
Organization of the Appendix

The appendix is organized as follows:

• Appendix A contains the proofs of the results from Section 2.
• Appendix B contains the proofs of existing results about FTRL for completeness.
• Appendix C contains the proofs of upper bounds on regret from Section 3.
• Appendix D contains the proofs of lower bounds on regret from Section 3.
• Appendix E contains the proofs of results about online linear control from Section 4.1.
• Appendix F contains the proofs of results about online performative prediction from Sec-

tion 4.2.
• Appendix G discusses how to implement Algorithm 1 efficiently.
• Appendix H presents an algorithm for OCO with unbounded memory that provides the

same upper bound on policy regret as Algorithm 1 while guaranteeting a small number of
switches (Algorithm 2).

• Appendix I presents simulation experiments.

A Framework

In this section prove Theorem 2.1. But first we prove a lemma that we use for proofs involving linear
sequence dynamics with the ξ-weighted p-norm (Definition 2.3). Recall that ∥ · ∥U denotes the norm
associated with a space U and the operator norm ∥L∥ for a linear operator L : U → V is defined as
∥L∥ = maxu:∥u∥U≤1 ∥Lu∥V .
Lemma A.1. Consider an online convex optimization with unbounded memory problem specified
by (X ,H, A,B). If (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm for
p ≥ 1, then for all k ≥ 1

ξk∥Ak−1 · · ·A0∥ ≤ ∥Ak∥.

Proof. Let x ∈ X with ∥x∥X = 1. We have

ξk∥Ak−1 · · ·A0x∥X = ∥Ak(x, 0, . . .)∥H ≤ ∥Ak∥∥(x, 0, . . .)∥H ≤ ∥Ak∥,
where the last inequality follows because ∥(x, 0, . . .)∥H = ξ0∥x∥X and ξ0 = 1 by Definition 2.3.
Therefore, ∥Ak−1 · · ·A0∥ ≤ ∥Ak∥. ■

Theorem 2.1. Consider an online convex optimization with unbounded memory problem spec-
ified by (X ,H, A,B). If ft is L-Lipschitz continuous, then f̃t is L̃-Lipschitz continuous for
L̃ ≤ L

∑∞
k=0 ∥Ak∥. If (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm

for p ≥ 1, then L̃ ≤ L
(∑∞

k=0 ∥Ak∥p
) 1

p .

Proof. Let x, x̃ ∈ X . For the general case, we have∣∣∣f̃t(x)− f̃t(x̃)
∣∣∣ = ∣∣∣∣∣ft

(
t−1∑
k=0

AkBx

)
− ft

(
t−1∑
k=0

AkBx̃

)∣∣∣∣∣ by Definition 2.1

≤ L

∥∥∥∥∥
t−1∑
k=0

AkB(x− x̃)

∥∥∥∥∥
H

ft is L-Lipschitz continuous

≤ L

t−1∑
k=0

∥Ak∥∥B∥∥x− x̃∥X

≤ L

t−1∑
k=0

∥Ak∥∥x− x̃∥X by Assumption A2

≤ L

∞∑
k=0

∥Ak∥∥x− x̃∥X .

15

If (H,X , A,B) follows linear sequence dynamics with the ξ-weighted p-norm for p ≥ 1, then we
have∣∣∣f̃t(x)− f̃t(x̃)

∣∣∣ = ∣∣∣∣∣ft
(

t−1∑
k=0

AkBx

)
− ft

(
t−1∑
k=0

AkBx̃

)∣∣∣∣∣ by Definition 2.1

≤ L

∥∥∥∥∥
t−1∑
k=0

AkB(x− x̃)

∥∥∥∥∥
H

ft is L-Lipschitz continuous

= L ∥(0, A0(x− x̃), A1A0(x− x̃), . . .)∥ by Definition 2.3

= L

(
t−1∑
k=0

ξpk ∥Ak−1 · · ·A0(x− x̃)∥p
) 1

p

by Definition 2.3

≤ L

(
t−1∑
k=0

∥Ak∥p
) 1

p

∥x− x̃∥X by Lemma A.1

≤ L

(∞∑
k=0

∥Ak∥p
) 1

p

∥x− x̃∥X . ■

B Standard Analysis of Follow-the-Regularized-Leader

In this section we state and prove some existing results about the follow-the-regularized-leader
(FTRL) algorithm [Shalev-Shwartz and Singer, 2006, Abernethy et al., 2008]. These results are well
known in the literature, but we prove them here for completeness and use them in the remainder of
the paper. We use the below results for functions f̃t with Lipschitz constants L̃. However, in this
section we use a more general notation, denoting functions by gt and their Lipschitz constant by Lg .

Consider the following setup for an online convex optimization (OCO) problem. Let T denote the
time horizon. Let the decision space X be a closed, convex subset of a Hilbert space and gt : X → R
be loss functions chosen by an oblivious adversary. The functions gt are convex and Lg-Lipschitz
continuous. The game between the learner and the adversary proceeds as follows. In each round
t ∈ [T], the learner chooses xt ∈ X and the learner suffers loss gt(xt). The goal of the learner is to
minimize (static) regret,

Rstatic
T =

T∑
t=1

gt(xt)−min
x∈X

T∑
t=1

gt(x). (3)

Let R : X → R be an α-strongly convex regularizer satisfying |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X .
The FTRL algorithm chooses iterates xt as

xt ∈ argmin
x∈X

t−1∑
s=1

gs(x) +
R(x)

η
, (4)

where η is a tunable parameter referred to as the step-size. In what follows, let g0 = R
η . The analysis

in this section closely follows Karlin [2017].
Lemma B.1. For all x ∈ X , FTRL (Eq. (4)) satisfies

T∑
t=0

gt(x) ≥
T∑

t=0

gt(xt+1).

Proof. We use proof by induction on T . The base case is T = 0. By definition, x1 ∈
argminx∈X R(x). Therefore, R(x) ≥ R(x1) for all x ∈ X . Recalling the notation g0 = R

η

proves the base case. Now, assume that the lemma is true for T − 1. That is,

T−1∑
t=0

gt(x) ≥
T−1∑
t=0

gt(xt+1).

16

Let x ∈ X be arbitrary. Since xT+1 ∈ argminx∈X
∑T

t=0 gt(x), we have

T∑
t=0

gt(x) ≥
T∑

t=0

gt(xT+1)

=

T−1∑
t=0

gt(xT+1) + gT (xT+1)

≥
T−1∑
t=0

gt(xt+1) + gT (xT+1) by inductive hypothesis

=

T∑
t=0

gt(xt+1).

This completes the proof. ■

Lemma B.2. For all x ∈ X , FTRL (Eq. (4)) satisfies

T∑
t=1

gt(xt)−
T∑

t=1

gt(x) ≤
D

η
+

T∑
t=1

gt(xt)− gt(xt+1).

Proof. Note that

T∑
t=1

gt(xt)−
T∑

t=1

gt(x) ≤
T∑

t=1

gt(xt)−
T∑

t=1

gt(x) + g0(x)− g0(x1)

because x1 ∈ argminx∈X g0(x). The proof of this lemma now follows by using the above inequal-
ity, Lemma B.1, the definition g0 = R

η , and the definition of D. ■

Theorem B.1. FTRL (Eq. (4)) satisfies

∥xt+1 − xt∥X ≤ η
Lg

α
and Rstatic

T ≤ D

η
+ η

TL2
g

α
.

Choosing η =
√

αD
TL2

g
yields

Rstatic
T ≤ O

(√
D

α
TL2

g

)
.

Proof. Let x∗ ∈ argminx∈X
∑T

t=1 gt(x). Using Lemma B.2 we have

T∑
t=1

gt(xt)−
T∑

t=1

gt(x
∗) ≤ D

η
+

T∑
t=1

gt(xt)− gt(xt+1). (5)

We can bound the summands in the sum above as follows. Define Gt(x) =
∑t−1

s=0 gs(x). Then,
xt ∈ argminx∈X Gt(x). and xt+1 ∈ argminx∈X Gt+1(x). Since {gs}Ts=1 are convex, R is
α-strongly-convex, and g0 = R

η , we have that Gt is α
η -strongly-convex. So,

Gt(xt+1) ≥ Gt(xt) +
α

2η
∥xt+1 − xt∥2X ,

Gt+1(xt) ≥ Gt+1(xt+1) +
α

2η
∥xt+1 − xt∥2X .

Adding the above two inequalities yields

gt(xt)− gt(xt+1) ≥
α

η
∥xt+1 − xt∥2X . (6)

17

Since gt are convex and Lg-Lipschitz continuous, we also have

gt(xt)− gt(xt+1) ≤ Lg∥xt+1 − xt∥X . (7)

Combining Eqs. (6) and (7) we have

∥xt+1 − xt∥X ≤ η
Lg

α
.

This proves the first part of the theorem. Now, using this in Eq. (7) we have

gt(xt)− gt(xt+1) ≤ η
L2
g

α
. (8)

Finally, substituting this in Eq. (5) proves the second part of the theorem. ■

C Regret Analysis: Upper Bounds

First we prove a lemma that bounds the difference in the value of ft evaluated at the actual history ht

and an idealized history that would have been obtained by playing xt in all prior rounds.
Lemma C.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). If the decisions (xt) are generated by Algorithm 1, then∣∣∣ft(ht)− f̃t(xt)

∣∣∣ ≤ η
LL̃H1

α

for all rounds t. When (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm
for p ≥ 1, then ∣∣∣ft(ht)− f̃t(xt)

∣∣∣ ≤ η
LL̃Hp

α
for all rounds t.

