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Abstract

Online convex optimization (OCO) is a widely used framework in online learning.
In each round, the learner chooses a decision in a convex set and an adversary
chooses a convex loss function, and then the learner suffers the loss associated with
their current decision. However, in many applications the learner’s loss depends not
only on the current decision but on the entire history of decisions until that point.
The OCO framework and its existing generalizations do not capture this, and they
can only be applied to many settings of interest after a long series of approximation
arguments. They also leave open the question of whether the dependence on
memory is tight because there are no non-trivial lower bounds. In this work we
introduce a generalization of the OCO framework, “Online Convex Optimization
with Unbounded Memory”, that captures long-term dependence on past decisions.
We introduce the notion of p-effective memory capacity, Hp, that quantifies the
maximum influence of past decisions on present losses. We prove an O(

√
HpT )

upper bound on the policy regret and a matching (worst-case) lower bound. As
a special case, we prove the first non-trivial lower bound for OCO with finite
memory [Anava et al., 2015], which could be of independent interest, and also
improve existing upper bounds. We demonstrate the broad applicability of our
framework by using it to derive regret bounds, and to improve and simplify existing
regret bound derivations, for a variety of online learning problems including online
linear control and an online variant of performative prediction.

1 Introduction

Numerous applications are characterized by multiple rounds of sequential interactions with an
environment, e.g., prediction from expert advice [Littlestone and Warmuth, 1989, 1994], portoflio
selection [Cover, 1991], routing [Awerbuch and Kleinberg, 2008], etc. One of the most popular
frameworks for modelling such sequential decision-making problems is online convex optimization
(OCO) [Zinkevich, 2003]. The OCO framework is as follows. In each round, the learner chooses a
decision in a convex set and an adversary chooses a convex loss function, and then the learner suffers
the loss associated with their current decision. The performance of an algorithm is measured by
regret: the difference between the algorithm’s total loss and that of the best fixed decision. We refer
the reader to Shalev-Shwartz [2012], Hazan [2019], Orabona [2019] for surveys on this topic.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



However, in many applications the loss of the learner depends not only on the current decisions but
on the entire history of decisions until that point. For example, in online linear control [Agarwal
et al., 2019b], in each round the learner chooses a “control policy” (i.e., decision), suffers a loss that
is a function of the action taken by this policy and the current state of the system, and the system’s
state evolves according to linear dynamics. The current state depends on the entire history of actions
and, therefore, the current loss depends not only on the current decision but the entire history of
decisions. The OCO framework cannot capture such long-term dependence of the current loss on the
past decisions and neither can existing generalizations that allow the loss to depend on a constant
number of past decisions [Anava et al., 2015]. Although a series of approximation arguments can be
used to apply finite memory generalizations of OCO to the online linear control problem, there is no
OCO framework that captures the complete long-term dependence of current losses on past decisions.
Furthermore, there are no non-trivial lower bounds for OCO in the memory setting,1 which leaves
open the question whether the dependence on memory is tight.

Contributions. In this paper we introduce a generalization of the OCO framework, “Online Convex
Optimization with Unbounded Memory” (Section 2), that allows the loss in the current round to
depend on the entire history of decisions until that point. We introduce the notion of p-effective
memory capacity, Hp, that quantifies the maximum influence of past decisions on present losses. We
prove an O(

√
HpT ) upper bound on the policy regret (Theorem 3.1) and a matching (worst-case)

lower bound (Theorem 3.2). As a special case, we prove the first non-trivial lower bound for OCO
with finite memory (Theorem 3.4), which could be of independent interest, and also improve existing
upper bounds (Theorem 3.3). Our lower bound technique extends existing techniques developed
for memoryless settings. We design novel adversarial loss functions that exploit the fact that an
algorithm cannot overwrite its history. We illustrate the power of our framework by bringing together
the regret analysis of two seemingly disparate problems under the same umbrella. First, we show
how our framework improves and simplifies existing regret bounds for the online linear control
problem [Agarwal et al., 2019b] in Theorem 4.1. Second, we show how our framework can be
used to derive regret bounds for an online variant of performative prediction [Perdomo et al., 2020]
in Theorem 4.2. This demonstrates the broad applicability of our framework for deriving regret
bounds for a variety of online learning problems, particularly those that exhibit long-term dependence
of current losses on past decisions.

Related work. The most closely related work to ours is the OCO with finite memory frame-
work [Anava et al., 2015]. They consider a generalization of the OCO framework that allows the
current loss to depend on a constant number of past decisions. There have been a number of follow-up
works that extend the framework in a variety of other ways, such as non-stationarity [Zhao et al.,
2022], incorporating switching costs [Shi et al., 2020], etc. However, none of these existing works go
beyond a constant memory length and do not prove a non-trivial lower bound with a dependence on
the memory length. In a different line of work, Bhatia and Sridharan [2020] consider a much more
general online learning framework that goes beyond a constant memory length, but they only provide
non-constructive upper bounds on regret. In contrast, our OCO with unbounded memory framework
allows the current loss to depend on an unbounded number of past decisions, provides constructive
upper bounds on regret, and lower bounds for a broad class of problems that includes OCO with finite
memory with a general memory length m.

A different framework for sequential decision-making is multi-armed bandits [Bubeck and Cesa-
Bianchi, 2012, Slivkins, 2019]. Qin et al. [2023] study a variant of contextual stochastic bandits
where the current loss can depend on a sparse subset of all prior contexts. This setting differs from
ours due to the feedback model, stochasticity, and decision space. Reinforcement learning [Sutton
and Barto, 2018] is yet another popular framework for sequential decision-making that considers
very general state-action models of feedback and dynamics. In reinforcement learning one typically
measures regret with respect to the best state-action policy from some policy class, rather than the
best fixed decision as in online learning and OCO. In the special case of linear control, policies can
be reformulated as decisions while preserving convexity; we discuss this application in Section 4.
Considering the general framework is an active area of research.

We defer discussion of related work for specific applications to Section 4.

1The trivial lower bound refers to the Ω(
√
T ) lower bound for OCO in the memoryless setting.
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2 Framework

We begin with some motivation for the formalism used in our framework (Section 2.1). Many
real-world applications involve controlling a physical dynamical system, for example, variable-speed
wind turbines in wind energy electric power production [Boukhezzar and Siguerdidjane, 2010].
The typical solution for these problems has been to model them as offline control problems with
linear time-invariant dynamics and use classical methods such as LQR and LQG [Boukhezzar and
Siguerdidjane, 2010]. Instead of optimizing over the space of control inputs, the typical feedback
control approach optimizes over the space of controllers, i.e., policies that choose a control input
as a function of the system state. The standard controllers considered in the literature are linear
controllers. Even when the losses are convex in the state and input, they are nonconvex in the linear
controller. In the special case of quadratic losses in terms of the state and input, there is a closed-form
solution for the optimal solution using the algebraic Riccati equations [Lancaster and Rodman, 1995].
But this does not hold for general convex losses resulting in convex reparameterizations such as
Youla [Youla et al., 1976, Kučera, 1975] and SLS [Wang et al., 2019, Anderson et al., 2019]. The
resulting parameterization represents an infinite dimensional system response and is characterized
by a sequence of matrices. Recent work has studied an online approach for some of these control
theory problems, where a sequence of controllers is chosen adaptively rather than choosing one
offline [Abbasi-Yadkori and Szepesvári, 2011, Dean et al., 2018, Simchowitz and Foster, 2020,
Agarwal et al., 2019b].

The takeaway from the above is that there are online learning problems in which (i) the current
loss depends on the entire history of decisions; and (ii) the decision space can be more complicated
than just a subset of Rd, e.g., it can be an unbounded sequence of matrices. This motivates us to
model the decision space as a Hilbert space and the history space as a Banach space in the formal
problem setup below, and this subsumes the special cases of OCO and OCO with finite memory. This
formalism not only lets us consider a wide range of spaces, such as Rd, unbounded sequences of
matrices, etc., but also lets us define appropriate norms on these spaces. This latter feature is crucial
for deriving strong regret bounds for some applications such as online linear control. For this problem
we derive improved regret bounds (Theorem 4.1) by defining weighted norms on the decision and
history spaces, where the weights are chosen to leverage the problem structure.

Notation. We use ∥·∥U to denote the norm associated with a space U . The operator norm for a linear
L operator from space U → V is defined as ∥L∥U→V = maxu:∥u∥U≤1 ∥Lu∥V . For convenience,
sometimes we simply use ∥ · ∥ when the meaning is clear from the context. For a finite-dimensional
matrix we use ∥ · ∥F and ∥ · ∥2 to denote its Frobenius norm and operator norm respectively.

2.1 Setup

Let the decision space X be a closed and convex subset of a Hilbert space W with norm ∥ · ∥X and
the history space H be a Banach space with norm ∥ · ∥H. Let A : H → H and B : W → H be
linear operators. The game between the learner and an oblivious adversary proceeds as follows. Let
T denote the time horizon and ft : H → R be loss functions chosen by the adversary. The initial
history is h0 = 0. In each round t ∈ [T ], the learner chooses xt ∈ X , the history is updated to
ht = Aht−1+Bxt, and the learner suffers loss ft(ht). An instance of an online convex optimization
with unbounded memory problem is specified by the tuple (X ,H, A,B).

We use the notion of policy regret [Dekel et al., 2012] as the performance measure in our framework.
The policy regret of a learner is the difference between its total loss and the total loss of a strategy
that plays the best fixed decision in every round. The history after round t for a strategy that chooses
x in every round is described by ht =

∑t−1
k=0 A

kBx, which motivates the following definition.

Definition 2.1. Given ft : H → R, the function f̃t : X → R is defined by f̃t(x) = ft(
∑t−1

k=0 A
kBx).

Definition 2.2 (Policy Regret). The policy regret of an algorithm A is defined as RT (A) =∑T
t=1 ft(ht)−minx∈X

∑T
t=1 f̃t(x).

In many motivating examples such as online linear control (Section 4.1), the history at the end of a
round is a sequence of linear transformations of past decisions. The following definition captures this
formally and we leverage this structure to prove stronger regret bounds (Theorem 3.1).
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Definition 2.3 (Linear Sequence Dynamics). Consider an online convex optimization with unbounded
memory problem specified by (X ,H, A,B). Let (ξk)∞k=0 be a sequence of nonnegative real numbers
satisfying ξ0 = 1. We say that (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted
p-norm for p ≥ 1 if

1. H is the ξ-weighted ℓp-direct sum of a finite or countably infinite number of copies of W:
every element y ∈ H is a sequence y = (yi)i∈I , where I = N or I = {0, . . . , n} for some
n ∈ N , and ∥y∥H =

(∑
i∈I(ξi∥yi∥)p

)1/p
< ∞.

2. We have A(y0, y1, . . . ) = (0, A0y0, A1y1, . . . ), where Ai : W → W are linear operators.

3. The operator B satisfies B(x) = (x, 0, . . . ).

Note that since the norm on H depends on the weights ξ, the operator norm ∥Ak∥ also depends on ξ.
If the weights are all equal to 1, then we simply say p-norm instead of ξ-weighted p-norm.

2.2 Assumptions

We make the following assumptions about the feedback model and the loss functions.

A1 The learner knows the operators A and B, and observes ft at the end of each round t.

A2 The operator norm of B is at most 1, i.e., ∥B∥ ≤ 1.

A3 The functions ft are convex.

A4 The functions ft are L-Lipschitz continuous: ∀ h, h̃ ∈ H and t ∈ [T ], we have |ft(h) −
ft(h̃)| ≤ L∥h− h̃∥H.

Regarding Assumption A1, our results easily extend to the case where instead of observing ft,
the learner receives a gradient ∇f̃t(xt) from a gradient oracle, which can be implemented using
knowledge of ft and the dynamics A and B. Handling the cases when the operators A and B are
unknown and/or the learner observes bandit feedback (i.e., only ft(ht)) are important problems and
we leave them as future work. Note that our assumption that A and B are known is no more restrictive
than in the existing literature on OCO with finite memory [Anava et al., 2015] where it is assumed
that the learner knows the constant memory length. In fact, our assumption is more general because
our framework not only captures constant memory length as a special case but allows for richer
dynamics as we illustrate in Section 4. Assumption A2 is made for convenience, and it amounts to
a rescaling of the problem. Assumption A3 can be replaced by the weaker assumption that f̃t are
convex (similar to the literature on OCO with finite memory [Anava et al., 2015]) and this is what we
use in the rest of the paper.

Assumptions A1 and A4 imply that f̃t are L̃-Lipschitz continuous for the following L̃.
Theorem 2.1. Consider an online convex optimization with unbounded memory problem spec-
ified by (X ,H, A,B). If ft is L-Lipschitz continuous, then f̃t is L̃-Lipschitz continuous for
L̃ ≤ L

∑∞
k=0 ∥Ak∥. If (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm

for p ≥ 1, then L̃ ≤ L
(∑∞

k=0 ∥Ak∥p
) 1

p .

The proof follows from the definitions of f̃t and ∥ · ∥H, and we defer it to Appendix A. The above
bound is tighter than similar results in the literature on OCO with finite memory and online linear
control. This theorem is a key ingredient, amongst others, in improving existing upper bounds on
regret for OCO with finite memory (Theorem 3.3) and for online linear control (Theorem 4.1). Before
presenting our final assumption we introduce the notion of p-effective memory capacity that quantifies
the maximum influence of past decisions on present losses.
Definition 2.4 (p-Effective Memory Capacity). Consider an online convex optimization with un-
bounded memory problem specified by (X ,H, A,B). For p ≥ 1, the p-effective memory capacity is
defined as

Hp(X ,H, A,B) =

( ∞∑
k=0

kp∥Ak∥p
) 1

p

. (1)
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When the meaning is clear from the context we simply use Hp instead. The p-effective memory
capacity is an upper bound on the difference in histories for two sequences of decisions whose
difference grows at most linearly with time. To see this, consider two sequences of decisions, (xk) and
(x̃k), whose elements differ by no more than k at time k: ∥xk− x̃k∥ ≤ k. Then the histories generated
by the two sequences have difference between bounded as ∥h − h̃∥ = ∥

∑
k A

kB(xk − x̃k)∥ ≤∑
k k∥AkB∥ ≤

∑
k k∥Ak∥ = H1, where the last inequality follows from Assumption A2. A

similar bound holds with Hp instead when (X ,H, A,B) follows linear sequence dynamics with the
ξ-weighted p-norm.

