 4
√
dGECHTω(4HT, p0), (28)

where we set HT > dGEC, ϵ = 1/
√
HT for self-play GEC in Definition 1, and γ1 =

2
√

ω(4HT, p0)T/dGEC.

Bound E[Term(iv)]. Next, we consider to bound E[Term(iv)] as follows,

Term(iv) =
T∑

t=1

[V ∗,νt

f∗ − V
πt,νt

ft + V
πt,νt

ft − V
πt,νt

f∗ ]

= −
T∑

t=1

∆V ∗,νt

ft +

T∑
t=1

[V
πt,νt

ft − V
πt,νt

f∗ ],

where the second equality is by the fact that πt = argmaxπ V
π,νt

ft according to the updating rule.

By Definition 1 and the updating rules in Algorithm 3, we have∣∣∣∣∣
T∑

t=1

(
V

πt,νt

ft − V
πt,νt

f∗

)∣∣∣∣∣
≤ 1

γ2

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

)
+

γ2dGEC

4
+ 2H(dGECHT )

1
2 + ϵHT.
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By the definitions of ℓ(f, ξh) for FOMGs and POMGs and also the definitions of Lt
h(f) as in (1) and

(2), we have

E
Zt−1,f

t∼ptEft∼qt

[
−γ2∆V ∗,νt

ft +

H∑
h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

]

≤ E
Zt−1,f

t∼ptEft∼qt

[
−γ2∆V ∗,νt

ft −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f

t) + log
qt(f t)

q0(f t)

]

= E
Zt−1,f

t∼pt inf
q
Ef∼q

[
−γ2∆V πt,∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

q(f)

q0(f)

]
,

where the expectation for f
t ∼ pt exists due to that νt is computed based on f

t
, and also according

to Lemma 10, the last equality can be achieved by that the updating rule for the distribution qt in
Algorithm 3, i.e., equivalently

qt(f) ∝ q0(f) exp

(
γ2∆V πt,∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f)

)
,

can minimize Ef∼q

[
−γ2∆V ∗πt,νt

f −
∑H

h=1

∑t−1
ι=1 ∆Lι

h(f) + log q(f)
q0(f)

]
. By Definition 2, further

letting q̃ := q0(f) · 1(f ∈ F(ε))/q0(F(ε)) with ε ≤ 1, we have

E
Zt−1,f

t∼pt inf
q
Ef∼q

[
γ2∆V πt,∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

q(f)

q0(f)

]

≤ E
Zt−1,f

t∼ptEf∼q̃

[
γ2∆V πt,∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

q(f)

q0(f)

]
≤ (3H2γ2 + ηHT )ε− log q0(F(ε))

≤ ω(4HT, q0),

where the second inequality is by Lemma 13 and Lemma 14 as well as ε ≤ 1, and the last inequality
is by our setting that η = 1

2 and Hγ2 ≤ T . Therefore, combining the above results, we have

E[Term(iv)] ≤ ω(HT, q0)T

γ2
+

γ2dGECH

4
+ 2H(dGECHT )

1
2 + ϵHT

≤ 4
√
dGECHT · ω(4HT, q0), (29)

where we set HT > dGEC, ϵ = 1/
√
HT for self-play GEC in Definition 1, and γ2 =

2
√

ω(4HT, q0)T/dGEC.

Combining Results. Finally, combining the results in (28) and (29), we eventually obtain

E[Regsp2 (T )] = E[Term(iii)] + E[Term(iv)] ≤ 6
√

dGECHT (ω(4HT, p0) + ω(4HT, q0)).

This completes the proof.

E.3 Proof of Theorem 1

Proof. The proof of Theorem 1 is immediate by the relation that Regsp(T ) = Regsp1 (T )+Regsp2 (T ).
Thus, according to the above proofs of Proposition 1 and Proposition 2, under the conditions in both
propositions, we have that

E[Regsp(T )] = E[Regsp1 (T )] + E[Regsp2 (T )]

≤ 12
√
dGECHT · (ω(4HT, p0) + ω(4HT, q0)).

This completes the proof.
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F Proofs for Algorithm 2

In this section, we provide the detailed proof for Theorem 2 and unify the proofs for both the FOMG
and POMG settings together.

We recall that the value difference and the likelihood function difference are already defined in (22)
and (23), which are

∆V ∗
f := V ∗

f − V ∗
f∗ ,

∆Lt
h(f) = Lt

h(f)− Lt
h(f

∗).

