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Abstract

Cloud-based machine learning inference is an emerging paradigm where users
query by sending their data through a service provider who runs an ML model
on that data and returns back the answer. Due to increased concerns over data
privacy, recent works have proposed Collaborative Inference (CI) to learn a privacy-
preserving encoding of sensitive user data before it is shared with an untrusted
service provider. Existing works so far evaluate the privacy of these encodings
through empirical reconstruction attacks. In this work, we develop a new framework
that provides formal privacy guarantees for an arbitrarily trained neural network by
linking its local Lipschitz constant with its local sensitivity. To guarantee privacy us-
ing local sensitivity, we extend the Propose-Test-Release (PTR) framework to make
it tractable for neural network queries. We verify the efficacy of our framework
experimentally on real-world datasets and elucidate the role of Adversarial Repre-
sentation Learning (ARL) in improving the privacy-utility trade-off. The source
code and other details are available at tremblerz.github.io/posthoc.

1 Introduction

While training ML models privately has seen tremendous progress[1, 45, 10, 26] in the last few
years, protecting privacy during the inference phase remains elusive as these models get deployed by
cloud-based service providers. Cryptographic techniques[43, 31, 40, 27] address this challenge by
computing over encrypted data. To combat the high computational cost of encryption techniques,
several recent works [66, 65, 5, 56, 57] have proposed Collaborative Inference (CI) – an alternate
paradigm where users share a lower dimensional embedding of raw data where task-irrelevant
information is suppressed. However, CI techniques are currently incompatible with formal privacy
frameworks and their evaluation is currently based on empirical reconstruction attacks. The central
issue in CI is the usage of Deep Neural Networks (DNNs) making it unsuitable for formal and
worst-case privacy analysis. In this work, we take the first step towards a formal privacy framework
for CI that will enable a more rigorous evaluation and a reliable understanding of the CI techniques.

The key aspect of any CI algorithm is an obfuscator (typically a DNN), which is trained to encode
a user’s private data such that an attacker can not reconstruct the original data from its encoding.
Hence, CI techniques typically evaluate the privacy of their representations by empirically measuring
the information leakage using a proxy adversary. However, existing works [57, 66, 18, 56] show that
a proxy adversary’s performance as a measure of protection could be unreliable because a future
adversary can come up with a stronger attack. Alternately a few existing CI techniques have used
theoretical tools [20, 69, 4, 68, 62, 5, 39] for measuring information leakage empirically. However,
most of these works analyze specific obfuscation techniques and lack formal privacy definitions.
Therefore, we first introduce a privacy definition applicable to CI by adopting a different threat
model from that of differential privacy (DP)[12] because (as we explain in detail in Sec 2) protecting
membership inference is at odds with achieving a non-trivial privacy-utility trade-off in CI.
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Our threat model for the reconstruction attack is motivated by the intuition that the obfuscator discloses
coarse-grained and filters out fine-grained information for preventing reconstruction. We hypothesize
that to do so, the obfuscator should act as a contractive mapping, and as a result, increases the
stability of the (obfuscation) function in the local neighborhood of data. We formalize this intuition
by introducing a privacy definition in the metric space of data and experimentally validate it in
Sec 5. Our privacy definition is an instantiation of metric-DP by Chatzikokolakis et al. Instead of
evaluating the global Lipschitz constant of DNNs, we evaluate the Lipschitz constant only in the
local neighborhood of the user’s sensitive data. We then extend the Propose-Test-Release (PTR)[11]
framework to formalize our local neighborhood based measurement of the Lipschitz constant.

We adopt the PTR framework due to its posthoc and data-adaptive nature – as the privacy of encoding
is evaluated in the neighborhood of the private user input and after the obfuscator has been trained.
This approach is different from conventional privacy mechanisms where the mechanism is fixed and
the perturbation does not depend on data. Existing seminal works in data-adaptive privacy such
as Propose-Test-Release (PTR) [11], smooth sensitivity [41] and Lipschitz extensions [48] have
exploited this posthoc approach to enhance the utility of the mechanisms. Data adaptive mechanisms
are an important area of study as quoted in a recent workshop report on the challenges in Differential
Privacy [9] - “Going data-adaptive is a crucial step in bringing DP algorithms to an acceptable
level of utility in applications.”. In the context of our work – the benefit of using the PTR framework
is two-fold i) Utility - the obfuscator is expected to behave better at samples that match the data
distribution from its training dataset are sampled, and ii) Computation - instead of computing global
sensitivity, we only need to compute sensitivity in the small neighborhood around private data points.
While the original PTR is intractable due to a well-known [9] expensive computation step, we design
a new formulation that substitutes the expensive computation step with a tractable alternate.