A5 The 1-effective memory capacity is finite, i.e., H1 < ∞.

Since Hp is decreasing in p, H1 < ∞ implies Hp < ∞ for all p ≥ 1. For the case of linear sequence
dynamics with the ξ-weighted p-norm it suffices to make the weaker assumption that Hp < ∞.
However, for simplicity of exposition, we assume that H1 < ∞.

2.3 Special Cases

OCO with Finite Memory. Consider the OCO with finite memory problem with constant memory
length m. It can be specified in our framework by (X ,H, Afinite,m, Bfinite,m), where H is the ℓ2-
direct sum of m copies of X , Afinite,m(x[m], . . . , x[1]) = (0, x[m], . . . , x[2]), and Bfinite,m(x) =
(x, 0, . . . , 0). Note that (X ,H, Afinite,m, Bfinite,m) follows linear sequence dynamics with the 2-norm.
Our framework can even model an extension where the problem follows linear sequence dynamics
with the p-norm for p ≥ 1 by simply defining H to be the ℓp-direct sum of m copies of X .

OCO with ρ-discounted Infinite Memory. Our framework can also model OCO with infi-
nite memory problems that are not modelled by existing OCO frameworks. Let ρ ∈ (0, 1)
be the discount factor and p ≥ 1. An OCO with ρ-discounted infinite memory problem is
specified by (X ,H, Ainfinite,ρ, Binfinite,ρ), where H is the ℓp-direct sum of countably many copies
of X , Ainfinite,ρ((y0, y1, . . . )) = (0, ρy0, ρy1, . . . ), and Binfinite,ρ(x) = (x, 0, . . . ). Note that
(X ,H, Ainfinite,ρ, Binfinite,ρ) follows linear sequence dynamics with the p-norm. Due to space con-
straints we defer proofs of regret bounds for this problem to the appendix.

3 Regret Analysis

We present two algorithms for choosing the decisions xt. Algorithm 1 uses follow-the-regularized-
leader (FTRL) [Shalev-Shwartz and Singer, 2006, Abernethy et al., 2008] on the loss functions f̃t.
Due to space constraints, we discuss how to implement it efficiently in Appendix G and present
simple simulation experiments in Appendix I. Algorithm 2, which we only present in Appendix H,
combines FTRL with a mini-batching approach [Dekel et al., 2012, Altschuler and Talwar, 2018,
Chen et al., 2020] to additionally guarantee that the decisions switch at most O(TL̃/LH1) times. We
defer the proofs of the following upper and lower bounds to Appendices C and D respectively.

Algorithm 1: FTRL
Input : Time horizon T , step size η, α-strongly-convex regularizer R : X → R.

1 Initialize history h0 = 0.
2 for t = 1, 2, . . . , T do
3 Learner chooses xt ∈ argminx∈X

∑t−1
s=1 f̃s(x) +

R(x)
η .

4 Set ht = Aht−1 +Bxt.
5 Learner suffers loss ft(ht) and observes ft.
6 end

Theorem 3.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D

for all x, x̃ ∈ X . Algorithm 1 with step-size η satisfies RT (FTRL) ≤ D
η + η TL̃2

α + η TLL̃H1

α . If
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η =
√

αD
TL̃(LH1+L̃)

, then

RT (FTRL) ≤ O

(√
D

α
TLL̃H1

)
.

When (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm, then all of the
above hold with Hp instead of H1.

The proof of this theorem involves writing the regret as
∑

t ft(ht)− f̃t(xt) +
∑

t f̃t(xt)− f̃t(x
∗),

and bounding the first term using the p-effective memory capacity and the second term using FTRL.
We defer the full proof to Appendix C. The following lower bound shows that this is tight in the
worst-case.

Theorem 3.2. There exists an instance of the online convex optimization with unbounded memory
problem, (X ,H, A,B), that follows linear sequence dynamics with the ξ-weighted p-norm and there
exist L-Lipschitz continuous loss functions {ft : H → R}Tt=1 such that the regret of any algorithm A
satisfies

RT (A) ≥ Ω

(√
TLL̃Hp

)
.

The proof of this theorem follows from our lower bound for the special case of OCO with finite
memory (Theorem 3.4), which we discuss in detail below. However, as we show in Appendix D, the
lower bound holds for a much broader class of problems.

Specialization to OCO with finite memory. Now we show how our bounds specialize to the special
case of OCO with finite memory (Section 2.3). Due to space constraints, we defer the specialization of
the upper and lower bounds for OCO with ρ-discounted infinite memory (Section 2.3) to Appendix C
and Appendix D respectively.

Theorem 3.3. Consider an online convex optimization with finite memory problem with constant
memory length m specified by (X ,H = Xm, Afinite,m, Bfinite,m). Let the regularizer R : X → R
be α-strongly-convex and satisfy |R(x)− R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 1 with step-size

η =
√

αD

TL̃(Lm
3
2 +L̃)

satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃m

3
2

)
≤ O

(
m

√
D

α
TL2

)
.

This follows from using the definition of Afinite,m to bound L̃ and H2 in Theorem 3.1. This improves
existing results [Anava et al., 2015] by a factor of m1/4. Our bound depends on the Lipschitz
continuity constants as

√
LL̃ whereas existing bounds depend as L̃, and L̃ can be as large as√

mL (Theorem 2.1). We defer the full proof to Appendix C and a detailed comparison with existing
results to Appendix C.1. The following lower bound shows that this is tight in the worst-case.

Theorem 3.4. There exists an instance of the online convex optimization with finite memory problem
with constant memory length m, (X ,H = Xm, Afinite,m, Bfinite,m), and there exist L-Lipschitz
continuous loss functions {ft : H → R}Tt=1 such that the regret of any algorithm A satisfies

RT (A) ≥ Ω
(
m
√
TL2

)
.

To the best of our knowledge, this is the first non-trivial lower bound for OCO with finite memory
with an explicit dependence on the memory length m. Our construction involves three main steps,
the first two of which are loosely based on Altschuler and Talwar [2018]. First, divide time into
N = T/m blocks of size m. (For simplicity, assume T is a multiple of m.) Second, sample a random
sign ϵn for each block n ∈ [N ]. Third, for t > m choose

ft(ht) = ϵ⌈ t
m ⌉︸︷︷︸

(a)

Lm− 1
2︸ ︷︷ ︸

(b)

(
xt−m+1 + · · ·+ xm⌊ t

m ⌋+1

)
︸ ︷︷ ︸

(c)

,
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where term (a) is the random sign ϵn sampled for the block n = ⌈t/m⌉ that t belongs to, term (b) is
a scaling factor chosen while respecting the Lipschitz continuity constraint, and term (c) is a sum
over a subset of past decisions. Two important features of this construction are: (i) a random sign is
sampled for each block rather than each round; and (ii) the loss in round t depends on the history of
decisions until and including the first round of the block that t belongs to. These exploit the fact that
an algorithm cannot overwrite its history and penalize it for its past decisions even after it observes
the random sign ϵn for the current block. (See Fig. 1 for an illustration.) Existing lower bound proofs
for OCO sample a random sign in each round and choose ft(xt) ∝ ϵtxt. A first attempt at extending
this for the OCO with finite memory setting would be to choose ft(ht) ∝ ϵt

∑m−1
k=0 xt−k. However,

in constrast to our approach, this does not exploit the fact that an algorithm cannot overwrite its
history and does not suffice for obtaining a matching lower bound.

Timex1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ϵ1 ϵ2 ϵ3 ϵ4

f4(h4) = ϵ2 3−
1
2 (x2 + x3 + x4)

f5(h5) = ϵ2 3−
1
2 (x3 + x4)

f6(h6) = ϵ2 3−
1
2 (x4)

T = 12,m = 3, L = 1. Resample every m rounds.

Figure 1: An illustration of the loss functions ft for the OCO with finite memory lower bound.

Comparison of upper bound with prior work. The algorithmic ideas and analysis for our regret
upper bound are influenced by Anava et al. [2015]. However, an important innovation in our work is
the use of weighted norms in the case of linear sequence dynamics. This is a simple but powerful
way of encoding prior knowledge about a problem, and allows us to derive non-trivial regret bounds
in the case of unbounded-length histories. The technical complications that arise are captured in
bounding the relevant quantities of interest, e.g., the Lipschitz constant L̃, the operator norm ∥Ak∥,
etc. Furthermore, using weighted norms even leads to improved regret bounds for some applications.
Indeed, consider the application to online linear control with adversarial disturbances (Section 4.1).
Our framework and upper bound applied to this problem (Theorem 4.1) improve upon the existing
upper bound, which used a finite memory approximation. See Lemmas E.2 and E.6 for an illustration
of the technical details involved when using weighted norms.

4 Applications

In this section we apply our framework to online linear control (Section 4.1) and online performative
prediction (Section 4.2). We defer expanded details and proofs to Appendices E and F respectively.

4.1 Online Linear Control

Background. Online linear control (OLC) is the problem of controlling a system with linear
dynamics, adversarial disturbances, and adversarial and convex losses. It combines aspects from
control theory and online learning. We refer the reader to Agarwal et al. [2019b] for more details.
Here, we introduce the basic mathematical setup of the problem.

Let S ⊆ Rds and U ⊆ Rdu denote the state and control spaces. Let st and ut denote the state and
control at time t with s0 being the inital state. The system evolves according to the linear dynamics
st+1 = Fst +Gut +wt, where F ∈ Rds×ds , G ∈ Rds×du are matrices satisfying ∥F∥2, ∥G∥2 ≤ κ
and wt ∈ Rds is an adversarially chosen disturbance with ∥w∥2 ≤ W . Without loss of generality,
we assume that κ,W ≥ 1, ds = du = d, and also define w−1 = s0. For t = 0, . . . , T − 1, let
ct : S×U → [0, 1] be convex loss functions chosen by an oblivous adversary. The functions ct satisfy
the following Lipschitz condition: if ∥s∥2, ∥u∥2 ≤ DX , then ∥∇sct(s, u)∥, ∥∇uct(s, u)∥ ≤ L0DX .
The goal in online linear control is to choose a sequence of policies that yield a sequence of controls ut

to minimize the regret RT (Π) =
∑T−1

t=0 ct(st, ut)−minπ∗∈Π

∑T−1
t=0 ct(s

π∗

t , uπ∗

t ), where st evolves
according to linear dynamics stated above, Π denotes a controller class, and sπ

∗

t , cπ
∗

t denote the state
and control at time t when the controls are chosen according to π∗.
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A very simple controller class is constant input, i.e., Π = {πu : π(s) = u ∈ U}. In this case,
the history ht can be represented by the finite-dimensional state st, and the operators can be set to
A = F and B = G/∥G∥. However, like previous work [Agarwal et al., 2019b] we focus on the class
of (κ, ρ)-strongly stable linear controllers, K, where K ∈ K satisfies F − GK = HLH−1 with
∥K∥2, ∥H∥2, ∥H−1∥2 ≤ κ and ∥L∥2 = ρ < 1. Given such a controller, the inputs are chosen as
linear functions of the current state, i.e., ut = −Kst. Unfortunately, parameterizing ut directly with
a linear controller as ut = −Kst leads to a non-convex problem because st is a non-linear function
of K, e.g., if disturbances are 0, then st = (F − GK)ts0. An alternative parameterization is the
disturbance-action controller (DAC).

Definition 4.1. Let K ∈ K be fixed. The class of disturbance-action controllers (DACs) MK is
{(K,M) : M = (M [s])∞s=0}, where M [s] ∈ Rd×d satisfies ∥M [s]∥2 ≤ κ4ρs. The control in round
k is chosen as uk = −Ksk +

∑k+1
s=1 M

[s]wk−s.

The class of such DACs has two important properties. First, it acts on the entire history of past
disturbances. Consequently, given an arbitrary K ∈ K, every K∗ ∈ K can be expressed as a DAC
(K,M) ∈ MK with M = (M [1], . . . ,M [T+1], 0, . . . ) [Agarwal et al., 2019a, Section 16.5]. That
is, K ⊆ MK and it suffices to compute regret against MK instead of K. For the rest of this paper
we fix K ∈ K and denote F̃ = F −GK. Second, suppose Mt = (M

[s]
t )∞s=0 is the parameter chosen

in round t and the control ut is chosen according to the DAC (K,Mt). Then, st and ut are linear
functions of the parameters, which implies that ct is convex in the parameters. (See the next paragraph
on “Formulation as OCO with Unbounded Memory” for a formula.) A similar parameterization was
first considered for online linear control by Agarwal et al. [2019b] and is based on similar ideas in
control theory, e.g., Youla [Youla et al., 1976, Kučera, 1975] and SLS [Wang et al., 2019, Anderson
et al., 2019].

Formulation as OCO with Unbounded Memory. The first step is a change of variables with
respect to the control inputs from linear controllers to DACs and the second is a corresponding change
of variables for the state. Define the decision space X = {M = (M [s]) : M [s] ∈ Rd×d, ∥M [s]∥2 ≤
κ4ρs}. Define the history space H to be the set consisting of sequences h = (Yk), where Y0 ∈ X
and Yk = F̃ k−1GXk for Xk ∈ X , k ≥ 1. (Recall F̃ = F − GK.) Define weighted norms
∥M∥2X =

∑∞
s=1 ρ

−s∥M [s]∥2F and ∥h∥2H =
∑∞

k=0 ξ
2
k∥Yk∥2X , where the weights (ξk) are defined

as ξ = (1, 1, 1, ρ−
1
2 , ρ−1, ρ−

3
2 , . . . ). Define the linear operators A : H → H and B : W → H

as A((Y0, Y1, . . . )) = (0, GY0, F̃ Y1, F̃ Y2, . . . ) and B(M) = (M, 0, 0, . . . ). Note that the problem
follows linear sequence dynamics with the ξ-weighted 2-norm (Definition 2.3). The weights in the
norms on X and H increase exponentially. However, the norms ∥M [s]∥2F and ∥F̃ k−1G∥2F decrease
exponentially as well: by definition of X and the assumption on F̃ = F−GK for K ∈ K. Leveraging
these exponential decays to define exponentially increasing weights is crucial for deriving our regret
bounds that are stronger than existing results.