Proof. We have∣∣∣ft(ht)− f̃t(xt)
∣∣∣ = ∣∣∣∣∣ft(ht)− ft

(
t−1∑
k=0

AkBxt

)∣∣∣∣∣ by Definition 2.1

≤ L

∥∥∥∥∥ht −
t−1∑
k=0

AkBxt

∥∥∥∥∥ by Assumption A4

= L

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ by definition of ht

= L

∥∥∥∥∥
t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥︸ ︷︷ ︸
(a)

. (9)

First consider the general case where (X ,H, A,B) does not necessarily follow linear sequence
dynamics. We can bound the term (a) as∥∥∥∥∥

t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥ ≤
t−1∑
k=0

∥∥AkB
∥∥ ∥xt − xt−k∥

≤
t−1∑
k=0

∥∥AkB
∥∥ kη L̃

α
by Theorem B.1

≤
t−1∑
k=0

∥∥Ak
∥∥ kη L̃

α
by Assumption A2

≤ η
L̃

α
H1.

18

Plugging this into Eq. (9) completes the proof for the general case. Now consider the case when
(X ,H, A,B) follows linear sequence dynamcis with the ξ-weighted p-norm. We can bound the term
(a) as∥∥∥∥∥

t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥ = ∥(0, A0(xt − xt−1), A1A0(xt − xt−2), . . .)∥ by Definition 2.3

=

(
t−1∑
k=0

ξpk ∥Ak−1 · · ·A0(xt − xt−k)∥p
) 1

p

by Definition 2.3

≤

(
t−1∑
k=0

ξpk ∥Ak−1 · · ·A0∥p ∥xt − xt−k∥p
) 1

p

≤

(
t−1∑
k=0

∥∥Ak
∥∥p ∥xt − xt−k∥p

) 1
p

by Lemma A.1

≤ η
L̃

α

(
t−1∑
k=0

∥∥Ak
∥∥p kp) 1

p

by Theorem B.1

≤ η
L̃

α
Hp.

Plugging this into Eq. (9) completes the proof. ■

Now we restate and prove Theorem 3.1

Theorem 3.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D

for all x, x̃ ∈ X . Algorithm 1 with step-size η satisfies RT (FTRL) ≤ D
η + η TL̃2

α + η TLL̃H1

α . If

η =
√

αD
TL̃(LH1+L̃)

, then

RT (FTRL) ≤ O

(√
D

α
TLL̃H1

)
.

When (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm, then all of the
above hold with Hp instead of H1.

Proof. First consider the general case where (X ,H, A,B) does not necessarily follow linear sequence
dynamics. Let x∗ ∈ argminx∈X

∑T
t=1 f̃t(x). Note that we can write the regret as

RT (FTRL) =
T∑

t=1

ft(ht)−min
x∈X

T∑
t=1

f̃t(x)

=

T∑
t=1

ft(ht)− f̃t(xt)︸ ︷︷ ︸
(a)

+

T∑
t=1

f̃t(xt)− f̃t(x
∗)︸ ︷︷ ︸

(b)

.

We can bound term (a) using Lemma C.1 and term (b) using Theorem B.1. Therefore, we have

RT (FTRL) =
T∑

t=1

ft(ht)− f̃t(xt)︸ ︷︷ ︸
(a)

+

T∑
t=1

f̃t(xt)− f̃t(x
∗)︸ ︷︷ ︸

(b)

≤ η
TLL̃H1

α
+

D

η
+ η

T L̃2

α
.

19

Choosing η =
√

αD
TL̃(LH1+L̃)

yields

RT (FTRL) ≤ O

(√
D

α
TLL̃H1

)
,

where we used the definition of p-effective memory capacity (Definition 2.4) and the bound on
L̃ (Theorem 2.1) to simplify the above expression. This completes the proof for the general case.
The proof for when (X ,H, A,B) follows linear sequence dynamcis with the ξ-weighted p-norm
is the same as above, except we bound the term (a) above using Lemma C.1 for linear sequence
dynamics. ■

Now we restate and prove Theorem 3.3.
Theorem 3.3. Consider an online convex optimization with finite memory problem with constant
memory length m specified by (X ,H = Xm, Afinite,m, Bfinite,m). Let the regularizer R : X → R
be α-strongly-convex and satisfy |R(x)− R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 1 with step-size

η =
√

αD

TL̃(Lm
3
2 +L̃)

satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃m

3
2

)
≤ O

(
m

√
D

α
TL2

)
.

The OCO with finite memory problem, as defined in the literature, follows linear sequence dynamics
with the 2-norm. In this subsection we consider a more general version of the OCO with finite
memory problem that follows linear sequence dynamics with the p-norm. We provide an upper bound
on the policy regret for this more general formulation and the proof of Theorem 3.3 follows as a
special case when p = 2.
Theorem C.1. Consider an online convex optimization with finite memory problem with constant
memory length m, (X ,H = Xm, Afinite,m, Bfinite,m). Assume that the problem follows linear se-
quence dynamics with the p-norm for p ≥ 1. Let the regularizer R : X → R be α-strongly-convex
and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 1 with step-size η satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃m

p+1
p

)
≤ O

(√
D

α
TL2m

p+2
p

)
.

Proof. Using Theorem 3.1 it suffices to bound L̃ and Hp for this problem. Note that ∥Ak
finite∥ = 1 if

k ≤ m and 0 otherwise. Using this we have

Hp =

(∞∑
k=0

(
k∥Ak

finite∥
)p) 1

p

=

(
m∑

k=0

kp

) 1
p

≤ O
(
m

p+1
p

)
.

This proves the first inequality in the statement of the theorem. The second inequality follows from
the above and Theorem 2.1, which states that

L̃ ≤ L

(∞∑
k=0

∥Ak
finite∥p

) 1
p

= Lm
1
p . ■

Finally, we provide an upper bound on the policy regret for the OCO with ρ-discounted infinite
memory problem. For simplicity, we consider the case when the problem follows linear sequence
dynamics with the 2-norm instead of a general p-norm.
Theorem C.2. Consider an online convex optimization with ρ-discounted infinite memory problem
(X ,H, Ainfinite,ρ, Binfinite). Suppose that the problem follows linear sequence dynamics with the 2-
norm. Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all
x, x̃ ∈ X . Algorithm 1 with step-size η satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃(1− ρ2)−

3
2

)
≤ O

(√
D

α
TL2(1− ρ2)−2

)
≤ O

(√
D

α
TL2(1− ρ)−2

)
.

20

Proof. Using Theorem 3.1, it suffices to bound L̃ and Hp for this problem. Recall that ∥Ak
infinite,ρ∥ =

ρk. Using this we have

H2 =

(∞∑
k=0

(
k∥Ak

finite∥
)2) 1

2

=

(∞∑
k=0

(
kρk
)2) 1

2

≤ (1− ρ2)−
3
2 .

This proves the first inequality in the statement of the theorem. The second inequality follows from
the above and Theorem 2.1, which states that

L̃ ≤ L

(∞∑
k=0

∥Ak
infinite,ρ∥2

) 1
2

= L(1− ρ2)−
1
2 .

The last inequality follows because 1− ρ2 = (1 + ρ)(1− ρ), which implies that 1− ρ ≤ 1− ρ2 ≤
2(1− ρ) because ρ ∈ (0, 1). ■

C.1 Existing Regret Bound for OCO with Finite Memory

In this subsection we provide a detailed comparison of our upper bound on the policy regret for OCO
with finite memory with that of Anava et al. [2015]. The material in this subsection comes from
Appendix A.2 of their arXiv version or Appendix C.2 of their conference version.

The existing upper bound on regret is

O
(√

DTλm
3
2

)
,

where D = maxx,x̃∈X |R(x)−R(x̃)|. Although the parameter λ is defined in terms of dual norms
of the gradient of f̃t, it is essentially the Lipschitz-continuity constant for f̃t: for all x, x̃ ∈ X ,∣∣∣f̃t(x)− f̃t(x̃)

∣∣∣ ≤ √
λα∥x− x̃∥,

where α is the strong-convexity parameter of the regularizer R (or σ in the notation of Anava et al.
[2015]). Therefore, the existing regret bound can be rewritten as

O

(
L̃

√
D

α
Tm

3
2

)
.

Our upper bound on the policy regret for OCO with finite memory Theorem 3.3 is

O

(√
D

α
LL̃Tm

3
2

)
.

Since L̃ ≤
√
mL by Theorem 2.1, this leads to an improvement by a factor of m

1
4 .

D Regret Analysis: Lower Bounds

We first restate Theorems 3.2 and 3.4.
Theorem 3.2. There exists an instance of the online convex optimization with unbounded memory
problem, (X ,H, A,B), that follows linear sequence dynamics with the ξ-weighted p-norm and there
exist L-Lipschitz continuous loss functions {ft : H → R}Tt=1 such that the regret of any algorithm A
satisfies

RT (A) ≥ Ω

(√
TLL̃Hp

)
.

Theorem 3.4. There exists an instance of the online convex optimization with finite memory problem
with constant memory length m, (X ,H = Xm, Afinite,m, Bfinite,m), and there exist L-Lipschitz
continuous loss functions {ft : H → R}Tt=1 such that the regret of any algorithm A satisfies

RT (A) ≥ Ω
(
m
√
TL2

)
.

21

Timex1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ϵ1 ϵ2 ϵ3 ϵ4

f4(h4) = ϵ2 3−
1
2 (x2 + x3 + x4)

f5(h5) = ϵ2 3−
1
2 (x3 + x4)

f6(h6) = ϵ2 3−
1
2 (x4)

T = 12,m = 3, L = 1. Resample every m rounds.