Computational tractability is generally the main concern that makes CI incompatible with formal
privacy because giving worst-case guarantees for obfuscator is generally difficult. While training and
convergence guarantees for DNNs remain elusive, we find that the certified robustness community has
made rapid progress in the past few years in giving worst-case guarantees during the inference stage
of DNNs. Specifically, we utilize recent efficient formulations for the Lipschitz constant computation
of DNNs [25, 55]. We measure the stability of the learned obfuscator model using the Lipschitz
constant and link it with the local sensitivity under our privacy definition. We bridge the gap between
the Lipschitz constant and our extended PTR framework by proposing a binary search algorithm that
computes this Lipschitz constant multiple times in the neighborhood of sensitive data. This bridge
makes our work amenable to any differentiable obfuscator with ReLU non-linearity.

The scope of our paper is to provide privacy guarantees against reconstruction attacks for existing
CI techniques, i.e., our goal is not to develop a new CI algorithm but rather to develop a formal
privacy framework compatible with existing algorithms. A majority of the CI techniques protect
either a sensitive attribute or reconstruction of the input. We only consider sensitive input in this
work. Furthermore, we only focus on protecting the privacy of data during the inference stage,
and assume that ML models can be trained privately. Our privacy definition and the mechanism
are built upon dX -privacy [8] and PTR [11]. Existing instantiations of dX -privacy include geo-
indistinguishability [2] and location-dependent privacy[32] that share a similar goal as ours of sharing
coarse-grained information. Our work differs because we use DNN queries and high-dimensional
datasets. We refer the reader to the supplementary for a detailed literature review.

In Sec 2 we begin with the preliminaries of DP and its variant for metric spaces. Then, we introduce
the privacy definition relevant for CI in Sec 3. Next, we design our framework by extending PTR and
proving its privacy guarantees in Sec 4. In Sec 5 we experimentally demonstrate the feasibility of our
framework. We now give the summary of our contributions:
1. Proposing a privacy definition that formalizes reconstruction privacy in the context of CI. Protect-
ing against membership inference (meaningfully) is not possible in CI and hence traditional DP can
not be applied directly as discussed in Sec 2.
2. Extending the (PTR) algorithm to guarantee privacy using the local Lipschitz constant. The stan-
dard PTR can not be applied due to its intractability for queries beyond median and mode (see - Page
152, 2nd paragraph of Dwork et al. and Sec 4).
3. Experiments 1) to verify efficacy for both utility and computability, 2) ablation on different design
choices, 3) empirical reconstruction attacks, and 4) identifying the role ARL techniques play in
improving privacy-utility trade-off in CI.
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Figure 1: Posthoc Privacy framework: We project a high dimensional data instance to a lower
dimensional embedding. The goal of the embedder is to measure a semantically relevant distance
between different instances. The embedding is fed to the Obfuscator that compresses similar inputs
in a small volume. In traditional ARL, the obfuscated instance is shared with the untrusted service
provider without any formal privacy guarantee. In this work, by analyzing the stability of the
obfuscator network, we perturb the obfuscated instance to provide a formal privacy guarantee.

2 Preliminaries

Differential privacy[12] is a widely used framework for answering a query, f , on a dataset x ∈ X by
applying a mechanismM(·) such that the probability distribution of the output of the mechanism
M(x) is similar regardless the presence or absence of any individual in the dataset x. More formally,
M satisfies (ϵ, δ)-DP if ∀x,x′ ∈ X such that dH(x,x′) ≤ 1, and for all (measurable) output S over
the range ofM

P(M(x) ∈ S) ≤ eϵP(M(x′) ∈ S) + δ,

where dH is the hamming distance. This definition is based on a trusted central server model, where
a trusted third party collects sensitive data and computes M(x) to share with untrusted parties.
In local-DP[28], this model has been extended such that each user sharesM(x), and the service
provider is untrusted. Our threat model is the same as local DP. However, unlike local DP, data is
not aggregated over multiple individuals. Specifically, every sample is evaluated independently by
the service provider and there is no aggregation involved. For ex.– a user shares a face image to
receive an age prediction from the service provider, here the answer to the query depends exactly on
the user’s input. With traditional local DP, it is “impossible" to achieve good utility and privacy at
the same time because any two samples (no matter how different) are neighboring databases, more
formally, dH(x,x′) ≤ 1, ∀x,x′ ∈ X for ML inference. Informally, this notion of neighboring
databases under the standard DP definition would imply that the outcome for any two samples should
be almost indistinguishable no matter how different the samples are. This privacy definition could be
too restrictive for our ML inference application where the data instance necessarily needs a certain
degree of distinguishability to obtain utility from the service provider. This observation is formalized
in the impossibility result of instance encoding[7] for private learning. To subside this fundamental
conflict between the privacy definition and our application, we look at the definition of dX -privacy[8]
that generalizes the DP definition to a general distance metric beyond hamming distance as follows:

P(M(x) ∈ S) ≤ edX (x,x′)P(M(x′) ∈ S), (1)

here dX (x,x′) is a function that gives a level of indistinguishability between two datasets x and x′.
DP can be viewed as a special case of dX -privacy by keeping dX (x,x′) = ϵdH(x,x′). Choosing
a different distance metric yields a stronger or weaker privacy guarantee. Due to the impossibility
of achieving both privacy and utility with hamming distance, we move towards a weaker privacy
definition by only focusing on achieving privacy against reconstruction attacks instead of membership
inference. Intuitively, we choose a distance metric that provides indistinguishability only within a
neighborhood of similar looking samples.

3 Privacy Definition and Threat Model

To formalize reconstruction privacy, we hypothesize that semantically similar points are close to
each other on a data manifold, i.e. semantically similar samples are closer in a space where distance
is defined as geodesic on the data manifold. Therefore, one way to bound the reconstruction of x
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is by making it indistinguishable among semantically similar points. The extent of reconstruction
privacy would therefore depend upon the radius of the neighborhood. We formalize it with a privacy
parameter R that allows a user to control how big this indistinguishable neighborhood should be.

Definition 1. A mechanism M satisfies (ϵ, δ,R)-reconstruction privacy if ∀x,x′ ∈ X s.t.
dX (x,x′) ≤ R and S ⊆ Range(M)

P(M(x) ∈ S) ≤ eϵP(M(x′) ∈ S) + δ. (2)

Note that the above equation is exactly the same as (ϵ, δ)-DP except for the definition of neighboring
databases. In this way, our privacy definition can be seen as a mix of standard DP and dX -privacy.

3.1 Threat and Attack model

Our threat and attack model is the same as previous collaborative inference works [66, 65]. Specif-
ically, we focus on attackers that aim to reconstruct the original sample from its encoding. That
is, given an encoding M(x) obtained from a sample x, an attacker will attempt to recover the
original sample (x). Our threat model is the same as local DP. Specifically, all side information
including access to the obfuscator model, embedder model, and the framework in Fig 1 is known to
the adversary and it can interact with them as much as it wants. The attacker can use this information
to improve its attack algorithm. We (informally) note that an attacker always has a prior about raw
data P(x) and it will update its belief based on the posterior P(x|M(x)). The goal of our privacy
mechanism is to ensure that the distance between the prior and posterior distribution is bounded. Our
definition indeed enjoys such an interpretation due to being an instantiation of dX -privacy. A more
formal description of this Bayesian formulation is given by Chatzikokolakis et al. in Theorem 4. We
emulate such attackers in Sec 5 by training an ML model on a dataset ofM(x) as input and x as
output, then we evaluate its reconstruction error on encodings of previously unseenM(x).

3.2 Comparison with Differential Privacy

Conceptually, the usage of hamming distance in DP for neighboring databases provides a level of
protection at the sample level. Such a privacy requirement can be at odds with the goal of prediction
that necessarily requires discrimination between samples belonging to different concept classes. We
relax this dichotomy by changing the distance metric to account for reconstruction privacy. Intuitively,
an attacker can only obtain an accurate reconstruction of data up to a neighborhood in the space of
data. Therefore, the size of the neighborhood is a privacy parameter R such that a higher value of
R provides higher privacy. This privacy parameter is equivalent to the group size [12] used often
in the DP literature. By default, this value is kept at 1 in DP but can be kept higher if correlated
individuals (multiple samples, family) are present in a database instead of a single individual. We
state the equivalence between the group privacy definition and standard DP informally -
Lemma 2.2 in [60]: Any (ϵ, δ)-differentially private mechanism is (Rϵ, Re(R−1)ϵδ)-differentially
private for groups of size R.
This lemma also applies to our proposed definition. However, we emphasize that privacy parameters of
(ϵ, δ)-DP mechanism can not be compared trivially with a (ϵ, δ,R)-reconstruction privacy mechanism
because same value of ϵ and δ provide different levels of protection due to different definitions of
neighboring databases. We experimentally demonstrate this claim in Sec. 5.