Construct the functions ft : H → R that correspond to ct(st, ut) as follows. Given
a sequence of decisions (M0, . . . ,Mt), the history at the end of round t is given by
ht = (Mt, GMt−1, F̃GMt−2, . . . , F̃

t−1GM0, 0, . . . ). A simple inductive argument shows
that the state and control in round t can be written as functions of ht as st = F̃ ts0 +∑t−1

k=0

∑k+1
s=1 F̃

t−k−1GM
[s]
k wk−s + wt−1 and ut = −Kst +

∑t+1
s=1 M

[s]
t wt−s. Define the func-

tions ft : H → R by ft(h) = ct(s, u), where s and u are the state and control determined by the
history as above. Note that ft is parameterized by the past disturbances. Since the state and control
are linear functions of the history and ct is convex, this implies that ft is convex. Now, given the
above formulation and the fact that the class of disturbance-action controllers is a superset of the
class of (κ, ρ)-strongly-stable linear controllers, we have that the policy regret for the online linear
control problem is at most the policy regret,

∑T−1
t=0 ft(ht)−minM∈X

∑T−1
t=0 f̃t(M). The following

is our main result for online linear control and it improves existing results [Agarwal et al., 2019b] by
a factor of O(d log(T )3.5κ5(1− ρ)−1). See Appendix E.3 for a detailed comparison.

Theorem 4.1. Consider the online linear control problem as defined in Section 4.1. Suppose the
decisions in round t are chosen using Algorithm 1. Then, the upper bound on the policy regret is

O
(
L0W

2
√
Td

1
2κ17(1− ρ)−4.5

)
. (2)
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Comparison with prior and concurrent work. Existing works solve OLC (and its extensions) by
making multiple finite memory approximations. First, they formulate the problem as OCO with finite
memory. This requires bounding numerous error terms because the problem is inherently an OCO
with unbounded memory problem. We bypass these error analysis steps entirely because the problem
fits into our framework naturally. Second, existing works use the parameterization from Agarwal et al.
[2019b] that only acts on a fixed, constant number of past disturbances. In particular, existing works
use a “truncated” DAC policy that is a sequence of d × d matrices of length 2κ4(1 − ρ)−1 log T .
Our DAC policy acts on the entire history of disturbances and is a sequence of d × d matrices of
unbounded length. Yet, we capture the dimension of this infinite-dimensional space in a way that
still improves the overall bound, including completely eliminating the dependence on log T , and
improving the dependence on d, κ, and (1 − ρ). This improvement comes from our novel use of
weighted norms on the history and decision spaces. These norms allow us to give tighter bounds on
the relevant quantities in the regret upper bound, e.g., ∥Ak∥ (Lemma E.2) and L̃ (Lemma E.6).

In complementary concurrent work, Lin et al. [2022] focus on a more general online control problem.
They improve regret bounds for this general version by a factor of log T compared to existing
reductions to OCO with finite memory. They do so by using that the impact of a past policy decays
geometrically with time. On the other hand, the primary focus of our work is studying the complete
dependence of present losses on the entire history in OCO. Applying our resulting OCO with
unbounded memory framework to OLC, we improve upon existing results for OLC by removing all
log T factors and improving the dependence on d, κ, and (1− ρ).

4.2 Online Performative Prediction

Background. In many applications of machine learning the algorithm’s decisions influence the
data distribution, e.g., online labor markets [Anagnostopoulos et al., 2018, Horton, 2010], predictive
policing [Lum and Isaac, 2016], on-street parking [Dowling et al., 2020, Pierce and Shoup, 2018],
vehicle sharing markets [Banerjee et al., 2015], etc. Motivated by such applications, several works
have studied the problem of performative prediction, which models the data distribution as a function
of the decision-maker’s decision [Perdomo et al., 2020, Mendler-Dünner et al., 2020, Miller et al.,
2021, Brown et al., 2022, Ray et al., 2022, Jagadeesan et al., 2022]. Most of these works view the
problem as a stochastic optimization problem; Jagadeesan et al. [2022] adopt a regret minimization
perspective. We refer the reader to these citations for more details. As a natural extension to existing
works, we introduce an online learning variant of performative prediction with geometric decay [Ray
et al., 2022] that differs from the original formulations in a few key ways.

Let the decision set X ⊆ Rd be closed and convex with ∥x∥2 ≤ DX . Let p1 denote the initial data
distribution over the instance space Z . In each round t ∈ [T ], the learner chooses a decision xt ∈ X
and an oblivious adversary chooses a loss function lt : X × Z → [0, 1], and then the learner suffers
the loss Lt(xt) = Ez∼pt

[lt(xt, z)], where pt = pt(x1, . . . , xt) is the data distribution in round t. The
goal in our online learning setting is to minimize the difference between the algorithm’s total loss and
the total loss of the best fixed decision,

∑T
t=1 Ez∼pt

[lt(xt, z)]−minx∈X
∑T

t=1 Ez∼pt(x) [lt(x, z)],
where pt(x) = pt(x, . . . , x) is the data distribution in round t had x been chosen in all rounds so far.
This measure is similar to performative regret [Jagadeesan et al., 2022] and is a natural generalization
of performative optimality [Perdomo et al., 2020] for an online learning formulation.

We make the following assumptions. First, the loss functions lt are convex and L0-Lipschitz
continuous. Second, the data distribution satisfies for all t ≥ 1, pt+1 = ρpt + (1− ρ)D(xt), where
ρ ∈ (0, 1) and D(xt) is a distribution over Z that depends on the decision xt [Ray et al., 2022].
Third, D(x) is a location-scale distribution: z ∼ D(x) iff z ∼ ξ + Fx, where F ∈ Rd×d satisfies
∥F∥2 < ∞ and ξ is a random variable with mean µ and covariance Σ [Ray et al., 2022].

Our problem formulation differs from existing work in the following ways. First, we adopt an online
learning perspective on performative prediction with geometric decay, whereas Ray et al. [2022]
adopt a stochastic optimization one. So, we assume that the loss functions lt are adversarially chosen,
whereas Ray et al. [2022] assume lt = l are fixed. Second, we assume that the dynamics (D and ρ)
are known (Assumption A1), whereas Ray et al. [2022] assume they are unknown and use samples
from the data distribution. We believe that an appropriate extension of our framework that can deal
with unknown linear operators A and B can be applied to this more difficult setting, and we leave
this as future work. Third, even though Jagadeesan et al. [2022] also study an online learning variant
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of performative prediction, they assume lt = l are fixed and the data distribution depends only on the
current decisions, whereas we assume the data distribution depends on the entire history of decisions.

Formulation as OCO with Unbounded Memory. Let ρ ∈ (0, 1). Let the decision space X ⊆ Rd

be closed and convex with the 2-norm. Let the history space H be the ℓ1-direct sum of count-
ably infinite number of copies of X . Define the linear operators A : H → H and B : W → H
as A((y0, y1, . . . )) = (0, ρy0, ρy1, . . . ) and B(x) = (x, 0, . . . ). The problem is an OCO with
ρ-discounted infinite memory problem and follows linear sequence dynamics with the 1-norm (Defini-
tion 2.3). Given a sequence of decisions (xk)

t
k=1, the history is ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . . )

and the data distribution pt = pt(ht) satisfies: z ∼ pt iff z ∼
∑t−1

k=1(1−ρ)ρk−1(ξ+Fxt−k)+ρtp1.
This follows from the recursive definition of pt and parametric assumption about D(x). Define the
functions ft : H → [0, 1] by ft(ht) = Ez∼pt [lt(xt, z)]. Now, the original goal of minimizing the
difference between the algorithm’s total loss and the total loss of the best fixed decision is equivalent
to minimizing the policy regret. The following is our main result for online performative prediction.

Theorem 4.2. Consider the online performative prediction problem as defined in Section 4.2. Suppose
the decisions in round t are chosen using Algorithm 1. Then, the upper bound on the policy regret is

O
(
DXL0

√
T∥F∥2(1− ρ)−

1
2 ρ−1

)
.

5 Conclusion

In this paper we introduced a generalization of the OCO framework, “Online Convex Optimization
with Unbounded Memory”, that allows the loss in the current round to depend on the entire history
of decisions until that point. We proved matching upper and lower bounds on the policy regret in
terms of the time horizon, the p-effective memory capacity (a quantitative measure of the influence
of past decisions on present losses), and other problem parameters (Theorems 3.1 and 3.2). As a
special case, we proved the first non-trivial lower bound for OCO with finite memory (Theorem 3.4),
which could be of independent interest, and also improved existing upper bounds (Theorem 3.3). We
illustrated the power of our framework by bringing together the regret analysis of two seemingly
disparate problems under the same umbrella: online linear control (Theorem 4.1), where we improve
and simplify existing regret bounds, and online performative prediction (Theorem 4.2).

There are a number of directions for future research. A natural follow-up is to consider unknown
dynamics (i.e., when the learner does not know the operators A and B) and/or the case of bandit
feedback (i.e., when the learner only observes ft(ht)). The extension to bandit feedback has been
considered in the OCO and OCO with finite memory literature [Hazan and Li, 2016, Bubeck et al.,
2021, Zhao et al., 2021, Gradu et al., 2020, Cassel and Koren, 2020]. It is tempting to think about a
version where the history is a nonlinear, but decaying, function of the past decisions. The obvious
challenge is that the nonlinearity would lead to non-convex losses. It is unclear how to deal with
such issues, e.g., restricted classes of nonlinearities for which the OCO with unbounded memory
perspective is still relevant [Zhang et al., 2015], different problem formulations such as online
non-convex learning [Gao et al., 2018, Suggala and Netrapalli, 2020], etc.

There is a growing body of work on online linear control and its variants that rely on OCO with finite
memory [Hazan et al., 2020, Agarwal et al., 2019c, Foster and Simchowitz, 2020, Cassel and Koren,
2020, Gradu et al., 2020, Li et al., 2021, Minasyan et al., 2021]. In this paper we showed how our
framework can be used to improve and simplify regret bounds for the online linear control problem.
Another direction for future work is to use our framework, perhaps with suitable extensions outlined
above, to derive similar improvements for these other variants of online linear control.

Acknowledgments and Disclosure of Funding

We thank Sloan Nietert and Victor Sanches Portella for helpful discussions. We thank Wei-Yu Chan
for pointing out an error in the proof of Lemma C.1. We also thank anonymous AISTATS and NeurIPS
reviewers for their helpful comments on an older and the current version of the paper respectively.
This research was partially supported by the NSERC Postgraduate Scholarships-Doctoral Fellowship
545847-2020, NSF awards CCF-2312774 and OAC-2311521, and a gift from Wayfair.

10



References
Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear

quadratic systems. In Sham M. Kakade and Ulrike von Luxburg, editors, COLT 2011 - The 24th
Annual Conference on Learning Theory, June 9-11, 2011, Budapest, Hungary, 2011.

Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In Rocco A. Servedio and Tong Zhang, editors, 21st
Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland, July 9-12, 2008, pages
263–274. Omnipress, 2008.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. 2019a.

Naman Agarwal, Brian Bullins, Elad Hazan, Sham M. Kakade, and Karan Singh. Online control with
adversarial disturbances. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 111–119.
PMLR, 2019b.

Naman Agarwal, Elad Hazan, and Karan Singh. Logarithmic regret for online control. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 10175–10184, 2019c.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Jason M. Altschuler and Kunal Talwar. Online learning over a finite action set with limited switching.
In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors, Conference On Learning
Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, 2018.

Aris Anagnostopoulos, Carlos Castillo, Adriano Fazzone, Stefano Leonardi, and Evimaria Terzi.
Algorithms for hiring and outsourcing in the online labor market. In Yike Guo and Faisal Farooq,
editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 1109–1118. ACM, 2018.

Oren Anava, Elad Hazan, and Shie Mannor. Online learning for adversaries with memory: Price of
past mistakes. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
pages 784–792, 2015.

James Anderson, John C Doyle, Steven H Low, and Nikolai Matni. System level synthesis. Annual
Reviews in Control, 47:364–393, 2019.

Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. J. Comput.
Syst. Sci., 74(1):97–114, 2008.

Siddhartha Banerjee, Carlos Riquelme, and Ramesh Johari. Pricing in ride-share platforms: A
queueing-theoretic approach. Available at SSRN 2568258, 2015.

Kush Bhatia and Karthik Sridharan. Online learning with dynamics: A minimax perspective. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Boubekeur Boukhezzar and Houria Siguerdidjane. Comparison between linear and nonlinear control
strategies for variable speed wind turbines. Control Engineering Practice, 18:1357–1368, 2010.

Gavin Brown, Shlomi Hod, and Iden Kalemaj. Performative prediction in a stateful world. In
Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, International Conference on
Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual Event, volume 151
of Proceedings of Machine Learning Research, pages 6045–6061. PMLR, 2022.

11



Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends® in Machine Learning, 5:1–122, 2012.

Sébastien Bubeck, Ronen Eldan, and Yin Tat Lee. Kernel-based methods for bandit convex optimiza-
tion. J. ACM, 68(4):25:1–25:35, 2021.

Asaf B. Cassel and Tomer Koren. Bandit linear control. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Lin Chen, Qian Yu, Hannah Lawrence, and Amin Karbasi. Minimax regret of switching-constrained
online convex optimization: No phase transition. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Thomas M Cover. Universal portfolios. Mathematical finance, 1(1):1–29, 1991.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. Regret bounds for robust
adaptive control of the linear quadratic regulator. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 4192–4201, 2018.

Ofer Dekel, Ambuj Tewari, and Raman Arora. Online bandit learning against an adaptive adversary:
from regret to policy regret. In Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress,
2012.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Chase P. Dowling, Lillian J. Ratliff, and Baosen Zhang. Modeling curbside parking as a network of
finite capacity queues. IEEE Trans. Intell. Transp. Syst., 21(3):1011–1022, 2020.

Dylan J. Foster and Max Simchowitz. Logarithmic regret for adversarial online control. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, 2020.

Xiand Gao, Xiaobo Li, and Shuzhong Zhang. Online learning with non-convex losses and non-
stationary regret. In Amos J. Storkey and Fernando Pérez-Cruz, editors, International Conference
on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote,
Canary Islands, Spain, volume 84 of Proceedings of Machine Learning Research, pages 235–243.
PMLR, 2018.

Gene H. Golub and Charles F. Van Loan. Matrix Computations, Third Edition. John Hopkins
University Press, 1996.

Paula Gradu, John Hallman, and Elad Hazan. Non-stochastic control with bandit feedback. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Elad Hazan. Introduction to online convex optimization. CoRR, abs/1909.05207, 2019.

Elad Hazan and Yuanzhi Li. An optimal algorithm for bandit convex optimization. CoRR,
abs/1603.04350, 2016. URL http://arxiv.org/abs/1603.04350.