Figure 2: An illustration of the loss functions ft for the OCO with finite memory lower bound.
Suppose T = 12,m = 3, L = 1, and p = 2. Time is divided into blocks of size m = 3. Consider
round t = 5. The history is h5 = (x3, x4, x5). The loss function f5(h5) is a product of three terms:
a random sign ϵ2 sampled for the block that round 5 belongs to, namely, block 2; a scaling factor of
m− 1

2 ; a sum over the decisions in the history excluding those that were chosen after observing ϵ2,
i.e., a sum over x3 and x4, excluding x5.

Theorem 3.2 follows from Theorem 3.4. However, the lower bound is true for a much broader class of
problems as we show in this section. We first provide a lower bound for a more general formulation
of the OCO with finite memory problem (Theorem D.1). The proof of Theorem 3.4 follows as a
special case when p = 2. Then, we provide a lower bound for the OCO with ρ-discounted infinite
memory problem (Theorem D.2).

The OCO with finite memory problem, as defined in the literature, follows linear sequence dynamics
with the 2-norm. In this section we consider a more general version of the OCO with finite memory
problem that follows linear sequence dynamics with the p-norm. We provide a lower bound on the
policy regret for this more general formulation and the proof of Theorem 3.4 follows as a special
case when p = 2.
Theorem D.1. For all p ≥ 1, there exists an instance of the online convex optimization with finite
memory problem with constant memory length m, (X ,H = Xm, Afinite,m, Bfinite,m), that follows
linear sequence dynamics with the p-norm, and there exist L-Lipschitz continuous loss functions
{ft : H → R}Tt=1 such that the regret of any algorithm A satisfies

RT (A) ≥ Ω

(√
TL2m

p+2
p

)
.

Proof. Let X = [−1, 1] and consider an OCO with finite memory problem with constant memory
length m, (X ,H = Xm, Afinite,m, Bfinite,m), that follows linear sequence dynamics with the p-norm.
For simplicity, assume that T is a multiple of m (otherwise, the same proof works but with slightly
more tedious bookkeeping) and that L = 1 (otherwise, multiply the functions ft defined below by L).

Divide the T rounds into N = T
m blocks of m rounds each. Sample N independent Rademacher

random variables {ϵ1, . . . , ϵN}, where each ϵi is equal to ±1 with probability 1
2 . Recall that ht =

(xt, . . . , xt−m+1). Define the loss functions {ft}Tt=1 as follows. (See Fig. 2 for an illustration.) If
t ≤ m, let ft = 0. Otherwise, let

ft(ht) = ϵ⌈ t
m ⌉m

1−p
p

m−1−(t−m⌊ t
m ⌋−1)∑

k=0

xm⌊ t
m ⌋+1−k

= ϵ⌈ t
m ⌉m

1−p
p

(
xt−m+1 + · · ·+ xm⌊ t

m ⌋+1

)
.

In words, the loss in the first m rounds is equal to 0. Thereafter, in round t the loss is equal to a
random sign ϵ⌈ t

m ⌉, which is fixed for that block, times a scaling factor, which is chosen according
to the p-norm to ensure that the Lipschitz constant L is at most 1, times a sum of a subset of past
decisions in the history ht = (xt, . . . , xt−m+1). This subset consists of all past decisions until and
including the first decision of the current block, which is the decision in round m⌊ t

m⌋+ 1.

The functions ft are linear, so they are convex. In order to show that they satisfy Assumptions A3
and A4, it remains to show that they are 1-Lipschitz continuous. Let h = (x(1), . . . , x(m)) and

22

h̃ = (x̃(1), . . . , x̃(m)) be arbitrary elements of H = Xm. We have∣∣∣ft(h)− ft(h̃)
∣∣∣

≤
∣∣∣ϵ⌈ t

m ⌉m
1−p
p

(
(x(1) − x̃(1)) + · · ·+ (x(m) − x̃(m))

)∣∣∣
≤ m

1−p
p

∣∣∣(x(1) − x̃(1)) + · · ·+ (x(m) − x̃(m))
∣∣∣ because ϵ⌈ t

m ⌉ ∈ {−1,+1}

≤ m
1−p
p m1− 1

p

(
m∑

k=1

∣∣∣x(k) − x̃(k)
∣∣∣p) 1

p

by Hölder’s inequality

= ∥h− h̃∥H,

where the last equality follows because of our assumption that the problem that follows linear
sequence dynamics with the p-norm.

First we will show that the total expected loss of any algorithm is 0, where the expectation is with
respect to the randomness in the choice of {ϵ1, . . . , ϵN}. The total loss in the first block is 0 because
ft = 0 for t ∈ [m]. For each subsequent block n ∈ {2, . . . , N}, the total loss in block n depends on
the algorithm’s choices made before observing ϵn, namely, {x(n−2)m+2, . . . , x(n−1)m+1}. Since ϵn
is equal to ±1 with probability 1

2 , the expected loss of any algorithm in a block is equal to 0 and the
total expected loss is also equal to 0.

Now we will show that the expected loss of the benchmark is at most

−O

(√
Tm

p+2
p

)
,

where the expectation is with respect to the randomness in the choice of {ϵ1, . . . , ϵN}. We have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

f̃t(x)

= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
1−p
p × x× (m− (t− (n− 1)m− 1))

 .

The first equality follows from first summing over blocks and then summing over the rounds in that
block. The second equality follows from the definitions of ft above and of f̃t (Definition 2.1). By the
defintion of f̃t, the history ht consists of m copies of x for t ≥ m.. By the definition of ft, which
sums over all past decisions until the first round of the current block, we have that within a block the
sum first extends over m copies of x (in the first round of the block), then m− 1 copies of x (in the
second round of the block), and so on until the last round of the block. So, we have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
1−p
p × x× (m− (t− (n− 1)m− 1))

= E

[
min
x∈X

N∑
n=2

m−1∑
k=0

ϵnm
1−p
p × x× (m− k)

]

= m
1−p
p

m2 +m

2
E

[
min
x∈X

N∑
n=2

ϵnx

]

= m
1−p
p

m2 +m

2
E

[
min

x∈{−1,1}

N∑
n=2

ϵnx

]

= m
1−p
p

m2 +m

2
E

[
1

2

N∑
n=2

ϵn(−1 + 1)− 1

2

∣∣∣∣∣
N∑

n=2

ϵn(−1− 1)

∣∣∣∣∣
]
,

23

where the second-last equality follows because the minima of a linear function over an interval is at
one of the endpoints and the last equality follows because min{x, y} = 1

2 (x+ y)− 1
2 |x− y|. Since

ϵn are Rademacher random variables equal to ±1 with probability 1
2 , we can simplify the above as

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= m

1−p
p

m2 +m

2
E

[
−1

2

∣∣∣∣∣
N∑

n=2

−2ϵn

∣∣∣∣∣
]

= m
1−p
p

m2 +m

2
E

[
−

∣∣∣∣∣
N∑

n=2

ϵn

∣∣∣∣∣
]

= −m
1−p
p

m2 +m

2
E

[∣∣∣∣∣
N∑

n=2

ϵn

∣∣∣∣∣
]

≤ −m
1−p
p

m2 +m

2

√
N,

where the last inequality follows from Khintchine’s inequality. Using the definition N = T
m , we have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
≤ −m

1−p
p

m2 +m

2

√
T

m

= −1

2

√
T
(
m

3
2+

1−p
p +m

1
2+

1−p
p

)
≤ −O

(√
Tm

3
2+

1−p
p

)
= −O

(√
Tm

p+2
2p

)
= −O

(√
Tm

p+2
p

)
.

Therefore, we have

Eϵ1,...,ϵN [RT (FTRL)] = E

[
T∑

t=1

ft(ht)

]
− E

[
min
x∈X

T∑
t=1

f̃t(x)

]
≥ Ω

(√
Tm

p+2
p

)
.

This completes the proof. ■

Now we provide a lower bound for the OCO with ρ-discounted infinite memory problem. For
simplicity, we consider the case when the problem follows linear sequence dynamics with the 2-norm
instead of a general p-norm.

Theorem D.2. Let ρ ∈ [12 , 1). There exists an instance of the online convex optimization with ρ-
discounted infinite memory problem, (X ,H, Ainfinite,ρ, Binfinite), that follows linear sequence dynamics
with the 2-norm and there exist L-Lipschitz continuous loss functions {ft : H → R}Tt=1 such that
the regret of any algorithm A satisfies

RT (A) ≥ Ω
(√

TL2(1− ρ)−2
)
.

The proof is very similar to that of Theorem D.1 with slight adjustments to account for a ρ-discounted
infinite memory instead of a finite memory of constant size m.

Proof. Let X = [−1, 1] and consider an OCO with infinite memory problem with discount factor
ρ, (X ,H, Ainfinite,ρ, Binfinite), that follows linear sequence dynamics with the 2-norm. For simplicity,
assume that T is a multiple of (1− ρ)−1 (otherwise, the same proof works but with slightly more
tedious bookkeeping) and that L = 1 (otherwise, multiply the functions ft defined below by L).

Define m = (1 − ρ)−1. Divide the T rounds into N = T
m blocks of m rounds each. Sample

N independent Rademacher random variables {ϵ1, . . . , ϵN}, where each ϵi is equal to ±1 with

24

probability 1
2 . Recall that ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . .). Define the loss functions {ft}Tt=1 as
follows. If t ≤ m, let ft = 0. Otherwise, let

ft(ht) = ϵ⌈ t
m ⌉m

− 1
2

m−1∑
k=0

ρk+t−m⌊ t
m ⌋−1xm⌊ t

m ⌋+1−k.