3.3 Choice of dX (x,x′) and its impact on the privacy guarantees offered

Our privacy definition is an instantiation of dX (x,x′) that permits a broad class of distance metrics for
the privacy definition. Since the goal of our work is to protect against reconstruction - ℓ1 or ℓ2 distance
is a reasonable choice. However, the space over which ℓ norm should be considered is a challenging
question. Existing papers have used metrics such as ℓ1 or ℓ2 norm in the raw data space [21, 6, 17, 3]
for guaranteeing reconstruction privacy when training ML models. However, for high-dimensional
datasets typically considered in CI such as images, guaranteeing reconstruction in ambient dimensions
can lead to unintended privacy guarantee. In our work, we consider pre-processing the samples by
projecting them into an embedding space, where samples that are semantically closer and farther have
ℓ norm smaller and higher respectively. We evaluate the privacy-utility trade-off in our experiments
for both ambient space and embedding space.
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4 Privacy Mechanism

Our goal is to design a framework that can provide a formal privacy guarantee for encodings
informally privatized in CI. However, CI algorithms use non-linear neural networks trained on
non-convex objectives making it difficult to perform any worst-case analysis. Therefore, we take a
posthoc approach where we reason about privacy after the model is trained. Specifically, we apply
the PTR mechanism by [11]. Applying PTR directly to our query (ARL) is not computationally
feasible because PTR requires estimating local sensitivity at multiple points whereas evaluating the
local sensitivity of a neural network query is not even feasible at a single point. Therefore, we design
a tractable variant of PTR that utilizes the local Lipschitz constant estimator to compute privacy
related parameters. We refer the reader to supplementary for background on the Lipschitz constant
estimation and PTR.

CI algorithms consist of three computational blocks in the training stage: 1) obfuscator (f(·)) that
generates an (informally private) representation (z̃) of data, 2) proxy adversary that reconstructs the
data from the representation produced by the obfuscator, and 3) classifier that performs the given
task using the obfuscated representation. The classifier and proxy adversary are trained to minimize
the task loss and reconstruction loss, respectively. The obfuscator is trained to minimize the task
loss but maximize the reconstruction loss. This setup results in a min-max optimization where the
trade-off between task performance and reconstruction is controlled by a hyper-parameter α. Note
that a few CI techniques[42, 44, 61] do not require a proxy adversary but still learn an obfuscator
model using other regularizers.

At a high level, our framework applies the mechanismM such that the final released data ẑ =M(x)
has a privacy guarantee discussed in Eq 2. Like PTR, we start with a proposal (∆p

LS) on the upper
bound of the local sensitivity of x. To test the correctness of ∆p

LS , we compute the size of the
biggest possible neighborhood such that the local Lipschitz constant of the obfuscator network in
that neighborhood is smaller than the proposed bound. Next, we privately verify the correctness of
the proposed bound. We do not release the data (denoted by ⊥) if the proposed bound is invalid.
Otherwise, we perturb the data using the Laplace mechanism. Next, we discuss the framework and
privacy guarantees in more detail.

Global Sensitivity and Lipschitz constant of a query f : X → Y are related in the dX -privacy
framework. Global sensitivity of a query f(·) is the smallest value of ∆ (if it exists) such that
∀x,x′ ∈ X , dY(f(x), f(x′)) ≤ ∆dX (x,x′). While global sensitivity is a measure over all possible
pairs of data in the data domain X , local sensitivity (∆LS) is defined with respect to a given dataset x
such that ∀x′ ∈ X , dY(f(x), f(x′)) ≤ ∆LS(x)dX (x,x′). We integrate the notion of similarity in a
neighborhood (motivated in Sec 2) by defining the local sensitivity of a neighborhoodN (x,R) around
x of radius R where N (x,R) = {x′|dX (x,x′) ≤ R, ∀x′ ∈ X}. Therefore, the local sensitivity of
query f on x in the R-neighborhood is defined ∀x′ ∈ N (x,R) such that

dY(f(x), f(x
′)) ≤ ∆LS(x,R)dX (x,x′). (3)

We note that if dX is hamming distance and R is 1 then this formulation is exactly same as local
sensitivity in ϵ-DP[12]. The equation above can be re-written as:

∆LS(x,R) = sup
x′∈N (x,R)

dY(f(x), f(x
′))

dX (x,x′)
. (4)

This formulation of local sensitivity is similar to the definition of the local Lipschitz constant. The
local Lipschitz constant L of f for a given open neighborhood N ⊆ X is defined as follows:

Lα,β(f,N ) = sup
x′,x′′∈N

||f(x′)− f(x′′)||α
||x′ − x′′||β

(x′ ̸= x′′) (5)

We note that while the local sensitivity of x is described around the neighborhood of x, the Lipschitz
constant is defined for every possible pair of points in a given neighborhood. Therefore, in Lemma 4.1
we show that the local Lipschitz in the neighborhood of x is an upper bound on the local sensitivity.
Lemma 4.1. For a given f and for dY ← ℓα and dX ← ℓβ , ∆LS(x) ≤ L(f,N (x,R)). Proof in
Supplementary.

