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Abstract

Graph neural networks (GNNs) are widely used for modeling complex interactions
between entities represented as vertices of a graph. Despite recent efforts to
theoretically analyze the expressive power of GNNs, a formal characterization of
their ability to model interactions is lacking. The current paper aims to address
this gap. Formalizing strength of interactions through an established measure
known as separation rank, we quantify the ability of certain GNNs to model
interaction between a given subset of vertices and its complement, i.e. between
the sides of a given partition of input vertices. Our results reveal that the ability
to model interaction is primarily determined by the partition’s walk index — a
graph-theoretical characteristic defined by the number of walks originating from
the boundary of the partition. Experiments with common GNN architectures
corroborate this finding. As a practical application of our theory, we design
an edge sparsification algorithm named Walk Index Sparsification (WIS), which
preserves the ability of a GNN to model interactions when input edges are removed.
WIS is simple, computationally efficient, and in our experiments has markedly
outperformed alternative methods in terms of induced prediction accuracy.1 More
broadly, it showcases the potential of improving GNNs by theoretically analyzing
the interactions they can model.

1 Introduction

Graph neural networks (GNNs) are a family of deep learning architectures, designed to model
complex interactions between entities represented as vertices of a graph. In recent years, GNNs have
been successfully applied across a wide range of domains, including social networks, biochemistry,
and recommender systems (see, e.g., [36, 59, 45, 49, 96, 104, 101, 18]). Consequently, significant
interest in developing a mathematical theory behind GNNs has arisen.

One of the fundamental questions a theory of GNNs should address is expressivity, which concerns
the class of functions a given architecture can realize. Existing studies of expressivity largely fall
into three categories. First, and most prominent, are characterizations of ability to distinguish non-
isomorphic graphs [103, 74, 72, 70, 6, 15, 10, 17, 43, 42, 80], as measured by equivalence to classical
Weisfeiler-Leman graph isomorphism tests [99]. Second, are proofs for universal approximation of
continuous permutation invariant or equivariant functions, possibly up to limitations in distinguishing
some classes of graphs [73, 55, 25, 69, 3, 42]. Last, are works examining specific properties of GNNs
such as frequency response [77, 5] or computability of certain graph attributes, e.g. moments, shortest
paths, and substructure multiplicity [35, 9, 26, 39, 69, 23, 17, 105].

A major drawback of many existing approaches — in particular proofs of equivalence to Weisfeiler-
Leman tests and those of universality — is that they operate in asymptotic regimes of unbounded

1An implementation of WIS is available at https://github.com/noamrazin/gnn_interactions.
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Figure 1: Illustration of our main theoretical contribution: quantifying the ability of GNNs to model interactions
between vertices of an input graph. Consider a partition of vertices (I, Ic), illustrated on the left, and a depth L
GNN with product aggregation (Section 3). For graph prediction, as illustrated on the right, the strength of
interaction the GNN can model between I and Ic, measured via separation rank (Section 2.2), is primarily
determined by the partition’s (L − 1)-walk index — the number of length L − 1 walks emanating from CI ,
which is the set of vertices with an edge crossing the partition. The same holds for vertex prediction, except that
there walk index is defined while only considering walks ending at the target vertex.

network width or depth. Moreover, to the best of our knowledge, none of the existing approaches
formally characterize the strength of interactions GNNs can model between vertices, and how that
depends on the structure of the input graph and the architecture of the neural network.

The current paper addresses the foregoing gaps. Namely, it theoretically quantifies the ability of
fixed-size GNNs to model interactions between vertices, delineating the impact of the input graph
structure and the neural network architecture (width and depth). Strength of modeled interactions
is formalized via separation rank [12] — a commonly used measure for the interaction a function
models between a subset of input variables and its complement (the rest of the input variables). Given
a function and a partition of its input variables, the higher the separation rank, the more interaction the
function models between the sides of the partition. Separation rank is prevalent in quantum mechanics,
where it can be viewed as a measure of entanglement [62]. It was previously used for analyzing
variants of convolutional, recurrent, and self-attention neural networks, yielding both theoretical
insights and practical tools [30, 33, 61, 62, 64, 100, 65, 85]. We employ it for studying GNNs.

Key to our theory is a widely studied correspondence between neural networks with polynomial non-
linearity and tensor networks2 [32, 29, 30, 34, 90, 61, 62, 7, 56, 57, 63, 64, 83, 100, 84, 85, 65]. We
extend this correspondence, and use it to analyze message-passing GNNs with product aggregation.
We treat both graph prediction, where a single output is produced for an entire input graph, and
vertex prediction, in which the network produces an output for every vertex. For graph prediction, we
prove that the separation rank of a depth L GNN with respect to a partition of vertices is primarily
determined by the partition’s (L − 1)-walk index — a graph-theoretical characteristic defined to
be the number of length L− 1 walks originating from vertices with an edge crossing the partition.
The same holds for vertex prediction, except that there walk index is defined while only considering
walks ending at the target vertex. Our result, illustrated in Figure 1, implies that for a given input
graph, the ability of GNNs to model interaction between a subset of vertices I and its complement Ic,
predominantly depends on the number of walks originating from the boundary between I and Ic. We
corroborate this proposition through experiments with standard GNN architectures, such as Graph
Convolutional Network (GCN) [59] and Graph Isomorphism Network (GIN) [103].

Our theory formalizes conventional wisdom by which GNNs can model stronger interaction between
regions of the input graph that are more interconnected. More importantly, we show that it facilitates
an edge sparsification algorithm that preserves the expressive power of GNNs (in terms of ability
to model interactions). Edge sparsification concerns removal of edges from a graph for reducing
computational and/or memory costs, while attempting to maintain selected properties of the graph
(cf. [11, 93, 48, 20, 86, 98, 67, 24]). In the context of GNNs, our interest lies in maintaining prediction
accuracy as the number of edges removed from the input graph increases. We propose an algorithm
for removing edges, guided by our separation rank characterization. The algorithm, named Walk
Index Sparsification (WIS), is demonstrated to yield high predictive performance for GNNs (e.g. GCN
and GIN) over standard benchmarks of various scales, even when removing a significant portion of

2Tensor networks form a graphical language for expressing contractions of tensors — multi-dimensional
arrays. They are widely used for constructing compact representations of quantum states in areas of physics
(see, e.g., [97, 79]).
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edges. WIS is simple, computationally efficient, and in our experiments has markedly outperformed
alternative methods in terms of induced prediction accuracies across edge sparsity levels. More
broadly, WIS showcases the potential of improving GNNs by theoretically analyzing the interactions
they can model, and we believe its further empirical investigation is a promising direction for future
research.

The remainder of the paper is organized as follows. Section 2 introduces notation and the concept
of separation rank. Section 3 presents the theoretically analyzed GNN architecture. Section 4
theoretically quantifies (via separation rank) its ability to model interactions between vertices of an
input graph. Section 5 proposes and evaluates WIS — an edge sparsification algorithm for arbitrary
GNNs, born from our theory. Lastly, Section 6 concludes. Related work is discussed throughout, and
for the reader’s convenience, is recapitulated in Appendix B.

2 Preliminaries

2.1 Notation

For N ∈ N, let [N ] := {1, . . . , N}. We consider an undirected input graph G = (V, E) with
vertices V = [|V|] and edges E ⊆ {{i, j} : i, j ∈ V}. Vertices are equipped with features X :=
(x(1), . . . ,x(|V|)) ∈ RDx×|V| — one Dx-dimensional feature vector per vertex (Dx ∈ N). For i ∈ V ,
we use N (i) := {j ∈ V : {i, j} ∈ E} to denote its set of neighbors, and, as customary in the context
of GNNs, assume the existence of all self-loops, i.e. i ∈ N (i) for all i ∈ V (cf. [59, 50]). Furthermore,
for I ⊆ V we let N (I) := ∪i∈IN (i) be the neighbors of vertices in I, and Ic := V \ I be the
complement of I . We use CI to denote the boundary of the partition (I, Ic), i.e. the set of vertices with
an edge crossing the partition, defined by CI := {i ∈ I : N (i)∩Ic 6= ∅}∪{j ∈ Ic : N (j)∩I 6= ∅}.3
Lastly, we denote the number of length l ∈ N≥0 walks from any vertex in I ⊆ V to any vertex in
J ⊆ V by ρl(I,J ).4 In particular, ρl(I,J ) =

∑
i∈I,j∈J ρl({i}, {j}).

Note that we focus on undirected graphs for simplicity of presentation. As discussed in Section 4,
our results are extended to directed graphs in Appendix D.

2.2 Separation Rank: A Measure of Modeled Interaction

A prominent measure quantifying the interaction a multivariate function models between a subset
of input variables and its complement (i.e. all other variables) is known as separation rank. The
separation rank was introduced in [12], and has since been employed for various applications [51,
47, 13]. It is also a common measure of entanglement, a profound concept in quantum physics
quantifying interaction between particles [62]. In the context of deep learning, it enabled analyses of
expressivity and generalization in certain convolutional, recurrent, and self-attention neural networks,
resulting in theoretical insights and practical methods (guidelines for neural architecture design,
pretraining schemes, and regularizers — see [30, 33, 61, 62, 64, 100, 65, 85]).

Given a multivariate function f : (RDx)
N → R, its separation rank with respect to a subset of input

variables I ⊆ [N ] is the minimal number of summands required to express it, where each summand
is a product of two functions — one that operates over variables indexed by I, and another that
operates over the remaining variables. Formally:

Definition 1. The separation rank of f : (RDx)
N → R with respect to I ⊆ [N ] is:

sep(f ; I) := min
{
R ∈ N≥0 : ∃ g(1), . . . , g(R) : (RDx)

|I| → R, ḡ(1), . . . , ḡ(R) : (RDx)
|Ic| → R

s.t. f(X) =
∑R

r=1
g(r)(XI) · ḡ(r)(XIc)

}
,

(1)

where X := (x(1), . . . ,x(N)), XI := (x(i))i∈I , and XIc := (x(j))j∈Ic . By convention, if f is
identically zero then sep(f ; I) = 0, and if the set on the right hand side of Equation (1) is empty
then sep(f ; I) =∞.

3Due to the existence of self-loops, CI is exactly the shared neighbors of I and Ic, i.e. CI = N (I)∩N (Ic).
4For l ∈ N≥0, a sequence of vertices i0, . . . , il ∈ V is a length l walk if {il′−1, il′} ∈ E for all l′ ∈ [l].
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Interpretation If sep(f ; I) = 1, the function is separable, meaning it does not model any inter-
action between XI and XIc , i.e. between the sides of the partition (I, Ic). Specifically, it can be
represented as f(X) = g(XI) · ḡ(XIc) for some functions g and ḡ. In a statistical setting, where
f is a probability density function, this would mean that XI and XIc are statistically independent.
The higher sep(f ; I) is, the farther f is from separability, implying stronger modeling of interaction
between XI and XIc .

3 Graph Neural Networks

Modern GNNs predominantly follow the message-passing paradigm [45, 50], whereby each vertex is
associated with a hidden embedding that is updated according to its neighbors. The initial embedding
of i ∈ V is taken to be its input features: h(0,i) := x(i) ∈ RDx . Then, in a depth L message-passing
GNN, a common update scheme for the hidden embedding of i ∈ V at layer l ∈ [L] is:

h(l,i) = AGGREGATE
({{

W(l)h(l−1,j) : j ∈ N (i)
}})

, (2)

where {{·}} denotes a multiset, W(1) ∈ RDh×Dx ,W(2) ∈ RDh×Dh , . . . ,W(L) ∈ RDh×Dh are
learnable weight matrices, with Dh ∈ N being the network’s width (i.e. hidden dimension), and
AGGREGATE is a function combining multiple input vectors into a single vector. A notable special
case is GCN [59], in which AGGREGATE performs a weighted average followed by a non-linear
activation function (e.g. ReLU).5 Other aggregation operators are also viable, e.g. element-wise sum,
max, or product (cf. [49, 53]). We note that distinguishing self-loops from other edges, and more
generally, treating multiple edge types, is possible through the use of different weight matrices for
different edge types [49, 88]. For conciseness, we hereinafter focus on the case of a single edge type,
and treat multiple edge types in Appendix D.

After L layers, the GNN generates hidden embeddings h(L,1), . . . ,h(L,|V|) ∈ RDh . For graph
prediction, where a single output is produced for the whole graph, the hidden embeddings are usually
combined into a single vector through the AGGREGATE function. A final linear layer with weights
W(o) ∈ R1×Dh is then applied to the resulting vector.6 Overall, the function realized by a depth L
graph prediction GNN receives an input graph G with vertex features X := (x(1), . . . ,x(|V|)) ∈
RDx×|V|, and returns:

(graph prediction) f (θ,G)(X) := W(o)AGGREGATE
({{

h(L,i) : i ∈ V
}})

, (3)

with θ := (W(1), . . . ,W(L),W(o)) denoting the network’s learnable weights. For vertex prediction
tasks, where the network produces an output for every t ∈ V , the final linear layer is applied to
each h(L,t) separately. That is, for a target vertex t ∈ V , the function realized by a depth L vertex
prediction GNN is given by:

(vertex prediction) f (θ,G,t)(X) := W(o)h(L,t) . (4)

Our aim is to investigate the ability of GNNs to model interactions between vertices. Prior studies
of interactions modeled by different deep learning architectures have focused on neural networks
with polynomial non-linearity, building on their representation as tensor networks [32, 30, 34, 90,
61, 62, 7, 56, 63, 64, 83, 100, 84, 85, 65]. Although neural networks with polynomial non-linearity
are less common in practice, they have demonstrated competitive performance [28, 31, 91, 94, 27,
37, 53], and hold promise due to their compatibility with quantum computation [46, 14] and fully
homomorphic encryption [44]. More importantly, their analyses brought forth numerous insights
that were demonstrated empirically and led to development of practical tools for widespread deep
learning models (with non-linearities such as ReLU).

Following the above, in our theoretical analysis (Section 4) we consider GNNs with (element-wise)
product aggregation, which are polynomial functions of their inputs. Namely, the AGGREGATE
operator from Equations (2) and (3) is taken to be:

AGGREGATE(X ) := �x∈Xx , (5)
5In GCN, AGGREGATE also has access to the degrees of vertices, which are used for computing the averaging

weights. We omit the dependence on vertex degrees in our notation for conciseness.
6We treat the case of output dimension one merely for the sake of presentation. Extension of our theory

(delivered in Section 4) to arbitrary output dimension is straightforward — the results hold as stated for each of
the functions computing an output entry.
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where � stands for the Hadamard product and X is a multiset of vectors. The resulting architecture
can be viewed as a variant of the GNN proposed in [53], where it was shown to achieve competitive
performance in practice. Central to our proofs are tensor network representations of GNNs with
product aggregation (formally established in Appendix E), analogous to those used for analyzing
other types of neural networks. We empirically demonstrate our theoretical findings on popular GNNs
(Section 4.2), such as GCN and GIN with ReLU non-linearity, and use them to derive a practical
edge sparsification algorithm (Section 5).

We note that some of the aforementioned analyses of neural networks with polynomial non-linearity
were extended to account for additional non-linearities, including ReLU, through constructs known
as generalized tensor networks [29]. We thus believe our theory may be similarly extended, and
regard this as an interesting direction for future work.

4 Theoretical Analysis: The Effect of Input Graph Structure and Neural
Network Architecture on Modeled Interactions

In this section, we employ separation rank (Definition 1) to theoretically quantify how the input
graph structure and network architecture (width and depth) affect the ability of a GNN with product
aggregation to model interactions between input vertices. We overview the main results and their
implications in Section 4.1, while deferring the formal analysis to Appendix A due to lack of space.
Section 4.2 provides experiments demonstrating our theory’s implications on common GNNs, such
as GCN and GIN with ReLU non-linearity.

4.1 Overview and Implications

Consider a depth L GNN with width Dh and product aggregation (Section 3). Given a graph G,
any assignment to the weights of the network θ induces a multivariate function — f (θ,G) for graph
prediction (Equation (3)) and f (θ,G,t) for prediction over a given vertex t ∈ V (Equation (4)) — whose
variables correspond to feature vectors of input vertices. The separation rank of this function with
respect to I ⊆ V thus measures the interaction modeled across the partition (I, Ic), i.e. between the
vertices in I and those in Ic. The higher the separation rank is, the stronger the modeled interaction.

Key to our analysis are the following notions of walk index, defined by the number of walks emanating
from the boundary of the partition (I, Ic), i.e. from vertices with an edge crossing the partition
induced by I (see Figure 1 for an illustration).

Definition 2. Let I ⊆ V . Denote by CI the set of vertices with an edge crossing the partition (I, Ic),
i.e. CI := {i ∈ I : N (i) ∩ Ic 6= ∅} ∪ {j ∈ Ic : N (j) ∩ I 6= ∅}, and recall that ρl(CI ,J ) denotes
the number of length l ∈ N≥0 walks from any vertex in CI to any vertex in J ⊆ V . For L ∈ N:

• (graph prediction) we define the (L− 1)-walk index of I , denoted WIL−1(I), to be the number
of length L− 1 walks originating from CI , i.e. WIL−1(I) := ρL−1(CI ,V); and

• (vertex prediction) for t ∈ V we define the (L− 1, t)-walk index of I , denoted WIL−1,t(I), to
be the number of length L− 1 walks from CI that end at t, i.e. WIL−1,t(I) := ρL−1(CI , {t}).

As our main theoretical contribution, we prove:

Theorem 1 (informally stated). For all weight assignments θ and t ∈ V:

(graph prediction) log
(
sep
(
f (θ,G); I

))
= O

(
log(Dh) ·WIL−1(I)

)
,

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
= O

(
log(Dh) ·WIL−1,t(I)

)
.

Moreover, nearly matching lower bounds hold for almost all weight assignments.7

The upper and lower bounds are formally established by Theorems 2 and 3 in Appendix A, respec-
tively, and are generalized to input graphs with directed edges and multiple edge types in Appendix D.
Theorem 1 implies that, the (L − 1)-walk index of I in graph prediction and its (L − 1, t)-walk
index in vertex prediction control the separation rank with respect to I, and are thus paramount for

7Almost all in the sense of all weight assignments but a set of Lebesgue measure zero.
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Figure 2: Depth L GNNs can model stronger interactions between sides of partitions that have a higher walk
index (Definition 2). The partition (I1, Ic1) (left) divides the vertices into two separate cliques, connected by a
single edge. Only two vertices reside in CI1 — the set of vertices with an edge crossing the partition. Taking
for example depth L = 3, the 2-walk index of I1 is Θ(|V|2) and its (2, t)-walk index is Θ(|V|), for t ∈ V . In
contrast, the partition (I2, Ic2) (right) equally divides the vertices in each clique to different sides. All vertices
reside in CI2 , meaning the 2-walk index of I2 is Θ(|V|3) and its (2, t)-walk index is Θ(|V|2), for t ∈ V . Hence,
in both graph and vertex prediction scenarios, the walk index of I1 is relatively low compared to that of I2. Our
analysis (Section 4.1 and Appendix A) states that a higher separation rank can be attained with respect to I2,
meaning stronger interaction can be modeled across (I2, Ic2) than across (I1, Ic1). We empirically confirm this
prospect in Section 4.2.

modeling interaction between I and Ic — see Figure 2 for an illustration. It thereby formalizes the
conventional wisdom by which GNNs can model stronger interaction between areas of the input graph
that are more interconnected. We support this finding empirically with common GNN architectures
(e.g. GCN and GIN with ReLU non-linearity) in Section 4.2.