The functions ft are linear, so they are convex. In order to show that they satisfy Assumptions A3
and A4, it remains to show that they are 1-Lipschitz continuous. Let h = (x(1), ρx(2), . . .) and
h̃ = (x̃(1), ρx̃(2), . . .) be arbitrary elements of H. We have∣∣∣ft(h)− ft(h̃)

∣∣∣
≤

∣∣∣∣∣ϵ⌈ t
m ⌉m

− 1
2

m∑
k=1

ρk−1
(
x(k) − x̃(k)

)∣∣∣∣∣
≤ m− 1

2

∣∣∣∣∣
m∑

k=1

ρk−1
(
x(k) − x̃(k)

)∣∣∣∣∣ because ϵ⌈ t
m ⌉ ∈ {−1,+1}

≤ m− 1
2m

1
2

(
m∑

k=1

ρ2(k−1)
∣∣∣x(k) − x̃(k)

∣∣∣2) 1
2

by Hölder’s inequality

≤ ∥h− h̃∥H,

where the last equality follows because the follows linear sequence dynamics with the 2-norm.

First we will show that the total expected loss of any algorithm is 0, where the expectation is with
respect to the randomness in the choice of {ϵ1, . . . , ϵN}. The total loss in the first block is 0 because
ft = 0 for t ∈ [m]. For each subsequent block n ∈ {2, . . . , N}, the total loss in block n depends on
the algorithm’s choices made before observing ϵn, namely, {x(n−2)m+2, . . . , x(n−1)m+1}. Since ϵn
is equal to ±1 with probability 1

2 , the expected loss of any algorithm in a block is equal to 0 and the
total expected loss is also equal to 0.

Now we will show that the expected loss of the benchmark is at most

−O
(√

T (1− ρ)−2
)
,

where the expectation is with respect to the randomness in the choice of {ϵ1, . . . , ϵN}. We have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

f̃t(x)

= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
− 1

2

m−1∑
k=0

ρk+t−(n−1)m−1x

= m− 1

2E

min
x∈X

N∑
n=2

ϵnx

nm∑
t=(n−1)m+1

ρt−(n−1)m−1
m−1∑
k=0

ρk

= m− 1

2
1− ρm

1− ρ
E

min
x∈X

N∑
n=2

ϵnx

nm∑
t=(n−1)m+1

ρt−(n−1)m−1

= m− 1

2

(
1− ρm

1− ρ

)2

E

[
min
x∈X

N∑
n=2

ϵnx

]
︸ ︷︷ ︸

(a)

.

25

The term (a) above can be bounded above by −
√
N as in the proof of Theorem D.1 using Khintchine’s

inequality. Therefore, using that N = T
m and m = (1− ρ)−1 we have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
≤ −m− 1

2

(
1− ρm

1− ρ

)2 √
N

≤ −(1− ρ)
1
2

(
1− ρm

1− ρ

)2√
T (1− ρ)

= −
√
T
(1− ρm)2

1− ρ

= −
√
T (1− ρ)−2(1− ρm)2

≤ −O
(√

T (1− ρ)−2
)
,

where the last inequality follows from the assumption that ρ ∈ [12 , 1) and the following argument:

ρm = (1− (1− ρ))m = (1− (1− ρ))
1

1−ρ ≤ 1

e

⇒ (1− ρm) ≥ 1− 1

e

⇒ (1− ρm)2 ≥
(
1− 1

e

)2

⇒ −(1− ρm)2 ≤ −
(
1− 1

e

)2

This completes the proof. ■

E Online Linear Control

E.1 Formulation as OCO with Unbounded Memory

Now we formulate the online linear control problem in our framework by defining the decision space
X , the history space H, and the linear operators A : H → H and B : W → H. Then, we define
the functions ft : H → R in terms of ct and finally, prove an upper bound on the policy regret. For
notational convenience, let (M [s]) and (Yk) denote the sequences (M [1],M [2], . . .) and (Y0, Y1, . . .)
respectively.

Recall that we fix K ∈ K to be an arbitrary (κ, ρ)-strongly stable linear controller and consider
the disturbance-action controller policy class MK (Definition 4.1). For the rest of this paper let
F̃ = F −GK. The first step is a change of variables with respect to the control inputs from linear
controllers to DACs and the second is a corresponding change of variables for the state. Define the
decision space X as

X = {M = (M [s]) : M [s] ∈ Rd×d, ∥M [s]∥2 ≤ κ4ρs} (10)

with

∥M∥X =

√√√√ ∞∑
s=1

ρ−s∥M [s]∥2F . (11)

Define the history space H to be the set consisting of sequences h = (Yk), where Y0 ∈ X and
Yk = F̃ k−1GXk for Xk ∈ X , k ≥ 1 with

∥h∥H =

√√√√ ∞∑
k=0

ξ2k∥Yk∥2X , (12)

26

where the weights (ξk) are nonnegative real numbers defined as

ξ = (1, 1, 1, ρ−
1
2 , ρ−1, ρ−

3
2 , . . .). (13)

Define the linear operators A : H → H and B : W → H as

A((Y0, Y1, . . .)) = (0, GY0, F̃ Y1, F̃ Y2, . . .) and B(M) = (M, 0, 0, . . .).

Note that the problem follows linear sequence dynamics with the ξ-weighted 2-norm (Definition 2.3),
where ξ is defined above in Eq. (13). The weights in the weighted norms on X and H increase
exponentially. However, the norms ∥M [s]∥2F and ∥F̃ k−1G∥2F decrease exponentially as well: by
definition of M [s] in Eq. (11) and the assumption on F̃ = F − GK for K ∈ K. Leveraging this
exponential decrease in ∥M [s]∥2F and ∥F̃ k−1G∥2F to define exponentially increasing weights turns
out to be crucial for deriving our regret bounds that are stronger than existing results. Furthermore,
the choice to have ξp = 1 for p ∈ {1, 2} in addition to p = 0 (as required by Definition 2.3) might
seem like a small detail, but this also turns out to be crucial for avoiding unnecessary factors of ρ−1

in the regret bounds.

Recall that the loss functions in the online linear control problem are ct(st, ut), where st and ut are
the state and control at round t. Now we will show how to construct the functions ft : H → R that
correspond to ct(st, ut). By definition, given a sequence of decisions (M0, . . . ,Mt), the history at
the end of round t is given by

ht = (Mt, GMt−1, F̃GMt−2, . . . , F̃
t−1GM0, 0, . . .).

A simple inductive argument shows that the state and control in round t can be written as

st = F̃ ts0 +

t−1∑
k=0

k+1∑
s=1

F̃ t−k−1GM
[s]
k wk−s + wt−1, (14)

ut = −Kst +

t+1∑
s=1

M
[s]
t wt−s. (15)

Define the functions ft : H → R by ft(h) = ct(s, u), where s and u are the state and control
determined by the history as above. Note that ft is parameterized by the past disturbances. Since the
state and control are linear functions of the history and ct is convex, this implies that ft is convex.

With the above formulation and the fact that the class of disturbance-action controllers is a superset
of the class of (κ, ρ)-strongly-stable linear controllers, we have that the policy regret for the online
linear control problem is at most

T−1∑
t=0

ft(ht)− min
M∈X

T−1∑
t=0

f̃t(M).

This completes the specification of the online convex optimization with unbounded memory problem,
(X ,H, A,B), corresponding to the online linear control problem. Using Algorithm 1 and Theorem 3.1
we can upper bound the above by

O

(√
D

α
TLL̃H2

)
,

where L is the Lipschitz constant of ft, L̃ is the Lipschitz constant of f̃t, H2 is the 2-effective memory
capacity, and D = maxx,x̃∈X |R(x)−R(x̃)| for an α-strongly-convex regularizer R : X → R. In
the next subsection we bound these quantities in terms of the problem parameters of the online linear
control problem. We use O(·) to hide absolute constants.

E.2 Regret Analysis

We use the following standard facts about matrix norms.
Lemma E.1. Let M,N ∈ Rd×d. Then,

27

1. ∥M∥2 ≤ ∥M∥F ≤
√
d∥M∥2.

2. ∥MN∥F ≤ ∥M∥2∥N∥F .

Proof. Part 1 can be found in, for example, Golub and Loan [1996, Section 2.3.2]. Letting Nj denote
the j-th column of N , part 2 follows from

∥MN∥2F =

d∑
j=1

∥MNj∥22 ≤ ∥M∥22
d∑

j=1

∥Nj∥22 = ∥M∥22∥N∥2F .

This completes the proof. ■

Lemma E.2. For s ≥ 2, the operator norm ∥As∥ is bounded above as

∥As∥ ≤ O
(
κ4ρ

s
2

)
.

Proof. Recall the definition of H and ∥ · ∥H (Eq. (12)). Let

(Y0, Y1, . . .) = (Y0, GX1, F̃GX2, F̃
2GX3, . . .)

be an element of H with unit norm, i.e.,√√√√ ∞∑
k=0

ξ2k∥Yk∥2X = 1,

where the weights (ξk) are defined in Eq. (13). Note that ξp = 1 for p = 0, 1 and ξ2p = ρ−p+2 for
p = 2, 3, From the definition of the operator A and for s ≥ 2, we have

As((Y0, Y1, . . .)) = (0, . . . , 0, F̃ s−1GY0, F̃
sGX1, F̃

s+1GX2, . . .).