Since local sensitivity is upper bounded by the Lipschitz constant, evaluating the Lipschitz constant
suffices as an alternative to evaluating local sensitivity.
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Lower bound on testing the validity of ∆p
LS: The PTR algorithm [11] suggests a proposal on the

upper bound (∆p
LS) of local sensitivity and then finds the distance between the given dataset (x) and

the closest dataset for which the proposed upper bound is not valid. Let γ(·) be a distance query and
∆LS(x) be the local sensitivity defined as per the DP framework with respect to x such that

γ(x) = min
x′∈X
{dH(x,x′) s.t. ∆LS(x

′) > ∆p
LS}. (6)

For our privacy definition, the query γ(x,R) can be formulated as follows:

γ(x,R) = min
x′∈X
{dX (x,x′) s.t. ∆LS(x

′,R) > ∆p
LS}. (7)

We note that keeping dX = dH and R = 1, makes the γ query exactly same as defined in the
eq 6. Generally, computing γ(·) is intractable due to local sensitivity estimation required for every
x′ ∈ X (which depends upon a non-linear neural network in our case). We emphasize that this
step is intractable at two levels, first, we require estimating the local sensitivity of a neural network
query. Second, we require this local sensitivity over all samples in the data domain. Therefore,
we make it tractable by computing a lower bound over γ(x,R) by designing a function ϕ(·) s.t.
ϕ(x,R) ≤ γ(x,R). Intuitively, ϕ(·) finds the largest possible neighborhood around x such that the
local Lipschitz constant of the neighborhood is smaller than the proposed local sensitivity. Because
the subset of points around x whose neighborhood does not violate ∆p

LS is half of the size of the
original neighborhood in the worst case, we return half of the size of neighborhood as the output. We
describe the algorithm procedurally in the supplementary material. More formally,

ϕ(x,R) =
1

2
· argmax

R′≥R
{L(f,N (x,R′)) ≤ ∆p

LS}

If there is no solution to the equation above, then we return 0.

Lemma 4.2. ϕ(x,R) ≤ γ(x,R). Proof in Supplementary.

Privately testing the lower bound: The next step in the PTR algorithm requires testing if γ(x) ≤
ln( 1δ /ϵ). If the condition is true, then no-answer (⊥) is released instead of data. Since the γ query
depends upon x, PTR privatizes it by applying laplace mechanism, i.e. γ̂(x) = γ(x)+Lap(1/ϵ). The
query has a sensitivity of 1 since the γ could differ at most by 1 for any two neighboring databases.
In our framework, we compute ϕ(x,R) to lower bound the value of γ(x,R). Therefore, we need to
privatize the ϕ query. We prove that for distance metrics in dX -privacy, the global sensitivity of the
ϕ(x) query is 1.

Lemma 4.3. The query ϕ(·) has a global sensitivity of 1, i.e. ∀x,x′ ∈ X , dabs(ϕ(x,R), ϕ(x′,R)) ≤
dX (x,x′). Proof in Supplementary.

After computing ϕ(x,R), we add noise sampled from a laplace distribution, i.e. ϕ̂(x,R) = ϕ(x,R) +
Lap(R/ϵ). Next, we check if ϕ̂(x,R) ≤ ln( 1δ ) · R/ϵ, then we release ⊥, otherwise we release
ẑ = f(g(x)) + Lap(∆p

LS/ϵ). Next, we prove that the mechanismM1 described above satisfies
reconstruction-privacy.

Theorem 4.4. Mechanism M1 satisfies uniform (2ϵ, δ/2,R)-reconstruction privacy Eq. 2, i.e.
∀x,x′ ∈ X , s.t. dX (x,x′) ≤ R

P(M(x) ∈ S) ≤ e2ϵP(M(x′) ∈ S) +
δ

2
(8)

Proof Sketch: Our proof is similar to the proof for the PTR framework[12] except the peculiarity
introduced due to our metric space formulation. First, we show that not releasing the answer (⊥)
satisfies the privacy definition. Next, we divide the proof into two parts, when the proposed bound is
incorrect (i.e. ∆LS(x,R) > ∆p

LS) and when it is correct. Let R̂ be the output of query ϕ.