One may interpret Theorem 1 as encouraging addition of edges to an input graph. Indeed, the
theorem states that such addition can enhance the GNN’s ability to model interactions between input
vertices. This accords with existing evidence by which increasing connectivity can improve the
performance of GNNs in practice (see, e.g., [40, 1]). However, special care needs to be taken when
adding edges: it may distort the semantic meaning of the input graph, and may lead to plights known
as over-smoothing and over-squashing [68, 78, 22, 1, 8]. Rather than employing Theorem 1 for
adding edges, we use it to select which edges to preserve in a setting where some must be removed.
That is, we employ it for designing an edge sparsification algorithm. The algorithm, named Walk
Index Sparsification (WIS), is simple, computationally efficient, and in our experiments has markedly
outperformed alternative methods in terms of induced prediction accuracy. We present and evaluate it
in Section 5.

4.2 Empirical Demonstration

Our theoretical analysis establishes that, the strength of interaction GNNs can model across a partition
of input vertices is primarily determined by the partition’s walk index — a graph-theoretical character-
istic defined by the number of walks originating from the boundary of the partition (see Definition 2).
The analysis formally applies to GNNs with product aggregation (see Section 3), yet we empirically
demonstrate that its conclusions carry over to various other message-passing GNN architectures,
namely GCN [59], GAT [96], and GIN [103] (with ReLU non-linearity). Specifically, through
controlled experiments, we show that such models perform better on tasks in which the partitions that
require strong interaction are ones with higher walk index, given that all other aspects of the tasks are
the same. A description of these experiments follows. For brevity, we defer some implementation
details to Appendix H.2.

We constructed two graph prediction datasets, in which the vertex features of each input graph are
patches of pixels from two randomly sampled Fashion-MNIST [102] images, and the goal is to
predict whether the two images are of the same class.8 In both datasets, all input graphs have the
same structure: two separate cliques with 16 vertices each, connected by a single edge. The datasets
differ in how the image patches are distributed among the vertices: in the first dataset each clique
holds all the patches of a single image, whereas in the second dataset each clique holds half of the
patches from the first image and half of the patches from the second image. Figure 2 illustrates how

8Images are sampled such that the amount of positive and negative examples are roughly balanced.
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Table 1: In accordance with our theory (Section 4.1 and Appendix A), GNNs can better fit datasets in which the
partitions (of input vertices) that require strong interaction are ones with higher walk index (Definition 2). Table
reports means and standard deviations, taken over five runs, of train and test accuracies obtained by GNNs of
depth 3 and width 16 on two datasets: one in which the essential partition — i.e. the main partition requiring
strong interaction — has low walk index, and another in which it has high walk index (see Section 4.2 for
a detailed description of the datasets). For all GNNs, the train accuracy attained over the second dataset is
considerably higher than that attained over the first dataset. Moreover, the better train accuracy translates to
better test accuracy. See Appendix H.2 for further implementation details.

Essential Partition Walk Index

Low High

GCN Train Acc. (%) 70.4 ± 1.7 81.4 ± 2.0

Test Acc. (%) 52.7 ± 1.9 66.2 ± 1.1

GAT Train Acc. (%) 82.8 ± 2.6 88.5 ± 1.1

Test Acc. (%) 69.6 ± 0.6 72.1 ± 1.2

GIN Train Acc. (%) 83.2 ± 0.8 94.2 ± 0.8

Test Acc. (%) 53.7 ± 1.8 64.8 ± 1.4

image patches are distributed in the first (left hand side of the figure) and second (right hand side of
the figure) datasets, with blue and red marking assignment of vertices to images.

Each dataset requires modeling strong interaction across the partition separating the two images,
referred to as the essential partition of the dataset. In the first dataset the essential partition separates
the two cliques, thus it has low walk index. In the second dataset each side of the essential partition
contains half of the vertices from the first clique and half of the vertices from the second clique, thus
the partition has high walk index. For an example illustrating the gap between these walk indices
see Figure 2.

Table 1 reports train and test accuracies achieved by GCN, GAT, and GIN (with ReLU non-linearity)
over both datasets. In compliance with our theory, the GNNs fit the dataset whose essential partition
has high walk index significantly better than they fit the dataset whose essential partition has low
walk index. Furthermore, the improved train accuracy translates to improvements in test accuracy.

5 Practical Application: Expressivity Preserving Edge Sparsification

Section 4 theoretically characterizes the ability of a GNN to model interactions between input
vertices. It reveals that this ability is controlled by a graph-theoretical property we call walk index
(Definition 2). The current section derives a practical application of our theory, specifically, an edge
sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a
GNN to model interactions when input edges are removed. We present WIS, and show that it yields
high predictive performance for GNNs over standard vertex prediction benchmarks of various scales,
even when removing a significant portion of edges. In particular, we evaluate WIS using GCN [59],
GIN [103], and ResGCN [66] over multiple datasets, including: Cora [89], which contains thousands
of edges, DBLP [16], which contains tens of thousands of edges, and OGBN-ArXiv [52], which
contains more than a million edges. WIS is simple, computationally efficient, and in our experiments
has markedly outperformed alternative methods in terms of prediction accuracy across edge sparsity
levels. We believe its further empirical investigation is a promising direction for future research.

5.1 Walk Index Sparsification (WIS)

Running GNNs over large-scale graphs can be prohibitively expensive in terms of runtime and
memory. A natural way to tackle this problem is edge sparsification — removing edges from an input
graph while attempting to maintain prediction accuracy (cf. [67, 24]).9,10

9As opposed to edge rewiring methods that add or remove only a few edges with the goal of improving
prediction accuracy (e.g., [106, 71, 95, 8]).

10An alternative approach is to remove vertices from an input graph (see, e.g., [60]). However, this approach
is unsuitable for vertex prediction tasks, so we limit our attention to edge sparsification.
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Algorithm 1 (L− 1)-Walk Index Sparsification (WIS)
(instance of a general scheme described in Appendix F)

Input: G — graph , L ∈ N — GNN depth , N ∈ N — number of edges to remove
Result: Sparsified graph obtained by removing N edges from G

for n = 1, . . . , N do
# per edge, compute walk indices of partitions induced by {t}, for t ∈ V , after its removal
for e ∈ E (excluding self-loops) do

initialize s(e) = (0, . . . , 0) ∈ R|V|
remove e from G (temporarily)
for every t ∈ V , set s(e)

t = WIL−1,t({t}) # = number of length L− 1 walks from C{t} to t
add e back to G

end for
# prune edge whose removal harms walk indices the least according to an order over (s(e))e∈E
for e ∈ E , sort the entries of s(e) in ascending order
let e′ ∈ argmaxe∈E s

(e) according to lexicographic order over tuples
remove e′ from G (permanently)

end for

Algorithm 2 1-Walk Index Sparsification (WIS) (efficient version of Algorithm 1 for L = 2)

Input: G — graph , N ∈ N — number of edges to remove
Result: Sparsified graph obtained by removing N edges from G

for n = 1, . . . , N do
for {i, j} ∈ E (excluding self-loops) do

let degmin(i, j) := min{|N (i)|, |N (j)|}
let degmax(i, j) := max{|N (i)|, |N (j)|}

end for
# prune edge {i, j} ∈ E with maximal degmin(i, j), breaking ties using degmax(i, j)

let e′ ∈ argmax{i,j}∈E
(
degmin(i, j), degmax(i, j)

)
according to lexicographic order over pairs

remove e′ from G
end for

Our theory (Section 4) establishes that, the strength of interaction a depth L GNN can model across
a partition of input vertices is determined by the partition’s walk index, a quantity defined by the
number of length L− 1 walks originating from the partition’s boundary. This brings forth a recipe
for pruning edges. First, choose partitions across which the ability to model interactions is to be
preserved. Then, for every input edge (excluding self-loops), compute a tuple holding what the walk
indices of the chosen partitions will be if the edge is to be removed. Lastly, remove the edge whose
tuple is maximal according to a preselected order over tuples (e.g. an order based on the sum, min, or
max of a tuple’s entries). This process repeats until the desired number of edges are removed. The
idea behind the above-described recipe, which we call General Walk Index Sparsification, is that each
iteration greedily prunes the edge whose removal takes the smallest toll in terms of ability to model
interactions across chosen partitions — see Algorithm 3 in Appendix F for a formal outline. Below
we describe a specific instantiation of the recipe for vertex prediction tasks, which are particularly
relevant with large-scale graphs, yielding our proposed algorithm — Walk Index Sparsification (WIS).
Exploration of other instantiations is regarded as a promising avenue for future work.

In vertex prediction tasks, the interaction between an input vertex and the remainder of the input
graph is of central importance. Thus, it is natural to choose the partitions induced by singletons
(i.e. the partitions ({t},V \ {t}), where t ∈ V) as those across which the ability to model interactions
is to be preserved. We would like to remove edges while avoiding a significant deterioration in the
ability to model interaction under any of the chosen partitions. To that end, we compare walk index
tuples according to their minimal entries, breaking ties using the second smallest entries, and so
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Figure 3: Comparison of GNN accuracies following sparsification of input edges — WIS, the edge sparsification
algorithm brought forth by our theory (Algorithm 1), markedly outperforms alternative methods. Plots present
test accuracies achieved by a depth L = 3 GCN of width 64 over the Cora (left), DBLP (middle), and OGBN-
ArXiv (right) vertex prediction datasets, with increasing percentage of removed edges (for each combination
of dataset, edge sparsification algorithm, and percentage of removed edges, a separate GCN was trained and
evaluated). WIS, designed to maintain the ability of a GNN to model interactions between input vertices, is
compared against: (i) removing edges uniformly at random; (ii) a spectral sparsification method [93]; and (iii) an
adaptation of UGS [24]. For Cora, we run both 2-WIS, which is compatible with the GNN’s depth, and 1-WIS,
which can be viewed as an approximation that admits a particularly efficient implementation (Algorithm 2). For
DBLP and OGBN-ArXiv, due to their larger scale only 1-WIS is evaluated. Markers and error bars report means
and standard deviations, respectively, taken over ten runs per configuration. Note that 1-WIS achieves results
similar to 2-WIS, suggesting that the efficiency it brings does not come at a significant cost in performance.
Appendix H provides further implementation details and experiments with additional GNN architectures (GIN
and ResGCN) and datasets (Chameleon, Squirrel, and Amazon Computers). Code for reproducing the experiment
is available at https://github.com/noamrazin/gnn_interactions.

forth. This is equivalent to sorting (in ascending order) the entries of each tuple separately, and then
ordering the tuples lexicographically.

Algorithm 1 provides a self-contained description of the method attained by the foregoing choices.
We refer to this method as (L− 1)-Walk Index Sparsification (WIS), where the “(L− 1)” indicates
that only walks of length L − 1 take part in the walk indices. Since (L − 1)-walk indices can
be computed by taking the (L − 1)’th power of the graph’s adjacency matrix, (L − 1)-WIS runs
in O(N |E||V|3 log(L)) time and requires O(|E||V| + |V|2) memory, where N is the number of
edges to be removed. For large graphs a runtime cubic in the number of vertices can be restrictive.
Fortunately, 1-WIS, which can be viewed as an approximation for (L−1)-WIS with L > 2, facilitates
a particularly simple and efficient implementation based solely on vertex degrees, requiring only linear
time and memory — see Algorithm 2 (whose equivalence to 1-WIS is explained in Appendix G).
Specifically, 1-WIS runs in O(N |E|+ |V|) time and requires O(|E|+ |V|) memory.

5.2 Empirical Evaluation

Below is an empirical evaluation of WIS. For brevity, we defer to Appendix H some implementation
details, as well as experiments with additional GNN architectures (GIN and ResGCN) and datasets
(Chameleon [82], Squirrel [82], and Amazon Computers [92]).

Using depth L = 3 GNNs (with ReLU non-linearity), we evaluate over the Cora dataset both 2-
WIS, which is compatible with the GNNs’ depth, and 1-WIS, which can be viewed as an efficient
approximation. Over the DBLP and OGBN-ArXiv datasets, due to their larger scale only 1-WIS
is evaluated. Figure 3 (and Figure 8 in Appendix H) shows that WIS significantly outperforms the
following alternative methods in terms of induced prediction accuracy: (i) a baseline in which edges
are removed uniformly at random; (ii) a well-known spectral algorithm [93] designed to preserve
the spectrum of the sparsified graph’s Laplacian; and (iii) an adaptation of UGS [24] — a recent
supervised approach for learning to prune edges.11 Both 2-WIS and 1-WIS lead to higher test
accuracies, while (as opposed to UGS) avoiding the need for labels, and for training a GNN over the
original (non-sparsified) graph — a procedure which in some settings is prohibitively expensive in
terms of runtime and memory. Interestingly, 1-WIS performs similarly to 2-WIS, indicating that the
efficiency it brings does not come at a sizable cost in performance.

11UGS [24] jointly prunes input graph edges and GNN weights. For fair comparison, we adapt it to only
remove edges.
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6 Conclusion

6.1 Summary

GNNs are designed to model complex interactions between entities represented as vertices of a
graph. The current paper provides the first theoretical analysis for their ability to do so. We proved
that, given a partition of input vertices, the strength of interaction that can be modeled between its
sides is controlled by the walk index — a graph-theoretical characteristic defined by the number of
walks originating from the boundary of the partition. Experiments with common GNN architectures,
e.g. GCN [59] and GIN [103], corroborated this result.

Our theory formalizes conventional wisdom by which GNNs can model stronger interaction between
regions of the input graph that are more interconnected. More importantly, we showed that it
facilitates a novel edge sparsification algorithm which preserves the ability of a GNN to model
interactions when edges are removed. Our algorithm, named Walk Index Sparsification (WIS), is
simple, computationally efficient, and in our experiments has markedly outperformed alternative
methods in terms of induced prediction accuracy. More broadly, WIS showcases the potential of
improving GNNs by theoretically analyzing the interactions they can model.

6.2 Limitations and Future Work

The theoretical analysis considers GNNs with product aggregation, which are less common in
practice (cf. Section 3). We empirically demonstrated that its conclusions apply to more popular
GNNs (Section 4.2), and derived a practical edge sparsification algorithm based on the theory
(Section 5). Nonetheless, extending our analysis to additional aggregation functions is a worthy
avenue to explore.

Our work also raises several interesting directions concerning WIS. A naive implementation of
(L−1)-WIS has runtime cubic in the number of vertices (cf. Section 5.1). Since this can be restrictive
for large-scale graphs, the evaluation in Section 5.2 mostly focused on 1-WIS, which can be viewed
as an efficient approximation of (L− 1)-WIS (its runtime and memory requirements are linear —
see Section 5.1). Future work can develop efficient exact implementations of (L− 1)-WIS (e.g. using
parallelization) and investigate regimes where it outperforms 1-WIS in terms of induced prediction
accuracy. Additionally, (L − 1)-WIS is a specific instantiation of the general WIS scheme (given
in Appendix F), tailored for preserving the ability to model interactions across certain partitions.
Exploring other instantiations, as well as methods for automatically choosing the partitions across
which the ability to model interactions is preserved, are valuable directions for further research.
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A Formal Analysis: Quantifying the Ability of Graph Neural Networks to
Model Interactions

We begin by upper bounding the separation ranks a GNN can achieve.
Theorem 2. For an undirected graph G and t ∈ V , let f (θ,G) and f (θ,G,t) be the functions realized
by depth L graph and vertex prediction GNNs, respectively, with width Dh, learnable weights θ, and
product aggregation (Equations (2) to (5)). Then, for any I ⊆ V and assignment of weights θ it holds
that:

(graph prediction) log
(
sep
(
f (θ,G); I

))
≤ log(Dh) ·

(
4 ρL−1(CI ,V)︸ ︷︷ ︸

WIL−1(I)

+1
)

, (6)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≤ log(Dh) · 4 ρL−1(CI , {t})︸ ︷︷ ︸

WIL−1,t(I)

. (7)

Proof sketch (proof in Appendix I.2). In Appendix E, we show that the computations performed by a
GNN with product aggregation can be represented as a tensor network. In brief, a tensor network is
a weighted graph that describes a sequence of arithmetic operations known as tensor contractions
(see Appendices E.1 and E.2 for a self-contained introduction to tensor networks). The tensor
network corresponding to a GNN with product aggregation adheres to a tree structure — its leaves
are associated with input vertex features and interior nodes embody the operations performed by the
GNN. Importing machinery from tensor analysis literature, we prove that sep(f (θ,G); I) is upper
bounded by a minimal cut weight in the corresponding tensor network, among cuts separating leaves
associated with input vertices in I from leaves associated with input vertices in Ic. Equation (6)
then follows by finding such a cut in the tensor network with sufficiently low weight. Equation (7) is
established analogously.

A natural question is whether the upper bounds in Theorem 2 are tight, i.e. whether separation ranks
close to them can be attained. We show that nearly matching lower bounds hold for almost all
assignments of weights θ. To this end, we define admissible subsets of CI , based on a notion of vertex
subsets with no repeating shared neighbors.
Definition 3. We say that I,J ⊆ V have no repeating shared neighbors if every k ∈ N (I)∩N (J )
has only a single neighbor in each of I and J , i.e. |N (k) ∩ I| = |N (k) ∩ J | = 1.
Definition 4. For I ⊆ V , we refer to C ⊆ CI as an admissible subset of CI if there exist I ′ ⊆
I,J ′ ⊆ Ic with no repeating shared neighbors such that C = N (I ′) ∩ N (J ′). We use S(I) to
denote the set comprising all admissible subsets of CI :

S(I) :=
{
C ⊆ CI : C is an admissible subset of CI

}
.

Theorem 3 below establishes that almost all possible values for the network’s weights lead the upper
bounds in Theorem 2 to be tight, up to logarithmic terms and to the number of walks from CI being
replaced with the number of walks from any single C ∈ S(I). The extent to which CI can be covered
by an admissible subset thus determines how tight the upper bounds are. Trivially, at least the shared
neighbors of any i ∈ I, j ∈ Ic can be covered, since N (i) ∩N (j) ∈ S(I). Appendix C shows that
for various canonical graphs all of CI , or a large part of it, can be covered by an admissible subset.
Theorem 3. Consider the setting and notation of Theorem 2. Given I ⊆ V , for almost all assignments
of weights θ, i.e. for all but a set of Lebesgue measure zero, it holds that:

(graph prediction) log
(
sep
(
f (θ,G); I

))
≥ max
C∈S(I)

log(αC) · ρL−1(C,V) , (8)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≥ max
C∈S(I)

log(αC,t) · ρL−1(C, {t}) , (9)

where:

αC :=

{
D1/ρ0(C,V) , if L = 1

(D − 1) · ρL−1(C,V)
−1

+ 1 , if L ≥ 2
,

αC,t :=

{
D , if L = 1

(D − 1) · ρL−1(C, {t})−1
+ 1 , if L ≥ 2

,
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with D := min{Dx, Dh}. If ρL−1(C,V) = 0 or ρL−1(C, {t}) = 0, the respective lower bound
(right hand side of Equation (8) or Equation (9)) is zero by convention.