Now we bound ∥As∥ as follows. By definition of As and ∥ · ∥H (Eq. (12)), and part 2 of Lemma E.1,
we have

∥As((Y0, Y1, . . .))∥ =

√√√√ρ−s+2∥F̃ s−1GY0∥2X +

∞∑
k=1

ρ−s−k+2∥F̃ s+k−1GXk∥2X

≤

√√√√ρ−s+2∥F̃ s−1G∥22∥Y0∥2X +

∞∑
k=1

ρ−s−k+2∥F̃ s−1∥22∥F̃∥22∥F̃ k−1GXk∥2X

≤ ρ−
s
2 ∥F̃ s−1∥2

√√√√ρ2∥G∥22∥Y0∥2X +

∞∑
k=1

ρ−k+2∥F̃∥22∥F̃ k−1GXk∥2X

= ρ−
s
2 ∥F̃ s−1∥2

√√√√ρ2∥G∥22∥Y0∥2X +

∞∑
k=1

ρ−k+2∥F̃∥22∥Yk∥2X .

Using our assumptions that ∥G∥2 ≤ κ and ∥F̃∥2 ≤ κ2ρ, we have

∥As((Y0, Y1, . . .))∥ ≤ ρ−
s
2 ∥F̃ s−1∥2

√√√√ρ2κ2∥Y0∥2X +

∞∑
k=1

ρ−k+2κ4ρ2∥Yk∥2X

≤ ρ−
s
2 ρκ2∥F̃ s−1∥2

√√√√∥Y0∥2X +

∞∑
k=1

ρ−k+2∥Yk∥2X

≤ ρ−
s
2 ρκ2κ2ρs−1

√√√√∥Y0∥2X +

∞∑
k=1

ρ−k+2∥Yk∥2X

= κ4ρ
s
2

√√√√∥Y0∥2X +

∞∑
k=1

ρ−k+2∥Yk∥2X .

28

Using ρ−1+2 = ρ < 1 for k = 1 in the above sum, the definition of (ξk), and our assumption that
(Y0, Y1 . . .) has unit norm, we have

∥As((Y0, Y1, . . .))∥ ≤ κ4ρ
s
2

√√√√ξ20∥Y0∥2X +

∞∑
k=1

ξ2k∥Yk∥2X = κ4ρ
s
2 .

This completes the proof. ■

Lemma E.3. The 2-effective memory capacity is bounded above as

H2 ≤ O
(
κ4(1− ρ)−

3
2

)
.

Proof. Using Lemma E.2 to bound ∥Ak∥ for k ≥ 2, we have

H2 =

√√√√ ∞∑
k=0

k2∥Ak∥2 ≤ O

√√√√ ∞∑
k=2

k2κ8ρk

 ≤ O
(
κ4(1− ρ)−

3
2

)
. ■

Lemma E.4. Suppose R : X → R is defined by R(M) = 1
2∥M∥2X . Then, it is 1-strongly-convex

and D = max
M,M̃∈X |R(M)−R(M̃)| ≤ dκ8(1− ρ)−1.

Proof. Note that R is 1-strongly-convex by definition. Using part 1 of Lemma E.1 and the definition
of X (Eq. (10)), we have for all M, M̃ ∈ X ,

D = max
M,M̃∈X

|R(M)−R(M̃)|

= max
M,M̃∈X

∣∣∣∣12∥M∥2X − 1

2
∥M̃∥2X

∣∣∣∣
≤ max

M∈X
∥M∥2X

= max
M∈X

∞∑
s=1

ρ−s∥M [s]∥2F by Eq. (11)

≤ max
M∈X

∞∑
s=1

ρ−sd∥M [s]∥22 by Lemma E.1

≤
∞∑
s=1

ρ−sdκ8ρ2s by Eq. (10)

≤ dκ8(1− ρ)−1.

This completes the proof. ■

Lemma E.5. We can bound the norm of the state and control at time t as

max{∥st∥2, ∥ut∥2} ≤ DX = O
(
Wκ8(1− ρ)−2

)
.

29

Proof. We can bound the norm of st and ut using Eqs. (14) and (15) as

∥st∥2 ≤

∥∥∥∥∥F̃ ts0 +

t−1∑
k=0

k+1∑
s=1

F̃ t−k−1GM
[s]
k wk−s + wt−1

∥∥∥∥∥
2

≤ κ2ρt +W +

t−1∑
k=0

k+1∑
s=1

κ2ρt−k−1κκ4ρsW

≤ κ2 +W +Wκ7(1− ρ)−2

≤ O
(
Wκ7(1− ρ)−2

)
.

∥ut∥2 ≤

∥∥∥∥∥Kst +

t+1∑
s=1

M
[s]
t wt−s

∥∥∥∥∥
2

≤ O
(
Wκ8(1− ρ)−2

)
+

t+1∑
s=1

Wκ4ρs

≤ O
(
Wκ8(1− ρ)−2

)
.

Above, we used the assumptions that κ,W ≥ 1. This completes the proof. ■

Lemma E.6. The Lipschitz constant of ft can be bounded above as

L ≤ O
(
L0DXWκ(1− ρ)−1

)
,

where DX is defined in Lemma E.5.

Proof. Let (M0, . . . ,Mt) and (M̃0, . . . , M̃t) be two sequences of decisions, where Mk and M̃k ∈ X .
Let ht and h̃t be the corresponding histories, and (st, ut) and (s̃t, ũt) be the corresponding state-
control pairs at the end of round t. We have

∣∣∣ft(ht)− ft(h̃t)
∣∣∣ = |ct(st, ut)− ct(s̃t, ũt)|

≤ L0DX max{∥st − s̃t∥2 , ∥ut − ũt∥2},

where the last inequality follows from our assumptions about the functions ct and Lemma E.5. It
suffices to bound the two norms on the right-hand side in terms of ∥ht − h̃t∥H. For k = 0, . . . , t− 1,

30

define Z
[s]
k = F̃ t−k−1G(M

[s]
k − M̃

[s]
k). Using Eq. (14), we have

∥st − s̃t∥2 =

∥∥∥∥∥
t−1∑
k=0

k+1∑
s=1

Z
[s]
k wk−s

∥∥∥∥∥
2

≤
t−1∑
k=0

k+1∑
s=1

∥∥∥Z [s]
k wk−s

∥∥∥
2

=

t−1∑
k=0

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k ρ

s
2wk−s

∥∥∥
2

≤
t−1∑
k=0

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k

∥∥∥
2

∥∥ρ s
2wk−s

∥∥
2

=

t−1∑
k=0

k+1∑
s=1

ξ1+t−1−k

∥∥∥ρ− s
2Z

[s]
k

∥∥∥
2
ξ−1
1+t−1−k

∥∥ρ s
2wk−s

∥∥
2

≤

√√√√t−1∑
k=0

k+1∑
s=1

ξ2t−k

∥∥∥ρ− s
2Z

[s]
k

∥∥∥2
2

√√√√t−1∑
k=0

k+1∑
s=1

ξ−2
t−k

∥∥ρ s
2wk−s

∥∥2
2

(16)

=

√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k

∥∥∥2
2︸ ︷︷ ︸

(a)

√√√√t−1∑
k=0

ξ−2
t−k

k+1∑
s=1

∥∥ρ s
2wk−s

∥∥2
2︸ ︷︷ ︸

(b)

,

where Eq. (16) follows from the Cauchy-Schwarz inequality. The specific choice of weighted norms
on X and H allow us to bound the terms (a) and (b) in terms of ∥ht − h̃t∥H. We can bound the term
(a) using the definition of Z [s]

k , ∥ · ∥X , and ∥ · ∥H as√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k

∥∥∥2
2
=

√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

ρ−s
∥∥∥F̃ t−k−1G(M

[s]
k − M̃

[s]
k)
∥∥∥2
2

≤

√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

ρ−s
∥∥∥F̃ t−k−1G(M

[s]
k − M̃

[s]
k)
∥∥∥2
F

(17)

≤ ∥ht − h̃t∥H, (18)

where Eq. (17) follows from part 1 of Lemma E.1 and Eq. (18) follows from the definitions of ∥ · ∥X
and ∥ · ∥H. Using ∥wt∥2 ≤ W for all rounds t, we can bound the term (b) as√√√√t−1∑

k=0

ξ−2
t−k

k+1∑
s=1

∥∥ρ s
2wk−s

∥∥2
2
≤ W

√√√√t−1∑
k=0

ξ−2
t−k

k+1∑
s=1

ρs

≤ W

√√√√t−1∑
k=0

ξ−2
t−k

ρ(1− ρk+1)

1− ρ

≤ W (1− ρ)−1, (19)

where Eq. (19) follows from the definition of (ξk) (Eq. (13)). Substituting Eqs. (18) and (19)
in Eq. (16), we have

∥st − s̃t∥2 ≤ W (1− ρ)−1∥ht − h̃t∥H.

31

Similarly,

∥ut − ũt∥ =

∥∥∥∥∥K(st − s̃t) +

t+1∑
s=1

(M
[s]
t − M̃

[s]
t)wt−s

∥∥∥∥∥
2

≤ O
(
Wκ(1− ρ)−1

∥∥∥ht − h̃t

∥∥∥
H

)
,

where the last inequality follows from our assumption that ∥K∥2 ≤ κ and the above inequality for
∥st − s̃t∥2. This completes the proof. ■

Lemma E.7. The Lipschitz constant of f̃t can be bounded above as

L̃ ≤ O
(
L0DXWκ5(1− ρ)−

3
2

)
,

where DX is defined in Lemma E.5.

Proof. Using Lemma E.2 that bounds ∥Ak∥, we have√√√√ ∞∑
k=0

∥Ak∥2 ≤ O
(
κ4(1− ρ)−

1
2

)
.