P[ϕ̂(x,R) = R̂]

P[ϕ̂(x′,R) = R̂]
=

exp(−( |ϕ(x,R)−R̂|
R · ϵ))

exp(−( |ϕ(x
′,R)−R̂|
R · ϵ))

≤ exp(|ϕ(x′,R)− ϕ(x,R)| · ϵ
R
) ≤ exp(dX (x,x′) · ϵ

R
) ≤ exp(ϵ)
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MNIST (ϵ = 0, 0.10), (ϵ =∞, 0.93) FMNIST (ϵ = 0, 0.10), (ϵ =∞, 0.781) UTKFace (ϵ = 0, 0.502), (ϵ =∞, 0.732)

Informal ϵ = 1 ϵ = 2 ϵ = 5 ϵ = 10 Informal ϵ = 1 ϵ = 2 ϵ = 5 ϵ = 10 Informal ϵ = 1 ϵ = 2 ϵ = 5 ϵ = 10

Encoder 0.93 0.428 0.673 0.883 0.921 0.779 0.228 0.355 0.605 0.722 0.724 0.617 0.673 0.717 0.721

ARL 0.917 0.329 0.532 0.792 0.882 0.747 0.214 0.319 0.557 0.685 0.71 0.605 0.649 0.691 0.707

C 0.926 0.443 0.684 0.881 0.917 0.781 0.158 0.225 0.422 0.608 0.73 0.623 0.673 0.718 0.724
N 0.923 0.279 0.496 0.816 0.902 0.559 0.136 0.177 0.310 0.462 0.725 0.614 0.667 0.708 0.715

ARL-C 0.896 0.424 0.648 0.839 0.883 0.761 0.196 0.314 0.537 0.682 0.709 0.632 0.684 0.70 0.705

ARL-N 0.88 0.118 0.139 0.21 0.325 0.717 0.294 0.467 0.657 0.705 0.71 0.628 0.674 0.701 0.708

C-N 0.929 0.353 0.574 0.844 0.913 0.774 0.161 0.224 0.411 0.599 0.727 0.616 0.671 0.712 0.722

ARL-C-N 0.921 0.514 0.751 0.891 0.912 0.706 0.371 0.554 0.678 0.695 0.712 0.650 0.690 0.700 0.700

Table 1: Performance comparison for different baselines: Our posthoc framework enables com-
parison between different obfuscation techniques by fixing the privacy budget (ϵ). First four rows
are different approaches to protect against data reconstruction and the remaining rows below are
combinations of different approaches. The top row refers to the accuracy corresponding to different
datasets under two extremes of epsilons. ARL refers to widely used adversarial representation learn-
ing approach for regularizing representation based on a proxy attacker[35, 38, 65, 56]. Contrastive
refers to contrastive learning based informally privatizing mechanism introduced in [44].

Therefore, using the post-processing property - P[M(x) = ⊥] ≤ eϵP[M(x′) = ⊥]. Here, the first
inequality is due to triangle inequality, the second one is due to Lemma 4.3 and the third inequality
follows from dX (x,x′) ≤ R. Note that when ∆LS(x,R) > ∆p

LS , ϕ(x,R) = 0. Therefore, the
probability for the test to release the answer in this case is

P[M(x) ̸= ⊥] = P[ϕ(x,R) + Lap(
R
ϵ
) > log(

1

δ
) · R

ϵ
] = P[Lap(

R
ϵ
) > log(

1

δ
) · R

ϵ
]

Based on the CDF of Laplace distribution, P[M(x) ̸= ⊥] = δ
2 . Therefore, if ∆LS(x,R) > ∆p

LS , for
any S ⊆ Rd ∪ ⊥ in the output space ofM

P[M(x) ∈ S] = P[M(x) ∈ S ∩ {⊥}] + P[M(x) ∈ S ∩ {Rd}]

≤ eϵP[M(x′) ∈ S ∩ {⊥}] + P[M(x) ̸= ⊥] ≤ eϵP[M(x′) ∈ S] +
δ

2

If ∆LS(x,R) ≤ ∆p
LS then the mechanism is a composition of two (ϵ, δ,R)-reconstruction private algo-

rithm where the first algorithm (ϕ(x,R)) is (ϵ, δ/2,R)-reconstruction private and the second algorithm
is (ϵ, 0,R)-reconstruction private. Using composition, the algorithm is (2ϵ, δ/2,R)-reconstruction
private. We describeM1 step by step in the algorithm in supplementary. To summarize, we designed
the posthoc privacy framework that extends the PTR framework by making it tractable to get (ϵ, δ,R)-
reconstruction privacy. The exact local Lipschitz constant of the neural network based obfuscator is
estimated using mixed-integer programming based optimization developed by [25].

Computational feasibility: Our key idea is to add extra computation on the client side to turn
informally private representations to their formal counterpart. This extra computational cost is due to
the estimation of the local Lipschitz constant of the obfuscator network. However, the following two
factors of our framework make it practically feasible -

1. We compute the local Lipschitz constant (i.e. in a small neighborhood around a given point):
Our extension of the propose-test-release framework only requires us to operate in a small
local neighborhood instead of estimating the global Lipschitz constant which would be
much more computationally expensive.

