
Supplementary Material: Posthoc privacy guarantees
for collaborative inference with modified

Propose-Test-Release

Abhishek Singh1, Praneeth Vepakomma1, Vivek Sharma1,2,3, Ramesh Raskar1
1MIT Media Lab, 2MGH, Harvard Medical School, 3Sony AI

A Proofs

Lemma A.1. For a given f and for dY ← ℓα and dX ← ℓβ , ∆LS(x,R) ≤ L(f,N (x,R)).

Proof. Local sensitivity (∆LS) for a sample x in a radius R for a query f is defined as:

∆LS(x,R) = sup
x′∈N (x,R)

dY(f(x), f(x
′))

dX (x,x′)

Local Lipschitz constant (L) for a function f and a neighborhood N is defined as:

Lα,β(f,N) = sup
x′,x′′∈N

||f(x′)− f(x′′)||α
||x′ − x′′||β

(x′ ̸= x′′)

If L is defined around neighborhood N (x,R) then the set over which local sensitivity is computed
is a subset of the set over which local Lipschitz constant is estimated. Intuitively, local Lipschitz
condition is for all possible pair of samples in the neighborhood while local sensitivity is for all
samples with respect to the given sample. Since both conditions require a suprememum over the set,
∆LS(x,R) ≤ L(f,N (x,R)).

Lemma A.2. Algorithm ϕ gives a lower bound on the query γ. That is, ϕ(x,R) ≤ γ(x,R).

Proof. The γ query is defined as -

γ(x,R) = min
x′∈X
{dX (x,x′) s.t. ∆LS(x

′,R) > ∆p
LS}. (1)

The ϕ query is defined as -

ϕ(x,R) =
1

2
· argmax

R′≥R
{L(f,N (x,R′)) ≤ ∆p

LS} (2)

For any given sample x and privacy parameters (R,∆p
LS) such that s = ϕ(x,R), we know that

∀x′ ∈ N (x, s)
N (x′, s) ⊂ N (x, 2s)

=⇒ L(f,N (x′, s)) ≤ L(f,N (x, 2s))

Based on eq 1, we know that L(f,N (x, 2s)) ≤ ∆p
LS and hence ∀x′ ∈ N (x, s),

L(f,N (x′, s)) ≤ ∆p
LS

Therefore, ∆LS(x
′,R) ≤ ∆p

LS and hence,

s ≤ γ(x)

For the cases when there is not any feasible solution, ϕ returns 0 which is exactly the same answer
for γ query. This completes the proof.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Lemma A.3. The query ϕ(·) has a global sensitivity of 1, i.e. dabs(ϕ(x,R), ϕ(x′,R)) ≤ dX (x,x′)

Proof. We will prove the above argument through a contradiction. We will prove that for a fixed
radius R and any arbitrary point x ∈ X , the neighborhood spanned by ϕ(x,R) can not be a proper
superset for any neighborhood spanned by any other point ϕ(x′,R). More formally, we will prove,
∀x,x′ ∈ X , N (x, ϕ(x,R)) ̸⊂ N (x′, ϕ(x′,R)) and N (x′, ϕ(x′,R)) ̸⊂ N (x, ϕ(x,R)). Once
proven, this argument allows us to specify the distance between x and x′ with respect to ϕ(x,R) and
ϕ(x′,R).
Since the function ϕ(x,R) returns the maximum possible value such that

L(f,N (x, ϕ(x,R))) ≤ ∆p
LS

Therefore, for any ζ > 0
L(f,N (x, ϕ(x,R) + ζ)) > ∆p

LS (3)

For contradiction, we assume that ∃x,x′ ∈ X s.t. N (x, ϕ(x,R)) ⊂ N (x′, ϕ(x′,R))

=⇒ ∃ η > 0 s.t. N (x, ϕ(x,R) + η) ⊆ N (x′, ϕ(x′,R)) (4)

=⇒ L(N (x, ϕ(x,R) + η)) ≤ ∆p
LS (5)

This leads to a contradiction between eq 3 and eq 5. Therefore, ∀x,x′ ∈ X ,

ϕ(x,R) ≤ ϕ(x′,R) + dX (x,x′)

Using symmetry argument, we can show that

dabs(ϕ(x,R), ϕ(x′,R)) ≤ dX (x,x′)

This completes the proof.