Using Theorem 2.1 that bounds L̃ in terms of L and the above, we have

L̃ ≤ O
(
Lκ4(1− ρ)−

1
2

)
≤ O

(
L0DXWκ5(1− ρ)−

3
2

)
,

where the last inequality follows from Lemma E.6. ■

Now we restate and prove Theorem 4.1.
Theorem 4.1. Consider the online linear control problem as defined in Section 4.1. Suppose the
decisions in round t are chosen using Algorithm 1. Then, the upper bound on the policy regret is

O
(
L0W

2
√
Td

1
2κ17(1− ρ)−4.5

)
. (2)

Proof. Using Theorem 3.1 and the above lemmas, we can upper bound the policy regret of Algo-
rithm 1 for the online linear control problem by

O

(√
D

α
TLL̃H2

)

= O

(√
dκ8(1− ρ)−1 T (L0W 2κ9(1− ρ)−3)

2
κ4(1− ρ)−

1
2 κ4(1− ρ)−

3
2

)
= O

(
L0W

2
√
Td

1
2κ17(1− ρ)−4.5

)
.

This completes the proof. ■

E.3 Existing Regret Bound

The upper bound on policy regret for the online linear control problem in existing work is given
in Agarwal et al. [2019b, Theorem 5.1]. The theorem statement only shows the dependence on L̃,W ,
and T . The dependence on d, κ, and ρ can be found in the details of the proof. Below we give a
detailed accounting of all of these terms in their regret bound.

To simplify notation let γ = 1− ρ. Agarwal et al. [2019b] define

H =
κ2

γ
log(T) and C =

W (κ2 +HκBκ
2a)

γ(1− κ2(1− γ)H+1)
+

κBκ
3W

γ
.

The value of a is not specified in Theorem 5.1. However, from Theorem 5.3 and the definition of M
in Algorithm 1 their paper, we can infer that a = κBκ

3.

32

The final regret bound is obtained by summing Equations 5.1, 5.3, and 5.4. Given the definition of H
above, we have that

(1− γ)H+1 ≤ exp(−κ2 log T) = T−κ2

.

So, the dominant term in the regret bound is Equation 5.4, which is

O
(
L0WCd

3
2κ2

Bκ
6H2.5γ−1

√
T
)
.

Substituting the values of H and C from above and collecting terms, we have that the upper bound
on policy regret in existing work [Agarwal et al., 2019b, Theorem 5.1] is

O
(
L0Wd

3
2

√
T log(T)2.5κ2

Bκ
11γ−3.5C

)
= O

(
L0Wd

3
2

√
T log(T)2.5κ2

Bκ
11γ−3.5

(
W (κ2 +HκBκ

2a)

γ(1− κ2(1− γ)H+1)
+

κBκ
3W

γ

))
= O

(
L0Wd

3
2

√
T log(T)2.5κ2

Bκ
11γ−3.5

(
Wκ2

γ(1− κ2(1− γ)H+1)
+

Wκ2
Bκ

7 log(T)

γ2(1− κ2(1− γ)H+1)
+

κBκ
3W

γ

))
= O

(
L0W

2d
3
2

√
T log(T)2.5κ2

Bκ
13γ−4.5(1− κ2(1− γ)H+1)−1

)
+O

(
L0W

2d
3
2

√
T log(T)3.5κ4

Bκ
18γ−5.5(1− κ2(1− γ)H+1)−1

)
+O

(
L0W

2d
3
2

√
T log(T)2.5κ3

Bκ
14γ−4.5

)
= O

(
L0W

2d
3
2

√
T log(T)3.5κ4

Bκ
18γ−5.5

)
.

Above we used that limT→∞(1− κ2(1− γ)H+1)−1 = 1 to simplify the expressions. Therefore, the
upper bound on policy regret for the online linear control problem in existing work is

O
(
L0W

2d
3
2

√
T log(T)3.5κ4

Bκ
18γ−5.5

)
. (20)

F Online Performative Prediction

Before formulating the online performative prediction problem in our OCO with unbounded memory
framework, we state the definition of 1-Wasserstein distance that we use in our regret analysis.
Informally, the 1-Wasserstein distance is a measure of the distance between two probability measures.

Definition F.1 (1-Wasserstein Distance). Let (Z, d) be a metric space. Let P(Z) denote the set of
Radon probability measures ν on Z with finite first moment. That is, there exists z′ ∈ Z such that
Ez∼ν [d(z, z

′)] < ∞. The 1-Wasserstein distance between two probability measures ν, ν′ ∈ P(Z) is
defined as

W1(ν, ν
′) = sup{Ez∼ν [f(z)]− Ez∼ν′ [f(z)]},

where the supremum is taken over all 1-Lipschitz continuous functions f : Z → R.

F.1 Formulation as OCO with Unbounded Memory

Now we formulate the online performative prediction problem in our framework by defining the
decision space X , the history space H, and the linear operators A : H → H and B : W → H. Then,
we define the functions ft : H → R in terms of lt and finally, prove an upper bound on the policy
regret. For notational convenience, let (yk) denote the sequence (y0, y1, . . .).

Let ρ ∈ (0, 1). Let the decision space X ⊆ Rd be closed and convex with ∥ · ∥X = ∥ · ∥2. Let the
history space H be the ℓ1-direct sum of countably infinte number of copies of X . Define the linear
operators A : H → H and B : X → H as

A((y0, y1, . . .)) = (0, ρy0, ρy1, . . .) and B(x) = (x, 0, . . .).

Note that the problem is an OCO with ρ-discounted infinite memory problem and follows linear
sequence dynamics with the 1-norm (Definition 2.3).

33

Given a sequence of decisions (xk)
t
k=1, the history is ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . .) and the
data distribution pt = pt(ht) satisfies:

z ∼ pt iff z ∼
t−1∑
k=1

(1− ρ)ρk−1(ξ + Fxt−k) + ρtp1. (21)

This follows from the recursive definition of pt and parametric assumption about D(x). Define the
functions ft : H → [0, 1] by

ft(ht) = Ez∼pt [lt(xt, z)].

With the above formulation and definition of ft, the original goal of minimizing the difference between
the algorithm’s total loss and the total loss of the best fixed decision is equivalent to minimizing the
policy regret,

T∑
t=1

ft(ht)−min
x∈X

T∑
t=1

f̃t(x).

F.2 Regret Analysis

Lemma F.1. The operator norm ∥As∥ is bounded above as

∥As∥ ≤ O (ρs) .

Proof. Recall the definition of H and ∥ · ∥H. Let

(y0, y1, . . .) = (x0, ρx1, ρ
2x2, . . .)

be an element of H with unit norm, i.e.,
∞∑
k=0

∥yk∥ = 1.

From the definition of the operator A, we have

As((y0, y1, . . .)) = (0, . . . , 0, ρsx0, ρ
s+1x1, . . .).

Now we bound ∥As∥ as follows. By definition of As and ∥ · ∥H, we have

∥As((y0, y1, . . .))∥ =

∞∑
k=0

ρs+k∥xk∥ = ρs
∞∑
k=0

ρk∥xk∥ = ρs
∞∑
k=0

∥yk∥ = ρs. ■

Lemma F.2. The 1-effective memory capacity is bounded above as

H2 ≤ O
(
(1− ρ)−2

)
.

Proof. Using Lemma F.1 to bound ∥Ak∥, we have

H1 =

∞∑
k=0

k∥Ak∥ =

∞∑
k=0

kρk ≤ O
(
(1− ρ)−2

)
. ■

Lemma F.3. Suppose R : X → R is defined by R(x) = 1
2∥x∥

2
X . Then, it is 1-strongly-convex and

D = maxx,x̃∈X |R(x)−R(x̃)| ≤ D2
X .

Proof. Note that R is 1-strongly-convex by definition. By the assumption that ∥x∥X ≤ DX for all
x ∈ X , we have that D ≤ D2

X . ■

Lemma F.4. The Lipschitz constant of ft can be bounded above as

L ≤ O

(
L0

1− ρ

ρ
∥F∥2

)
.

34

Proof. Let (x1, . . . , xt) and (x̃1, . . . , x̃t) be two sequences of decisions, where xk, x̃k ∈ X . Let ht

and h̃t be the corresponding histories, and pt and p̃t be the corresponding distributions at the end of
round t. We have∣∣∣ft(ht)− ft(h̃t)

∣∣∣
= |Ez∼pt

[lt(xt, z)]− Ez∼p̃t
[lt(x̃t, z)]|

= |Ez∼pt
[lt(xt, z)]− Ez∼pt

[lt(x̃t, z)] + Ez∼pt
[lt(x̃t, z)]− Ez∼p̃t

[lt(x̃t, z)]|
≤ L0∥xt − x̃t∥2 + L0W1(pt, p̃t),

where the last inequality follows from the assumptions about the functions lt and the definition of the
Wasserstein distance W1. By definition of pt (Eq. (21)), we have

W1(pt, p̃t) ≤
t−1∑
k=1

1− ρ

ρ
ρk∥F∥2∥xt−k − x̃t−k∥2

≤ 1− ρ

ρ
∥F∥2∥ht − h̃t∥H,

where the last inequality follows from the definition of ∥ · ∥H. Therefore, L ≤ L0
1−ρ
ρ ∥F∥2. ■

Lemma F.5. The Lipschitz constant of ft can be bounded above as

L̃ ≤ O

(
L0

1

ρ
∥F∥2

)
.

Proof. Using Lemma F.1 that bounds ∥Ak∥, we have
∞∑
k=0

∥Ak∥ = (1− ρ)−1.