2. Low number of parameters for obfuscator: Instead of estimating the Lipschitz constant of
the whole prediction model, we only require estimation of the obfuscator - a neural network
that has a significantly lower number of parameters in comparison to the prediction model.

We experimentally validate both of the above benefits in Sec 5. The fact that the local Lipschitz
constant is being computed over the same obfuscator allows room for optimizing performance by
caching. Our goal is to demonstrate the feasibility of bridging formal privacy guarantees and CI
mechanisms, hence, we did not explore such performance speedups.
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Figure 2: Runtime evaluation of local lipschitz computation for different (a) neighborhood radius,
(b) input dimensions, and (c) number of layers. While the runtime increases exponentially with
dimensions, it plateaus with increase in neighborhood radius. Since the input dimensions are same as
embedding dimensions it makes the algorithm favorable to our analysis.

5 Experiments

Experimental Setup: We evaluate different aspects of our proposed framework - i) E1: comparison
between different adversarial appraches, ii) E2: comparison with local differential privacy (LDP), iii)
E3: computational tractability of our proposed framework, and iv) E4: investigating role of ARL in
achieving privacy. We use MNIST[34], FMNIST[64] and UTKFace[67] dataset for all experiments.
All of them contain samples with high ambient dimensions (MNIST-784, FMNIST-784 and UTKFace-
4096). We use a deep CNN based β-VAE[22] for the pre-processing. We use LipMip[25] for
computing Lipschitz constant over ℓ∞ norm in the input space and ℓ1 norm in the output space. Our
baselines include a simple Encoder that projects the data to smaller dimensions using a neural network.
This encoder type approach has been used in the literature as Split Learning [19]. We include widely
used ARL techniques [65, 56, 38, 35, 66] and adversarial contrastive learning[44] which we denote
as C. We use noisy regularization (denoted by N) to improve classifier performance. We refer the
reader to supplementary for a detailed experimental setup, codebase, and hyper-parameters.

E1: Privacy-Utility Trade-off: Since our framework enables comparison between different obfusca-
tion techniques under same privacy budget, we evaluate test set accuracy as utility in Table 1. Our
results indicate that ARL complemented with contrastive and noise regularization helps in attaining
overall best performance among all possible combinations.

E2: Comparison between ARL and LDP: While ϵ-LDP definition provides a different privacy
guarantee than our proposed privacy definition, for reference we compare the performance between
LDP and CI and report results in supplementary. We note that for low values of ϵ, LDP techniques do
not yield any practical utility. This corroborates with the impossibility result of instance encoding [7]
and our discussion in Sec 2 about the inapplicability of traditional DP in the context of CI.

E3: Computational feasibility: We report end-to-end runtime evaluation on a CPU-based client
and achieve 2 sec/image (MNIST) and 3.5 sec/image (UTKFace). While plenty of room exists for
optimizing this runtime, we believe current numbers serve as a reasonable starting point for providing
formal privacy in ARL. As discussed in Sec 4, we compare the computation time of the obfuscator
across three factors relevant to our setup - i) Dimensionality of the input, ii) Size of the neighborhood,
and iii) Number of layers in the Obfuscator. We report the results in Fig. 2.

E4: What role does ARL play in achieving privacy? We investigate the contribution of adversarial
training in improving the privacy-utility trade-off. We train obfuscator models with different values
of α (weighing factor) for adversarial training. Our results in Fig 3 indicate that higher weighing of
adversarial regularization reduces the local Lipschitz constant, hence reducing the local sensitivity
of the neural network. Furthermore, for high values of α, the change in the local Lipschitz constant
reduces significantly for different sizes (R) of the neighborhood. These two observations can
potentially explain that ARL improves reconstruction privacy by reducing the sensitivity of the
obfuscator. However, as we observe in Table 1, the classifier can reduce its utility if ARL is
not complemented with noisy and contrastive regularization. We believe this finding could be of
independent interest to the adversarial defense community.
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Figure 3: Local sensitivity comparison for different values of α: The five bars for each α represent
different neighborhood radii. Increase in the value of α decreases the local Lipschitz constant (upper
bound on local sensitivity) indicating lesser amount of noise to be added for the same level of privacy.