Proof sketch (proof in Appendix I.3). Our proof follows a line similar to that used in [64, 100, 65]
for lower bounding the separation rank of self-attention neural networks. The separation rank of any
f : (RDx)|V| → R can be lower bounded by examining its outputs over a grid of inputs. Specifically,
for M ∈ N template vectors v(1), . . . ,v(M) ∈ RDx , we can create a grid tensor for f by evaluating
it over each point in {(v(d1), . . . ,v(d|V|))}Md1,...,d|V|=1 and storing the outcomes in a tensor with |V|
axes of dimensionM each. Arranging the grid tensor as a matrix B(f) where rows correspond to axes
indexed by I and columns correspond to the remaining axes, we show that rank(B(f)) ≤ sep(f ; I).
The proof proceeds by establishing that for almost every assignment of θ, there exist template vectors
with which log(rank(B(f (θ,G)))) and log(rank(B(f (θ,G,t)))) are greater than (or equal to) the right
hand sides of Equations (8) and (9), respectively.

Directed edges and multiple edge types Appendix D generalizes Theorems 2 and 3 to the case of
graphs with directed edges and an arbitrary number of edge types.

B Related Work

Expressivity of GNNs The expressivity of GNNs has been predominantly evaluated through ability
to distinguish non-isomorphic graphs, as measured by correspondence to Weisfeiler-Leman (WL)
graph isomorphism tests (see [75] for a recent survey). [103, 74] instigated this thread of research,
establishing that message-passing GNNs are at most as powerful as the WL algorithm, and can match
it under certain technical conditions. Subsequently, architectures surpassing WL were proposed, with
expressivity measured via higher-order WL variants (see, e.g., [74, 72, 25, 41, 6, 15, 10, 42, 17, 80]).
Another line of inquiry regards universality among continuous permutation invariant or equivariant
functions [73, 55, 69, 3, 42]. [25] showed that distinguishing non-isomorphic graphs and universality
are, in some sense, equivalent. Lastly, there exist analyses of expressivity focused on the frequency
response of GNNs [77, 5] and their capacity to compute specific graph functions, e.g. moments,
shortest paths, and substructure counting [35, 9, 39, 69, 26, 23, 17].

Although a primary purpose of GNNs is to model interactions between vertices, none of the past
works formally characterize their ability to do so, as our theory does.12 The current work thus
provides a novel perspective on the expressive power of GNNs. Furthermore, a major limitation of
existing approaches — in particular, proofs of equivalence to WL tests and universality — is that they
often operate in asymptotic regimes of unbounded network width or depth. Consequently, they fall
short of addressing which type of functions can be realized by GNNs of practical size. In contrast,
we characterize how the modeled interactions depend on both the input graph structure and the neural
network architecture (width and depth). As shown in Section 5, this facilitates designing an efficient
and effective edge sparsification algorithm.

Measuring modeled interactions via separation rank Separation rank (Section 2.2) has been
paramount to the study of interactions modeled by certain convolutional, recurrent, and self-attention
neural networks. It enabled theoretically analyzing how different architectural parameters impact ex-
pressivity [32, 29, 30, 34, 7, 90, 62, 61, 56, 57, 64, 100, 65] and implicit regularization [83, 84, 85].13

On the practical side, insights brought forth by separation rank led to tools for improving perfor-
mance, including: guidelines for architecture design [30, 62, 64, 100], pretraining schemes [65], and
regularizers for countering locality in convolutional neural networks [85]. We employ separation rank

12In [21], the mutual information between the embedding of a vertex and the embeddings of its neighbors
was proposed as a measure of interaction. However, this measure is inherently local and allows reasoning only
about the impact of neighboring nodes on each other in a GNN layer. In contrast, separation rank formulates the
strength of interaction the whole GNN models across any partition of an input graph’s vertices.

13We note that, over a two-dimensional grid graph, a message-passing GNN can be viewed as a convolutional
neural network with overlapping convolutional windows. Similarly, over a chain graph, it can be viewed as
a bidirectional recurrent neural network. Thus, for these special cases, our separation rank bounds (delivered
in Section 4) extend those of [30, 62, 56, 61], which consider convolutional neural networks with non-overlapping
convolutional windows and unidirectional recurrent neural networks.
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for studying the interactions GNNs model between vertices, and similarly provide both theoretical
insights and a practical application — edge sparsification algorithm (Section 5).

Edge sparsification Computations over large-scale graphs can be prohibitively expensive in terms
of runtime and memory. As a result, various methods were proposed for sparsifying graphs by
removing edges while attempting to maintain structural properties, such as distances between ver-
tices [11, 48], graph Laplacian spectrum [93, 86], and vertex degree distribution [98], or outcomes of
graph analysis and clustering algorithms [87, 20]. Most relevant to our work are recent edge sparsifi-
cation methods aiming to preserve the prediction accuracy of GNNs as the number of removed edges
increases [67, 24]. These methods require training a GNN over the original (non-sparsified) graph,
hence only inference costs are reduced. Guided by our theory, in Section 5 we propose Walk Index
Sparsification (WIS) — an edge sparsification algorithm that preserves expressive power in terms of
ability to model interactions. WIS improves efficiency for both training and inference. Moreover,
comparisons with the spectral algorithm of [93] and a recent method from [24] demonstrate that WIS
brings about higher prediction accuracies across edge sparsity levels.

C Tightness of Upper Bounds for Separation Rank

Theorem 2 upper bounds the separation rank with respect to I ⊆ V of a depth L GNN with product
aggregation. According to it, under the setting of graph prediction, the separation rank is largely
capped by the (L− 1)-walk index of I, i.e. the number of length L− 1 walks from CI — the set of
vertices with an edge crossing the partition (I, Ic). Similarly, for prediction over t ∈ V , separation
rank is largely capped by the (L− 1, t)-walk index of I, which takes into account only length L− 1
walks from CI ending at t. Theorem 3 provides matching lower bounds, up to logarithmic terms and
to the number of walks from CI being replaced with the number of walks from any single admissible
subset C ∈ S(I) (Definition 4). Hence, the match between the upper and lower bounds is determined
by the portion of CI that can be covered by an admissible subset.

In this appendix, to shed light on the tightness of the upper bounds, we present several concrete
examples on which a significant portion of CI can be covered by an admissible subset.

Complete graph Suppose that every two vertices are connected by an edge, i.e. E =
{{i, j} : i, j ∈ V}. For any non-empty I ( V , clearly CI = N (I) ∩ N (Ic) = V . In this
case, CI = V ∈ S(I), meaning CI is an admissible subset of itself. To see it is so, notice that for
any i ∈ I, j ∈ Ic, all vertices are neighbors of both I ′ := {i} and J ′ := {j}, which trivially have
no repeating shared neighbors (Definition 3). Thus, up to a logarithmic factor, the upper and lower
bounds from Theorems 2 and 3 coincide.

Chain graph Suppose that E = {{i, i+ 1} : i ∈ [|V| − 1]} ∪ {{i, i} : i ∈ V}. For any non-empty
I ( V , at least half of the vertices in CI can be covered by an admissible subset. That is, there
exists C ∈ S(I) satisfying |C| ≥ 2−1 · |CI |. For example, such C can be constructed algorithmically
as follows. Let I ′,J ′ = ∅. Starting from k = 1, if {k, k + 1} ⊆ CI and one of {k, k + 1} is in
I while the other is in Ic, then assign I ′ ← I ′ ∪ ({k, k + 1} ∩ I), J ′ ← J ′ ∪ ({k, k + 1} ∩ Ic),
and k ← k + 3. That is, add each of {k, k + 1} to either I ′ if it is in I or J ′ if it is in Ic, and
skip vertex k + 2. Otherwise, set k ← k + 1. The process terminates once k > |V| − 1. By
construction, I ′ ⊆ I and J ′ ⊆ Ic, implying that N (I ′) ∩ N (J ′) ⊆ CI . Due to the chain graph
structure, I ′∪J ′ ⊆ N (I ′)∩N (J ′) and I ′ and J ′ have no repeating shared neighbors (Definition 3).
Furthermore, for every pair of vertices from CI added to I ′ and J ′, we can miss at most two other
vertices from CI . Thus, C := N (I ′)∩N (J ′) is an admissible subset of CI satisfying |C| ≥ 2−1 ·|CI |.

General graph For an arbitrary graph and non-empty I ( V , an admissible subset of CI can be
obtained by taking any sequence of pairs (i1, j1), . . . , (iM , jM ) ∈ I × Ic with no shared neighbors,
in the sense that [N (im) ∪N (jm)] ∩ [N (im′) ∪N (jm′)] = ∅ for all m 6= m′ ∈ [M ]. Defining
I ′ := {i1, . . . , iM} and J ′ := {j1, . . . , jM}, by construction they do not have repeating shared
neighbors (Definition 3), and so N (I ′) ∩N (J ′) ∈ S(I). In particular, the shared neighbors of each
pair are covered by N (I ′) ∩N (J ′), i.e. ∪Mm=1N (im) ∩N (jm) ⊆ N (I ′) ∩N (J ′).
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D Extension of Analysis to Directed Graphs With Multiple Edge Types

In this appendix, we generalize the separation rank bounds from Theorems 2 and 3 to directed graphs
with multiple edge types.

Let G = (V, E , τ) be a directed graph with vertices V = [|V|], edges E ⊆ {(i, j) : i, j ∈ V},
and a map τ : E → [Q] from edges to one of Q ∈ N edge types. For i ∈ V , let Nin(i) :=
{j ∈ V : (j, i) ∈ E} be its incoming neighbors and Nout(i) := {j ∈ V : (i, j) ∈ E} be its outgoing
neighbors. For I ⊆ V , we denote Nin(I) := ∪i∈INin(i) and Nout(I) := ∪i∈INout(i). As
customary in the context of GNNs, we assume the existence of all self-loops (cf. Section 2.1).

Message-passing GNNs (Section 3) operate identically over directed and undirected graphs, except
that in directed graphs the hidden embedding of a vertex is updated only according to its incoming
neighbors. For handling multiple edge types, common practice is to use different weight matrices
per type in the GNN’s update rule (cf. [49, 88]). Hence, we consider the following update rule for
directed graphs with multiple edge types, replacing that from Equation (2):

h(l,i) = AGGREGATE
({{

W(l,τ(j,i))h(l−1,j) : j ∈ Nin(i)
}})

, (10)

where (W(1,q) ∈ RDh×Dx)q∈[Q] and (W(l,q) ∈ RDh×Dh)l∈{2,...,L},q∈[Q] are learnable weight ma-
trices.

In our analysis for undirected graphs (Appendix A), a central concept is CI — the set of vertices with
an edge crossing the partition induced by I ⊆ V . Due to the existence of self-loops it is equal to
the shared neighbors of I and Ic, i.e. CI = N (I) ∩N (Ic). We generalize this concept to directed
graphs, defining C→I to be the set of vertices with an incoming edge from the other side of the partition
induced by I, i.e. C→I := {i ∈ I : Nin(i) ∩ Ic 6= ∅} ∪ {j ∈ Ic : Nin(j) ∩ I 6= ∅}. Due to the
existence of self-loops it is given by C→I = Nout(I) ∩ Nout(Ic). Indeed, for undirected graphs
C→I = CI .

With the definition of C→I in place, Theorem 4 upper bounds the separation ranks a GNN can achieve
over directed graphs with multiple edge types. A technical subtlety is that the bounds depend on
walks of lengths l = L−1, L−2, . . . , 0, while those in Theorem 2 for undirected graphs depend only
on walks of length L− 1. As shown in the proof of Theorem 2, this dependence exists in undirected
graphs as well. Though, in undirected graphs with self-loops, the number of length l ∈ N walks from
CI decays exponentially as l decreases. One can therefore replace the sum over walk lengths with
walks of length L− 1 (up to a multiplicative constant). By contrast, in directed graphs this is not true
in general, e.g., when C→I contains only vertices with no outgoing edges (besides self-loops).
Theorem 4. For a directed graph with multiple edge types G and t ∈ V , let f (θ,G) and f (θ,G,t) be
the functions realized by depth L graph and vertex prediction GNNs, respectively, with width Dh,
learnable weights θ, and product aggregation (Equations (3) to (5) and (10)). Then, for any I ⊆ V
and assignment of weights θ it holds that:

(graph prediction) log
(
sep
(
f (θ,G); I

))
≤ log(Dh) ·

(∑L

l=1
ρL−l(C→I ,V) + 1

)
, (11)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≤ log(Dh) ·

∑L

l=1
ρL−l(C→I , {t}) . (12)

Proof sketch (proof in Appendix I.4). The proof follows a line identical to that of Theorem 2, only
requiring adjusting definitions from undirected graphs to directed graphs with multiple edge types.

Towards lower bounding separation ranks, we generalize the definitions of vertex subsets with no
repeating shared neighbors (Definition 3) and admissible subsets of CI (Definition 4) to directed
graphs.
Definition 5. We say that I,J ⊆ V have no outgoing repeating shared neighbors if every k ∈
Nout(I) ∩ Nout(J ) has only a single incoming neighbor in each of I and J , i.e. |Nin(k) ∩ I| =
|Nin(k) ∩ J | = 1.
Definition 6. For I ⊆ V , we refer to C ⊆ C→I as an admissible subset of C→I if there exist
I ′ ⊆ I,J ′ ⊆ Ic with no outgoing repeating shared neighbors such that C = Nout(I ′) ∩Nout(J ′).
We use S→(I) to denote the set comprising all admissible subsets of C→I :

S→(I) :=
{
C ⊆ C→I : C is an admissible subset of C→I

}
.
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Theorem 5 generalizes the lower bounds from Theorem 3 to directed graphs with multiple edge types.
Theorem 5. Consider the setting and notation of Theorem 4. Given I ⊆ V , for almost all assignments
of weights θ, i.e. for all but a set of Lebesgue measure zero, it holds that:

(graph prediction) log
(
sep
(
f (θ,G); I

))
≥ max
C∈S→(I)

log(αC) · ρL−1(C,V) , (13)

(vertex prediction) log
(
sep
(
f (θ,G,t); I

))
≥ max
C∈S→(I)

log(αC,t) · ρL−1(C, {t}) , (14)

where:

αC :=

{
D1/ρ0(C,V) , if L = 1

(D − 1) · ρL−1(C,V)
−1

+ 1 , if L ≥ 2
,

αC,t :=

{
D , if L = 1

(D − 1) · ρL−1(C, {t})−1
+ 1 , if L ≥ 2

,

with D := min{Dx, Dh}. If ρL−1(C,V) = 0 or ρL−1(C, {t}) = 0, the respective lower bound
(right hand side of Equation (13) or Equation (14)) is zero by convention.

Proof sketch (proof in Appendix I.5). The proof follows a line identical to that of Theorem 3, only
requiring adjusting definitions from undirected graphs to directed graphs with multiple edge types.

E Representing Graph Neural Networks With Product Aggregation as
Tensor Networks

In this appendix, we prove that GNNs with product aggregation (Section 3) can be represented
through tensor networks — a graphical language for expressing tensor contractions, widely used in
quantum mechanics literature for modeling quantum states (cf. [97]). This representation facilitates
upper bounding the separation ranks of a GNN with product aggregation (proofs for Theorem 2 and its
extension in Appendix D), and is delivered in Appendix E.3. We note that analogous tensor network
representations were shown for variants of recurrent and convolutional neural networks [61, 62].
For the convenience of the reader, we lay out basic concepts from the field of tensor analysis
in Appendix E.1 and provide a self-contained introduction to tensor networks in Appendix E.2
(see [79] for a more in-depth treatment).

E.1 Primer on Tensor Analysis

For our purposes, a tensor is simply a multi-dimensional array. The order of a tensor is its number of
axes, which are typically called modes (e.g. a vector is an order one tensor and a matrix is an order
two tensor). The dimension of a mode refers to its length, i.e. the number of values it can be indexed
with. For an order N ∈ N tensor A ∈ RD1×···×DN with modes of dimensions D1, . . . , DN ∈ N, we
will denote by Ad1,...,dN its (d1, . . . , dN )’th entry, where (d1, . . . , dN ) ∈ [D1]× · · · × [DN ].

It is possible to rearrange tensors into matrices — a process known as matricization. The matricization
of A with respect to I ⊆ [N ], denoted JA; IK ∈ R

∏
i∈I Di×

∏
j∈Ic Dj is its arrangement as a matrix

where rows correspond to modes indexed by I and columns correspond to the remaining modes.
Specifically, denoting the elements in I by i1 < · · · < i|I| and those in Ic by j1 < · · · <
j|Ic|, the matricization JA; IK holds the entries of A such that Ad1,...,dN is placed in row index
1 +

∑|I|
l=1(dil − 1)

∏|I|
l′=l+1Dil′ and column index 1 +

∑|Ic|
l=1 (djl − 1)

∏|Ic|
l′=l+1Djl′ .

Tensors with modes of the same dimension can be combined via contraction — a generalization of
matrix multiplication. It will suffice to consider contractions where one of the modes being contracted
is the last mode of its tensor.
Definition 7. Let A ∈ RD1×···×DN ,B ∈ RD′1×···×D′N′ for orders N,N ′ ∈ N and mode dimensions
D1, . . . , DN , D

′
1, . . . , D

′
N ′ ∈ N satisfying Dn = D′N ′ for some n ∈ [N ]. The mode-n contraction

of A with B, denoted A ∗nB ∈ RD1×···×Dn−1×D′1×···×D
′
N′−1

×Dn+1×···×DN , is given element-wise
by:

(A ∗n B)d1,...,dn−1,d′1,...,d
′
N′−1

,dn+1,...,dN
=
∑Dn

dn=1
Ad1,...,dN ·Bd′1,...,d′N′−1

,dn ,
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Figure 4: Tensor network diagrams of (from left to right): a vector v ∈ RD , matrix M ∈ RD1×D2 , order
N ∈ N tensor T ∈ RD1×···×DN , and vector-matrix multiplication Mv ∈ RD1 . The mode index associated
with a leg’s end point is specified in gray, and the weight of the leg, specified in black, determines the mode
dimension.

for all d1 ∈ [D1], . . . , dn−1 ∈ [Dn−1], d′1 ∈ [D′1], . . . , d′N ′−1 ∈ [D′N ′−1], dn+1 ∈
[Dn+1], . . . , dN ∈ [DN ].

For example, the mode-2 contraction of A ∈ RD1×D2 with B ∈ RD′1×D2 boils down to multiplying
A with B> from the right, i.e. A∗2B = AB>. It is oftentimes convenient to jointly contract multiple
tensors. Given an orderN tensor A andM ∈ N≤N tensors B(1), . . . ,B(M), we use A∗i∈[M ]B(i) to
denote the contraction of A with B(1), . . . ,B(M) in modes 1, . . . ,M , respectively (assuming mode
dimensions are such that the contractions are well-defined).