Using Theorem 2.1 that bounds L̃ in terms of L and the above, we have

L̃ ≤ O
(
L(1− ρ)−1

)
= O

(
L0

1

ρ
∥F∥2

)
,

where the last equality follows from Lemma F.4. ■

Now we restate and prove Theorem 4.2.
Theorem 4.2. Consider the online performative prediction problem as defined in Section 4.2. Suppose
the decisions in round t are chosen using Algorithm 1. Then, the upper bound on the policy regret is

O
(
DXL0

√
T∥F∥2(1− ρ)−

1
2 ρ−1

)
.

Proof. Using Theorem 3.1 and the above lemmas, we can upper bound the policy regret of Algo-
rithm 1 for the online performative prediction problem by

O

(√
D

α
TLL̃H1

)
= O

(
DXL0∥F∥2(1− ρ)−

1
2 ρ−1

√
T
)
.

This completes the proof. ■

We note that the upper bound can be improved by defining a weighted norm on H similar to the
approach in Appendix E. However, here we present the looser anaysis for simplicity of exposition.

G Implementation Details for Algorithm 1

In this section we discuss how to implement Algorithm 1 efficiently.

35

Dimensionality of X . First, note that the decisions x ∈ X could be high-dimensional, e.g., an
unbounded sequence of matrices as in the online linear control problem, but this is external to
our framework and is application dependent. Our framework can be applied to X or to a lower-
dimensional decision space X ′. However, the choice of X ′ and analyzing the difference

min
x′∈X ′

T∑
t=1

f̃t(x
′)−min

x∈X

T∑
t=1

f̃t(x)

is application dependent. For example, for the online linear control problem one could consider a
restricted class of disturbance-action controllers that operate on a constant number of past disturbances
as opposed to all the past disturbances, and then analyze the difference between these two policy
classes. See, for example, Agarwal et al. [2019b, Lemma 5.2].

Computational cost of each iteration of Algorithm 1. Now we discuss how to implement each
iteration of Algorithm 1 efficiently. We are interested in the computational cost of computing the
decision xt+1 as a function of t. (Given the above discussion about the dimensionality of X , we
ignore the fact that the dimensionality of the decisions themselves could depend on t.) Therefore,
for the purposes of this section we (i) use O(·) notation to hide absolute constants and problem
parameters excluding t and T ; (ii) invoke the operators A and B by calling oracles OA(·) and OB(·);
and (iii) evaluate the functions ft by calling oracles Of (t, ·). Recall from Assumption A1 that we
assume the learner knows the operators A and B, and observes ft at the end of each round t. So, the
oracles OA,OB , and Of are readily available.

Algorithm 1 chooses the decision xt+1 as

xt+1 ∈ argmin
x∈X

t∑
s=1

f̃s(x) +
R(x)

η
= argmin

x∈X

t∑
s=1

fs

(
s−1∑
k=0

AkBx

)
︸ ︷︷ ︸

=Ft(x)

+
R(x)

η
.

Since Ft(x) is a sum of f1, . . . , ft, evaluating Ft(x) requires Θ(t) oracle calls to Of . However, this
issue is present in FTRL for OCO and OCO with finite memory as well and is not specific to our
framework. To deal with this issue, one could consider mini-batching algorithms [Dekel et al., 2012,
Altschuler and Talwar, 2018, Chen et al., 2020] such as Algorithm 2.

A naïve implementation to evaluate Ft(x) could require O(t3) oracle calls to OA: for each s ∈ [t],
constructing the argument

∑s−1
k=0 A

kBx for fs could require k oracle calls to OA to compute AkBx,
for a total of O(s2) oracle calls. However, Ft(x) can be evaluated with just O(t) oracle calls to OA

by constructing the arguments incrementally. For t ≥ 0, define Γt : X → H as
Γ0(x) = Bx

Γt(x) = A (Γt−1(x)) for t ≥ 1.

Note that Γt(Bx) = AtBx. Also, for t ≥ 1, define Φt : X → H as
Φ1(x) = Γ0(x)

Φt(x) = Φt−1(x) + Γt−1(x) for t ≥ 2.

Note that Φs(x) =
∑s−1

k=0 A
kBx is the argument for fs. These can be constructed incrementally as

follows.

1. Construct Γ0(x) using one oracle call to OB .
2. For s = 1,

(a) Construct Φ1(x) = Γ0(x).
(b) Construct Γ1(x) from Γ0(x) using one oracle call to OA.

3. For s ≥ 2,
(a) Construct Φs(x) by adding Φs−1(x) and Γs−1(x). This can be done in O(1) time.

Recall from our earlier discussion that O(·) hides absolute constants and problem
parameters excluding t and T .

(b) Construct Γs(x) from Γs−1(x) using one oracle call to OA.

By incrementally constructing Φs(x) as above, we can evaluate Ft(x) in O(t) time with O(1) oracle
calls to OB , O(t) oracle calls to OA, and O(t) oracle calls to Of .

36

Memory usage of Algorithm 1. We end with a brief discussion of the memory usage of Algorithm 1.
We are interested in the memory usage of computing the decision xt+1 as a function of t. (Given
the discussion about the dimensionality of X at the start of this section, we ignore the fact that
the dimensionality of the decisions themselves could depend on t.) For each t ∈ [T], the memory
usage could be as low as O(1) (if, for example, X ⊆ Rd, and A,B ∈ Rd×d, which implies that
Φt(x) is a d-dimensional vector) or as high as O(t) (if, for example, Φt(x) is a t-length sequence of
d-dimensional vectors). However, the memory usage is already Ω(t) to store the functions f1, . . . , ft.
Therefore, Algorithm 1 only incurs a constant factor overhead.

H An Algorithm with A Low Number of Switches: Mini-Batch FTRL

In this section we present an algorithm (Algorithm 2) for OCO with unbounded memory that provides
the same upper bound on policy regret as Algorithm 1 while guaranteeting a small number of
switches. Algorithm 2 combines FTRL on the functions f̃t with a mini-batching approach. First,
it divides rounds into batches of size S, where S is a parameter. Second, at the start of batch
b ∈ {1, . . . , ⌈T/S⌉}, it performs FTRL on the functions {g1, . . . , gb}, where gi is the average of
the functions f̃t in batch i. Then, it uses this decision for the entirety of the current batch. By
design, Algorithm 2 switches decisions at most O(T/S) times. This algorithm is insipired by similar
algorithms for online learning and OCO [Dekel et al., 2012, Altschuler and Talwar, 2018, Chen et al.,
2020].

Algorithm 2: Mini-Batch FTRL
Input : Time horizon T , step size η, α-strongly-convex regularizer R : X → R, batch size S.

1 Initialize history h0 = 0.
2 for t = 1, 2, . . . , T do
3 if t mod S = 1 then
4 Let Nt = {1, . . . , ⌈ t

S ⌉} denote the number of batches so far.
5 For b ∈ Nt, let Tb = {(b− 1)S + 1, . . . , bS} denote the rounds in batch b.
6 For b ∈ Nt, let gb = 1

S

∑
s∈Tb

f̃s. denote the average of the functions in batch b.

7 Learner chooses xt ∈ argminx∈X
∑

b∈Nt
gb(x) +

R(x)
η .

8 end
9 else

10 Learner chooses xt = xt−1.
11 end
12 Set ht = Aht−1 +Bxt.
13 Learner suffers loss ft(ht) and observes ft.
14 end

Theorem H.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D
for all x, x̃ ∈ X . Algorithm 2 with batch size S and step-size η satisfies

RT (Mini-Batch FTRL) ≤ SD

η
+ η

T L̃2

α
+ η

TLL̃H1

Sα
.

If η =
√

αSD

TL̃(LH1
S +L̃)

, then

RT (Mini-Batch FTRL) ≤ O

(√
D

α
T
(
LL̃H1 + SL̃2

))
.

Setting the batch size to be S = LH1/L̃ we obtain the same upper bound on policy regret as Algorithm 1
while guaranteeing that the decisions xt switch at most TL̃/LH1 times.
Corollary H.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D

37

for all x, x̃ ∈ X . Algorithm 2 with batch size S = LH1

L̃
and step-size η =

√
αSD

TL̃(LH1
S +L̃)

satisfies

RT (Mini-Batch FTRL) ≤ O

(√
D

α
TLL̃H1

)
.

Furthermore, the decisions xt switch at most TL̃
LH1

times.

Intuitively, in the OCO with unbounded memory framework each decision xt is penalized not just
in round t but in future rounds as well. Therefore, instead of immediately changing the decision,
it is prudent to stick to it for a while, collect more data, and then switch decisions. For the OCO
with finite memory problem, the constant memory length m provides a natural measure of how long
decisions penalized for and when one should switch decisions. In the general case, this is measured
by the quantity LH1/L̃. Note that this simplifies to m for OCO with finite memory for all p-norms.

Proof of Theorem H.1. For simplicity, assume that T is a multiple of S. Otherwise, the same proof
works after replacing T

S with ⌈T
S ⌉. Let x∗ ∈ argminx∈X

∑T
t=1 f̃t(x). Note that we can write the

regret as

RT (Mini-Batch FTRL) =
T∑

t=1

ft(ht)−min
x∈X

T∑
t=1

f̃t(x)

=

T∑
t=1

ft(ht)− f̃t(xt)︸ ︷︷ ︸
(a)

+

T∑
t=1

f̃t(xt)− f̃t(x
∗)︸ ︷︷ ︸

(b)

.