B Propose-Test-Release

DP mechanisms typically add noise based on the global sensitivity of a query. However, for several
queries over various data distributions, average local sensitivity might be much lower than the global
sensitivity. However, local sensitivity is data dependent hence the amount of noise introduced by a
mechanism based on local sensitivity itself can reveal private information. Therefore, to add noise
based on local sensitivity in a privacy preserving manner, [1] introduced PTR. Conceptually, the
idea behind PTR is to propose an arbitrary upper bound on the true value of local sensitivity. This
upper bound should be obtained privately otherwise the choice of upper bound itself can reveal
private information. To test whether the proposed bound is correct, the mechanism performs a
privacy-preserving testing of the upper bound. The test itself is a randomized algorithm due to
privacy requirements. Therefore, it can have false positives and false negatives. If the test fails, the
mechanism returns ⊥ (no-answer). Otherwise, standard DP mechanism (ex. - Laplace) is applied
to the query based on the proposed sensitivity (and not true local sensitivity). More formally, the
algorithm proceeds in the following steps -

1. A proposal on upper bound of a query q is fed as input for data x. Let us call it ∆p
LS .

2. The algorithm finds the closest point x′ to x such that ∆LS(x
′) > ∆p

LS . Here ∆LS refers
to local sensitivity for the query q.

3. Let γ = dH(x, x′) and γ̂ = γ + Lap(1/ϵ)

4. If γ̂ ≤ ln(1/δ)/ϵ; return ⊥
5. Else share data x+ Lap(∆p

LS/ϵ)

Computational Cost: Depending on the query, this algorithm can incur significant computation cost.
Especially in the Step 2, finding closest x′ can be impractical if the data space is high dimensional.
Finally, for queries such as neural networks evaluating local sensitivity itself is not practical since
it requires giving exact and correct solution to a non-convex optimization problem. Therefore, our
framework relies on computing local lipschitz constant over a small neighborhood instead of local
sensitvity over the complete data space.

2

Algorithm 1: Extended PTR algorithm for (ϵ, δ,R)-semantic neighborhood privacy
Input: x ∈ X ,∆p

LS ∈ R+;
Params: ϵ ∈ R+, δ ∈ R+,R ∈ R+;
Init: ζ ∈ R+; //For numerical stability, typically very small
Init: Rmin = R,Rmax ∈ R+

repeat
Rmid = (Rmin + Rmax)/2;
r = L(f,N (x,R)); //Compute local Lipschitz constant
if r < ∆p

LS then
Rmin = Rmid;

else
Rmax = Rmid

end if
until Rmax > Rmin + ζ
r̂ = Rmin

2 ;
R̂← r̂ + Lap(1/ϵ);
if R̂ < ln(1/δ)/ϵ then

Return ⊥;
else

Return f(z) + Lap(∆p
LS/ϵ);

end if

C Lipschitz Constant Estimation

We use the mixed integer programming based algorithm LipMip by [3] for computing the local
Lipschitz constant. Their technique allows exactly computing the local Lipschitz constant of a
neural network with ReLU non-linearities. Their key idea is to estimate the supremal norm of the
jacobian of the neural network. Since ReLU networks do not allow for differentiability, LipMip
uses clark jacobian to circumvent the issue and encode the optimization objective of obtaining local
Lipschitz constant over a pre-defined neighborhood as a mixed integer programming problem. The
neighborhood is specified as a hypercube with same dimension as points in the neighborhood. Their
algorithm searches for feasible regions and minimizes the gap between lower and upper bound on the
Lipschitz constant.

D Experimental Details

Our experimental setup operates in three stages - i) Embedder training, ii) Obfuscator training,
and iii) Private inference. Our codebase is available https://drive.google.com/drive/
folders/1DpHhS9u-Mpp3TVmTYiue7BKKUshyKw2w?usp=sharing here for reproducability. We
will release the code and all trained models publicly after the reviews. For all our experiments we use
PyTorch([5]) with Nvidia-GeForce GTX TITAN GPU. We use β-VAE with β = 5 for the design of
the embedder.

1. Embedder Training: We use embedding dimension as 8 for MNIST and FMNIST dataset.
For the UTKFace dataset, we use embedding size as 10. We use Adam optimizer([4]) with a
constant learning rate of 0.001. The VAE architecture for MNIST and FMNIST dataset is
composed of three fully connected layers with non-linear activations and dropout.

2. Obfuscator Training: For ARL, we use α = 0.99, for noisy regularization, we use
σ = 0.01 and for contrastive regularization, we use λ = 1.0 with a margin of 25. All of
these regularizations are trained jointly using Adam optimizer([4]).