E.2 Tensor Networks

A tensor network is an undirected weighted graph T = (VT , ET , wT ) that describes a sequence of
tensor contractions (Definition 7), with vertices VT , edges ET , and a function mapping edges to
natural weights wT : ET → N. We will only consider tensor networks that are connected. To avoid
confusion with vertices and edges of a GNN’s input graph, and in accordance with tensor network
terminology, we refer by nodes and legs to the vertices and edges of a tensor network, respectively.

Every node in a tensor network is associated with a tensor, whose order is equal to the number of
legs emanating from the node. Each end point of a leg is associated with a mode index, and the leg’s
weight determines the dimension of the corresponding tensor mode. That is, an end point of e ∈ ET
is a pair (A, n) ∈ VT × N, with n ranging from one to the order of A, and wT (e) is the dimension
of A in mode n. A leg can either connect two nodes or be connected to a node on one end and be
loose on the other end. If two nodes are connected by a leg, their associated tensors are contracted
together in the modes specified by the leg. Legs with a loose end are called open legs. The number
of open legs is exactly the order of the tensor produced by executing all contractions in the tensor
network, i.e. by contracting the tensor network. Figure 4 presents exemplar tensor network diagrams
of a vector, matrix, order N ∈ N tensor, and vector-matrix multiplication.

E.3 Tensor Networks Corresponding to Graph Neural Networks With Product Aggregation

Fix some undirected graph G and learnable weights θ = (W(1), . . . ,W(L),W(o)). Let f (θ,G) and
f (θ,G,t), for t ∈ V , be the functions realized by depth L graph and vertex prediction GNNs, respec-
tively, with width Dh and product aggregation (Equations (2) to (5)). For X = (x(1), . . . ,x(|V|)) ∈
RDx×|V|, we construct tensor networks T (X) and T (t)(X) whose contraction yields f (θ,G)(X)
and f (θ,G,t)(X), respectively. Both T (X) and T (t)(X) adhere to a tree structure, where each leaf
node is associated with a vertex feature vector, i.e. one of x(1), . . . ,x(|V|), and each interior node is
associated with a weight matrix from W(1), . . . ,W(L),W(o) or a δ-tensor with modes of dimension
Dh, holding ones on its hyper-diagonal and zeros elsewhere. We denote an order N ∈ N tensor of the
latter type by δ(N) ∈ RDh×···×Dh , i.e. δ(N)

d1,...,dN
= 1 if d1 = · · · = dN and δ(N)

d1,...,dN
= 0 otherwise

for all d1, . . . , dN ∈ [Dh].
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Figure 5: Tensor network diagrams of the operations performed by GNNs with product aggregation (Section 3).
(a) Hidden embedding update (cf. Equations (2) and (5)): h(l,i) = (W(l)h(l−1,j1))� · · · � (W(l)h(l−1,jM )),
where N (i) = {j1, . . . , jM}, for l ∈ [L], i ∈ V . (b) Output layer for graph prediction (cf. Equations (3)
and (5)): f (θ,G)(X) = W(o)(h(L,1) � · · · � h(L,|V|)). (c) Output layer for vertex prediction over t ∈ V
(cf. Equation (4)): f (θ,G,t)(X) = W(o)h(L,t). We draw nodes associated with δ-tensors as rectangles to signify
their special (hyper-diagonal) structure, and omit leg weights to avoid clutter (legs connected to h(0,i) = x(i),
for i ∈ V , have weight Dx while all other legs have weight Dh).

Intuitively, T (X) and T (t)(X) embody unrolled computation trees, describing the operations per-
formed by the respective GNNs through tensor contractions. Let h(l,i) = �j∈N (i)(W

(l)h(l−1,j))

be the hidden embedding of i ∈ V at layer l ∈ [L] (recall h(0,j) = x(j) for j ∈ V), and
denote N (i) = {j1, . . . , jM}. We can describe h(l,i) as the outcome of contracting each
h(l−1,j1), . . . ,h(l−1,jM ) with W(l), i.e. computing W(l)h(l−1,j1), . . . ,W(l)h(l−1,jM ), followed by
contracting the resulting vectors with δ(|N (i)|+1), which induces product aggregation (see Figure 5(a)).
Furthermore, in graph prediction, the output layer producing f (θ,G)(X) = W(o)(�i∈Vh(L,i))

amounts to contracting h(L,1), . . . ,h(L,|V|) with δ(|V|+1), and subsequently contracting the resulting
vector with W(o) (see Figure 5(b)); while for vertex prediction, f (θ,G,t)(X) = W(o)h(L,t) is a
contraction of h(L,t) with W(o) (see Figure 5(c)).

Overall, every layer in a GNN with product aggregation admits a tensor network formulation given
the outputs of the previous layer. Thus, we can construct a tree tensor network for the whole GNN by
starting from the output layer — Figure 5(b) for graph prediction or Figure 5(c) for vertex prediction —
and recursively expanding nodes associated with h(l,i) according to Figure 5(a), for l = L, . . . , 1 and
i ∈ V . A technical subtlety is that each h(l,i) can appear multiple times during this procedure. In the
language of tensor networks this translate to duplication of nodes. Namely, there are multiple copies
of the sub-tree representing h(l,i) in the tensor network — one copy per appearance when unraveling
the recursion. Figure 6 displays examples for tensor network diagrams of T (X) and T (t)(X).

We note that, due to the node duplication mentioned above, the explicit definitions of T (X) and
T (t)(X) entail cumbersome notation. Nevertheless, we provide them in Appendix E.3.1 for the
interested reader.

E.3.1 Explicit Tensor Network Definitions

The tree tensor network representing f (θ,G)(X) consists of an initial input level — the leaves of the
tree — comprising ρL({i},V) copies of x(i) for each i ∈ V . We will use x(i,γ) to denote the copies
of x(i) for i ∈ V and γ ∈ [ρL({i},V)]. In accordance with the GNN inducing f (θ,G), following
the initial input level are L + 1 layers. Each layer l ∈ [L] includes two levels: one comprising
ρL−l+1(V,V) nodes standing for copies of W(l), and another containing δ-tensors — ρL−l({i},V)

copies of δ(|N (i)|+1) per i ∈ V . We associate each node in these layers with its layer index and a
vertex of the input graph i ∈ V . Specifically, we will use W(l,i,γ) to denote copies of W(l) and
δ(l,i,γ) to denote copies of δ(|N (i)|+1), for l ∈ [L], i ∈ V , and γ ∈ N. In terms of connectivity,
every leaf x(i,γ) has a leg to W(1,i,γ). The rest of the connections between nodes are such that each
sub-tree whose root is δ(l,i,γ) represents h(l,i), i.e. contracting the sub-tree results in the hidden
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Figure 6: Tensor network diagrams of T (X) (left) and T (t)(X) (right) representing f (θ,G)(X) and f (θ,G,t)(X),
respectively, for t = 1 ∈ V , vertex features X = (x(1), . . . ,x(|V|)), and depth L = 2 GNNs with product
aggregation (Section 3). The underlying input graph G, over which the GNNs operate, is depicted at the top. We
draw nodes associated with δ-tensors as rectangles to signify their special (hyper-diagonal) structure, and omit
leg weights to avoid clutter (legs connected to x(1),x(2),x(3) have weight Dx while all other legs have weight
Dh). See Appendix E.3 for further details on the construction of T (X) and T (t)(X), and Appendix E.3.1 for
explicit formulations.
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Figure 7: Tensor network diagrams (with explicit node duplication notation) of T (X) (left) and T (t)(X) (right)
representing f (θ,G)(X) and f (θ,G,t)(X), respectively, for t = 1 ∈ V , vertex features X = (x(1), . . . ,x(|V|)),
and depth L = 2 GNNs with product aggregation (Section 3). This figure is identical to Figure 6, except
that it uses the explicit notation for node duplication detailed in Appendix E.3.1. Specifically, each feature
vector, weight matrix, and δ-tensor is attached with an index specifying which copy it is (rightmost index in
the superscript). Additionally, weight matrices and δ-tensors are associated with a layer index and vertex in V
(except for the output layer δ-tensor in T (X) and W(o)). See Equations (15) to (20) for the explicit definitions
of these tensor networks.
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embedding for i ∈ V at layer l ∈ [L] of the GNN inducing f (θ,G). Last, is an output layer consisting
of two connected nodes: a δ(|V|+1) node, which has a leg to every δ-tensor from layer L, and a W(o)

node. See Figure 7 (left) for an example of a tensor network diagram representing f (θ,G)(X) with
this notation.

The tensor network construction for f (θ,G,t)(X) is analogous to that for f (θ,G)(X), comprising an
initial input level followed by L+ 1 layers. Its input level and first L layers are structured the same,
up to differences in the number of copies for each node. Specifically, the number of copies of x(i)

is ρL({i}, {t}) instead of ρL({i},V), the number of copies of W(l) is ρL−l+1(V, {t}) instead of
ρL−l+1(V,V), and the number of copies of δ(|N (i)|+1) is ρL−l({i}, {t}) instead of ρL−l({i},V),
for i ∈ V and l ∈ [L]. The output layer consists only of a W(o) node, which is connected to the
δ-tensor in layer L corresponding to vertex t. See Figure 7 (right) for an example of a tensor network
diagram representing f (θ,G,t)(X) with this notation.

Formally, the tensor network producing f (θ,G)(X), denoted T (X) = (VT (X), ET (X), wT (X)), is
defined by:

VT (X) :=
{
x(i,γ) : i ∈ V, γ ∈ [ρL({i},V)]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l+1({i},V)]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l({i},V)]
}
∪{

δ(|V|+1),W(o)
}

,

(15)

ET (X) :=
{{

(x(i,γ), 1), (W(1,i,γ), 2)
}

: i ∈ V, γ ∈ [ρL({i},V)]
}
∪{{

(δ(l,i,γ), j), (W(l,N (i)j ,φl,i,j(γ)), 1)
}

: l ∈ [L], i ∈ V, j ∈ [|N (i)|], γ ∈ [ρL−l({i},V)]
}
∪{{

(δ(l,i,γ), |N (i)|+ 1), (W(l+1,i,γ), 2)
}

: l ∈ [L− 1], i ∈ V, γ ∈ [ρL−l({i},V)]
}
∪{{

(δ(|V|+1), i), (δ(L,i,1), |N (i)|+ 1)
}

: i ∈ V
}
∪
{{

(δ(|V|+1), |V|+ 1), (W(o), 2)
}}

,

(16)

wT (X)(e) :=

{
Dx , if (x(i,γ), 1) is an endpoint of e ∈ ET for some i ∈ V, γ ∈ [ρL({i},V)]

Dh , otherwise
,

(17)

where φl,i,j(γ) := γ +
∑
k<i s.t. k∈N (j) ρL−l({k},V), for l ∈ [L], i ∈ V, and γ ∈ [ρL−l({i},V)],

is used to map a δ-tensor copy corresponding to i in layer l to a W(l) copy, and N (i)j , for i ∈ V
and j ∈ [|N (i)|], denotes the j’th neighbor of i according to an ascending order (recall vertices are
represented by indices from 1 to |V|).

Similarly, the tensor network T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)), producing f (θ,G,t)(X), is
defined by:

VT (t)(X) :=
{
x(i,γ) : i ∈ V, γ ∈ [ρL({i}, {t})]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l+1({i}, {t})]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ V, γ ∈ [ρL−l({i}, {t})]
}
∪{

W(o)
}

,

(18)
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ET (t)(X) :=
{{

(x(i,γ), 1), (W(1,i,γ), 2)
}

: i ∈ V, γ ∈ [ρL({i}, {t})]
}
∪{{

(δ(l,i,γ), j), (W(l,N (i)j ,φ
(t)
l,i,j(γ)), 1)

}
: l ∈ [L], i ∈ V, j ∈ [|N (i)|], γ ∈ [ρL−l({i}, {t})]

}
∪{{

(δ(l,i,γ), |N (i)|+ 1), (W(l+1,i,γ), 2)
}

: l ∈ [L− 1], i ∈ V, γ ∈ [ρL−l({i}, {t})]
}
∪{{

(δ(L,t,1), |N (t)|+ 1), (W(o), 2)
}}

,

(19)

wT (t)(X)(e) :=

{
Dx , if (x(i,γ), 1) is an endpoint of e ∈ ET for some i ∈ V, γ ∈ [ρL({i}, {t})]
Dh , otherwise

,

(20)

where φ(t)
l,i,j(γ) := γ+

∑
k<i s.t. k∈N (j) ρL−l({k}, {t}), for l ∈ [L], i ∈ V, and γ ∈ [ρL−l({i}, {t})],

is used to map a δ-tensor copy corresponding to i in layer l to a W(l) copy.

Proposition 1 verifies that contracting T (X) and T (t)(X) yields f (θ,G)(X) and f (θ,G,t)(X), respec-
tively.

Proposition 1. For an undirected graph G and t ∈ V , let f (θ,G) and f (θ,G,t) be the functions
realized by depth L graph and vertex prediction GNNs, respectively, with width Dh, learn-
able weights θ, and product aggregation (Equations (2) to (5)). For vertex features X =
(x(1), . . . ,x(|V|)) ∈ RDx×|V|, let the tensor networks T (X) = (VT (X), ET (X), wT (X)) and
T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)) be as defined in Equations (15) to (20), respectively.
Then, performing the contractions described by T (X) produces f (θ,G)(X), and performing the
contractions described by T (t)(X) produces f (θ,G,t)(X).

Proof sketch (proof in Appendix I.6). For both T (X) and T (t)(X), a straightforward induction over
the layer l ∈ [L] establishes that contracting the sub-tree whose root is δ(l,i,γ) results in h(l,i)

for all i ∈ V and γ, where h(l,i) is the hidden embedding for i at layer l of the GNNs inducing
f (θ,G) and f (θ,G,t), given vertex features x(1), . . . ,x(|V|). The proof concludes by showing that the
contractions in the output layer of T (X) and T (t)(X) reproduce the operations defining f (θ,G)(X)
and f (θ,G,t)(X) in Equations (3) and (4), respectively.

F General Walk Index Sparsification

Our edge sparsification algorithm — Walk Index Sparsification (WIS) — was obtained as an instance
of the General Walk Index Sparsification (GWIS) scheme described in Section 5. Algorithm 3
formally outlines this general scheme.

G Efficient Implementation of 1-Walk Index Sparsification

Algorithm 2 (Section 5) provides an efficient implementation for 1-WIS, i.e. Algorithm 1 with L = 2.
In this appendix, we formalize the equivalence between the two algorithms, meaning, we establish
that Algorithm 2 indeed implements 1-WIS.

Examining some iteration n ∈ [N ] of 1-WIS, let s ∈ R|V| be the tuple defined by st = WI1,t({t}) =
ρ1(C{t}, {t}) for t ∈ V . Recall that C{t} is the set of vertices with an edge crossing the partition
induced by {t}. Thus, if t is not isolated, then C{t} = N (t) and st = WI1,t({t}) = |N (t)|.
Otherwise, if t is isolated, then C{t} = ∅ and st = WI1,t({t}) = 0. 1-WIS computes for each e ∈ E
(excluding self-loops) a tuple s(e) ∈ R|V| holding in its t’th entry what the value of WI1,t({t})
would be if e is to be removed, for all t ∈ V . Notice that s(e) and s agree on all entries except for
i, j ∈ e, since removing e from the graph only affects the degrees of i and j. Specifically, for i ∈ e,
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Algorithm 3 (L− 1)-General Walk Index Sparsification (GWIS)

Input:
• G — graph
• L ∈ N — GNN depth
• N ∈ N — number of edges to remove
• I1, . . . , IM ⊆ V — vertex subsets specifying walk indices to maintain for graph prediction
• J1, . . . ,JM ′ ⊆ V and t1, . . . , tM ′ ∈ V — vertex subsets specifying walk indices to maintain

with respect to target vertices, for vertex prediction
• ARGMAX — operator over tuples (s(e) ∈ RM+M ′)e∈E that returns the edge whose tuple is

maximal according to some order
Result: Sparsified graph obtained by removing N edges from G

for n = 1, . . . , N do
# for every edge, compute walk indices of partitions after the edge’s removal
for e ∈ E (excluding self-loops) do

initialize s(e) = (0, . . . , 0) ∈ RM+M ′

remove e from G (temporarily)
for every m ∈ [M ], set s(e)

m = WIL−1(Im) # = ρL−1(CIm ,V)

for every m ∈ [M ′], set s(e)
M+m = WIL−1,tm(Jm) # = ρL−1(CJm , {tm})

add e back to G
end for
# prune edge whose removal harms walk indices the least according to the ARGMAX operator
let e′ ∈ ARGMAXe∈Es

(e)

remove e′ from G (permanently)
end for

either s(e)
i = si − 1 = |N (i)| − 1 if the removal of e did not isolate i, or s(e)

i = si − 2 = 0 if it
did (due to self-loops, if a vertex has a single edge to another then |N (i)| = 2, so removing that
edge changes WI1,i({i}) from two to zero). As a result, for any e = {i, j}, e′ = {i′, j′} ∈ E , after
sorting the entries of s(e) and s(e′) in ascending order we have that s(e′) is greater in lexicographic
order than s(e) if and only if the pair (min{|N (i′)|, |N (j′)|},max{|N (i′)|, |N (j′)|}) is greater in
lexicographic order than (min{|N (i)|, |N (j)|},max{|N (i)|, |N (j)|}). Therefore, at every iteration
n ∈ [N ] Algorithm 2 and 1-WIS (Algorithm 1 with L = 2) remove the same edge.

H Further Experiments and Implementation Details

H.1 Further Experiments

Figure 8 supplements Figure 3 from Section 5.2 by including experiments with additional: (i) GNN
architectures — GIN and ResGCN; and (ii) datasets — Chameleon, Squirrel, and Amazon Computers.
Overall, our evaluation includes six standard vertex prediction datasets in which we observed the
graph structure to be crucial for accurate prediction, as measured by the difference between the
test accuracy of a GCN trained and evaluated over the original graph and its test accuracy when
trained and evaluated over the graph after all of the graph’s edges were removed. We also considered,
but excluded, the following datasets in which the accuracy difference was insignificant (less than
five percentage points): Citeseer [89], PubMed [76], Coauthor CS and Physics [92], and Amazon
Photo [92].

H.2 Further Implementation Details

We provide implementation details omitted from our experimental reports (Section 4.2, Section 5,
and Appendix H.1). Source code for reproducing our results and figures, based on the PyTorch [81]
and PyTorch Geometric [38] frameworks, can be found at https://github.com/noamrazin/
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Figure 8: Comparison of GNN accuracies following sparsification of input edges — WIS, the edge sparsification
algorithm brought forth by our theory (Algorithm 1), markedly outperforms alternative methods. This figure
supplements Figure 3 from Section 5.2 by including experiments with: (i) a depth L = 3 GIN over the Cora,
DBLP, and OGBN-ArXiv datasets; (ii) a depth L = 10 ResGCN over the Cora, DBLP, and OGBN-ArXiv
datasets; and (iii) a depth L = 3 GCN over the Chameleon, Squirrel, and Amazon Computers datasets. Markers
and error bars report means and standard deviations, respectively, taken over ten runs per configuration for GCN
and GIN, and over five runs per configuration for ResGCN (we use fewer runs due to the larger size of ResGCN).
For further details see caption of Figure 3 as well as Appendix H.2.

gnn_interactions. All experiments were run either on a single Nvidia RTX 2080 Ti GPU or a
single Nvidia RTX A6000 GPU.