Elad Hazan, Sham M. Kakade, and Karan Singh. The nonstochastic control problem. In Aryeh
Kontorovich and Gergely Neu, editors, Algorithmic Learning Theory, ALT 2020, 8-11 February
2020, San Diego, CA, USA, volume 117 of Proceedings of Machine Learning Research, pages
408–421. PMLR, 2020.

12

http://arxiv.org/abs/1603.04350


John J Horton. Online labor markets. In International workshop on internet and network economics,
pages 515–522. Springer, 2010.

Meena Jagadeesan, Tijana Zrnic, and Celestine Mendler-Dünner. Regret minimization with perfor-
mative feedback. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu,
and Sivan Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, 2022.

Anna Karlin. Lecture notes for cse 522: Algorithms and uncertainty, 2017. URL https://courses.
cs.washington.edu/courses/cse522/17sp/lectures/Lecture9.pdf.
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Organization of the Appendix

The appendix is organized as follows:

• Appendix A contains the proofs of the results from Section 2.
• Appendix B contains the proofs of existing results about FTRL for completeness.
• Appendix C contains the proofs of upper bounds on regret from Section 3.
• Appendix D contains the proofs of lower bounds on regret from Section 3.
• Appendix E contains the proofs of results about online linear control from Section 4.1.
• Appendix F contains the proofs of results about online performative prediction from Sec-

tion 4.2.
• Appendix G discusses how to implement Algorithm 1 efficiently.
• Appendix H presents an algorithm for OCO with unbounded memory that provides the

same upper bound on policy regret as Algorithm 1 while guaranteeting a small number of
switches (Algorithm 2).

• Appendix I presents simulation experiments.

A Framework

In this section prove Theorem 2.1. But first we prove a lemma that we use for proofs involving linear
sequence dynamics with the ξ-weighted p-norm (Definition 2.3). Recall that ∥ · ∥U denotes the norm
associated with a space U and the operator norm ∥L∥ for a linear operator L : U → V is defined as
∥L∥ = maxu:∥u∥U≤1 ∥Lu∥V .
Lemma A.1. Consider an online convex optimization with unbounded memory problem specified
by (X ,H, A,B). If (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm for
p ≥ 1, then for all k ≥ 1

ξk∥Ak−1 · · ·A0∥ ≤ ∥Ak∥.

Proof. Let x ∈ X with ∥x∥X = 1. We have

ξk∥Ak−1 · · ·A0x∥X = ∥Ak(x, 0, . . . )∥H ≤ ∥Ak∥∥(x, 0, . . . )∥H ≤ ∥Ak∥,
where the last inequality follows because ∥(x, 0, . . . )∥H = ξ0∥x∥X and ξ0 = 1 by Definition 2.3.
Therefore, ∥Ak−1 · · ·A0∥ ≤ ∥Ak∥. ■

Theorem 2.1. Consider an online convex optimization with unbounded memory problem spec-
ified by (X ,H, A,B). If ft is L-Lipschitz continuous, then f̃t is L̃-Lipschitz continuous for
L̃ ≤ L

∑∞
k=0 ∥Ak∥. If (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm

for p ≥ 1, then L̃ ≤ L
(∑∞

k=0 ∥Ak∥p
) 1

p .

Proof. Let x, x̃ ∈ X . For the general case, we have∣∣∣f̃t(x)− f̃t(x̃)
∣∣∣ = ∣∣∣∣∣ft

(
t−1∑
k=0

AkBx

)
− ft

(
t−1∑
k=0

AkBx̃

)∣∣∣∣∣ by Definition 2.1

≤ L

∥∥∥∥∥
t−1∑
k=0

AkB(x− x̃)

∥∥∥∥∥
H

ft is L-Lipschitz continuous

≤ L

t−1∑
k=0

∥Ak∥∥B∥∥x− x̃∥X

≤ L

t−1∑
k=0

∥Ak∥∥x− x̃∥X by Assumption A2

≤ L

∞∑
k=0

∥Ak∥∥x− x̃∥X .
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If (H,X , A,B) follows linear sequence dynamics with the ξ-weighted p-norm for p ≥ 1, then we
have∣∣∣f̃t(x)− f̃t(x̃)

∣∣∣ = ∣∣∣∣∣ft
(

t−1∑
k=0

AkBx

)
− ft

(
t−1∑
k=0

AkBx̃

)∣∣∣∣∣ by Definition 2.1

≤ L

∥∥∥∥∥
t−1∑
k=0

AkB(x− x̃)

∥∥∥∥∥
H

ft is L-Lipschitz continuous

= L ∥(0, A0(x− x̃), A1A0(x− x̃), . . . )∥ by Definition 2.3

= L

(
t−1∑
k=0

ξpk ∥Ak−1 · · ·A0(x− x̃)∥p
) 1

p

by Definition 2.3

≤ L

(
t−1∑
k=0

∥Ak∥p
) 1

p

∥x− x̃∥X by Lemma A.1

≤ L

( ∞∑
k=0

∥Ak∥p
) 1

p

∥x− x̃∥X . ■

B Standard Analysis of Follow-the-Regularized-Leader

In this section we state and prove some existing results about the follow-the-regularized-leader
(FTRL) algorithm [Shalev-Shwartz and Singer, 2006, Abernethy et al., 2008]. These results are well
known in the literature, but we prove them here for completeness and use them in the remainder of
the paper. We use the below results for functions f̃t with Lipschitz constants L̃. However, in this
section we use a more general notation, denoting functions by gt and their Lipschitz constant by Lg .

Consider the following setup for an online convex optimization (OCO) problem. Let T denote the
time horizon. Let the decision space X be a closed, convex subset of a Hilbert space and gt : X → R
be loss functions chosen by an oblivious adversary. The functions gt are convex and Lg-Lipschitz
continuous. The game between the learner and the adversary proceeds as follows. In each round
t ∈ [T ], the learner chooses xt ∈ X and the learner suffers loss gt(xt). The goal of the learner is to
minimize (static) regret,

Rstatic
T =

T∑
t=1

gt(xt)−min
x∈X

T∑
t=1

gt(x). (3)

Let R : X → R be an α-strongly convex regularizer satisfying |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X .
The FTRL algorithm chooses iterates xt as

xt ∈ argmin
x∈X

t−1∑
s=1

gs(x) +
R(x)

η
, (4)

where η is a tunable parameter referred to as the step-size. In what follows, let g0 = R
η . The analysis

in this section closely follows Karlin [2017].
Lemma B.1. For all x ∈ X , FTRL (Eq. (4)) satisfies

T∑
t=0

gt(x) ≥
T∑

t=0

gt(xt+1).

Proof. We use proof by induction on T . The base case is T = 0. By definition, x1 ∈
argminx∈X R(x). Therefore, R(x) ≥ R(x1) for all x ∈ X . Recalling the notation g0 = R

η

proves the base case. Now, assume that the lemma is true for T − 1. That is,

T−1∑
t=0

gt(x) ≥
T−1∑
t=0

gt(xt+1).
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Let x ∈ X be arbitrary. Since xT+1 ∈ argminx∈X
∑T

t=0 gt(x), we have

T∑
t=0

gt(x) ≥
T∑

t=0

gt(xT+1)

=

T−1∑
t=0

gt(xT+1) + gT (xT+1)

≥
T−1∑
t=0

gt(xt+1) + gT (xT+1) by inductive hypothesis

=

T∑
t=0

gt(xt+1).

This completes the proof. ■

Lemma B.2. For all x ∈ X , FTRL (Eq. (4)) satisfies

T∑
t=1

gt(xt)−
T∑

t=1

gt(x) ≤
D

η
+

T∑
t=1

gt(xt)− gt(xt+1).

Proof. Note that

T∑
t=1

gt(xt)−
T∑

t=1

gt(x) ≤
T∑

t=1

gt(xt)−
T∑

t=1

gt(x) + g0(x)− g0(x1)

because x1 ∈ argminx∈X g0(x). The proof of this lemma now follows by using the above inequal-
ity, Lemma B.1, the definition g0 = R

η , and the definition of D. ■

Theorem B.1. FTRL (Eq. (4)) satisfies

∥xt+1 − xt∥X ≤ η
Lg

α
and Rstatic

T ≤ D

η
+ η

TL2
g

α
.

Choosing η =
√

αD
TL2

g
yields

Rstatic
T ≤ O

(√
D

α
TL2

g

)
.

Proof. Let x∗ ∈ argminx∈X
∑T

t=1 gt(x). Using Lemma B.2 we have

T∑
t=1

gt(xt)−
T∑

t=1

gt(x
∗) ≤ D

η
+

T∑
t=1

gt(xt)− gt(xt+1). (5)

We can bound the summands in the sum above as follows. Define Gt(x) =
∑t−1

s=0 gs(x). Then,
xt ∈ argminx∈X Gt(x). and xt+1 ∈ argminx∈X Gt+1(x). Since {gs}Ts=1 are convex, R is
α-strongly-convex, and g0 = R

η , we have that Gt is α
η -strongly-convex. So,

Gt(xt+1) ≥ Gt(xt) +
α

2η
∥xt+1 − xt∥2X ,

Gt+1(xt) ≥ Gt+1(xt+1) +
α

2η
∥xt+1 − xt∥2X .

Adding the above two inequalities yields

gt(xt)− gt(xt+1) ≥
α

η
∥xt+1 − xt∥2X . (6)
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Since gt are convex and Lg-Lipschitz continuous, we also have

gt(xt)− gt(xt+1) ≤ Lg∥xt+1 − xt∥X . (7)

Combining Eqs. (6) and (7) we have

∥xt+1 − xt∥X ≤ η
Lg

α
.

This proves the first part of the theorem. Now, using this in Eq. (7) we have

gt(xt)− gt(xt+1) ≤ η
L2
g

α
. (8)

Finally, substituting this in Eq. (5) proves the second part of the theorem. ■

C Regret Analysis: Upper Bounds

First we prove a lemma that bounds the difference in the value of ft evaluated at the actual history ht

and an idealized history that would have been obtained by playing xt in all prior rounds.
Lemma C.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). If the decisions (xt) are generated by Algorithm 1, then∣∣∣ft(ht)− f̃t(xt)

∣∣∣ ≤ η
LL̃H1

α

for all rounds t. When (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm
for p ≥ 1, then ∣∣∣ft(ht)− f̃t(xt)

∣∣∣ ≤ η
LL̃Hp

α
for all rounds t.

Proof. We have∣∣∣ft(ht)− f̃t(xt)
∣∣∣ = ∣∣∣∣∣ft(ht)− ft

(
t−1∑
k=0

AkBxt

)∣∣∣∣∣ by Definition 2.1

≤ L

∥∥∥∥∥ht −
t−1∑
k=0

AkBxt

∥∥∥∥∥ by Assumption A4

= L

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ by definition of ht

= L

∥∥∥∥∥
t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥︸ ︷︷ ︸
(a)

. (9)

First consider the general case where (X ,H, A,B) does not necessarily follow linear sequence
dynamics. We can bound the term (a) as∥∥∥∥∥

t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥ ≤
t−1∑
k=0

∥∥AkB
∥∥ ∥xt − xt−k∥

≤
t−1∑
k=0

∥∥AkB
∥∥ kη L̃

α
by Theorem B.1

≤
t−1∑
k=0

∥∥Ak
∥∥ kη L̃

α
by Assumption A2

≤ η
L̃

α
H1.
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Plugging this into Eq. (9) completes the proof for the general case. Now consider the case when
(X ,H, A,B) follows linear sequence dynamcis with the ξ-weighted p-norm. We can bound the term
(a) as∥∥∥∥∥

t−1∑
k=0

AkB(xt−k − xt)

∥∥∥∥∥ = ∥(0, A0(xt − xt−1), A1A0(xt − xt−2), . . . )∥ by Definition 2.3

=

(
t−1∑
k=0

ξpk ∥Ak−1 · · ·A0(xt − xt−k)∥p
) 1

p

by Definition 2.3

≤

(
t−1∑
k=0

ξpk ∥Ak−1 · · ·A0∥p ∥xt − xt−k∥p
) 1

p

≤

(
t−1∑
k=0

∥∥Ak
∥∥p ∥xt − xt−k∥p

) 1
p

by Lemma A.1

≤ η
L̃

α

(
t−1∑
k=0

∥∥Ak
∥∥p kp) 1

p

by Theorem B.1

≤ η
L̃

α
Hp.

Plugging this into Eq. (9) completes the proof. ■

Now we restate and prove Theorem 3.1

Theorem 3.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D

for all x, x̃ ∈ X . Algorithm 1 with step-size η satisfies RT (FTRL) ≤ D
η + η TL̃2

α + η TLL̃H1

α . If

η =
√

αD
TL̃(LH1+L̃)

, then

RT (FTRL) ≤ O

(√
D

α
TLL̃H1

)
.

When (X ,H, A,B) follows linear sequence dynamics with the ξ-weighted p-norm, then all of the
above hold with Hp instead of H1.

Proof. First consider the general case where (X ,H, A,B) does not necessarily follow linear sequence
dynamics. Let x∗ ∈ argminx∈X

∑T
t=1 f̃t(x). Note that we can write the regret as

RT (FTRL) =
T∑

t=1

ft(ht)−min
x∈X

T∑
t=1

f̃t(x)

=

T∑
t=1

ft(ht)− f̃t(xt)︸ ︷︷ ︸
(a)

+

T∑
t=1

f̃t(xt)− f̃t(x
∗)︸ ︷︷ ︸

(b)

.

We can bound term (a) using Lemma C.1 and term (b) using Theorem B.1. Therefore, we have

RT (FTRL) =
T∑

t=1

ft(ht)− f̃t(xt)︸ ︷︷ ︸
(a)

+

T∑
t=1

f̃t(xt)− f̃t(x
∗)︸ ︷︷ ︸

(b)

≤ η
TLL̃H1

α
+

D

η
+ η

T L̃2

α
.
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Choosing η =
√

αD
TL̃(LH1+L̃)

yields

RT (FTRL) ≤ O

(√
D

α
TLL̃H1

)
,

where we used the definition of p-effective memory capacity (Definition 2.4) and the bound on
L̃ (Theorem 2.1) to simplify the above expression. This completes the proof for the general case.
The proof for when (X ,H, A,B) follows linear sequence dynamcis with the ξ-weighted p-norm
is the same as above, except we bound the term (a) above using Lemma C.1 for linear sequence
dynamics. ■

Now we restate and prove Theorem 3.3.
Theorem 3.3. Consider an online convex optimization with finite memory problem with constant
memory length m specified by (X ,H = Xm, Afinite,m, Bfinite,m). Let the regularizer R : X → R
be α-strongly-convex and satisfy |R(x)− R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 1 with step-size

η =
√

αD

TL̃(Lm
3
2 +L̃)

satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃m

3
2

)
≤ O

(
m

√
D

α
TL2

)
.