6 Discussion

How to select privacy parameter R? One of the key difference between (ϵ, δ,R)-neighborhood
privacy and (ϵ, δ)-DP is the additional parameter R. The choice of R depends upon the neighborhood
in which a user wishes to get an ϵ level of indistinguishability. We discussed the equivalence
of R and k in group Differential Privacy in Sec 3.2. To understand the role of R, we perform
reconstruction attacks on privatized encoding obtained from our framework by training an ML
model to reconstruct original images. We compare reconstruction results for different values of
ϵ and R on four distinct metrics for images and report in Supplementary. To assess the level of
indistinguishability, we project the original images into embedding space and sample points from
the boundary of neighborhoods of different R. We observe that as the boundary of the neighborhood
increases, the images become perceptually different from the original image. For extremely large
radii, the images change significantly enough that their corresponding label may change too. Such
visualizations can be used to semantically understand different values of R.
How to propose ∆p

LS? Our framework requires a proposal on the upper bound of local sensitivity in
a private manner. One possible way to obtain ∆p

LS is by using the Lipschitz constant of training data
samples used in training the obfuscator. We choose ∆p

LS by computing the mean (µ) and standard
deviation (σ) of local sensitivity on the training dataset (assumed to be known under our threat model),
then we keep ∆p

LS = µ + n ∗ σ where n allows a trade-off between the likelihood of releasing
the samples under PTR and adding extra noise to data. We used n = 3 in our experiments. Since
empirically, the value of local sensitivity appears to be following a gaussian, using confidence interval
serves as a good proxy. Fig 3 shows that for higher values of α, the variability in the local Lipschitz
constant decreases indicating the validity of the bound would hold for a large number of samples.
Limitations: i) Since we utilize the PTR framework, outlier samples may not get released due to
high sensitivity, this is expected since these outlier samples are likely to be misclassified anyway.
ii) Lipschitz constant computation is limited to ReLU based DNNs, therefore more sophisticated
obfuscator architectures are currently not compatible with our proposed framework and we leave it
as part of the future work. iii) Choosing the privacy parameter (R) could be challenging for certain
datasets and might vary based on user preferences. We believe the choice of such a parameter would
depend upon the context in which CI is being applied.

7 Related Work

Collaborative Inference techniques aim to learn a task-oriented privacy preserving encoding of data.
Majority of the works in this area either protect against sensitive attribute leakage [20, 50, 5, 36]
or input reconstruction [52, 56, 39, 35, 38]. These techniques usually evaluate their privacy using
empirical attacks since the mechanism is learned using gradient based min-max optimization making
it infeasible for the worst-case privacy analysis. The problem is exacerbated in the context of input
reconstruction because of the lack of formal definition for reconstruction privacy. The goal of our
work is to create a framework that make the existing techniques amenable to formal privacy analysis.
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While theoretical analyses [68, 69, 51] of ARL objectives have identified fundamental trade-offs
between utility and attribute leakage, they are difficult to formalize as a worst-case privacy guarantee
especially for deep neural networks.

Privacy definitions that extend the DP definition to incorporate some of its restrictions [29] include
dX -Privacy [8], and Pufferfish [30]. Our privacy definition is a specific instantiation of the dX -
Privacy [8] framework that extends DP to general metric spaces. Our instantiation is focused on
reconstruction privacy for individual samples instead of membership inference attacks [13]. Existing
works in DP for reconstruction attacks [6, 58] focus on protecting training data from an attacker that
has access to model weights (whitebox attacker) or output of model queries (blackbox attacker). In
contrast, our work only focuses on the privacy of the data used during the prediction stage and not
training data.

Lipschitz constant estimation for neural networks has been used to guarantee network’s stability to
perturbations. Existing works either provide an upper bound [63, 33, 14], exact Lipschitz constant [25,
24] or Lipschitz constant regularization [53, 23] during the training stage. Some existing works have
explored the relationship between adversarial robustness and DP model training [46, 47, 59]. We
utilize similar ideas of perturbation stability but for privacy. Shavit and Gjura [54] use Lipschitz
neural networks [16] to learn a private mechanism design for summary statistics such as median,
however their mechanism design lack privacy guarantee.

Posthoc approach to privacy applies privacy preserving mechanism in a data dependent manner.
Smooth sensitivity [41] and PTR [11] reduce the noise magnitude because the local sensitivity is only
equal to global sensitivity in the worst case and not average case. Privacy odometer [49], Ex-post
privacy loss [37] and Rényi privacy filter [15] track privacy loss as the query is applied over data. Our
works builds upon the PTR framework in order to give high privacy for less sensitive data. However,
as we show in Sec 4, our framework reformulates the PTR algorithm to make it tractable under our
setup.

8 Conclusion
In this work we take a first step towards bridging empirical techniques in ARL and formal privacy
mechanisms. The posthoc nature of our framework allows reasoning about privacy without any
modification to the obfuscation algorithm, hence, making it easy to integrate for benchmarking
existing and future techniques. We introduced a privacy definition that formalizes ARL and designed
a corresponding privacy mechanism. An exciting future direction for extending our framework is
to integrate NNs for designing more effective privacy mechanisms for other sophisticated queries
beyond CI. Data adaptive mechanisms are an exciting area in DP and our improvement to PTR can
be potentially applied for other queries where PTR might be intractable currently.
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