H.2.1 Empirical Demonstration of Theoretical Analysis (Table 1)

Models All models used, i.e. GCN, GAT, and GIN, had three layers of width 16 with ReLU non-
linearity. To ease optimization, we added layer normalization [4] after each one. Mean aggregation
and a linear output layer were applied over the last hidden embeddings for prediction. As in the
synthetic experiments of [1], each GAT layer consisted of four attention heads. Each GIN layer had
its ε parameter fixed to zero and contained a two-layer feed-forward network, whose layers comprised
a linear layer, batch normalization [54], and ReLU non-linearity.

Data The datasets consisted of 10000 train and 2000 test graphs. For every graph, we drew
uniformly at random a label from {0, 1} and an image from Fashion-MNIST. Then, depending on the
chosen label, another image was sampled either from the same class (for label 1) or from all other
classes (for label 0). We extracted patches of pixels from each image by flattening it into a vector and
splitting the vector to 16 equally sized segments.

Optimization The binary cross-entropy loss was minimized via the Adam optimizer [58] with de-
fault β1, β2 coefficients and full-batches (i.e. every batch contained the whole training set). Optimiza-
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tion proceeded until the train accuracy did not improve by at least 0.01 over 1000 consecutive epochs
or 10000 epochs elapsed. The learning rates used for GCN, GAT, and GIN were 5 · 10−3, 5 · 10−3,
and 10−2, respectively.

Hyperparameter tuning For each model separately, to tune the learning rate we carried out five
runs (differing in random seed) with every value in the range {10−1, 5 · 10−2, 10−2, 5 · 10−3, 10−3}
over the dataset whose essential partition has low walk index. Since our interest resides in expressivity,
which manifests in ability to fit the training set, for every model we chose the learning rate that led to
the highest mean train accuracy.

H.2.2 Edge Sparsification (Figures 3 and 8)

Adaptations to UGS [24] [24] proposed UGS as a framework for jointly pruning input graph edges
and weights of a GNN. At a high-level, UGS trains two differentiable masks,mg andmθ, that are
multiplied with the graph adjacency matrix and the GNN’s weights, respectively. Then, after a certain
number of optimization steps, a predefined percentage pg of graph edges are removed according to
the magnitudes of entries in mg, and similarly, pθ percent of the GNN’s weights are fixed to zero
according to the magnitudes of entries in mθ. This procedure continues in iterations, where each
time the remaining GNN weights are rewinded to their initial values, until the desired sparsity levels
are attained — see Algorithms 1 and 2 in [24]. To facilitate a fair comparison of our (L− 1)-WIS
edge sparsification algorithm with UGS, we make the following adaptations to UGS.

• We adapt UGS to only remove edges, which is equivalent to fixing the entries in the weight
maskmθ to one and setting pθ = 0 in Algorithm 1 of [24].

• For comparing performance across a wider range of sparsity levels, the number of edges removed
at each iteration is changed from 5% of the current number of edges to 5% of the original number
of edges.

• Since our evaluation focuses on undirected graphs, we enforce the adjacency matrix maskmg

to be symmetric.

Spectral sparsification [93] For Cora and DBLP, we used a Python implementation of the spectral
sparsification algorithm from [93], based on the PyGSP library implementation.14 To enable more
efficient experimentation over the larger scale OGBN-ArXiv dataset, we used a Julia implementation
based on that from the Laplacians library.15

Models The GCN and GIN models had three layers of width 64 with ReLU non-linearity. As
in the experiments of Section 4.2, we added layer normalization [4] after each one. Every GIN
layer had a trainable ε parameter and contained a two-layer feed-forward network, whose layers
comprised a linear layer, batch normalization [54], and ReLU non-linearity. For ResGCN, we used
the implementation from [24] with ten layers of width 64. In all models, a linear output layer was
applied over the last hidden embeddings for prediction.

Data All datasets in our evaluation are multi-class vertex prediction tasks, each consisting of a
single graph. In Cora, DBLP, and OGBN-ArXiv, vertices represent scientific publications and edges
stand for citation links. In Chameleon and Squirrel, vertices represent web pages on Wikipedia and
edges stand for mutual links between pages. In Amazon Computers, vertices represent products and
edges indicate that two products are frequently bought together. For simplicity, we treat all graphs
as undirected. Table 2 reports the number of vertices and undirected edges in each dataset. For all
datasets, except OGBN-ArXiv, we randomly split the labels of vertices into train, validation, and
test sets comprising 80%, 10%, and 10% of all labels, respectively. For OGBN-ArXiv, we used the
default split from [52].

Optimization The cross-entropy loss was minimized via the Adam optimizer [58] with default
β1, β2 coefficients and full-batches (i.e. every batch contained the whole training set). Optimization
proceeded until the validation accuracy did not improve by at least 0.01 over 1000 consecutive epochs
or 10000 epochs elapsed. The test accuracies reported in Figure 3 are those achieved during the
epochs with highest validation accuracies. Table 3 specifies additional optimization hyperparameters.

14See https://github.com/epfl-lts2/pygsp/.
15See https://github.com/danspielman/Laplacians.jl.
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Table 2: Graph size of each dataset used for comparing edge sparsification algorithms in Figures 3 and 8.
# of Vertices # of Undirected Edges

Cora 2,708 5,278
DBLP 17,716 52,867
OGBN-ArXiv 169,343 1,157,799
Chameleon 2,277 31,396
Squirrel 5,201 198,423
Amazon Computers 13,381 245,861

Table 3: Optimization hyperparameters used in the experiments of Figures 3 and 8 per model and dataset.

Learning Rate Weight Decay Edge Mask `1 Regularization of UGS

GCN

Cora 5 · 10−4 10−3 10−2

DBLP 10−3 10−4 10−2

OGBN-ArXiv 10−3 0 10−2

Chameleon 10−3 10−4 10−2

Squirrel 5 · 10−4 0 10−4

Amazon Computers 10−3 10−4 10−2

GIN
Cora 10−3 10−3 10−2

DBLP 10−3 10−3 10−2

OGBN-ArXiv 10−4 0 10−2

ResGCN
Cora 5 · 10−4 10−3 10−4

DBLP 5 · 10−4 10−4 10−4

OGBN-ArXiv 10−3 0 10−2

Hyperparameter tuning For each combination of model and dataset separately, we tuned the
learning rate, weight decay coefficient, and edge mask `1 regularization coefficient for UGS, and
applied the chosen values for evaluating all methods without further tuning (note that the edge mask
`1 regularization coefficient is relevant only for UGS). In particular, we carried out a grid search over
learning rates {10−3, 5 · 10−4, 10−4}, weight decay coefficients {10−3, 10−4, 0}, and edge mask
`1 regularization coefficients {10−2, 10−3, 10−4}. Per hyperparameter configuration, we ran ten
repetitions of UGS (differing in random seed), each until all of the input graph’s edges were removed.
At every edge sparsity level (0%, 5%, 10%, . . . ,100%), in accordance with [24], we trained a new
model with identical hyperparameters, but a fixed edge mask, over each of the ten graphs. We chose
the hyperparameters that led to the highest mean validation accuracy, taken over the sparsity levels
and ten runs.

Due to the size of the ResGCN model, tuning its hyperparameters entails significant computational
costs. Thus, over the Cora and DBLP datasets, per hyperparameter configuration we ran five
repetitions of UGS with ResGCN instead of ten. For the large-scale OGBN-ArXiv dataset, we
adopted the same hyperparameters used for GCN.

Other To allow more efficient experimentation, we compute the edge removal order of 2-WIS
(Algorithm 1) in batches of size 100. Specifically, at each iteration of 2-WIS, instead of removing the
edge e′ with maximal walk index tuple s(e′), the 100 edges with largest walk index tuples are removed.
For randomized edge sparsification algorithms — random pruning, the spectral sparsification method
of [93], and the adaptation of UGS [24] — the evaluation runs for a given dataset and percentage of
removed edges were carried over sparsified graphs obtained using different random seeds.

I Deferred Proofs

I.1 Additional Notation

For vectors, matrices, or tensors, parenthesized superscripts denote elements in a collection,
e.g. (a(i) ∈ RD)

N
n=1, while subscripts refer to entries, e.g. Ad1,d2 ∈ R is the (d1, d2)’th entry

of A ∈ RD1×D2 . A colon is used to indicate a range of entries, e.g. a:d is the first d entries of
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a ∈ RD. We use ∗ to denote tensor contractions (Definition 7), ◦ to denote the Kronecker product,
and� to denote the Hadamard product. For P ∈ N≥0 , the P ’th Hadamard power operator is denoted
by �P , i.e. [�PA]d1,d2 = AP

d1,d2
for A ∈ RD1×D2 . Lastly, when enumerating over sets of indices

an ascending order is assumed.

I.2 Proof of Theorem 2

We assume familiarity with the basic concepts from tensor analysis introduced in Appendix E.1, and
rely on the tensor network representations established for GNNs with product aggregation in Ap-
pendix E. Specifically, we use the fact that for any X = (x(1), . . . ,x(|V|)) ∈ RDx×|V| there exist
tree tensor networks T (X) and T (t)(X) (described in Appendix E.3 and formally defined in Equa-
tions (15) to (20)) such that: (i) their contraction yields f (θ,G)(X) and f (θ,G,t)(X), respectively
(Proposition 1); and (ii) each of their leaves is associated with a vertex feature vector, i.e. one of
x(1), . . . ,x(|V|), whereas all other aspects of the tensor networks do not depend on x(1), . . . ,x(|V|).

The proof proceeds as follows. In Appendix I.2.1, by importing machinery from tensor analysis
literature (in particular, adapting Claim 7 from [62]), we show that the separation ranks of f (θ,G) and
f (θ,G,t) can be upper bounded via cuts in their corresponding tensor networks. Namely, sep(f (θ,G); I)
is at most the minimal multiplicative cut weight in T (X), among cuts separating leaves associated
with vertices of the input graph in I from leaves associated with vertices of the input graph in Ic,
where multiplicative cut weight refers to the product of weights belonging to legs crossing the cut.
Similarly, sep(f (θ,G,t); I) is at most the minimal multiplicative cut weight in T (t)(X), among cuts
of the same form. We conclude in Appendices I.2.2 and I.2.3 by applying this technique for upper
bounding sep(f (θ,G); I) and sep(f (θ,G,t); I), respectively, i.e. by finding cuts in the respective tensor
networks with sufficiently low multiplicative weights.

I.2.1 Upper Bounding Separation Rank via Multiplicative Cut Weight in Tensor Network

In a tensor network T = (VT , ET , wT ), every JT ⊆ VT induces a cut (JT ,J cT ), i.e. a partition
of the nodes into two sets. We denote by ET (JT ) := {{u, v} ∈ ET : u ∈ JT , v ∈ J cT } the set of
legs crossing the cut, and define the multiplicative cut weight of JT to be the product of weights
belonging to legs in ET (JT ), i.e.:

wΠ
T (JT ) :=

∏
e∈ET (JT )

wT (e) .

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) and T (t)(X) be the tensor networks corresponding
to f (θ,G)(X) and f (θ,G,t)(X) (detailed in Appendix E.3), respectively. Both T (X) and T (t)(X)
adhere to a tree structure. Each leaf node is associated with a vertex feature vector (i.e. one of
x(1), . . . ,x(|V|)), while interior nodes are associated with weight matrices or δ-tensors. The latter are
tensors with modes of equal dimension holding ones on their hyper-diagonal and zeros elsewhere.
The restrictions imposed by δ-tensors induce a modified notion of multiplicative cut weight, where
legs incident to the same δ-tensor only contribute once to the weight product (note that weights of
legs connected to the same δ-tensor are equal since they stand for mode dimensions).

Definition 8. For a tensor network T = (VT , ET , wT ) and subset of nodes JT ⊆ VT , let ET (JT )

be the set of edges crossing the cut (JT ,J cT ). Denote by ẼT (JT ) ⊆ ET (JT ) a subset of legs
containing for each δ-tensor in VT only a single leg from ET (JT ) incident to it, along with all legs
in ET (JT ) not connected to δ-tensors. Then, the modified multiplicative cut weight of JT is:

w̃Π
T (JT ) :=

∏
e∈ẼT (JT )

wT (e) .

Lemma 1 establishes that sep(f (θ,G); I) and sep(f (θ,G,t); I) are upper bounded by the minimal
modified multiplicative cut weights in T (X) and T (t)(X), respectively, among cuts separating leaves
associated with vertices in I from leaves associated vertices in Ic.
Lemma 1. For any X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) = (VT (X), ET (X), wT (X)) and
T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)) be the tensor network representations of f (θ,G)(X) and
f (θ,G,t)(X) (described in Appendix E.3 and formally defined in Equations (15) to (20)), respectively.
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Denote by VT (X)[I] ⊆ VT (X) and VT (t)(X)[I] ⊆ VT (t)(X) the sets of leaf nodes in T (X) and
T (t)(X), respectively, associated with vertices in I from the input graph G. Formally:

VT (X)[I] :=
{
x(i,γ) ∈ VT (X) : i ∈ I, γ ∈ [ρL({i},V)]

}
,

VT (t)(X)[I] :=
{
x(i,γ) ∈ VT (t)(X) : i ∈ I, γ ∈ [ρL({i}, {t})]

}
.

Similarly, denote by VT (X)[Ic] ⊆ VT (X) and VT (t)(X)[Ic] ⊆ VT (t)(X) the sets of leaf nodes in T (X)

and T (t)(X), respectively, associated with vertices in Ic. Then, the following hold:

(graph prediction) sep
(
f (θ,G); I

)
≤ min

JT (X)⊆VT (X)

s.t. VT (X)[I]⊆JT (X) and VT (X)[Ic]⊆J cT (X)

w̃Π
T (X)(JT (X)) , (21)

(vertex prediction) sep
(
f (θ,G,t); I

)
≤ min

JT (t)(X)
⊆VT (t)(X)

s.t. VT (t)(X)
[I]⊆JT (t)(X)

and VT (t)(X)
[Ic]⊆J c

T (t)(X)

w̃Π
T (t)(X)(JT (t)(X)) ,

(22)

where w̃Π
T (X)(JT (X)) is the modified multiplicative cut weight of JT (X) in T (X) and

w̃Π
T (t)(X)

(JT (t)(X)) is the modified multiplicative cut weight of JT (t)(X) in T (t)(X) (Definition 8).

Proof. We first prove Equation (21). Examining T (X), notice that: (i) by Proposition 1 its contraction
yields f (θ,G)(X); (ii) it has a tree structure; and (iii) each of its leaves is associated with a vertex
feature vector, i.e. one of x(1), . . . ,x(|V|), whereas all other aspects of the tensor network do not
depend on x(1), . . . ,x(|V|). Specifically, for any X and X′ the nodes, legs, and leg weights of T (X)
and T (X′) are identical, up to the assignment of features in the leaf nodes. Let F ∈ RDx×···×Dx be
the order ρL(V,V) tensor obtained by contracting all interior nodes in T (X). The above implies that
we may write f (θ,G)(X) as a contraction of F with x(1), . . . ,x(|V|). Specifically, it holds that:

f (θ,G)(X) = F ∗n∈[ρL(V,V)] x
(µ(n)) , (23)

for any X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, where µ : [ρL(V,V)] → V maps a mode index of F
to the appropriate vertex of G according to T (X). Let µ−1(I) := {n ∈ [ρL(V,V)] : µ(n) ∈ I} be
the mode indices of F corresponding to vertices in I. Invoking Lemma 2 leads to the following
matricized form of Equation (23):

f (θ,G)(X) =
(
◦n∈µ−1(I)x

(µ(n))
)>q

F ;µ−1(I)
y(
◦n∈µ−1(Ic)x

(µ(n))
)

,

where ◦ denotes the Kronecker product.

We claim that sep(f (θ,G); I) ≤ rank
q
F ;µ−1(I)

y
. To see it is so, denote R := rank

q
F ;µ−1(I)

y

and let u(1), . . . ,u(R) ∈ RD
ρL(I,V)
x and ū(1), . . . , ū(R) ∈ RD

ρL(Ic,V)
x be such that

q
F ;µ−1(I)

y
=∑R

r=1 u
(r)(ū(r))

>. Then, defining g(r) : (RDx)|I| → R and ḡ(r) : (RDx)|I
c| → R, for r ∈ [R], as:

g(r)(XI) :=
〈
◦n∈µ−1(I)x

(µ(n)),u(r)
〉

, ḡ(r)(XIc) :=
〈
◦n∈µ−1(Ic)x

(µ(n)), ū(r)
〉

,

where XI := (x(i))i∈I and XIc := (x(j))j∈Ic , we have that:

f (θ,G)(X) =
(
◦n∈µ−1(I)x

(µ(n))
)>(∑R

r=1
u(r)

(
ū(r)

)>)(◦n∈µ−1(Ic)x
(µ(n))

)
=
∑R

r=1

〈
◦n∈µ−1(I)x

(µ(n)),u(r)
〉
·
〈
◦n∈µ−1(Ic)x

(µ(n)), ū(r)
〉

=
∑R

r=1
g(r)(XI) · ḡ(r)(XIc) .

Since sep(f (θ,G); I) is the minimal number of summands in a representation of this form of f (θ,G),
indeed, sep(f (θ,G); I) ≤ R = rank

q
F ;µ−1(I)

y
.

What remains is to apply Claim 7 from [62], which upper bounds the rank of a tensor’s matricization
with multiplicative cut weights in a tree tensor network. In particular, consider an order N ∈ N

31



tensor A produced by contracting a tree tensor network T . Then, for any K ⊆ [N ] we have that
rankJA;KK is at most the minimal modified multiplicative cut weight in T , among cuts separating
leaves corresponding to modes K from leaves corresponding to modes Kc. Thus, invoking Claim 7
from [62] establishes Equation (21):

sep
(
f (θ,G); I

)
≤ rank

q
F ;µ−1(I)

y
≤ min

JT (X)⊆VT (X)

s.t. VT (X)[I]⊆JT (X) and VT (X)[Ic]⊆J cT (X)

w̃Π
T (X)(JT (X)) .

Equation (22) readily follows by steps analogous to those used above for proving Equation (21).