The OCO with finite memory problem, as defined in the literature, follows linear sequence dynamics
with the 2-norm. In this subsection we consider a more general version of the OCO with finite
memory problem that follows linear sequence dynamics with the p-norm. We provide an upper bound
on the policy regret for this more general formulation and the proof of Theorem 3.3 follows as a
special case when p = 2.
Theorem C.1. Consider an online convex optimization with finite memory problem with constant
memory length m, (X ,H = Xm, Afinite,m, Bfinite,m). Assume that the problem follows linear se-
quence dynamics with the p-norm for p ≥ 1. Let the regularizer R : X → R be α-strongly-convex
and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 1 with step-size η satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃m

p+1
p

)
≤ O

(√
D

α
TL2m

p+2
p

)
.

Proof. Using Theorem 3.1 it suffices to bound L̃ and Hp for this problem. Note that ∥Ak
finite∥ = 1 if

k ≤ m and 0 otherwise. Using this we have

Hp =

( ∞∑
k=0

(
k∥Ak

finite∥
)p) 1

p

=

(
m∑

k=0

kp

) 1
p

≤ O
(
m

p+1
p

)
.

This proves the first inequality in the statement of the theorem. The second inequality follows from
the above and Theorem 2.1, which states that

L̃ ≤ L

( ∞∑
k=0

∥Ak
finite∥p

) 1
p

= Lm
1
p . ■

Finally, we provide an upper bound on the policy regret for the OCO with ρ-discounted infinite
memory problem. For simplicity, we consider the case when the problem follows linear sequence
dynamics with the 2-norm instead of a general p-norm.
Theorem C.2. Consider an online convex optimization with ρ-discounted infinite memory problem
(X ,H, Ainfinite,ρ, Binfinite). Suppose that the problem follows linear sequence dynamics with the 2-
norm. Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all
x, x̃ ∈ X . Algorithm 1 with step-size η satisfies

RT (FTRL) ≤ O

(√
D

α
TLL̃(1− ρ2)−

3
2

)
≤ O

(√
D

α
TL2(1− ρ2)−2

)
≤ O

(√
D

α
TL2(1− ρ)−2

)
.
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Proof. Using Theorem 3.1, it suffices to bound L̃ and Hp for this problem. Recall that ∥Ak
infinite,ρ∥ =

ρk. Using this we have

H2 =

( ∞∑
k=0

(
k∥Ak

finite∥
)2) 1

2

=

( ∞∑
k=0

(
kρk
)2) 1

2

≤ (1− ρ2)−
3
2 .

This proves the first inequality in the statement of the theorem. The second inequality follows from
the above and Theorem 2.1, which states that

L̃ ≤ L

( ∞∑
k=0

∥Ak
infinite,ρ∥2

) 1
2

= L(1− ρ2)−
1
2 .

The last inequality follows because 1− ρ2 = (1 + ρ)(1− ρ), which implies that 1− ρ ≤ 1− ρ2 ≤
2(1− ρ) because ρ ∈ (0, 1). ■

C.1 Existing Regret Bound for OCO with Finite Memory

In this subsection we provide a detailed comparison of our upper bound on the policy regret for OCO
with finite memory with that of Anava et al. [2015]. The material in this subsection comes from
Appendix A.2 of their arXiv version or Appendix C.2 of their conference version.

The existing upper bound on regret is

O
(√

DTλm
3
2

)
,

where D = maxx,x̃∈X |R(x)−R(x̃)|. Although the parameter λ is defined in terms of dual norms
of the gradient of f̃t, it is essentially the Lipschitz-continuity constant for f̃t: for all x, x̃ ∈ X ,∣∣∣f̃t(x)− f̃t(x̃)

∣∣∣ ≤ √
λα∥x− x̃∥,

where α is the strong-convexity parameter of the regularizer R (or σ in the notation of Anava et al.
[2015]). Therefore, the existing regret bound can be rewritten as

O

(
L̃

√
D

α
Tm

3
2

)
.

Our upper bound on the policy regret for OCO with finite memory Theorem 3.3 is

O

(√
D

α
LL̃Tm

3
2

)
.

Since L̃ ≤
√
mL by Theorem 2.1, this leads to an improvement by a factor of m

1
4 .

D Regret Analysis: Lower Bounds

We first restate Theorems 3.2 and 3.4.
Theorem 3.2. There exists an instance of the online convex optimization with unbounded memory
problem, (X ,H, A,B), that follows linear sequence dynamics with the ξ-weighted p-norm and there
exist L-Lipschitz continuous loss functions {ft : H → R}Tt=1 such that the regret of any algorithm A
satisfies

RT (A) ≥ Ω

(√
TLL̃Hp

)
.

Theorem 3.4. There exists an instance of the online convex optimization with finite memory problem
with constant memory length m, (X ,H = Xm, Afinite,m, Bfinite,m), and there exist L-Lipschitz
continuous loss functions {ft : H → R}Tt=1 such that the regret of any algorithm A satisfies

RT (A) ≥ Ω
(
m
√
TL2

)
.
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Timex1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ϵ1 ϵ2 ϵ3 ϵ4

f4(h4) = ϵ2 3−
1
2 (x2 + x3 + x4)

f5(h5) = ϵ2 3−
1
2 (x3 + x4)

f6(h6) = ϵ2 3−
1
2 (x4)

T = 12,m = 3, L = 1. Resample every m rounds.

Figure 2: An illustration of the loss functions ft for the OCO with finite memory lower bound.
Suppose T = 12,m = 3, L = 1, and p = 2. Time is divided into blocks of size m = 3. Consider
round t = 5. The history is h5 = (x3, x4, x5). The loss function f5(h5) is a product of three terms:
a random sign ϵ2 sampled for the block that round 5 belongs to, namely, block 2; a scaling factor of
m− 1

2 ; a sum over the decisions in the history excluding those that were chosen after observing ϵ2,
i.e., a sum over x3 and x4, excluding x5.

Theorem 3.2 follows from Theorem 3.4. However, the lower bound is true for a much broader class of
problems as we show in this section. We first provide a lower bound for a more general formulation
of the OCO with finite memory problem (Theorem D.1). The proof of Theorem 3.4 follows as a
special case when p = 2. Then, we provide a lower bound for the OCO with ρ-discounted infinite
memory problem (Theorem D.2).

The OCO with finite memory problem, as defined in the literature, follows linear sequence dynamics
with the 2-norm. In this section we consider a more general version of the OCO with finite memory
problem that follows linear sequence dynamics with the p-norm. We provide a lower bound on the
policy regret for this more general formulation and the proof of Theorem 3.4 follows as a special
case when p = 2.
Theorem D.1. For all p ≥ 1, there exists an instance of the online convex optimization with finite
memory problem with constant memory length m, (X ,H = Xm, Afinite,m, Bfinite,m), that follows
linear sequence dynamics with the p-norm, and there exist L-Lipschitz continuous loss functions
{ft : H → R}Tt=1 such that the regret of any algorithm A satisfies

RT (A) ≥ Ω

(√
TL2m

p+2
p

)
.

Proof. Let X = [−1, 1] and consider an OCO with finite memory problem with constant memory
length m, (X ,H = Xm, Afinite,m, Bfinite,m), that follows linear sequence dynamics with the p-norm.
For simplicity, assume that T is a multiple of m (otherwise, the same proof works but with slightly
more tedious bookkeeping) and that L = 1 (otherwise, multiply the functions ft defined below by L).

Divide the T rounds into N = T
m blocks of m rounds each. Sample N independent Rademacher

random variables {ϵ1, . . . , ϵN}, where each ϵi is equal to ±1 with probability 1
2 . Recall that ht =

(xt, . . . , xt−m+1). Define the loss functions {ft}Tt=1 as follows. (See Fig. 2 for an illustration.) If
t ≤ m, let ft = 0. Otherwise, let

ft(ht) = ϵ⌈ t
m ⌉m

1−p
p

m−1−(t−m⌊ t
m ⌋−1)∑

k=0

xm⌊ t
m ⌋+1−k

= ϵ⌈ t
m ⌉m

1−p
p

(
xt−m+1 + · · ·+ xm⌊ t

m ⌋+1

)
.

In words, the loss in the first m rounds is equal to 0. Thereafter, in round t the loss is equal to a
random sign ϵ⌈ t

m ⌉, which is fixed for that block, times a scaling factor, which is chosen according
to the p-norm to ensure that the Lipschitz constant L is at most 1, times a sum of a subset of past
decisions in the history ht = (xt, . . . , xt−m+1). This subset consists of all past decisions until and
including the first decision of the current block, which is the decision in round m⌊ t

m⌋+ 1.

The functions ft are linear, so they are convex. In order to show that they satisfy Assumptions A3
and A4, it remains to show that they are 1-Lipschitz continuous. Let h = (x(1), . . . , x(m)) and
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h̃ = (x̃(1), . . . , x̃(m)) be arbitrary elements of H = Xm. We have∣∣∣ft(h)− ft(h̃)
∣∣∣

≤
∣∣∣ϵ⌈ t

m ⌉m
1−p
p

(
(x(1) − x̃(1)) + · · ·+ (x(m) − x̃(m))

)∣∣∣
≤ m

1−p
p

∣∣∣(x(1) − x̃(1)) + · · ·+ (x(m) − x̃(m))
∣∣∣ because ϵ⌈ t

m ⌉ ∈ {−1,+1}

≤ m
1−p
p m1− 1

p

(
m∑

k=1

∣∣∣x(k) − x̃(k)
∣∣∣p) 1

p

by Hölder’s inequality

= ∥h− h̃∥H,

where the last equality follows because of our assumption that the problem that follows linear
sequence dynamics with the p-norm.

First we will show that the total expected loss of any algorithm is 0, where the expectation is with
respect to the randomness in the choice of {ϵ1, . . . , ϵN}. The total loss in the first block is 0 because
ft = 0 for t ∈ [m]. For each subsequent block n ∈ {2, . . . , N}, the total loss in block n depends on
the algorithm’s choices made before observing ϵn, namely, {x(n−2)m+2, . . . , x(n−1)m+1}. Since ϵn
is equal to ±1 with probability 1

2 , the expected loss of any algorithm in a block is equal to 0 and the
total expected loss is also equal to 0.

Now we will show that the expected loss of the benchmark is at most

−O

(√
Tm

p+2
p

)
,

where the expectation is with respect to the randomness in the choice of {ϵ1, . . . , ϵN}. We have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

f̃t(x)


= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
1−p
p × x× (m− (t− (n− 1)m− 1))

 .

The first equality follows from first summing over blocks and then summing over the rounds in that
block. The second equality follows from the definitions of ft above and of f̃t (Definition 2.1). By the
defintion of f̃t, the history ht consists of m copies of x for t ≥ m.. By the definition of ft, which
sums over all past decisions until the first round of the current block, we have that within a block the
sum first extends over m copies of x (in the first round of the block), then m− 1 copies of x (in the
second round of the block), and so on until the last round of the block. So, we have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
1−p
p × x× (m− (t− (n− 1)m− 1))


= E

[
min
x∈X

N∑
n=2

m−1∑
k=0

ϵnm
1−p
p × x× (m− k)

]

= m
1−p
p

m2 +m

2
E

[
min
x∈X

N∑
n=2

ϵnx

]

= m
1−p
p

m2 +m

2
E

[
min

x∈{−1,1}

N∑
n=2

ϵnx

]

= m
1−p
p

m2 +m

2
E

[
1

2

N∑
n=2

ϵn(−1 + 1)− 1

2

∣∣∣∣∣
N∑

n=2

ϵn(−1− 1)

∣∣∣∣∣
]
,
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where the second-last equality follows because the minima of a linear function over an interval is at
one of the endpoints and the last equality follows because min{x, y} = 1

2 (x+ y)− 1
2 |x− y|. Since

ϵn are Rademacher random variables equal to ±1 with probability 1
2 , we can simplify the above as

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= m

1−p
p

m2 +m

2
E

[
−1

2

∣∣∣∣∣
N∑

n=2

−2ϵn

∣∣∣∣∣
]

= m
1−p
p

m2 +m

2
E

[
−

∣∣∣∣∣
N∑

n=2

ϵn

∣∣∣∣∣
]

= −m
1−p
p

m2 +m

2
E

[∣∣∣∣∣
N∑

n=2

ϵn

∣∣∣∣∣
]

≤ −m
1−p
p

m2 +m

2

√
N,

where the last inequality follows from Khintchine’s inequality. Using the definition N = T
m , we have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
≤ −m

1−p
p

m2 +m

2

√
T

m

= −1

2

√
T
(
m

3
2+

1−p
p +m

1
2+

1−p
p

)
≤ −O

(√
Tm

3
2+

1−p
p

)
= −O

(√
Tm

p+2
2p

)
= −O

(√
Tm

p+2
p

)
.

Therefore, we have

Eϵ1,...,ϵN [RT (FTRL)] = E

[
T∑

t=1

ft(ht)

]
− E

[
min
x∈X

T∑
t=1

f̃t(x)

]
≥ Ω

(√
Tm

p+2
p

)
.

This completes the proof. ■

Now we provide a lower bound for the OCO with ρ-discounted infinite memory problem. For
simplicity, we consider the case when the problem follows linear sequence dynamics with the 2-norm
instead of a general p-norm.

Theorem D.2. Let ρ ∈ [ 12 , 1). There exists an instance of the online convex optimization with ρ-
discounted infinite memory problem, (X ,H, Ainfinite,ρ, Binfinite), that follows linear sequence dynamics
with the 2-norm and there exist L-Lipschitz continuous loss functions {ft : H → R}Tt=1 such that
the regret of any algorithm A satisfies

RT (A) ≥ Ω
(√

TL2(1− ρ)−2
)
.

The proof is very similar to that of Theorem D.1 with slight adjustments to account for a ρ-discounted
infinite memory instead of a finite memory of constant size m.