We can bound the term (b) using Theorem B.1 for mini-batches [Dekel et al., 2012, Altschuler and
Talwar, 2018, Chen et al., 2020] by

SD

η
+ η

T L̃2

α
.

It remains to bound term (a). Let N = T/S denote the number of batches and Tn = {(n − 1)S +
1, . . . , nS} denote the rounds in batch n ∈ [N]. We can write

T∑
t=1

ft(ht)− f̃t(xt) =

T∑
t=1

ft

(
t−1∑
k=0

AkBxt−k

)
− ft

(
t−1∑
k=0

AkBxt

)
by Definition 2.1

≤ L

T∑
t=1

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ by Assumption A4

≤ T

S
L
∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥︸ ︷︷ ︸
(c)

,

where the last inequality follows because of the following. Consider rounds t1 = b1S + r and
t2 = b2S + r for b1 < b2 and r ∈ [S]. Then, ∥ht1 −

∑t1−1
k=0 AkBxt1∥ ≤ ∥ht2 −

∑t2−1
k=0 AkBxt2∥

because the latter sums over more terms in its history and decisions in consecutive batches have
distance bounded above by ηL̃/α (Theorem B.1). Therefore, it suffices to show that term (c) is upper
bounded by ηL̃H1/α. We have∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ ≤
∑
t∈TN

t−1∑
k=0

∥∥AkBxt−k −AkBxt

∥∥
≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥B∥∥xt−k − xt∥

≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥xt−k − xt∥ by Assumption A2.

38

Since the same decision xn is chosen in all rounds of batch n, we can reindex and rewrite

∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ ≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥xt−k − xt∥

≤
S−1∑
o=0

N−1∑
n=1

S∑
s=1

∥A(N−n−1)S+s+o∥∥xN − xn∥

≤ η
L̃

α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

(N − n)∥A(N−n−1)S+s+o∥

= η
L̃

α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

n∥A(n−1)S+s+o∥,

where the last inequality follows from bounding the distance between decision in consecutive
batches Theorem B.1 and the triangle inequality. Expanding the triple sum yields

S−1∑
o=0

N−1∑
n=1

S∑
s=1

n∥A(n−1)S+s+o∥

≤ ∥A∥+ · · ·+ ∥AS∥+ 2∥AS+1∥+ · · ·+ 2∥A2S∥+ 3∥A2S+1∥+ · · ·+ 3∥A3S∥+ . . .

+ ∥A2∥+ · · ·+ ∥AS+1∥+ 2∥AS+2∥+ · · ·+ 2∥A2S+1∥+ 3∥A2S+2∥+ · · ·+ 3∥A3S+1∥+ . . .

...

+ ∥AS∥+ · · ·+ ∥A2S−1∥+ 2∥A2S∥+ · · ·+ 2∥A3S−1∥+ 3∥A3S∥+ · · ·+ 3∥A4S−1∥+ . . . ,

where each line above corresponds to a value of o ∈ {0, . . . , S − 1}. Adding up these terms yields
H1. This completes the proof. ■

Note that Theorem H.1 only provides an upper bound on the policy regret for the general case.
Unlike Algorithm 1, it is unclear how to obtain a stronger bound depending on Hp for the case of
linear sequence dynamics with the ξ-weighted p-norm for p > 1. The above proof can be specialized
for this special case, similar to the proofs of Theorem 2.1 and Lemma C.1, to obtain

∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ ≤ η
L̃

α

S−1∑
o=0

(
N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)p) 1
p

and

S−1∑
o=0

(
N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)p) 1
p

≤
(
∥A∥p + · · ·+ ∥AS∥p + 2p∥AS+1∥p + . . . 2p∥A2S∥p + 3p∥A2S+1∥p + . . .

) 1
p

+
(
∥A2∥p + · · ·+ ∥AS+1∥p + 2p∥AS+2∥p + . . . 2p∥A2S+1∥p + 3p∥A2S+2∥p + . . .

) 1
p

...(
∥AS∥p + · · ·+ ∥A2S−1∥p + 2p∥A2S∥p + . . . 2p∥A3S−1∥p + 3p∥A3S∥p + . . .

) 1
p .

The above expression cannot be easily simplified to O(Hp). However, for the special case of OCO
with finite memory, which follows linear sequence dynamics with the 2-norm, we can do so by
leveraging the special structure of the linear operator Afinite,m.

Theorem H.2. Consider an online convex optimization with finite memory problem with constant
memory length m specified by (X ,H = Xm, Afinite,m, Bfinite,m). Let the regularizer R : X → R be
α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 2 with batch size m

39

and step-size η =
√

αmD

TL̃
(
Lm

1
2 +L̃

) satisfies

RT (Mini-Batch FTRL) ≤ O

(√
D

α
TLL̃m

3
2

)
≤ O

(
m

√
D

α
TL2

)
.

Furthermore, the decisions xt switch at most T
m times.

Proof. Given the proof of Theorem H.1 and the above discussion, it suffices to show that

S−1∑
o=0

(
N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)2) 1
2

≤ H2 = m
3
2 .

Recall that ∥Ak
finite∥ = 1 if k ≤ m and 0 otherwise. Using this and S = m, we have that the above

sum is at most
√
m+

√
m− 1 + · · ·+

√
1 = O

(
m

3
2

)
. This completes the proof. ■

I Experiments

In this section we present some simple simulation experiments.2

Problem Setup. We consider the problem of online linear control with a constant input controller
class Π = {πu : π(s) = u ∈ U}. Let T denote the time horizon. Let S = Rd and U = {u ∈ Rd :
∥u∥2 ≤ 1} denote the state and control spaces. Let st and ut denote the state and control at time t with
s0 being the initial state. The system evolves according to linear dynamics st+1 = Fst +Gut + wt,
where F,G ∈ Rd×d are system matrices and wt ∈ Rd is a disturbance. The loss function in round t

is simply ct(st, ut) = ct(st) =
∑d

j=1 st,j , where st,j denotes the j-th coordinate of st. The goal is
to choose a sequence of control inputs u0, . . . , uT−1 ∈ U to minimize the regret

T−1∑
t=0

ct(st, ut)−min
u∈U

T−1∑
t=0

ct(s
u
t , u),

where sut denotes the state in round t upon choosing control input u in each round. Note that the state
in round t can be written as

st =
t∑

k=1

F kGut−k +
t∑

k=1

F kwt−k.

Therefore, we can formulate this problem as an OCO with unbounded memory problem by setting
X = U ,H = {y ∈ Rd : y =

∑t
k=0 F

kGu for some u ∈ U and t ∈ N}, A(h) = Fh,B(x) =

Gx, and ft(ht) = ct(
∑t

k=1 F
kGut−k +

∑t
k=1 F

kwt−k). Note that H, A, and B are all finite-
dimensional.

Data. We set the time horizon T = 750 and dimension d = 2. We sample the disturbances {wt}
from a standard normal distribution. We set the system matrix G to be the identity and the system
matrix F to be a diagonal plus upper triangular matrix with the diagonal entries equal to ρ and the
upper triangular entries equal to α. We run simulations with various values of ρ and α.

Implementation. We use the cvxpy library [Diamond and Boyd, 2016, Agrawal et al., 2018]
for implementing Algorithm 1. We use step-sizes according to Theorems 3.1 and 3.3. We run the
experiments on a standard laptop.

2https://github.com/raunakkmr/oco-with-memory-code.

40

Results. We compare the regret with respect to the optimal control input of OCO with unbounded
memory and OCO with finite memory for various memory lengths m in Fig. 3 for ρ = 0.90 and Fig. 4
for ρ = 0.95. There are a few important takeaways.

1. OCO with unbounded memory either performs as well as or better than OCO with finite
memory, and it does so at comparable computational cost (Appendix G). In fact, the regret
curve for OCO with unbounded memory reaches an asymptote whereas this is not the case
for OCO with finite memory for a variety of memory lengths.

2. Knowledge of the spectral radius of F , ρ, is not sufficient to tune the memory length m
for OCO with finite memory. This is illustrated by comparing Figs. 3a to 3d. Even though
small memory lengths perform well when the upper triangular value is small, they perform
poorly when the upper triangular value is large. In contrast, OCO with unbounded memory
performs well in all cases.

3. For a fixed memory length, OCO with unbounded memory eventually performs better than
OCO with finite memory. This is illustrated by comparing Figs. 3a to 3d.

4. As we increase the memory length, the performance of OCO with finite memory eventually
approaches that of OCO with unbounded memory. However, an advantage of OCO with
unbounded memory is that it does not require tuning the memory length. For example, when
ρ = 0.90 and the upper triangular entry of F = 0.10, OCO with finite memory with m = 4
performs comparably to m = 8 and m = 16 (Fig. 3c). However, when the upper triangular
entry of F = 0.12, then it performs much worse (Fig. 3d). However, OCO with unbounded
memory performs well in all cases without the need for tuning an additional hyperparameter
in the form of memory length.

(a) (b)

(c) (d)

Figure 3: Regret plot for ρ = 0.90. The label OCO-UM refers to formulating the problem as an OCO
with unbounded memory problem. The OCO-FM-m refers to formulating the problem as an OCO with
finite memory problem with constant memory length m. The titles of the plots indicate the values of
the dimension, the diagonal entries of F , and the upper triangular entries of F .

41

(a) (b)

(c) (d)

(e)

Figure 4: Regret plot for ρ = 0.95. The label OCO-UM refers to formulating the problem as an OCO
with unbounded memory problem. The OCO-FM-m refers to formulating the problem as an OCO with
finite memory problem with constant memory length m. The titles of the plots indicate the values of
the dimension, the diagonal entries of F , and the upper triangular entries of F .

42