I.2.2 Cut in Tensor Network for Graph Prediction (Proof of Equation (6))

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) = (VT (X), ET (X), wT (X)) be the tensor network
corresponding to f (θ,G)(X) (detailed in Appendix E.3 and formally defined in Equations (15) to (17)).
By Lemma 1, to prove that

sep
(
f (θ,G); I

)
≤ D4ρL−1(CI ,V)+1

h ,

it suffices to find JT (X) ⊆ VT (X) satisfying: (i) leaves of T (X) associated with vertices in I are in
JT (X), whereas leaves associated with vertices in Ic are not in JT (X); and (ii) w̃Π

T (X)(JT (X)) ≤
D

4ρL−1(CI ,V)+1
h , where w̃Π

T (X)(JT (X)) is the modified multiplicative cut weight of JT (X) (Def-
inition 8). To this end, define JT (X) to hold all nodes in VT (X) corresponding to vertices in I.
Formally:

JT (X) :=
{
x(i,γ) : i ∈ I, γ ∈ [ρL({i},V)]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l+1({i},V)]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l({i},V)]
}

.

Clearly, JT (X) upholds (i).

As for (ii), there are two types of legs crossing the cut induced by JT (X) in T (X). First, are those
connecting a δ-tensor with a weight matrix in the same layer, where one is associated with a vertex
in I and the other with a vertex in Ic. That is, legs connecting δ(l,i,γ) with W(l,N (i)j ,φl,i,j(γ)),
where i ∈ V and N (i)j ∈ V are on different sides of the partition (I, Ic) in the input graph, for
j ∈ [|N (i)|], l ∈ [L], γ ∈ [ρL−l({i},V)]. The δ-tensors participating in these legs are exactly those
associated with some i ∈ CI (recall CI is the set of vertices with an edge crossing the partition
(I, Ic)). So, for every l ∈ [L] and i ∈ CI there are ρL−l({i},V) such δ-tensors. Second, are legs
from δ-tensors associated with i ∈ I in the L’th layer to the δ-tensor in the output layer of T (X).
That is, legs connecting δ(L,i,1) with δ(|V|+1), for i ∈ I. Legs incident to the same δ-tensor only
contribute once to w̃Π

T (X)(JT (X)). Thus, since the weights of all legs connected to δ-tensors are
equal to Dh, we have that:

w̃Π
T (X)(JT (X)) ≤ D

1+
∑L
l=1

∑
i∈CI

ρL−l({i},V)

h = D
1+

∑L
l=1 ρL−l(CI ,V)

h .

Lastly, it remains to show that
∑L
l=1 ρL−l(CI ,V) ≤ 4ρL−1(CI ,V), since in that case Lemma 1

implies:
sep
(
f (θ,G); I

)
≤ w̃Π

T (X)(JT (X)) ≤ D
4ρL−1(CI ,V)+1
h ,

which yields Equation (6) by taking the log of both sides.

The main idea is that, in an undirected graph with self-loops, the number of length l ∈ N walks
from vertices with at least one neighbor decays exponentially when l decreases. Observe that
ρl(CI ,V) ≤ ρl+1(CI ,V) for all l ∈ N. Hence:∑L

l=1
ρL−l(CI ,V) ≤ 2

∑
l∈{1,3,...,L−1}

ρL−l(CI ,V) . (24)

Furthermore, any length l ∈ N≥0 walk i0, i1, . . . , il ∈ V from CI induces at least two walks of length
l+2 from CI , distinct from those induced by other length l walks — one which goes twice through the
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self-loop of i0 and then proceeds according to the length l walk, i.e. i0, i0, i0, i1, . . . , il, and another
that goes to a neighboring vertex (exists since i0 ∈ CI), returns to i0, and then proceeds according to
the length l walk. This means that ρL−l(CI ,V) ≤ 2−1·ρL−l+2(CI ,V) ≤ · · · ≤ 2−bl/2c·ρL−1(CI ,V)
for all l ∈ {3, 5, . . . , L− 1}. Going back to Equation (24), this leads to:∑L

l=1
ρL−l(CI ,V) ≤ 2

∑
l∈{1,3,...,L−1}

2bl/2c · ρL−1(CI ,V)

≤ 2
∑∞

l=0
2−l · ρL−1(CI ,V)

= 4ρL−1(CI ,V) ,
completing the proof of Equation (6).

I.2.3 Cut in Tensor Network for Vertex Prediction (Proof of Equation (7))

This part of the proof follows a line similar to that of Appendix I.2.2, with differences stemming from
the distinction between the operation of a GNN over graph and vertex prediction tasks.

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (t)(X) = (VT (t)(X), ET (t)(X), wT (t)(X)) be the tensor
network corresponding to f (θ,G,t)(X) (detailed in Appendix E.3 and formally defined in Equa-
tions (18) to (20)). By Lemma 1, to prove that

sep
(
f (θ,G,t); I

)
≤ D4ρL−1(CI ,{t})

h ,

it suffices to find JT (t)(X) ⊆ VT (t)(X) satisfying: (i) leaves of T (t)(X) associated with ver-
tices in I are in JT (t)(X), whereas leaves associated with vertices in Ic are not in JT (t)(X); and

(ii) w̃Π
T (t)(X)

(JT (t)(X)) ≤ D
4ρL−1(CI ,{t})
h , where w̃Π

T (t)(X)
(JT (t)(X)) is the modified multiplicative

cut weight of JT (t)(X) (Definition 8). To this end, define JT (t)(X) to hold all nodes in VT (t)(X)
corresponding to vertices in I. Formally:

JT (t)(X) :=
{
x(i,γ) : i ∈ I, γ ∈ [ρL({i}, {t})]

}
∪{

W(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l+1({i}, {t})]
}
∪{

δ(l,i,γ) : l ∈ [L], i ∈ I, γ ∈ [ρL−l({i}, {t})]
}
∪

W(o) ,

whereW(o) := {W(o)} if t ∈ I andW(o) := ∅ otherwise. Clearly, JT (t)(X) upholds (i).

As for (ii), the legs crossing the cut induced by JT (t)(X) in T (t)(X) are those connecting a δ-tensor
with a weight matrix in the same layer, where one is associated with a vertex in I and the other
with a vertex in Ic. That is, legs connecting δ(l,i,γ) with W(l,N (i)j ,φ

(t)
l,i,j(γ)), where i ∈ V and

N (i)j ∈ V are on different sides of the partition (I, Ic) in the input graph, for j ∈ [|N (i)|], l ∈
[L], γ ∈ [ρL−l({i}, {t})]. The δ-tensors participating in these legs are exactly those associated with
some i ∈ CI (recall CI is the set of vertices with an edge crossing the partition (I, Ic)). Hence,
for every l ∈ [L] and i ∈ CI there are ρL−l({i}, {t}) such δ-tensors. Legs connected to the same
δ-tensor only contribute once to w̃Π

T (t)(X)
(JT (t)(X)). Thus, since the weights of all legs connected to

δ-tensors are equal to Dh, we have that:

w̃Π
T (t)(X)(JT (t)(X)) = D

∑L
l=1

∑
i∈CI

ρL−l({i},{t})
h = D

∑L
l=1 ρL−l(CI ,{t})

h .

Lastly, it remains to show that
∑L
l=1 ρL−l(CI , {t}) ≤ 4ρL−1(CI , {t}), as in that case Lemma 1

implies:
sep
(
f (θ,G,t); I

)
≤ w̃Π

T (t)(X)(JT (t)(X)) ≤ D
4ρL−1(CI ,{t})
h ,

which leads to Equation (7) by taking the log of both sides.

The main idea is that, in an undirected graph with self-loops, the number of length l ∈ N walks ending
at t that originate from vertices with at least one neighbor decays exponentially when l decreases.
First, clearly ρl(CI , {t}) ≤ ρl+1(CI , {t}) for all l ∈ N. Therefore:∑L

l=1
ρL−l(CI , {t}) ≤ 2

∑
l∈{1,3,...,L−1}

ρL−l(CI , {t}) . (25)
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Furthermore, any length l ∈ N≥0 walk i0, i1, . . . , il−1, t ∈ V from CI to t induces at least two
walks of length l + 2 from CI to t, distinct from those induced by other length l walks — one
which goes twice through the self-loop of i0 and then proceeds according to the length l walk,
i.e. i0, i0, i0, i1, . . . , il−1, t, and another that goes to a neighboring vertex (exists since i0 ∈ CI),
returns to i0, and then proceeds according to the length l walk. This means that ρL−l(CI , {t}) ≤
2−1 · ρL−l+2(CI , {t}) ≤ · · · ≤ 2−bl/2c · ρL−1(CI , {t}) for all l ∈ {3, 5, . . . , L − 1}. Going back
to Equation (25), we have that:∑L

l=1
ρL−l(CI , {t}) ≤ 2

∑
l∈{1,3,...,L−1}

2bl/2c · ρL−1(CI , {t})

≤ 2
∑∞

l=0
2−l · ρL−1(CI , {t})

= 4ρL−1(CI , {t}) ,

concluding the proof of Equation (7).

I.2.4 Technical Lemma

Lemma 2. For any order N ∈ N tensor A ∈ RD×···×D, vectors x(1), . . . ,x(N) ∈ RD, and subset
of mode indices I ⊆ [N ], it holds that A ∗i∈[N ] x

(i) =
(
◦i∈Ix(i)

)>JA; IK
(
◦j∈Icx(j)

)
∈ R.

Proof. The identity follows directly from the definitions of tensor contraction, matricization, and
Kronecker product (Appendix I.1):

A ∗i∈[N ] x
(i) =

∑D

d1,...,dN=1
Ad1,...,dN ·

∏
i∈[N ]

x
(i)
di

=
(
◦i∈Ix(i)

)>JA; IK
(
◦j∈Icx(j)

)
.

I.3 Proof of Theorem 3

We assume familiarity with the basic concepts from tensor analysis introduced in Appendix E.1.

We begin by establishing a general technique for lower bounding the separation rank of a function
through grid tensors, also used in [64, 100, 65, 85]. For any f : (RDx)N → R and M ∈ N
template vectors v(1), . . . ,v(M) ∈ RDx , we can create a grid tensor of f , which is a form of function
discretization, by evaluating it over each point in {(v(d1), . . . ,v(dN ))}Md1,...,dN=1 and storing the
outcomes in an orderN tensor with modes of dimensionM . That is, the grid tensor of f for templates
v(1), . . . ,v(M), denoted B(f) ∈ RM×···×M , is defined by B(f)d1,...,dN = f(v(d1), . . . ,v(dN )) for
all d1, . . . , dN ∈ [M ].16 Lemma 3 shows that sep(f ; I) is lower bounded by the rank of B(f)’s
matricization with respect to I.

Lemma 3. For f : (RDx)N → R and M ∈ N template vectors v(1), . . . ,v(M) ∈ RDx , let
B(f) ∈ RM×···×M be the corresponding order N grid tensor of f . Then, for any I ⊆ [N ]:

rankJB(f); IK ≤ sep(f ; I) .

Proof. If sep(f ; I) is∞ or zero, i.e. f cannot be represented as a finite sum of separable functions
(with respect to I) or is identically zero, then the claim is trivial. Otherwise, denote R := sep(f ; I),
and let g(1), . . . , g(R) : (RDx)|I| → R and ḡ(1), . . . , ḡ(R) : (RDx)|I

c| → R such that:

f(X) =
∑R

r=1
g(r)(XI) · ḡ(r)(XIc) , (26)

where X := (x(1), . . . ,x(N)), XI := (x(i))i∈I , and XIc := (x(j))j∈Ic . For r ∈ [R], let B(g(r))

and B(ḡ(r)) be the grid tensors of g(r) and ḡ(r) over templates v(1), . . . ,v(M), respectively. That is,
B(g(r))di:i∈I = g(r)((v(di))i∈I) and B(ḡ(r))dj :j∈Ic = ḡ(r)((v(dj))j∈Ic) for all d1, . . . , dN ∈ [M ].

16The template vectors of a grid tensor B(f) will be clear from context, thus we omit them from the notation.
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By Equation (26) we have that for any d1, . . . , dN ∈ [M ]:

B(f)d1,...,dN = f
(
v(d1), . . . ,v(dN )

)
=
∑R

r=1
g(r)
(
(v(di))i∈I

)
· ḡ(r)

(
(v(dj))j∈Ic

)
=
∑R

r=1
B
(
g(r)
)
di:i∈I

·B
(
ḡ(r)
)
dj :j∈Ic

.

Denoting by u(r) ∈ RM |I| and ū(r) ∈ RM |I
c|

the arrangements of B(g(r)) and B(ḡ(r)) as vectors,
respectively for r ∈ [R], this implies that the matricization of B(f) with respect to I can be written
as:

JB(f); IK =
∑R

r=1
u(r)

(
ū(r)

)>
.

We have arrived at a representation of JB(f); IK as a sum of R outer products between two vectors.
An outer product of two vectors is a matrix of rank at most one. Consequently, by sub-additivity of
rank we conclude: rankJB(f); IK ≤ R = sep(f ; I).

In the context of graph prediction, let C∗ ∈ argmaxC∈S(I) log(αC) · ρL−1(C,V). By Lemma 3,
to prove that Equation (8) holds for weights θ, it suffices to find template vectors for which
log(rank

q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) · ρL−1(C∗,V). Notice that, since the outputs of f (θ,G) vary

polynomially with the weights θ, so do the entries of
q
B
(
f (θ,G)

)
; I

y
for any choice of template

vectors. Thus, according to Lemma 9, by constructing weights θ and template vectors satisfying
log(rank

q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) · ρL−1(C∗,V), we may conclude that this is the case for al-

most all assignments of weights, meaning Equation (8) holds for almost all assignments of weights.
In Appendix I.3.1 we construct such weights and template vectors.

In the context of vertex prediction, let C∗t ∈ argmaxC∈S(I) log(αC,t) · ρL−1(C, {t}). Due to ar-
guments analogous to those above, to prove that Equation (9) holds for almost all assignments of
weights, we need only find weights θ and template vectors satisfying log(rank

q
B
(
f (θ,G,t)); Iy) ≥

log(αC∗t ,t) · ρL−1(C∗t , {t}). In Appendix I.3.2 we do so.

Lastly, recalling that a finite union of measure zero sets has measure zero as well establishes
that Equations (8) and (9) jointly hold for almost all assignments of weights.

I.3.1 Weights and Template Vectors Assignment for Graph Prediction (Proof
of Equation (8))

We construct weights θ and template vectors satisfying log(rank
q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) ·

ρL−1(C∗,V), where C∗ ∈ argmaxC∈S(I) log(αC) · ρL−1(C,V).

If ρL−1(C∗,V) = 0, then the claim is trivial since there exist weights and template vectors for whichq
B
(
f (θ,G)

)
; I

y
is not the zero matrix (e.g. taking all weight matrices to be zero-padded identity

matrices and choosing a single template vector holding one in its first entry and zeros elsewhere).

Now, assuming that ρL−1(C∗,V) > 0, which in particular implies that I 6= ∅, I 6= V, and C∗ 6= ∅,
we begin with the case of GNN depth L = 1, after which we treat the more general L ≥ 2 case.

Case of L = 1: Consider the weights θ = (W(1),W(o)) given by W(1) := I ∈ RDh×Dx and
W(o) := (1, . . . , 1) ∈ R1×Dh , where I is a zero padded identity matrix, i.e. it holds ones on its
diagonal and zeros elsewhere. We choose template vectors v(1), . . . ,v(D) ∈ RDx such that v(m)

holds the m’th standard basis vector of RD in its first D coordinates and zeros in the remaining
entries, for m ∈ [D] (recall D := min{Dx, Dh}). Namely, denote by e(1), . . . , e(D) ∈ RD the
standard basis vectors of RD, i.e. e(m)

d = 1 if d = m and e
(m)
d = 0 otherwise for all m, d ∈ [D]. We

let v(m)
:D := e(m) and v

(m)
D+1: := 0 for all m ∈ [D].

We prove that for this choice of weights and template vectors, for all d1, . . . , d|V| ∈ [D]:

f (θ,G)
(
v(d1), . . . ,v(d|V|)

)
=

{
1 , if d1 = · · · = d|V|
0 , otherwise

. (27)
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To see it is so, notice that:

f (θ,G)
(
v(d1), . . . ,v(d|V|)

)
= W(o)

(
�i∈Vh(1,i)

)
=
∑Dh

d=1

∏
i∈V

h
(1,i)
d ,

with h(1,i) = �j∈N (i)(W
(1)v(dj)) = �j∈N (i)(Iv

(dj)) for all i ∈ V . Since v
(dj)
:D = e(dj) for all

j ∈ N (i) and I is a zero-padded D ×D identity matrix, it holds that:

f (θ,G)
(
v(d1), . . . ,v(d|V|)

)
=
∑D

d=1

∏
i∈V,j∈N (i)

e
(dj)
d .

Due to the existence of self-loops (i.e. i ∈ N (i) for all i ∈ V), for every d ∈ [D]

the product
∏
i∈V,j∈N (i) e

(dj)
d includes each of e

(d1)
d , . . . , e

(d|V|)

d at least once. Consequently,∏
i∈V,j∈N (i) e

(dj)
d = 1 if d1 = · · · = d|V| = d and

∏
i∈V,j∈N (i) e

(dj)
d = 0 otherwise. This

implies that f (θ,G)(v(d1), . . . ,v(d|V|)) = 1 if d1 = · · · = d|V| and f (θ,G)(v(d1), . . . ,v(d|V|)) = 0
otherwise, for all d1, . . . , d|V| ∈ [D].

Equation (27) implies that
q
B
(
f (θ,G)

)
; I

y
has exactly D non-zero entries, each in a different row

and column. Thus, rank
q
B
(
f (θ,G)

)
; I

y
= D. Recalling that αC∗ := D1/ρ0(C∗,V) for L = 1, we

conclude:

log
(

rank
r
B
(
f (θ,G)

)
; I

z)
= log(D) = log(αC∗) · ρ0(C∗,V) .

Case of L ≥ 2: Let M :=
((

D
ρL−1(C∗,V)

))
=
(D+ρL−1(C∗,V)−1

ρL−1(C∗,V)

)
be the multiset coefficient of D

and ρL−1(C∗,V) (recall D := min{Dx, Dh}). By Lemma 7, there exists Z ∈ RM×D>0 for which

rank
(
�ρL−1(C∗,V)

(
ZZ>

))
=

((
D

ρL−1(C∗,V)

))
,

with �ρL−1(C∗,V)(ZZ>) standing for the ρL−1(C∗,V)’th Hadamard power of ZZ>. For this Z,
by Lemma 4 below we know that there exist weights θ and template vectors such that

q
B(f (θ,G)); I

y

has an M ×M sub-matrix of the form S(�ρL−1(C∗,V)(ZZ>))Q, where S,Q ∈ RM×M are full-rank
diagonal matrices. Since the rank of a matrix is at least the rank of any of its sub-matrices:

rank
(r

B
(
f (θ,G)

)
; I

z)
≥ rank

(
S
(
�ρL−1(C∗,V)

(
ZZ>

))
Q
)

= rank
(
�ρL−1(C∗,V)

(
ZZ>

))
=

((
D

ρL−1(C∗,V)

))
,

where the second transition stems from S and Q being full-rank. Applying Lemma 8 to lower bound
the multiset coefficient, we have that:

rank
(r

B
(
f (θ,G)

)
; I

z)
≥
((

D

ρL−1(C∗,V)

))
≥
(

D − 1

ρL−1(C∗,V)
+ 1

)ρL−1(C∗,V)

.