Proof. Let X = [−1, 1] and consider an OCO with infinite memory problem with discount factor
ρ, (X ,H, Ainfinite,ρ, Binfinite), that follows linear sequence dynamics with the 2-norm. For simplicity,
assume that T is a multiple of (1− ρ)−1 (otherwise, the same proof works but with slightly more
tedious bookkeeping) and that L = 1 (otherwise, multiply the functions ft defined below by L).

Define m = (1 − ρ)−1. Divide the T rounds into N = T
m blocks of m rounds each. Sample

N independent Rademacher random variables {ϵ1, . . . , ϵN}, where each ϵi is equal to ±1 with
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probability 1
2 . Recall that ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . . ). Define the loss functions {ft}Tt=1 as
follows. If t ≤ m, let ft = 0. Otherwise, let

ft(ht) = ϵ⌈ t
m ⌉m

− 1
2

m−1∑
k=0

ρk+t−m⌊ t
m ⌋−1xm⌊ t

m ⌋+1−k.

The functions ft are linear, so they are convex. In order to show that they satisfy Assumptions A3
and A4, it remains to show that they are 1-Lipschitz continuous. Let h = (x(1), ρx(2), . . . ) and
h̃ = (x̃(1), ρx̃(2), . . . ) be arbitrary elements of H. We have∣∣∣ft(h)− ft(h̃)

∣∣∣
≤

∣∣∣∣∣ϵ⌈ t
m ⌉m

− 1
2

m∑
k=1

ρk−1
(
x(k) − x̃(k)

)∣∣∣∣∣
≤ m− 1

2

∣∣∣∣∣
m∑

k=1

ρk−1
(
x(k) − x̃(k)

)∣∣∣∣∣ because ϵ⌈ t
m ⌉ ∈ {−1,+1}

≤ m− 1
2m

1
2

(
m∑

k=1

ρ2(k−1)
∣∣∣x(k) − x̃(k)

∣∣∣2) 1
2

by Hölder’s inequality

≤ ∥h− h̃∥H,

where the last equality follows because the follows linear sequence dynamics with the 2-norm.

First we will show that the total expected loss of any algorithm is 0, where the expectation is with
respect to the randomness in the choice of {ϵ1, . . . , ϵN}. The total loss in the first block is 0 because
ft = 0 for t ∈ [m]. For each subsequent block n ∈ {2, . . . , N}, the total loss in block n depends on
the algorithm’s choices made before observing ϵn, namely, {x(n−2)m+2, . . . , x(n−1)m+1}. Since ϵn
is equal to ±1 with probability 1

2 , the expected loss of any algorithm in a block is equal to 0 and the
total expected loss is also equal to 0.

Now we will show that the expected loss of the benchmark is at most

−O
(√

T (1− ρ)−2
)
,

where the expectation is with respect to the randomness in the choice of {ϵ1, . . . , ϵN}. We have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

f̃t(x)


= E

min
x∈X

N∑
n=2

nm∑
t=(n−1)m+1

ϵnm
− 1

2

m−1∑
k=0

ρk+t−(n−1)m−1x


= m− 1

2E

min
x∈X

N∑
n=2

ϵnx

nm∑
t=(n−1)m+1

ρt−(n−1)m−1
m−1∑
k=0

ρk


= m− 1

2
1− ρm

1− ρ
E

min
x∈X

N∑
n=2

ϵnx

nm∑
t=(n−1)m+1

ρt−(n−1)m−1


= m− 1

2

(
1− ρm

1− ρ

)2

E

[
min
x∈X

N∑
n=2

ϵnx

]
︸ ︷︷ ︸

(a)

.
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The term (a) above can be bounded above by −
√
N as in the proof of Theorem D.1 using Khintchine’s

inequality. Therefore, using that N = T
m and m = (1− ρ)−1 we have

E

[
min
x∈X

T∑
t=1

f̃t(x)

]
≤ −m− 1

2

(
1− ρm

1− ρ

)2 √
N

≤ −(1− ρ)
1
2

(
1− ρm

1− ρ

)2√
T (1− ρ)

= −
√
T
(1− ρm)2

1− ρ

= −
√
T (1− ρ)−2(1− ρm)2

≤ −O
(√

T (1− ρ)−2
)
,

where the last inequality follows from the assumption that ρ ∈ [ 12 , 1) and the following argument:

ρm = (1− (1− ρ))m = (1− (1− ρ))
1

1−ρ ≤ 1

e

⇒ (1− ρm) ≥ 1− 1

e

⇒ (1− ρm)2 ≥
(
1− 1

e

)2

⇒ −(1− ρm)2 ≤ −
(
1− 1

e

)2

This completes the proof. ■

E Online Linear Control

E.1 Formulation as OCO with Unbounded Memory

Now we formulate the online linear control problem in our framework by defining the decision space
X , the history space H, and the linear operators A : H → H and B : W → H. Then, we define
the functions ft : H → R in terms of ct and finally, prove an upper bound on the policy regret. For
notational convenience, let (M [s]) and (Yk) denote the sequences (M [1],M [2], . . . ) and (Y0, Y1, . . . )
respectively.

Recall that we fix K ∈ K to be an arbitrary (κ, ρ)-strongly stable linear controller and consider
the disturbance-action controller policy class MK (Definition 4.1). For the rest of this paper let
F̃ = F −GK. The first step is a change of variables with respect to the control inputs from linear
controllers to DACs and the second is a corresponding change of variables for the state. Define the
decision space X as

X = {M = (M [s]) : M [s] ∈ Rd×d, ∥M [s]∥2 ≤ κ4ρs} (10)

with

∥M∥X =

√√√√ ∞∑
s=1

ρ−s∥M [s]∥2F . (11)

Define the history space H to be the set consisting of sequences h = (Yk), where Y0 ∈ X and
Yk = F̃ k−1GXk for Xk ∈ X , k ≥ 1 with

∥h∥H =

√√√√ ∞∑
k=0

ξ2k∥Yk∥2X , (12)
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where the weights (ξk) are nonnegative real numbers defined as

ξ = (1, 1, 1, ρ−
1
2 , ρ−1, ρ−

3
2 , . . . ). (13)

Define the linear operators A : H → H and B : W → H as

A((Y0, Y1, . . . )) = (0, GY0, F̃ Y1, F̃ Y2, . . . ) and B(M) = (M, 0, 0, . . . ).

Note that the problem follows linear sequence dynamics with the ξ-weighted 2-norm (Definition 2.3),
where ξ is defined above in Eq. (13). The weights in the weighted norms on X and H increase
exponentially. However, the norms ∥M [s]∥2F and ∥F̃ k−1G∥2F decrease exponentially as well: by
definition of M [s] in Eq. (11) and the assumption on F̃ = F − GK for K ∈ K. Leveraging this
exponential decrease in ∥M [s]∥2F and ∥F̃ k−1G∥2F to define exponentially increasing weights turns
out to be crucial for deriving our regret bounds that are stronger than existing results. Furthermore,
the choice to have ξp = 1 for p ∈ {1, 2} in addition to p = 0 (as required by Definition 2.3) might
seem like a small detail, but this also turns out to be crucial for avoiding unnecessary factors of ρ−1

in the regret bounds.

Recall that the loss functions in the online linear control problem are ct(st, ut), where st and ut are
the state and control at round t. Now we will show how to construct the functions ft : H → R that
correspond to ct(st, ut). By definition, given a sequence of decisions (M0, . . . ,Mt), the history at
the end of round t is given by

ht = (Mt, GMt−1, F̃GMt−2, . . . , F̃
t−1GM0, 0, . . . ).

A simple inductive argument shows that the state and control in round t can be written as

st = F̃ ts0 +

t−1∑
k=0

k+1∑
s=1

F̃ t−k−1GM
[s]
k wk−s + wt−1, (14)

ut = −Kst +

t+1∑
s=1

M
[s]
t wt−s. (15)

Define the functions ft : H → R by ft(h) = ct(s, u), where s and u are the state and control
determined by the history as above. Note that ft is parameterized by the past disturbances. Since the
state and control are linear functions of the history and ct is convex, this implies that ft is convex.

With the above formulation and the fact that the class of disturbance-action controllers is a superset
of the class of (κ, ρ)-strongly-stable linear controllers, we have that the policy regret for the online
linear control problem is at most

T−1∑
t=0

ft(ht)− min
M∈X

T−1∑
t=0

f̃t(M).

This completes the specification of the online convex optimization with unbounded memory problem,
(X ,H, A,B), corresponding to the online linear control problem. Using Algorithm 1 and Theorem 3.1
we can upper bound the above by

O

(√
D

α
TLL̃H2

)
,

where L is the Lipschitz constant of ft, L̃ is the Lipschitz constant of f̃t, H2 is the 2-effective memory
capacity, and D = maxx,x̃∈X |R(x)−R(x̃)| for an α-strongly-convex regularizer R : X → R. In
the next subsection we bound these quantities in terms of the problem parameters of the online linear
control problem. We use O(·) to hide absolute constants.

E.2 Regret Analysis

We use the following standard facts about matrix norms.
Lemma E.1. Let M,N ∈ Rd×d. Then,
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1. ∥M∥2 ≤ ∥M∥F ≤
√
d∥M∥2.

2. ∥MN∥F ≤ ∥M∥2∥N∥F .

Proof. Part 1 can be found in, for example, Golub and Loan [1996, Section 2.3.2]. Letting Nj denote
the j-th column of N , part 2 follows from

∥MN∥2F =

d∑
j=1

∥MNj∥22 ≤ ∥M∥22
d∑

j=1

∥Nj∥22 = ∥M∥22∥N∥2F .

This completes the proof. ■

Lemma E.2. For s ≥ 2, the operator norm ∥As∥ is bounded above as

∥As∥ ≤ O
(
κ4ρ

s
2

)
.

Proof. Recall the definition of H and ∥ · ∥H (Eq. (12)). Let

(Y0, Y1, . . . ) = (Y0, GX1, F̃GX2, F̃
2GX3, . . . )

be an element of H with unit norm, i.e.,√√√√ ∞∑
k=0

ξ2k∥Yk∥2X = 1,

where the weights (ξk) are defined in Eq. (13). Note that ξp = 1 for p = 0, 1 and ξ2p = ρ−p+2 for
p = 2, 3, . . . . From the definition of the operator A and for s ≥ 2, we have

As((Y0, Y1, . . . )) = (0, . . . , 0, F̃ s−1GY0, F̃
sGX1, F̃

s+1GX2, . . . ).

Now we bound ∥As∥ as follows. By definition of As and ∥ · ∥H (Eq. (12)), and part 2 of Lemma E.1,
we have

∥As((Y0, Y1, . . . ))∥ =

√√√√ρ−s+2∥F̃ s−1GY0∥2X +

∞∑
k=1

ρ−s−k+2∥F̃ s+k−1GXk∥2X

≤

√√√√ρ−s+2∥F̃ s−1G∥22∥Y0∥2X +

∞∑
k=1

ρ−s−k+2∥F̃ s−1∥22∥F̃∥22∥F̃ k−1GXk∥2X

≤ ρ−
s
2 ∥F̃ s−1∥2

√√√√ρ2∥G∥22∥Y0∥2X +

∞∑
k=1

ρ−k+2∥F̃∥22∥F̃ k−1GXk∥2X

= ρ−
s
2 ∥F̃ s−1∥2

√√√√ρ2∥G∥22∥Y0∥2X +

∞∑
k=1

ρ−k+2∥F̃∥22∥Yk∥2X .

Using our assumptions that ∥G∥2 ≤ κ and ∥F̃∥2 ≤ κ2ρ, we have

∥As((Y0, Y1, . . . ))∥ ≤ ρ−
s
2 ∥F̃ s−1∥2

√√√√ρ2κ2∥Y0∥2X +

∞∑
k=1

ρ−k+2κ4ρ2∥Yk∥2X

≤ ρ−
s
2 ρκ2∥F̃ s−1∥2

√√√√∥Y0∥2X +

∞∑
k=1

ρ−k+2∥Yk∥2X

≤ ρ−
s
2 ρκ2κ2ρs−1

√√√√∥Y0∥2X +

∞∑
k=1

ρ−k+2∥Yk∥2X

= κ4ρ
s
2

√√√√∥Y0∥2X +

∞∑
k=1

ρ−k+2∥Yk∥2X .
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Using ρ−1+2 = ρ < 1 for k = 1 in the above sum, the definition of (ξk), and our assumption that
(Y0, Y1 . . . ) has unit norm, we have

∥As((Y0, Y1, . . . ))∥ ≤ κ4ρ
s
2

√√√√ξ20∥Y0∥2X +

∞∑
k=1

ξ2k∥Yk∥2X = κ4ρ
s
2 .

This completes the proof. ■

Lemma E.3. The 2-effective memory capacity is bounded above as

H2 ≤ O
(
κ4(1− ρ)−

3
2

)
.

Proof. Using Lemma E.2 to bound ∥Ak∥ for k ≥ 2, we have

H2 =

√√√√ ∞∑
k=0

k2∥Ak∥2 ≤ O

√√√√ ∞∑
k=2

k2κ8ρk

 ≤ O
(
κ4(1− ρ)−

3
2

)
. ■

Lemma E.4. Suppose R : X → R is defined by R(M) = 1
2∥M∥2X . Then, it is 1-strongly-convex

and D = max
M,M̃∈X |R(M)−R(M̃)| ≤ dκ8(1− ρ)−1.

Proof. Note that R is 1-strongly-convex by definition. Using part 1 of Lemma E.1 and the definition
of X (Eq. (10)), we have for all M, M̃ ∈ X ,

D = max
M,M̃∈X

|R(M)−R(M̃)|

= max
M,M̃∈X

∣∣∣∣12∥M∥2X − 1

2
∥M̃∥2X

∣∣∣∣
≤ max

M∈X
∥M∥2X

= max
M∈X

∞∑
s=1

ρ−s∥M [s]∥2F by Eq. (11)

≤ max
M∈X

∞∑
s=1

ρ−sd∥M [s]∥22 by Lemma E.1

≤
∞∑
s=1

ρ−sdκ8ρ2s by Eq. (10)

≤ dκ8(1− ρ)−1.