3. Private Inference: In the this stage we use LipMip([3]) which is built upon Gurobi
Optimizer([2]) for solving the Mixed-Integer programming formulation of local lipschitz
constant estimation. For the metrics, we use dX as infinity norm and dY as ℓ1-norm. For the
privacy parameters, we use δ = 0.05 and R = 0.5 for MNIST, R = 0.2 for FMNIST and

3

https://drive.google.com/drive/folders/1DpHhS9u-Mpp3TVmTYiue7BKKUshyKw2w?usp=sharing
https://drive.google.com/drive/folders/1DpHhS9u-Mpp3TVmTYiue7BKKUshyKw2w?usp=sharing

ϵ = 1 ϵ = 2 ϵ = 5 ϵ = 7 ϵ =∞

MNIST
LDP-Image 0.1 0.1 0.1 0.3 0.99

LDP-Embedding 0.1075 0.1319 0.1927 0.3107 0.9096
Adversarial 0.514 0.751 0.891 0.912 0.9291

FMNIST
LDP-Image 0.1 0.1 0.1 0.1 0.92

LDP-Embedding 0.1012 0.1251 0.1708 0.2420 0.7798
Adversarial 0.371 0.554 0.678 0.722 0.781

UTKFace
LDP-Image 0.52 0.52 0.52 0.52 0.89

LDP-Embedding 0.5040 0.535 0.5757 0.6375 0.7246
Adversarial 0.65 0.69 0.718 0.724 0.73

Table 1: Comparison between LDP and Adversarial Representation Learning: Using our proposed
framework we compare the utility of LDP and ARL across different values of the privacy parameter
ϵ.

Original Image Original ImageOriginal Image

Figure 1: Neighborhood for different image datasets. The center image (in red) is the reconstruction
of the original image with nearby images sampled from the embedding. Note that there are multiple
dimensions and we have illustrated interpolation for only one here.

R = 0.1 for UTKFace. The choice of different R was based on visualizing samples from the
training set and evaluating how far similar looking samples lie in the embedding space.

SSIM MNIST UTKFace
0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0

ϵ=1 0.558 0.427 0.287 0.231 0.201 0.179 0.481 0.443 0.426 0.425 0.422 0.421
ϵ=2 0.648 0.553 0.414 0.328 0.275 0.229 0.507 0.475 0.442 0.439 0.428 0.426
ϵ=5 0.702 0.655 0.580 0.499 0.434 0.380 0.519 0.5037 0.481 0.465 0.451 0.447
ϵ=10 0.710 0.700 0.656 0.610 0.560 0.517 0.519 0.5169 0.507 0.494 0.485 0.476

Table 2: SSIM metric for reconstruction attack with varying R and ϵ

4

ℓ1 MNIST UTKFace
0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0

ϵ=1 0.0775 0.0968 0.1145 0.1204 0.1232 0.1249 0.1304 0.1532 0.1706 0.1731 0.1776 0.1782
ϵ=2 0.0642 0.078 0.0983 0.1091 0.1153 0.1196 0.1126 0.1312 0.1543 0.1645 0.1699 0.1732
ϵ=5 0.0565 0.0634 0.0749 0.0859 0.0959 0.1031 0.1017 0.1089 0.125 0.1388 0.148 0.1546
ϵ=10 0.0549 0.0569 0.0631 0.0697 0.0771 0.0837 0.1001 0.1027 0.1091 0.1182 0.1255 0.1321

Table 3: ℓ1 metric for reconstruction attack with varying R and ϵ

ℓ2 MNIST UTKFace
0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0

ϵ=1 0.0471 0.0613 0.0762 0.0817 0.0847 0.0867 0.029 0.0385 0.0464 0.0476 0.0492 0.0498
ϵ=2 0.0363 0.0478 0.0631 0.0716 0.0773 0.0814 0.0223 0.029 0.0387 0.0433 0.0454 0.0471
ϵ=5 0.03 0.0354 0.0449 0.0537 0.0618 0.0672 0.0189 0.021 0.027 0.032 0.0358 0.0388
ϵ=10 0.0291 0.0305 0.0352 0.0407 0.0467 0.0518 0.0184 0.0192 0.0212 0.0243 0.0271 0.0294

Table 4: ℓ2 metric for reconstruction attack with varying R and ϵ

PSNR MNIST UTKFace
0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0

ϵ=1 61.87 60.70 59.74 59.45 59.29 59.19 64.42 63.18 62.36 62.25 62.10 62.05
ϵ=2 63.04 61.80 60.57 60.02 59.68 59.47 65.59 64.43 63.16 62.66 62.45 62.29
ϵ=5 63.88 63.15 62.09 61.28 60.67 60.29 66.30 65.84 64.75 63.99 63.50 63.15
ϵ=10 64.06 63.82 63.19 62.54 61.91 61.44 66.43 66.25 65.80 65.21 64.72 64.36

Table 5: PSNR metric for reconstruction attack with varying R and ϵ

5

References
[1] C. Dwork and J. Lei. Differential privacy and robust statistics. In Proceedings of the forty-first

annual ACM symposium on Theory of computing, pages 371–380, 2009.

[2] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[3] M. Jordan and A. G. Dimakis. Exactly computing the local lipschitz constant of relu networks.
Advances in Neural Information Processing Systems, 33:7344–7353, 2020.

[4] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

6

	Proofs
	Propose-Test-Release
	Lipschitz Constant Estimation
	Experimental Details