Taking the log of both sides while recalling that αC∗ := (D − 1) · ρL−1(C∗,V)
−1

+ 1, we conclude
that:

log(rank
r
B
(
f (θ,G)

)
; I

z
) ≥ log(αC∗) · ρL−1(C∗,V) .

Lemma 4. Suppose that the GNN inducing f (θ,G) is of depth L ≥ 2 and that ρL−1(C∗,V) > 0.
For any M ∈ N and matrix with positive entries Z ∈ RM×D>0 , there exist weights θ and
M + 1 template vectors v(1), . . . ,v(M+1) ∈ RDx such that

q
B(f (θ,G)); I

y
has an M × M

sub-matrix S(�ρL−1(C∗,V)(ZZ>))Q, where S,Q ∈ RM×M are full-rank diagonal matrices and
�ρL−1(C∗,V)(ZZ>) is the ρL−1(C∗,V)’th Hadamard power of ZZ>.
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Proof. Consider the weights θ = (W(1), . . . ,W(L),W(o)) given by:

W(1) := I ∈ RDh×Dx ,

W(2) :=


1 1 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

∀l ∈ {3, . . . , L} : W(l) :=


1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

W(o) := (1 0 · · · 0) ∈ R1×Dh ,

where I is a zero padded identity matrix, i.e. it holds ones on its diagonal and zeros elsewhere. We
define the templates v(1), . . . ,v(M) ∈ RDx to be the vectors holding the respective rows of Z in their
first D coordinates and zeros in the remaining entries (recall D := min{Dx, Dh}). That is, denoting
the rows of Z by z(1), . . . , z(M) ∈ RD>0, we let v(m)

:D := z(m) and v
(m)
D+1: := 0 for all m ∈ [M ]. We

set all entries of the last template vector to one, i.e. v(M+1) := (1, . . . , 1) ∈ RDx .

Since C∗ ∈ S(I), i.e. it is an admissible subset of CI (Definition 4), there exist I ′ ⊆ I,J ′ ⊆ Ic
with no repeating shared neighbors (Definition 3) such that C∗ = N (I ′) ∩ N (J ′). Notice that I ′
and J ′ are non-empty as C∗ 6= ∅ (this is implied by ρL−1(C∗,V) > 0). We focus on the M ×M
sub-matrix of

q
B(f (θ,G)); I

y
that includes only rows and columns corresponding to evaluations of

f (θ,G) where all variables indexed by I ′ are assigned the same template vector from v(1), . . . ,v(M),
all variables indexed by J ′ are assigned the same template vector from v(1), . . . ,v(M), and all
remaining variables are assigned the all-ones template vector v(M+1). Denoting this sub-matrix by
U ∈ RM×M , it therefore upholds:

Um,n = f (θ,G)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
,

for all m,n ∈ [M ], where we use (x(i) ← v(m))i∈I′ to denote that input variables indexed
by I ′ are assigned the value v(m). To show that U obeys the form S(�ρL−1(C∗,V)(ZZ>))Q
for full-rank diagonal S,Q ∈ RM×M , we prove there exist φ, ψ : RDx → R>0 such that
Um,n = φ(v(m))〈z(m), z(n)〉ρL−1(C∗,V)ψ(v(n)) for all m,n ∈ [M ]. Indeed, defining S to hold
φ(v(1)), . . . , φ(v(M)) on its diagonal and Q to hold ψ(v(1)), . . . , ψ(v(M)) on its diagonal, we have
that U = S(�ρL−1(C∗,V)(ZZ>))Q. Since S and Q are clearly full-rank (diagonal matrices with
non-zero entries on their diagonal), the proof concludes.

For m,n ∈ [M ], let h(l,i) ∈ RDh be the hidden embedding for i ∈ V at layer l ∈ [L] of the GNN
inducing f (θ,G), over the following assignment to its input variables (i.e. vertex features):(

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′) .

Invoking Lemma 10 with v(m),v(n), I ′, and J ′, for all i ∈ V it holds that:

h
(L,i)
1 = φ(L,i)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗,{i})
ψ(L,i)

(
v(n)

)
, ∀d ∈ {2, . . . , Dh} : h

(L,i)
d = 0 ,

for some φ(L,i), ψ(L,i) : RDx → R>0. Since

Um,n = f (θ,G)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
= W(o)

(
�i∈Vh(L,i)

)
and W(o) = (1, 0, . . . , 0), this implies that:

Um,n =
∏

i∈V
h

(L,i)
1

=
∏

i∈V
φ(L,i)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗,{i})
ψ(L,i)

(
v(n)

)
.
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Rearranging the last term leads to:

Um,n =
(∏

i∈V
φ(L,i)

(
v(m)

))
·
〈
z(m), z(n)

〉∑
i∈V ρL−1(C∗,{i}) ·

(∏
i∈V

ψ(L,i)
(
v(n)

))
.

Let φ : v 7→
∏
i∈V φ

(L,i)(v) and ψ : v 7→
∏
i∈V ψ

(L,i)(v). Noticing that their range is indeed R>0

and that
∑
i∈V ρL−1(C∗, {i}) = ρL−1(C∗,V) yields the sought-after expression for Um,n:

Um,n = φ
(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗,V)
ψ
(
v(n)

)
.

I.3.2 Weights and Template Vectors Assignment for Vertex Prediction (Proof
of Equation (9))

This part of the proof follows a line similar to that of Appendix I.3.1, with differences stemming
from the distinction between the operation of a GNN over graph and vertex prediction. Namely,
we construct weights θ and template vectors satisfying log(rank

q
B
(
f (θ,G,t)); Iy) ≥ log(αC∗t ,t) ·

ρL−1(C∗t , {t}), where C∗t ∈ argmaxC∈S(I) log(αC,t) · ρL−1(C, {t}).

If ρL−1(C∗t , {t}) = 0, then the claim is trivial since there exist weights and template vectors for whichq
B
(
f (θ,G,t)); Iy is not the zero matrix (e.g. taking all weight matrices to be zero-padded identity

matrices and choosing a single template vector holding one in its first entry and zeros elsewhere).

Now, assuming that ρL−1(C∗t , {t}) > 0, which in particular implies that I 6= ∅, I 6= V, and C∗t 6= ∅,
we begin with the case of GNN depth L = 1, after which we treat the more general L ≥ 2 case.

Case of L = 1: Consider the weights θ = (W(1),W(o)) given by W(1) := I ∈ RDh×Dx and
W(o) := (1, . . . , 1) ∈ R1×Dh , where I is a zero padded identity matrix, i.e. it holds ones on its
diagonal and zeros elsewhere. We choose template vectors v(1), . . . ,v(D) ∈ RDx such that v(m)

holds the m’th standard basis vector of RD in its first D coordinates and zeros in the remaining
entries, for m ∈ [D] (recall D := min{Dx, Dh}). Namely, denote by e(1), . . . , e(D) ∈ RD the
standard basis vectors of RD, i.e. e(m)

d = 1 if d = m and e
(m)
d = 0 otherwise for all m, d ∈ [D]. We

let v(m)
:D := e(m) and v

(m)
D+1: := 0 for all m ∈ [D].

We prove that for this choice of weights and template vectors, for all d1, . . . , d|V| ∈ [D]:

f (θ,G,t)(v(d1), . . . ,v(d|V|)
)

=

{
1 , if dj = dj′ for all j, j′ ∈ N (t)

0 , otherwise
. (28)

To see it is so, notice that:

f (θ,G,t)(v(d1), . . . ,v(d|V|)
)

= W(o)h(1,t) =
∑Dh

d=1
h

(1,t)
d ,

with h(1,t) = �j∈N (t)(W
(1)v(dj)) = �j∈N (t)(Iv

(dj)). Since v
(dj)
:D = e(dj) for all j ∈ N (t) and I

is a zero-padded D ×D identity matrix, it holds that:

f (θ,G,t)(v(d1), . . . ,v(d|V|)
)

=
∑D

d=1

∏
j∈N (t)

e
(dj)
d .

For every d ∈ [D] we have that
∏
j∈N (t) e

(dj)
d = 1 if dj = d for all j ∈ N (t) and

∏
j∈N (t) e

(dj)
d = 0

otherwise. This implies that f (θ,G,t)(v(d1), . . . ,v(d|V|)) = 1 if dj = dj′ for all j, j′ ∈ N (t) and
f (θ,G,t)(v(d1), . . . ,v(d|V|)) = 0 otherwise, for all d1, . . . , d|V| ∈ [D].

Equation (28) implies that
q
B
(
f (θ,G,t)); Iy has a sub-matrix of rank D. Specifically, such a

sub-matrix can be obtained by examining all rows and columns of
q
B
(
f (θ,G,t)); Iy correspond-

ing to some fixed indices (di ∈ [D])i∈V\N (t) for the vertices that are not neighbors of t. Thus,
rank

q
B
(
f (θ,G,t)); Iy ≥ D. Notice that necessarily ρ0(C∗t , {t}) = 1, as it is not zero and there can

only be one length zero walk to t (the trivial walk that starts and ends at t). Recalling that αC∗t ,t := D
for L = 1, we therefore conclude:

log
(

rank
r
B
(
f (θ,G,t)

)
; I

z)
≥ log(D) = log(αC∗t ,t) · ρ0(C∗t , {t}) .
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Case of L ≥ 2: Let M :=
((

D
ρL−1(C∗t ,{t})

))
=
(D+ρL−1(C∗t ,{t})−1

ρL−1(C∗t ,{t})
)

be the multiset coefficient of D

and ρL−1(C∗t , {t}) (recall D := min{Dx, Dh}). By Lemma 7, there exists Z ∈ RM×D>0 for which

rank
(
�ρL−1(C∗t ,{t})

(
ZZ>

))
=

((
D

ρL−1(C∗t , {t})

))
,

with �ρL−1(C∗t ,{t})(ZZ>) standing for the ρL−1(C∗t , {t})’th Hadamard power of ZZ>. For this Z,
by Lemma 5 below we know that there exist weights θ and template vectors such that

q
B(f (θ,G,t)); I

y

has anM×M sub-matrix of the form S(�ρL−1(C∗t ,{t})(ZZ>))Q, where S,Q ∈ RM×M are full-rank
diagonal matrices. Since the rank of a matrix is at least the rank of any of its sub-matrices:

rank
(r

B
(
f (θ,G,t)); Iz) ≥ rank

(
S
(
�ρL−1(C∗t ,{t})

(
ZZ>

))
Q
)

= rank
(
�ρL−1(C∗t ,{t})

(
ZZ>

))
=

((
D

ρL−1(C∗t , {t})

))
,

where the second transition is due to S and Q being full-rank. Applying Lemma 8 to lower bound
the multiset coefficient, we have that:

rank
(r

B
(
f (θ,G,t)); Iz) ≥ (( D

ρL−1(C∗t , {t})

))
≥
(

D − 1

ρL−1(C∗t , {t})
+ 1

)ρL−1(C∗t ,{t})

.

Taking the log of both sides while recalling that αC∗t ,t := (D − 1)·ρL−1(C∗t , {t})
−1

+1, we conclude
that:

log(rank
r
B
(
f (θ,G,t)

)
; I

z
) ≥ log(αC∗t ,t) · ρL−1(C∗t , {t}) .

Lemma 5. Suppose that the GNN inducing f (θ,G,t) is of depth L ≥ 2 and that ρL−1(C∗t , {t}) >
0. For any M ∈ N and matrix with positive entries Z ∈ RM×D>0 , there exist weights θ and
M + 1 template vectors v(1), . . . ,v(M+1) ∈ RDx such that

q
B(f (θ,G,t)); I

y
has an M × M

sub-matrix S(�ρL−1(C∗t ,{t})(ZZ>))Q, where S,Q ∈ RM×M are full-rank diagonal matrices and
�ρL−1(C∗t ,{t})(ZZ>) is the ρL−1(C∗t , {t})’th Hadamard power of ZZ>.

Proof. Consider the weights θ = (W(1), . . . ,W(L),W(o)) defined by:

W(1) := I ∈ RDh×Dx ,

W(2) :=


1 1 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

∀l ∈ {3, . . . , L} : W(l) :=


1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

W(o) := (1 0 · · · 0) ∈ R1×Dh ,

where I is a zero padded identity matrix, i.e. it holds ones on its diagonal and zeros elsewhere. We let
the templates v(1), . . . ,v(M) ∈ RDx be the vectors holding the respective rows of Z in their first D
coordinates and zeros in the remaining entries (recall D := min{Dx, Dh}). That is, denoting the
rows of Z by z(1), . . . , z(M) ∈ RD>0, we let v(m)

:D := z(m) and v
(m)
D+1: := 0 for all m ∈ [M ]. We set

all entries of the last template vector to one, i.e. v(M+1) := (1, . . . , 1) ∈ RDx .

Since C∗t ∈ S(I), i.e. it is an admissible subset of CI (Definition 4), there exist I ′ ⊆ I,J ′ ⊆ Ic
with no repeating shared neighbors (Definition 3) such that C∗t = N (I ′) ∩ N (J ′). Notice that I ′
and J ′ are non-empty as C∗t 6= ∅ (this is implied by ρL−1(C∗t , {t}) > 0). We focus on the M ×M
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sub-matrix of
q
B(f (θ,G,t)); I

y
that includes only rows and columns corresponding to evaluations of

f (θ,G,t) where all variables indexed by I ′ are assigned the same template vector from v(1), . . . ,v(M),
all variables indexed by J ′ are assigned the same template vector from v(1), . . . ,v(M), and all
remaining variables are assigned the all-ones template vector v(M+1). Denoting this sub-matrix by
U ∈ RM×M , it therefore upholds:

Um,n = f (θ,G,t)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
,

for all m,n ∈ [M ], where we use (x(i) ← v(m))i∈I′ to denote that input variables indexed
by I ′ are assigned the value v(m). To show that U obeys the form S(�ρL−1(C∗t ,{t})(ZZ>))Q
for full-rank diagonal S,Q ∈ RM×M , we prove there exist φ, ψ : RDx → R>0 such that
Um,n = φ(v(m))〈z(m), z(n)〉ρL−1(C∗t ,{t})ψ(v(n)) for all m,n ∈ [M ]. Indeed, defining S to hold
φ(v(1)), . . . , φ(v(M)) on its diagonal and Q to hold ψ(v(1)), . . . , ψ(v(M)) on its diagonal, we have
that U = S(�ρL−1(C∗t ,{t})(ZZ>))Q. Since S and Q are clearly full-rank (diagonal matrices with
non-zero entries on their diagonal), the proof concludes.

For m,n ∈ [M ], let h(l,i) ∈ RDh be the hidden embedding for i ∈ V at layer l ∈ [L] of the GNN
inducing f (θ,G,t), over the following assignment to its input variables (i.e. vertex features):(

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′) .

Invoking Lemma 10 with v(m),v(n), I ′, and J ′, it holds that:

h
(L,t)
1 = φ(L,t)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗t ,{t})ψ(L,t)
(
v(n)

)
, ∀d ∈ {2, . . . , Dh} : h

(L,t)
d = 0 ,

for some φ(L,t), ψ(L,t) : RDx → R>0. Since

Um,n = f (θ,G,t)
((

x(i) ← v(m)
)
i∈I′ ,

(
x(j) ← v(n)

)
j∈J ′ ,

(
x(k) ← v(M+1)

)
k∈V\(I′∪J ′)

)
= W(o)h(L,t)

and W(o) = (1, 0, . . . , 0), this implies that:

Um,n = h
(L,t)
1 = φ(L,t)

(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗t ,{t})ψ(L,t)
(
v(n)

)
.

Defining φ := φ(L,t) and ψ := ψ(L,t) leads to the sought-after expression for Um,n:

Um,n = φ
(
v(m)

)〈
z(m), z(n)

〉ρL−1(C∗t ,{t})ψ
(
v(n)

)
.

I.3.3 Technical Lemmas

For completeness, we include the vector rearrangement inequality from [61], which we employ for
proving the subsequent Lemma 7.
Lemma 6 (Lemma 1 from [61]). Let a(1), . . . ,a(M) ∈ RD≥0 be M ∈ N different vectors with non-
negative entries. Then, for any permutation σ : [M ]→ [M ] besides the identity permutation it holds
that: ∑M

m=1

〈
a(m),a(σ(m))

〉
<
∑M

m=1

∥∥a(m)
∥∥2

.

Taking the P ’th Hadamard power of a rank at most D matrix results in a matrix whose rank is at
most the multiset coefficient

((
D
P

))
:=
(
D+P−1

P

)
(see, e.g., Theorem 1 in [2]). Lemma 7, adapted

from Appendix B.2 in [64], guarantees that we can always find a
((
D
P

))
×D matrix Z with positive

entries such that rank(�P
(
ZZ>

)
) is maximal, i.e. equal to

((
D
P

))
.

Lemma 7 (adapted from Appendix B.2 in [64]). For any D ∈ N and P ∈ N≥0, there exists a matrix

with positive entries Z ∈ R((DP ))×D
>0 for which:

rank
(
�P
(
ZZ>

))
=

((
D

P

))
,

where �P (ZZ>) is the P ’th Hadamard power of ZZ>.
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Proof. We let M :=
((
D
P

))
for notational convenience. Denote by z(1), . . . , z(M) ∈ RD the row

vectors of Z ∈ RM×D>0 . Observing the (m,n)’th entry of �P
(
ZZ>

)
:

[
�P
(
ZZ>

)]
m,n

=
〈
z(m), z(n)

〉P
=

(∑D

d=1
z

(m)
d · z(n)

d

)P
,

by expanding the power using the multinomial identity we have that:

[
�P
(
ZZ>

)]
m,n

=
∑

q1,...,qD∈N≥0

s.t.
∑D
d=1 qd=P

(
P

q1, . . . , qD

) D∏
d=1

(
z

(m)
d · z(n)

d

)qd

=
∑

q1,...,qD∈N≥0

s.t.
∑D
d=1 qd=P

(
P

q1, . . . , qD

)( D∏
d=1

(
z

(m)
d

)qd)
·

(
D∏
d=1

(
z

(n)
d

)qd)
,

(29)

where in the last equality we separated terms depending on m from those depending on n.

Let (a(q1,...,qD) ∈ RM )q1,...,qD∈N≥0 s.t
∑D
d=1 qd=P be M vectors defined by a

(q1,...,qD)
m =∏D

d=1

(
z

(m)
d

)qd for all q1, . . . , qD ∈ N≥0 satisfying
∑D
d=1 qd = P and m ∈ [M ]. As can be

seen from Equation (29), we can write:

�P
(
ZZ>

)
= ASA> ,

where A ∈ RM×M is the matrix whose columns are (a(q1,...,qD))q1,...,qD∈N≥0 s.t
∑D
d=1 qd=P and

S ∈ RM×M is the diagonal matrix holding
(

P
q1,...,qD

)
for every q1, . . . , qD ∈ N≥0 satisfying∑D

d=1 qd = P on its diagonal. Since all entries on the diagonal of S are positive, it is of full-rank,
i.e. rank(S) = M . Thus, to prove that there exists Z ∈ RM×D>0 for which rank(�P (ZZ>)) = M , it
suffices to show that we can choose z(1), . . . , z(M) with positive entries inducing rank(A) = M , for
A as defined above. Below, we complete the proof by constructing such z(1), . . . , z(M).