This completes the proof. ■

Lemma E.5. We can bound the norm of the state and control at time t as

max{∥st∥2, ∥ut∥2} ≤ DX = O
(
Wκ8(1− ρ)−2

)
.
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Proof. We can bound the norm of st and ut using Eqs. (14) and (15) as

∥st∥2 ≤

∥∥∥∥∥F̃ ts0 +

t−1∑
k=0

k+1∑
s=1

F̃ t−k−1GM
[s]
k wk−s + wt−1

∥∥∥∥∥
2

≤ κ2ρt +W +

t−1∑
k=0

k+1∑
s=1

κ2ρt−k−1κκ4ρsW

≤ κ2 +W +Wκ7(1− ρ)−2

≤ O
(
Wκ7(1− ρ)−2

)
.

∥ut∥2 ≤

∥∥∥∥∥Kst +

t+1∑
s=1

M
[s]
t wt−s

∥∥∥∥∥
2

≤ O
(
Wκ8(1− ρ)−2

)
+

t+1∑
s=1

Wκ4ρs

≤ O
(
Wκ8(1− ρ)−2

)
.

Above, we used the assumptions that κ,W ≥ 1. This completes the proof. ■

Lemma E.6. The Lipschitz constant of ft can be bounded above as

L ≤ O
(
L0DXWκ(1− ρ)−1

)
,

where DX is defined in Lemma E.5.

Proof. Let (M0, . . . ,Mt) and (M̃0, . . . , M̃t) be two sequences of decisions, where Mk and M̃k ∈ X .
Let ht and h̃t be the corresponding histories, and (st, ut) and (s̃t, ũt) be the corresponding state-
control pairs at the end of round t. We have

∣∣∣ft(ht)− ft(h̃t)
∣∣∣ = |ct(st, ut)− ct(s̃t, ũt)|

≤ L0DX max{∥st − s̃t∥2 , ∥ut − ũt∥2},

where the last inequality follows from our assumptions about the functions ct and Lemma E.5. It
suffices to bound the two norms on the right-hand side in terms of ∥ht − h̃t∥H. For k = 0, . . . , t− 1,
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define Z
[s]
k = F̃ t−k−1G(M

[s]
k − M̃

[s]
k ). Using Eq. (14), we have

∥st − s̃t∥2 =

∥∥∥∥∥
t−1∑
k=0

k+1∑
s=1

Z
[s]
k wk−s

∥∥∥∥∥
2

≤
t−1∑
k=0

k+1∑
s=1

∥∥∥Z [s]
k wk−s

∥∥∥
2

=

t−1∑
k=0

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k ρ

s
2wk−s

∥∥∥
2

≤
t−1∑
k=0

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k

∥∥∥
2

∥∥ρ s
2wk−s

∥∥
2

=

t−1∑
k=0

k+1∑
s=1

ξ1+t−1−k

∥∥∥ρ− s
2Z

[s]
k

∥∥∥
2
ξ−1
1+t−1−k

∥∥ρ s
2wk−s

∥∥
2

≤

√√√√t−1∑
k=0

k+1∑
s=1

ξ2t−k

∥∥∥ρ− s
2Z

[s]
k

∥∥∥2
2

√√√√t−1∑
k=0

k+1∑
s=1

ξ−2
t−k

∥∥ρ s
2wk−s

∥∥2
2

(16)

=

√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k

∥∥∥2
2︸ ︷︷ ︸

(a)

√√√√t−1∑
k=0

ξ−2
t−k

k+1∑
s=1

∥∥ρ s
2wk−s

∥∥2
2︸ ︷︷ ︸

(b)

,

where Eq. (16) follows from the Cauchy-Schwarz inequality. The specific choice of weighted norms
on X and H allow us to bound the terms (a) and (b) in terms of ∥ht − h̃t∥H. We can bound the term
(a) using the definition of Z [s]

k , ∥ · ∥X , and ∥ · ∥H as√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

∥∥∥ρ− s
2Z

[s]
k

∥∥∥2
2
=

√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

ρ−s
∥∥∥F̃ t−k−1G(M

[s]
k − M̃

[s]
k )
∥∥∥2
2

≤

√√√√t−1∑
k=0

ξ2t−k

k+1∑
s=1

ρ−s
∥∥∥F̃ t−k−1G(M

[s]
k − M̃

[s]
k )
∥∥∥2
F

(17)

≤ ∥ht − h̃t∥H, (18)

where Eq. (17) follows from part 1 of Lemma E.1 and Eq. (18) follows from the definitions of ∥ · ∥X
and ∥ · ∥H. Using ∥wt∥2 ≤ W for all rounds t, we can bound the term (b) as√√√√t−1∑

k=0

ξ−2
t−k

k+1∑
s=1

∥∥ρ s
2wk−s

∥∥2
2
≤ W

√√√√t−1∑
k=0

ξ−2
t−k

k+1∑
s=1

ρs

≤ W

√√√√t−1∑
k=0

ξ−2
t−k

ρ(1− ρk+1)

1− ρ

≤ W (1− ρ)−1, (19)

where Eq. (19) follows from the definition of (ξk) (Eq. (13)). Substituting Eqs. (18) and (19)
in Eq. (16), we have

∥st − s̃t∥2 ≤ W (1− ρ)−1∥ht − h̃t∥H.
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Similarly,

∥ut − ũt∥ =

∥∥∥∥∥K(st − s̃t) +

t+1∑
s=1

(M
[s]
t − M̃

[s]
t )wt−s

∥∥∥∥∥
2

≤ O
(
Wκ(1− ρ)−1

∥∥∥ht − h̃t

∥∥∥
H

)
,

where the last inequality follows from our assumption that ∥K∥2 ≤ κ and the above inequality for
∥st − s̃t∥2. This completes the proof. ■

Lemma E.7. The Lipschitz constant of f̃t can be bounded above as

L̃ ≤ O
(
L0DXWκ5(1− ρ)−

3
2

)
,

where DX is defined in Lemma E.5.

Proof. Using Lemma E.2 that bounds ∥Ak∥, we have√√√√ ∞∑
k=0

∥Ak∥2 ≤ O
(
κ4(1− ρ)−

1
2

)
.

Using Theorem 2.1 that bounds L̃ in terms of L and the above, we have

L̃ ≤ O
(
Lκ4(1− ρ)−

1
2

)
≤ O

(
L0DXWκ5(1− ρ)−

3
2

)
,

where the last inequality follows from Lemma E.6. ■

Now we restate and prove Theorem 4.1.
Theorem 4.1. Consider the online linear control problem as defined in Section 4.1. Suppose the
decisions in round t are chosen using Algorithm 1. Then, the upper bound on the policy regret is

O
(
L0W

2
√
Td

1
2κ17(1− ρ)−4.5

)
. (2)

Proof. Using Theorem 3.1 and the above lemmas, we can upper bound the policy regret of Algo-
rithm 1 for the online linear control problem by

O

(√
D

α
TLL̃H2

)

= O

(√
dκ8(1− ρ)−1 T (L0W 2κ9(1− ρ)−3)

2
κ4(1− ρ)−

1
2 κ4(1− ρ)−

3
2

)
= O

(
L0W

2
√
Td

1
2κ17(1− ρ)−4.5

)
.

This completes the proof. ■

E.3 Existing Regret Bound

The upper bound on policy regret for the online linear control problem in existing work is given
in Agarwal et al. [2019b, Theorem 5.1]. The theorem statement only shows the dependence on L̃,W ,
and T . The dependence on d, κ, and ρ can be found in the details of the proof. Below we give a
detailed accounting of all of these terms in their regret bound.

To simplify notation let γ = 1− ρ. Agarwal et al. [2019b] define

H =
κ2

γ
log(T ) and C =

W (κ2 +HκBκ
2a)

γ(1− κ2(1− γ)H+1)
+

κBκ
3W

γ
.

The value of a is not specified in Theorem 5.1. However, from Theorem 5.3 and the definition of M
in Algorithm 1 their paper, we can infer that a = κBκ

3.
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The final regret bound is obtained by summing Equations 5.1, 5.3, and 5.4. Given the definition of H
above, we have that

(1− γ)H+1 ≤ exp(−κ2 log T ) = T−κ2

.

So, the dominant term in the regret bound is Equation 5.4, which is

O
(
L0WCd

3
2κ2

Bκ
6H2.5γ−1

√
T
)
.

Substituting the values of H and C from above and collecting terms, we have that the upper bound
on policy regret in existing work [Agarwal et al., 2019b, Theorem 5.1] is

O
(
L0Wd

3
2

√
T log(T )2.5κ2

Bκ
11γ−3.5C

)
= O

(
L0Wd

3
2

√
T log(T )2.5κ2

Bκ
11γ−3.5

(
W (κ2 +HκBκ

2a)

γ(1− κ2(1− γ)H+1)
+

κBκ
3W

γ

))
= O

(
L0Wd

3
2

√
T log(T )2.5κ2

Bκ
11γ−3.5

(
Wκ2

γ(1− κ2(1− γ)H+1)
+

Wκ2
Bκ

7 log(T )

γ2(1− κ2(1− γ)H+1)
+

κBκ
3W

γ

))
= O

(
L0W

2d
3
2

√
T log(T )2.5κ2

Bκ
13γ−4.5(1− κ2(1− γ)H+1)−1

)
+O

(
L0W

2d
3
2

√
T log(T )3.5κ4

Bκ
18γ−5.5(1− κ2(1− γ)H+1)−1

)
+O

(
L0W

2d
3
2

√
T log(T )2.5κ3

Bκ
14γ−4.5

)
= O

(
L0W

2d
3
2

√
T log(T )3.5κ4

Bκ
18γ−5.5

)
.

Above we used that limT→∞(1− κ2(1− γ)H+1)−1 = 1 to simplify the expressions. Therefore, the
upper bound on policy regret for the online linear control problem in existing work is

O
(
L0W

2d
3
2

√
T log(T )3.5κ4

Bκ
18γ−5.5

)
. (20)

F Online Performative Prediction

Before formulating the online performative prediction problem in our OCO with unbounded memory
framework, we state the definition of 1-Wasserstein distance that we use in our regret analysis.
Informally, the 1-Wasserstein distance is a measure of the distance between two probability measures.

Definition F.1 (1-Wasserstein Distance). Let (Z, d) be a metric space. Let P(Z) denote the set of
Radon probability measures ν on Z with finite first moment. That is, there exists z′ ∈ Z such that
Ez∼ν [d(z, z

′)] < ∞. The 1-Wasserstein distance between two probability measures ν, ν′ ∈ P(Z) is
defined as

W1(ν, ν
′) = sup{Ez∼ν [f(z)]− Ez∼ν′ [f(z)]},

where the supremum is taken over all 1-Lipschitz continuous functions f : Z → R.

F.1 Formulation as OCO with Unbounded Memory

Now we formulate the online performative prediction problem in our framework by defining the
decision space X , the history space H, and the linear operators A : H → H and B : W → H. Then,
we define the functions ft : H → R in terms of lt and finally, prove an upper bound on the policy
regret. For notational convenience, let (yk) denote the sequence (y0, y1, . . . ).

Let ρ ∈ (0, 1). Let the decision space X ⊆ Rd be closed and convex with ∥ · ∥X = ∥ · ∥2. Let the
history space H be the ℓ1-direct sum of countably infinte number of copies of X . Define the linear
operators A : H → H and B : X → H as

A((y0, y1, . . . )) = (0, ρy0, ρy1, . . . ) and B(x) = (x, 0, . . . ).

Note that the problem is an OCO with ρ-discounted infinite memory problem and follows linear
sequence dynamics with the 1-norm (Definition 2.3).
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Given a sequence of decisions (xk)
t
k=1, the history is ht = (xt, ρxt−1, . . . , ρ

t−1x1, 0, . . . ) and the
data distribution pt = pt(ht) satisfies:

z ∼ pt iff z ∼
t−1∑
k=1

(1− ρ)ρk−1(ξ + Fxt−k) + ρtp1. (21)

This follows from the recursive definition of pt and parametric assumption about D(x). Define the
functions ft : H → [0, 1] by

ft(ht) = Ez∼pt [lt(xt, z)].

With the above formulation and definition of ft, the original goal of minimizing the difference between
the algorithm’s total loss and the total loss of the best fixed decision is equivalent to minimizing the
policy regret,

T∑
t=1

ft(ht)−min
x∈X

T∑
t=1

f̃t(x).

F.2 Regret Analysis

Lemma F.1. The operator norm ∥As∥ is bounded above as

∥As∥ ≤ O (ρs) .

Proof. Recall the definition of H and ∥ · ∥H. Let

(y0, y1, . . . ) = (x0, ρx1, ρ
2x2, . . . )

be an element of H with unit norm, i.e.,
∞∑
k=0

∥yk∥ = 1.

From the definition of the operator A, we have

As((y0, y1, . . . )) = (0, . . . , 0, ρsx0, ρ
s+1x1, . . . ).

Now we bound ∥As∥ as follows. By definition of As and ∥ · ∥H, we have

∥As((y0, y1, . . . ))∥ =

∞∑
k=0

ρs+k∥xk∥ = ρs
∞∑
k=0

ρk∥xk∥ = ρs
∞∑
k=0

∥yk∥ = ρs. ■

Lemma F.2. The 1-effective memory capacity is bounded above as

H2 ≤ O
(
(1− ρ)−2

)
.

Proof. Using Lemma F.1 to bound ∥Ak∥, we have

H1 =

∞∑
k=0

k∥Ak∥ =

∞∑
k=0

kρk ≤ O
(
(1− ρ)−2

)
. ■

Lemma F.3. Suppose R : X → R is defined by R(x) = 1
2∥x∥

2
X . Then, it is 1-strongly-convex and

D = maxx,x̃∈X |R(x)−R(x̃)| ≤ D2
X .

Proof. Note that R is 1-strongly-convex by definition. By the assumption that ∥x∥X ≤ DX for all
x ∈ X , we have that D ≤ D2

X . ■

Lemma F.4. The Lipschitz constant of ft can be bounded above as

L ≤ O

(
L0

1− ρ

ρ
∥F∥2

)
.
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Proof. Let (x1, . . . , xt) and (x̃1, . . . , x̃t) be two sequences of decisions, where xk, x̃k ∈ X . Let ht

and h̃t be the corresponding histories, and pt and p̃t be the corresponding distributions at the end of
round t. We have∣∣∣ft(ht)− ft(h̃t)

∣∣∣
= |Ez∼pt

[lt(xt, z)]− Ez∼p̃t
[lt(x̃t, z)]|

= |Ez∼pt
[lt(xt, z)]− Ez∼pt

[lt(x̃t, z)] + Ez∼pt
[lt(x̃t, z)]− Ez∼p̃t

[lt(x̃t, z)]|
≤ L0∥xt − x̃t∥2 + L0W1(pt, p̃t),

where the last inequality follows from the assumptions about the functions lt and the definition of the
Wasserstein distance W1. By definition of pt (Eq. (21)), we have

W1(pt, p̃t) ≤
t−1∑
k=1

1− ρ

ρ
ρk∥F∥2∥xt−k − x̃t−k∥2

≤ 1− ρ

ρ
∥F∥2∥ht − h̃t∥H,

where the last inequality follows from the definition of ∥ · ∥H. Therefore, L ≤ L0
1−ρ
ρ ∥F∥2. ■

Lemma F.5. The Lipschitz constant of ft can be bounded above as

L̃ ≤ O

(
L0

1

ρ
∥F∥2

)
.