Then, similar to (24), the updating rules of posterior distribution in Algorithm 2 have the following
equivalent form as

pt(f) ∝ p0(f) exp
[
γV ∗

f +

t−1∑
ι=1

H∑
h=1

Lτ
h(f)

]
⇐⇒ pt(f) ∝ p0(f) exp

[
γ∆V ∗

f +

t−1∑
ι=1

H∑
h=1

∆Lτ
h(f)

]
, (30)

since adding or subtracting terms irrelevant to f , i.e., V ∗
f∗ and Lt

h(f
∗), within the power of all

exponential terms will not change the posterior distribution of f .

F.1 Proof of Theorem 2

Proof. To bound the expected value of the adversarial regret Regadv(T ), i.e., E[Regadv(T )], we first
decompose the regret Regadvw as follows

Regadv(T ) =

T∑
t=1

[V ∗
f∗ − V ∗

ft ] +

T∑
t=1

[V ∗
f∗ − V πt,νt

f∗ ]

= −
T∑

t=1

∆V ∗
ft +

T∑
t=1

[V ∗
ft − V πt,νt

f∗ ].

Furthermore, for the term
∑T

t=1[V
∗
ft − V πt,νt

f∗ ], we have

T∑
t=1

[V ∗
ft − V πt,νt

f∗ ] =

T∑
t=1

[V πt,νt

ft − V πt,νt

f∗ ]

≤
T∑

t=1

[V πt,νt

ft − V πt,νt

f∗ ],

where the above result is by (πt, νt) = argmaxπ argminν V
π,ν
ft , i.e., (πt, νt) is the NE of V π,ν

ft ,
according to Algorithm 2, and also due the relation that

V πt,νt

ft = min
ν

V πt,ν
ft ≤ V πt,νt

ft .

Thus, we have

Regadv(T ) = −
T∑

t=1

∆V ∗
ft +

T∑
t=1

[V πt,νt

ft − V πt,νt

f∗ ].
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According to Definition 3 and the updating rules in Algorithm 2, setting σt
exp = (πt, νt), and

ℓ(f t, ξιh) = D2
He(Pft,h(·|sιh, aιh, bιh),Pf∗,h(·|sιh, aιh, bιh)) for Definition 1, we have∣∣∣∣ T∑

t=1

(
V πt,νt

ft − V πt,νt

f∗

)∣∣∣∣
≤
[
dGEC

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(σι
exp,h)

ℓ(f t, ξιh)
)] 1

2

+ 2H(dGECHT )
1
2 + ϵHT

≤ 1

γ

H∑
h=1

T∑
t=1

( t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

)
+

γdGEC

4
+ 2H(dGECHT )

1
2 + ϵHT,

where the second inequality is due to
√
xy ≤ 1

γx
2 + γ

4 y
2. Combining the above results, we have

Regadv(T ) ≤ 1

γ

T∑
t=1

H∑
h=1

( t−1∑
ι=1

E(πι,νι)ℓ(f
t, ξιh)

)
−

T∑
t=1

∆V ∗
ft

+
γdGEC

4
+ 2H(dGECHT )

1
2 + ϵHT.

For FOMGs and POMGs, we have different definitions of ℓ(f, ξh). According to (3), for FOMGs,
we define

ℓ(f t, ξιh) = D2
He(Pft,h(·|sιh, aιh, bιh),Pf∗,h(·|sιh, aιh, bιh)),

and for POMGs, the definition of ℓ ensures

E(πι,νι,h)ℓ(f
t, ξιh) = D2

He(P
πι,νι

f∗,h ,Pπι,νι

ft,h ).

For different MG settings, we also define Lt
h(f) as in (1) and (2) which are

Lt
h(f) = η logPf,h(s

t
h+1 | sth, ath, bth), Lt

h(f) = η logPf,h(τ
t
h).

Then, combining Lemmas 11 and 12, we know that the following result holds for both FOMGs and
POMGs,

EZt−1Eft∼pt

[
H∑

h=1

t−1∑
ι=1

E(πι,νι,h)ℓ(f
t, ξιh)

]

≤ EZt−1Eft∼pt

[
−

H∑
h=1

t−1∑
ι=1

[Lι
h(f

t)− Lι
h(f

∗)] + log
pt(f t)

p0(f t)

]
,

which further leads to

EZt−1Eft∼pt

[
−γ∆V ∗

ft +
H∑

h=1

t−1∑
ι=1

E(πι,νι)ℓ(f
t, ξιh)

]