We associate each of z(1), . . . , z(M) with a different configuration from the set:{
q = (q1, . . . , qD) : q1, . . . , qD ∈ N≥0 ,

∑D

d=1
qd = P

}
,

where note that this set containsM =
((
D
P

))
elements. Form ∈ [M ], denote by q(m) the configuration

associated with z(m). For a variable γ ∈ R, to be determined later on, and every m ∈ [M ] and
d ∈ [D], we set:

z
(m)
d = γq

(m)
d .

Given these z(1), . . . , z(M), the entries of A have the following form:

Am,n =
∏D

d=1

(
z

(m)
d

)q(n)
d

=
∏D

d=1

(
γq

(m)
d

)q(n)
d

= γ
∑D
d=1 q

(m)
d ·q(n)

d = γ〈q
(m),q(n)〉 ,

for all m,n ∈ [M ]. Thus, det(A) =
∑

permutation σ:[M ]→[M ] sign(σ) · γ
∑M
m=1〈q(m),q(σ(m))〉 is polyno-

mial in γ. By Lemma 6,
∑M
m=1

〈
q(m),q(σ(m))

〉
<
∑M
m=1‖q(m)‖2 for all σ which is not the identity

permutation. This implies that
∑M
m=1‖q(m)‖2 is the maximal degree of a monomial in det(A),

and it is attained by a single element in
∑

permutation σ:[M ]→[M ] sign(σ) · γ
∑M
m=1〈q(m),q(σ(m))〉 — that

corresponding to the identity permutation. Consequently, det(A) cannot be the zero polynomial with
respect to γ, and so it vanishes only on a finite set of values for γ. In particular, there exists γ > 0
such that det(A) 6= 0, meaning rank(A) = M . The proof concludes by noticing that for a positive
γ the entries of the chosen z(1), . . . , z(M) are positive as well.

Additionally, we make use of the following lemmas.
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Lemma 8. For any D,P ∈ N, let
((
D
P

))
:=
(
D+P−1

P

)
be the multiset coefficient. Then:((

D

P

))
≥
(
D − 1

P
+ 1

)P
.

Proof. For any N ≥ K ∈ N, a known lower bound on the binomial coefficient is
(
N
K

)
≥
(
N
K

)K
.

Hence: ((
D

P

))
=

(
D + P − 1

P

)
≥
(
D + P − 1

P

)P
=

(
D − 1

P
+ 1

)P
.

Lemma 9. For D1, D2,K ∈ N, consider a polynomial function mapping variables θ ∈ RK to
matrices A(θ) ∈ RD1×D2 , i.e. the entries of A(θ) are polynomial in θ. If there exists a point θ∗ ∈ RK
such that rank(A(θ∗)) ≥ R, for R ∈ [min{D1, D2}], then the set {θ ∈ RK : rank(A(θ)) < R}
has Lebesgue measure zero.

Proof. A matrix is of rank at least R if and only if it has a R × R sub-matrix whose determi-
nant is non-zero. The determinant of any sub-matrix of A(θ) is polynomial in the entries of
A(θ), and so it is polynomial in θ as well. Since the zero set of a polynomial is either the en-
tire space or a set of Lebesgue measure zero [19], the fact that rank(A(θ∗)) ≥ R implies that
{θ ∈ RK : rank(A(θ)) < R} has Lebesgue measure zero.

Lemma 10. Let v,v′ ∈ RDx≥0 whose first D := min{Dx, Dh} entries are positive, and disjoint
I ′,J ′ ⊆ V with no repeating shared neighbors (Definition 3). Denote by h(l,i) ∈ RDh the hidden
embedding for i ∈ V at layer l ∈ [L] of a GNN with depth L ≥ 2 and product aggregation
(Equations (2) and (5)), given the following assignment to its input variables (i.e. vertex features):(

x(i) ← v
)
i∈I′ ,

(
x(j) ← v′

)
j∈J ′ ,

(
x(k) ← 1

)
k∈V\(I′∪J ′) ,

where 1 ∈ RDx is the vector holding one in all entries. Suppose that the weights W(1), . . . ,W(L)

of the GNN are given by:

W(1) := I ∈ RDh×Dx ,

W(2) :=


1 1 · · · 1
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

∀l ∈ {3, . . . , L} : W(l) :=


1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ∈ RDh×Dh ,

where I is a zero padded identity matrix, i.e. it holds ones on its diagonal and zeros elsewhere. Then,
for all l ∈ {2, . . . , L} and i ∈ V , there exist φ(l,i), ψ(l,i) : RDx → R>0 such that:

h
(l,i)
1 = φ(l,i)(v) 〈v:D,v

′
:D〉

ρl−1(C,{i})
ψ(l,i)(v′) , ∀d ∈ {2, . . . , Dh} : h

(l,i)
d = 0 ,

where C := N (I ′) ∩N (J ′).

Proof. The proof is by induction over the layer l ∈ {2, . . . , L}. For l = 2, fix i ∈ V . By the update
rule of a GNN with product aggregation:

h(2,i) = �j∈N (i)

(
W(2)h(1,j)

)
.

Plugging in the value of W(2) we get:

h
(2,i)
1 =

∏
j∈N (i)

(∑Dh

d=1
h

(1,j)
d

)
, ∀d ∈ {2, . . . , Dh} : h

(2,i)
d = 0 . (30)
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Let v̄, v̄′ ∈ RDh be the vectors holding v:D and v′:D in their first D coordinates and zero in the
remaining entries, respectively. Similarly, we use 1̄ ∈ RDh to denote the vector whose first D entries
are one and the remaining are zero. Examining h(1,j) for j ∈ N (i), by the assignment of input
variables and the fact that W(1) is a zero padded identity matrix we have that:

h(1,j) = �k∈N (j)

(
W(1)x(k)

)
=
(
�|N (j)∩I′|v̄

)
�
(
�|N (j)∩J ′|v̄′

)
�
(
�|N (j)\(I′∪J ′)|1̄

)
=
(
�|N (j)∩I′|v̄

)
�
(
�|N (j)∩J ′|v̄′

)
.

Since the first D entries of v̄ and v̄′ are positive while the rest are zero, the same holds for h(1,j).
Additionally, recall that I ′ andJ ′ have no repeating shared neighbors. Thus, if j ∈ N (I ′)∩N (J ′) =
C, then j has a single neighbor in I ′ and a single neighbor in J ′, implying h(1,j) = v̄�v̄′. Otherwise,
if j /∈ C, then N (j) ∩ I ′ = ∅ or N (j) ∩ J ′ = ∅ must hold. In the former h(1,j) does not depend on
v, whereas in the latter h(1,j) does not depend on v′.

Going back to Equation (30), while noticing that |N (i) ∩ C| = ρ1(C, {i}), we arrive at:

h
(2,i)
1 =

∏
j∈N (i)∩C

(∑Dh

d=1
h

(1,j)
d

)
·
∏

j∈N (i)\C

(∑Dh

d=1
h

(1,j)
d

)
=
∏

j∈N (i)∩C

(∑Dh

d=1

[
v̄ � v̄′

]
d

)
·
∏

j∈N (i)\C

(∑Dh

d=1
h

(1,j)
d

)
= 〈v:D,v

′
:D〉

ρ1(C,{i}) ·
∏

j∈N (i)\C

(∑Dh

d=1
h

(1,j)
d

)
.

As discussed above, for each j ∈ N (i) \ C the hidden embedding h(1,j) does not depend on v

or it does not depend on v′. Furthermore,
∑Dh
d=1 h

(1,j)
d > 0 for all j ∈ N (i). Hence, there exist

φ(2,i), ψ(2,i) : RDx → R>0 such that:

h
(2,i)
1 = φ(2,i)(v) 〈v:D,v

′
:D〉

ρ1(C,{i})
ψ(2,i)(v′) ,

completing the base case.

Now, assuming that the inductive claim holds for l − 1 ≥ 2, we prove that it holds for l. Let i ∈ V .
By the update rule of a GNN with product aggregation h(l,i) = �j∈N (i)(W

(l)h(l−1,j)). Plugging in
the value of W(l) we get:

h
(l,i)
1 =

∏
j∈N (i)

h
(l−1,j)
1 , ∀d ∈ {2, . . . , Dh} : h

(l,i)
d = 0 .

By the inductive assumption h
(l−1,j)
1 = φ(l−1,j)(v) 〈v:D,v

′
:D〉

ρl−2(C,{j})
ψ(l−1,j)(v′) for all j ∈

N (i), where φ(l−1,j), ψ(l−1,j) : RDx → R>0. Thus:

h
(l,i)
1 =

∏
j∈N (i)

h
(l−1,j)
1

=
∏

j∈N (i)
φ(l−1,j)(v) 〈v:D,v

′
:D〉

ρl−2(C,{j})
ψ(l−1,j)(v′)

=

(∏
j∈N (i)

φ(l−1,j)(v)

)
· 〈v:D,v

′
:D〉

∑
j∈N(i) ρl−2(C,{j}) ·

(∏
j∈N (i)

ψ(l−1,j)(v′)

)
.

Define φ(l,i) : v 7→
∏
j∈N (i) φ

(l−1,j)(v) and ψ(l,i) : v′ 7→
∏
j∈N (i) ψ

(l−1,j)(v′). Since the range
of φ(l−1,j) and ψ(l−1,j) is R>0 for all j ∈ N (i), so is the range of φ(l,i) and ψ(l,i). The desired result
thus readily follows by noticing that

∑
j∈N (i) ρl−2(C, {j}) = ρl−1(C, {i}):

h
(l,i)
1 = φ(l,i)(v) 〈v:D,v

′
:D〉

ρl−1(C,{i})
ψ(l,i)(v′) .

I.4 Proof of Theorem 4

The proof follows a line identical to that of Theorem 2 (Appendix I.2), requiring only slight adjust-
ments. We outline the necessary changes.

Extending the tensor network representations of GNNs with product aggregation to directed graphs
and multiple edge types is straightforward. Nodes, legs, and leg weights are as described in Ap-
pendix E for undirected graphs with a single edge type, except that:
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• Legs connecting δ-tensors with weight matrices in the same layer are adapted such that only
incoming neighbors are considered. Formally, in Equations (15) to (20), N (i) is replaced by
Nin(i) in the leg definitions, for i ∈ V .

• Weight matrices (W(l,q))l∈[L],q∈[Q] are assigned to nodes in accordance with edge types.
Namely, if at layer l ∈ [L] a δ-tensor associated with i ∈ V is connected to a weight ma-
trix associated with j ∈ Nin(i), then W(l,τ(j,i)) is assigned to the weight matrix node, as
opposed to W(l) in the single edge type setting. Formally, let W(l,j,γ) be a node at layer l ∈ [L]

connected to δ(l,i,γ′), for i ∈ V, j ∈ Nin(i), and some γ, γ′ ∈ N. Then, W(l,j,γ) stands for a
copy of W(l,τ(j,i)).

For X = (x(1), . . . ,x(|V|)) ∈ RDx×|V|, let T (X) and T (t)(X) be the tensor networks corresponding
to f (θ,G)(X) and f (θ,G,t)(X), respectively, whose construction is outlined above. Then, Lemma 1
(from Appendix I.2.1) and its proof apply as stated. Meaning, sep(f (θ,G); I) and sep(f (θ,G,t); I)
are upper bounded by the minimal modified multiplicative cut weights in T (X) and T (t)(X),
respectively, among cuts separating leaves associated with vertices of the input graph in I from leaves
associated with vertices of the input graph in Ic. Therefore, to establish Equations (11) and (12), it
suffices to find cuts in the respective tensor networks with sufficiently low modified multiplicative
weights. As is the case for undirected graphs with a single edge type (see Appendices I.2.2 and I.2.3),
the cuts separating nodes corresponding to vertices in I from all other nodes yield the desired upper
bounds.

I.5 Proof of Theorem 5

The proof follows a line identical to that of Theorem 3 (Appendix I.3), requiring only slight adjust-
ments. We outline the necessary changes.

In the context of graph prediction, let C∗ ∈ argmaxC∈S→(I) log(αC) · ρL−1(C,V). By Lemma 3
(from Appendix I.3), to prove that Equation (13) holds for weights θ, it suffices to find template
vectors for which log(rank

q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) ·ρL−1(C∗,V). Notice that, since the outputs

of f (θ,G) vary polynomially with θ, so do the entries of
q
B
(
f (θ,G)

)
; I

y
for any choice of template

vectors. Thus, according to Lemma 9 (from Appendix I.3.3), by constructing weights θ and template
vectors satisfying log(rank

q
B
(
f (θ,G)

)
; I

y
) ≥ log(αC∗) · ρL−1(C∗,V), we may conclude that this is

the case for almost all assignments of weights, meaning Equation (13) holds for almost all assignments
of weights. For undirected graphs with a single edge type, Appendix I.3.1 provides such weights
W(1), . . . ,W(L),W(o) and template vectors. The proof in the case of directed graphs with multiple
edge types is analogous, requiring only a couple adaptations: (i) weight matrices of all edge types at
layer l ∈ [L] are set to the W(l) chosen in Appendix I.3.1; and (ii) CI and S(I) are replaced with
their directed counterparts C→I and S→(I), respectively.

In the context of vertex prediction, let C∗t ∈ argmaxC∈S→(I) log(αC,t) · ρL−1(C, {t}). Due to
arguments similar to those above, to prove that Equation (14) holds for almost all assignments of
weights, we need only find weights θ and template vectors satisfying log(rank

q
B
(
f (θ,G,t)); Iy) ≥

log(αC∗t ,t) · ρL−1(C∗t , {t}). For undirected graphs with a single edge type, Appendix I.3.2 provides
such weights and template vectors. The adaptations necessary to extend Appendix I.3.2 to directed
graphs with multiple edge types are identical to those specified above for extending Appendix I.3.1
in the context of graph prediction.

Lastly, recalling that a finite union of measure zero sets has measure zero as well establishes
that Equations (13) and (14) jointly hold for almost all assignments of weights.

I.6 Proof of Proposition 1

We first prove that the contractions described by T (X) produce f (θ,G)(X). Through an induction
over the layer l ∈ [L], for all i ∈ V and γ ∈ [ρL−l({i},V)] we show that contracting the sub-tree
whose root is δ(l,i,γ) yields h(l,i) — the hidden embedding for i at layer l of the GNN inducing
f (θ,G), given vertex features x(1), . . . ,x(|V|).
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For l = 1, fix some i ∈ V and γ ∈ [ρL−1({i},V)]. The sub-tree whose root is δ(1,i,γ) comprises
|N (i)| copies of W(1), each associated with some j ∈ N (i) and contracted in its second mode with
a copy of x(j). Additionally, δ(1,i,γ), which is a copy of δ(|N (i)|+1), is contracted with the copies of
W(1) in their first mode. Overall, the execution of all contractions in the sub-tree can be written as
δ(|N (i)|+1) ∗j∈[|N (i)|] (W(1)x(N (i)j)), whereN (i)j , for j ∈ [|N (i)|], denotes the j’th neighbor of i
according to an ascending order (recall vertices are represented by indices from 1 to |V|). The base
case concludes by Lemma 11:

δ(|N (i)|+1) ∗j∈[|N (i)|]

(
W(1)x(N (i)j)

)
= �j∈[|N (i)|]

(
W(1)x(N (i)j)

)
= h(1,i) .

Assuming that the inductive claim holds for l − 1 ≥ 1, we prove that it holds for l. Let i ∈ V and
γ ∈ [ρL−l({i},V)]. The children of δ(l,i,γ) in the tensor network are of the form W(l,N (i)j ,φl,i,j(γ)),
for j ∈ [|N (i)|], and each W(l,N (i)j ,φl,i,j(γ)) is connected in its other mode to δ(l−1,N (i)j ,φl,i,j(γ)).
By the inductive assumption for l− 1, we know that performing all contractions in the sub-tree whose
root is δ(l−1,N (i)j ,φl,i,j(γ)) produces h(l−1,N (i)j), for all j ∈ [|N (i)|]. Since δ(l,i,γ) is a copy of
δ(|N (i)|+1), and each W(l,N (i)j ,φl,i,j(γ)) is a copy of W(l), the remaining contractions in the sub-tree
of δ(l,i,γ) thus give:

δ(|N (i)|+1) ∗j∈[|N (i)|]

(
W(l)h(l−1,N (i)j)

)
,

which according to Lemma 11 amounts to:

δ(|N (i)|+1) ∗j∈[|N (i)|]

(
W(l)h(l−1,N (i)j)

)
= �j∈[|N (i)|]

(
W(l)h(l−1,N (i)j)

)
= h(l,i) ,

establishing the induction step.

With the inductive claim at hand, we show that contracting T (X) produces f (θ,G)(X). Applying the
inductive claim for l = L, we have that h(L,1), . . . ,h(L,|V|) are the vectors produced by executing all
contractions in the sub-trees whose roots are δ(L,1,1), . . . , δ(L,|V|,1), respectively. Performing the re-
maining contractions, defined by the legs of δ(|V|+1), therefore yields W(o)

(
δ(|V|+1) ∗i∈[|V|] h

(L,i)
)
.

By Lemma 11:
δ(|V|+1) ∗i∈[|V|] h

(L,i) = �i∈[|V|]h
(L,i) .

Hence, W(o)
(
δ(|V|+1) ∗i∈[|V|] h

(L,i)
)

= W(o)(�i∈[|V|]h
(L,i)) = f (θ,G)(X), meaning contracting

T (X) results in f (θ,G)(X).

An analogous proof establishes that the contractions described by T (t)(X) yield f (θ,G,t)(X). Specif-
ically, the inductive claim and its proof are the same, up to γ taking values in [ρL−l({i}, {t})]
instead of [ρL−l({i},V)], for l ∈ [L]. This implies that h(L,t) is the vector produced by contracting
the sub-tree whose root is δ(L,t,1). Performing the only remaining contraction, defined by the leg
connecting δ(L,t,1) with W(o), thus results in W(o)h(L,t) = f (θ,G,t)(X).

I.6.1 Technical Lemma

Lemma 11. Let δ(N+1) ∈ RD×···×D be an order N + 1 ∈ N tensor that has ones on its hyper-
diagonal and zeros elsewhere, i.e. δ(N+1)

d1,...,dN+1
= 1 if d1 = · · · = dN+1 and δ(N+1)

d1,...,dN+1
= 0

otherwise, for all d1, . . . , dN+1 ∈ [D]. Then, for any x(1), . . . ,x(N) ∈ RD it holds that
δ(N+1) ∗i∈[N ] x

(i) = �i∈[N ]x
(i) ∈ RD.

Proof. By the definition of tensor contraction (Definition 7), for all d ∈ [D] we have that:(
δ(N+1) ∗i∈[N ] x

(i)
)
d

=
∑D

d1,...,dN=1
δ

(N+1)
d1,...,dN ,d

·
∏

i∈[N ]
x

(i)
di

=
∏

i∈[N ]
x

(i)
d =

(
�i∈[N ]x

(i)
)
d

.
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