≤ EZt−1Eft∼pt

[
−γ∆V ∗

ft −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f

t) + log
pt(f t)

p0(f t)

]

= EZt−1Eft∼pt

[
−γ∆V ∗

ft −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f

t)− log p0(f t) + log pt(f t)

]
,

where ∆Lι
h(f) = Lι

h(f)−Lt
h(f

∗) as in (23). Therefore, according to Lemma 10 and (30), we know
that the distribution

pt(f) ∝ exp

(
γ∆V ∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f) + log p0(f)

)

= p0(f) exp

(
γ∆V ∗

f +

H∑
h=1

t−1∑
ι=1

∆Lι
h(f)

)
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minimizes the last term in the above inequality, which is the posterior distribution updating rule for
pt adopted in Algorithm 2. This result implies that

EZt−1Eft∼pt

[
−γ∆V ∗

ft −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f

t) + log
pt(f t)

p0(f t)

]

= EZt−1 inf
p
Ef∼p

[
−γ∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f

t) + log
p(f)

p0(f)

]
.

For the adversarial setting, we define F(ε) as in Definition 2 similar to the definition of F(ε) in the
self-play setting. Further letting p̃ := p0(f) ·1(f ∈ F(ε))/p0(F(ε)) with ε ≤ 1 and ω be associated
with F(ε), we have

EZt−1 inf
p
Ef∼p

[
−γ∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]

≤ EZt−1Ef∼p̃

[
−γ∆V ∗

f −
H∑

h=1

t−1∑
ι=1

∆Lι
h(f) + log

p(f)

p0(f)

]
≤ (3H2γ + ηHT )ε− log p0(F(ε))

≤ ω(4HT, p0),

where the second inequality is by Lemma 13 and Lemma 14 as well as ε ≤ 1, and the last inequality
is by our setting that η = 1

2 and γ ≤ T . Therefore, by combining the above results, we obtain

E[Regadv(T )] ≤ ω(4HT, p0)T

γ
+

γdGECH

4
+ 2H(dGECHT )

1
2 + ϵHT

≤ 4
√
dGECHT · ω(4HT, p0),

where we set HT > dGEC, ϵ = 1/
√
HT for adversarial GEC in Definition 3, and γ =

2
√
ω(4HT, p0)T/dGEC. Note that since we set ϵ = 1/

√
HT , the adversarial GEC dGEC is now

calculated associated with ϵ = 1/
√
HT by Definition 3. Further by our analysis in Appendix B, we

know that this setting only introduces log T factors in dGEC in the worst case. This concludes the
proof.

G Other Supporting Lemmas

Lemma 15 (Elliptical Potential Lemma in [1], Lemma 11). Suppose {ϕt}t≥0 is a sequence in Rd

satisfying ∥ϕt∥2 ≤ 1, and Λ0 is a positive definite d× d matrix. Let Λt = Λ0 +
∑t

ι=1 ϕιϕ
⊤
ι . Then,

the following inequalities hold

log

(
detΛt

detΛ0

)
≤

t∑
ι=1

min
{
ϕ⊤
ι (Λι−1)

−1ϕι, 1
}
≤ 2 log

(
detΛt

detΛ0

)
.

Lemma 16 (Estimation of Elliptical Potential [38]). Given λ > 0 and {ϕt}t≥0 with ∥ϕt∥2 ≤ 1,
denoting Λt = λI +

∑t
ι=1 ϕιϕ

⊤
ι , then ϕ⊤

ι (Λι−1)
−1ϕι is upper bounded by

3d

log 2
log

(
1 +

1

λ log 2

)
.

Lemma 17 (ℓ2 Eluder Technique [13, 83]). Suppose that {wt,j ∈ Rd}(t,j)∈[T ]×[J], {xt,i ∈
Rd

(t,i)∈[T ]×[I]}(t,i), and distributions {pt ∈ ∆[I]}[T ] satisfy

•
∑t−1

s=1 Ei∼ps
(
∑J

j=1 |w⊤
t,jxs,i|)2 ≤ γt,

• Ei∼pt∥xt,i∥22 ≤ R2
x,
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•
∑J

j=1 ∥wt,j∥2 ≤ Rw,

for any 1 ≤ t ≤ T . Then, for R > 0, we have

T∑
t=1

min{R,Ei∼pt

( J∑
j=1

|w⊤
t,jxt,i|

)
} ≤

[
2d
(
R2T +

T∑
t=1

γt

)
· log

(
1 +

TR2
xR

2
w

R2

)]1/2
.
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