Proof. Using Lemma F.1 that bounds ∥Ak∥, we have
∞∑
k=0

∥Ak∥ = (1− ρ)−1.

Using Theorem 2.1 that bounds L̃ in terms of L and the above, we have

L̃ ≤ O
(
L(1− ρ)−1

)
= O

(
L0

1

ρ
∥F∥2

)
,

where the last equality follows from Lemma F.4. ■

Now we restate and prove Theorem 4.2.
Theorem 4.2. Consider the online performative prediction problem as defined in Section 4.2. Suppose
the decisions in round t are chosen using Algorithm 1. Then, the upper bound on the policy regret is

O
(
DXL0

√
T∥F∥2(1− ρ)−

1
2 ρ−1

)
.

Proof. Using Theorem 3.1 and the above lemmas, we can upper bound the policy regret of Algo-
rithm 1 for the online performative prediction problem by

O

(√
D

α
TLL̃H1

)
= O

(
DXL0∥F∥2(1− ρ)−

1
2 ρ−1

√
T
)
.

This completes the proof. ■

We note that the upper bound can be improved by defining a weighted norm on H similar to the
approach in Appendix E. However, here we present the looser anaysis for simplicity of exposition.

G Implementation Details for Algorithm 1

In this section we discuss how to implement Algorithm 1 efficiently.
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Dimensionality of X . First, note that the decisions x ∈ X could be high-dimensional, e.g., an
unbounded sequence of matrices as in the online linear control problem, but this is external to
our framework and is application dependent. Our framework can be applied to X or to a lower-
dimensional decision space X ′. However, the choice of X ′ and analyzing the difference

min
x′∈X ′

T∑
t=1

f̃t(x
′)−min

x∈X

T∑
t=1

f̃t(x)

is application dependent. For example, for the online linear control problem one could consider a
restricted class of disturbance-action controllers that operate on a constant number of past disturbances
as opposed to all the past disturbances, and then analyze the difference between these two policy
classes. See, for example, Agarwal et al. [2019b, Lemma 5.2].

Computational cost of each iteration of Algorithm 1. Now we discuss how to implement each
iteration of Algorithm 1 efficiently. We are interested in the computational cost of computing the
decision xt+1 as a function of t. (Given the above discussion about the dimensionality of X , we
ignore the fact that the dimensionality of the decisions themselves could depend on t.) Therefore,
for the purposes of this section we (i) use O(·) notation to hide absolute constants and problem
parameters excluding t and T ; (ii) invoke the operators A and B by calling oracles OA(·) and OB(·);
and (iii) evaluate the functions ft by calling oracles Of (t, ·). Recall from Assumption A1 that we
assume the learner knows the operators A and B, and observes ft at the end of each round t. So, the
oracles OA,OB , and Of are readily available.

Algorithm 1 chooses the decision xt+1 as

xt+1 ∈ argmin
x∈X

t∑
s=1

f̃s(x) +
R(x)

η
= argmin

x∈X

t∑
s=1

fs

(
s−1∑
k=0

AkBx

)
︸ ︷︷ ︸

=Ft(x)

+
R(x)

η
.

Since Ft(x) is a sum of f1, . . . , ft, evaluating Ft(x) requires Θ(t) oracle calls to Of . However, this
issue is present in FTRL for OCO and OCO with finite memory as well and is not specific to our
framework. To deal with this issue, one could consider mini-batching algorithms [Dekel et al., 2012,
Altschuler and Talwar, 2018, Chen et al., 2020] such as Algorithm 2.

A naïve implementation to evaluate Ft(x) could require O(t3) oracle calls to OA: for each s ∈ [t],
constructing the argument

∑s−1
k=0 A

kBx for fs could require k oracle calls to OA to compute AkBx,
for a total of O(s2) oracle calls. However, Ft(x) can be evaluated with just O(t) oracle calls to OA

by constructing the arguments incrementally. For t ≥ 0, define Γt : X → H as
Γ0(x) = Bx

Γt(x) = A (Γt−1(x)) for t ≥ 1.

Note that Γt(Bx) = AtBx. Also, for t ≥ 1, define Φt : X → H as
Φ1(x) = Γ0(x)

Φt(x) = Φt−1(x) + Γt−1(x) for t ≥ 2.

Note that Φs(x) =
∑s−1

k=0 A
kBx is the argument for fs. These can be constructed incrementally as

follows.

1. Construct Γ0(x) using one oracle call to OB .
2. For s = 1,

(a) Construct Φ1(x) = Γ0(x).
(b) Construct Γ1(x) from Γ0(x) using one oracle call to OA.

3. For s ≥ 2,
(a) Construct Φs(x) by adding Φs−1(x) and Γs−1(x). This can be done in O(1) time.

Recall from our earlier discussion that O(·) hides absolute constants and problem
parameters excluding t and T .

(b) Construct Γs(x) from Γs−1(x) using one oracle call to OA.

By incrementally constructing Φs(x) as above, we can evaluate Ft(x) in O(t) time with O(1) oracle
calls to OB , O(t) oracle calls to OA, and O(t) oracle calls to Of .
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Memory usage of Algorithm 1. We end with a brief discussion of the memory usage of Algorithm 1.
We are interested in the memory usage of computing the decision xt+1 as a function of t. (Given
the discussion about the dimensionality of X at the start of this section, we ignore the fact that
the dimensionality of the decisions themselves could depend on t.) For each t ∈ [T ], the memory
usage could be as low as O(1) (if, for example, X ⊆ Rd, and A,B ∈ Rd×d, which implies that
Φt(x) is a d-dimensional vector) or as high as O(t) (if, for example, Φt(x) is a t-length sequence of
d-dimensional vectors). However, the memory usage is already Ω(t) to store the functions f1, . . . , ft.
Therefore, Algorithm 1 only incurs a constant factor overhead.

H An Algorithm with A Low Number of Switches: Mini-Batch FTRL

In this section we present an algorithm (Algorithm 2) for OCO with unbounded memory that provides
the same upper bound on policy regret as Algorithm 1 while guaranteeting a small number of
switches. Algorithm 2 combines FTRL on the functions f̃t with a mini-batching approach. First,
it divides rounds into batches of size S, where S is a parameter. Second, at the start of batch
b ∈ {1, . . . , ⌈T/S⌉}, it performs FTRL on the functions {g1, . . . , gb}, where gi is the average of
the functions f̃t in batch i. Then, it uses this decision for the entirety of the current batch. By
design, Algorithm 2 switches decisions at most O(T/S) times. This algorithm is insipired by similar
algorithms for online learning and OCO [Dekel et al., 2012, Altschuler and Talwar, 2018, Chen et al.,
2020].

Algorithm 2: Mini-Batch FTRL
Input : Time horizon T , step size η, α-strongly-convex regularizer R : X → R, batch size S.

1 Initialize history h0 = 0.
2 for t = 1, 2, . . . , T do
3 if t mod S = 1 then
4 Let Nt = {1, . . . , ⌈ t

S ⌉} denote the number of batches so far.
5 For b ∈ Nt, let Tb = {(b− 1)S + 1, . . . , bS} denote the rounds in batch b.
6 For b ∈ Nt, let gb = 1

S

∑
s∈Tb

f̃s. denote the average of the functions in batch b.

7 Learner chooses xt ∈ argminx∈X
∑

b∈Nt
gb(x) +

R(x)
η .

8 end
9 else

10 Learner chooses xt = xt−1.
11 end
12 Set ht = Aht−1 +Bxt.
13 Learner suffers loss ft(ht) and observes ft.
14 end

Theorem H.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D
for all x, x̃ ∈ X . Algorithm 2 with batch size S and step-size η satisfies

RT (Mini-Batch FTRL) ≤ SD

η
+ η

T L̃2

α
+ η

TLL̃H1

Sα
.

If η =
√

αSD

TL̃(LH1
S +L̃)

, then

RT (Mini-Batch FTRL) ≤ O

(√
D

α
T
(
LL̃H1 + SL̃2

))
.

Setting the batch size to be S = LH1/L̃ we obtain the same upper bound on policy regret as Algorithm 1
while guaranteeing that the decisions xt switch at most TL̃/LH1 times.
Corollary H.1. Consider an online convex optimization with unbounded memory problem specified by
(X ,H, A,B). Let the regularizer R : X → R be α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D
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for all x, x̃ ∈ X . Algorithm 2 with batch size S = LH1

L̃
and step-size η =

√
αSD

TL̃(LH1
S +L̃)

satisfies

RT (Mini-Batch FTRL) ≤ O

(√
D

α
TLL̃H1

)
.

Furthermore, the decisions xt switch at most TL̃
LH1

times.

Intuitively, in the OCO with unbounded memory framework each decision xt is penalized not just
in round t but in future rounds as well. Therefore, instead of immediately changing the decision,
it is prudent to stick to it for a while, collect more data, and then switch decisions. For the OCO
with finite memory problem, the constant memory length m provides a natural measure of how long
decisions penalized for and when one should switch decisions. In the general case, this is measured
by the quantity LH1/L̃. Note that this simplifies to m for OCO with finite memory for all p-norms.

Proof of Theorem H.1. For simplicity, assume that T is a multiple of S. Otherwise, the same proof
works after replacing T

S with ⌈T
S ⌉. Let x∗ ∈ argminx∈X

∑T
t=1 f̃t(x). Note that we can write the

regret as

RT (Mini-Batch FTRL) =
T∑

t=1

ft(ht)−min
x∈X

T∑
t=1

f̃t(x)

=

T∑
t=1

ft(ht)− f̃t(xt)︸ ︷︷ ︸
(a)

+

T∑
t=1

f̃t(xt)− f̃t(x
∗)︸ ︷︷ ︸

(b)

.

We can bound the term (b) using Theorem B.1 for mini-batches [Dekel et al., 2012, Altschuler and
Talwar, 2018, Chen et al., 2020] by

SD

η
+ η

T L̃2

α
.

It remains to bound term (a). Let N = T/S denote the number of batches and Tn = {(n − 1)S +
1, . . . , nS} denote the rounds in batch n ∈ [N ]. We can write

T∑
t=1

ft(ht)− f̃t(xt) =

T∑
t=1

ft

(
t−1∑
k=0

AkBxt−k

)
− ft

(
t−1∑
k=0

AkBxt

)
by Definition 2.1

≤ L

T∑
t=1

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ by Assumption A4

≤ T

S
L
∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥︸ ︷︷ ︸
(c)

,

where the last inequality follows because of the following. Consider rounds t1 = b1S + r and
t2 = b2S + r for b1 < b2 and r ∈ [S]. Then, ∥ht1 −

∑t1−1
k=0 AkBxt1∥ ≤ ∥ht2 −

∑t2−1
k=0 AkBxt2∥

because the latter sums over more terms in its history and decisions in consecutive batches have
distance bounded above by ηL̃/α (Theorem B.1). Therefore, it suffices to show that term (c) is upper
bounded by ηL̃H1/α. We have∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ ≤
∑
t∈TN

t−1∑
k=0

∥∥AkBxt−k −AkBxt

∥∥
≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥B∥∥xt−k − xt∥

≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥xt−k − xt∥ by Assumption A2.
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Since the same decision xn is chosen in all rounds of batch n, we can reindex and rewrite

∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ ≤
∑
t∈TN

t−1∑
k=0

∥Ak∥∥xt−k − xt∥

≤
S−1∑
o=0

N−1∑
n=1

S∑
s=1

∥A(N−n−1)S+s+o∥∥xN − xn∥

≤ η
L̃

α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

(N − n)∥A(N−n−1)S+s+o∥

= η
L̃

α

S−1∑
o=0

N−1∑
n=1

S∑
s=1

n∥A(n−1)S+s+o∥,

where the last inequality follows from bounding the distance between decision in consecutive
batches Theorem B.1 and the triangle inequality. Expanding the triple sum yields

S−1∑
o=0

N−1∑
n=1

S∑
s=1

n∥A(n−1)S+s+o∥

≤ ∥A∥+ · · ·+ ∥AS∥+ 2∥AS+1∥+ · · ·+ 2∥A2S∥+ 3∥A2S+1∥+ · · ·+ 3∥A3S∥+ . . .

+ ∥A2∥+ · · ·+ ∥AS+1∥+ 2∥AS+2∥+ · · ·+ 2∥A2S+1∥+ 3∥A2S+2∥+ · · ·+ 3∥A3S+1∥+ . . .

...

+ ∥AS∥+ · · ·+ ∥A2S−1∥+ 2∥A2S∥+ · · ·+ 2∥A3S−1∥+ 3∥A3S∥+ · · ·+ 3∥A4S−1∥+ . . . ,

where each line above corresponds to a value of o ∈ {0, . . . , S − 1}. Adding up these terms yields
H1. This completes the proof. ■

Note that Theorem H.1 only provides an upper bound on the policy regret for the general case.
Unlike Algorithm 1, it is unclear how to obtain a stronger bound depending on Hp for the case of
linear sequence dynamics with the ξ-weighted p-norm for p > 1. The above proof can be specialized
for this special case, similar to the proofs of Theorem 2.1 and Lemma C.1, to obtain

∑
t∈TN

∥∥∥∥∥
t−1∑
k=0

AkBxt−k −
t−1∑
k=0

AkBxt

∥∥∥∥∥ ≤ η
L̃

α

S−1∑
o=0

(
N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)p) 1
p

and

S−1∑
o=0

(
N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)p) 1
p

≤
(
∥A∥p + · · ·+ ∥AS∥p + 2p∥AS+1∥p + . . . 2p∥A2S∥p + 3p∥A2S+1∥p + . . .

) 1
p

+
(
∥A2∥p + · · ·+ ∥AS+1∥p + 2p∥AS+2∥p + . . . 2p∥A2S+1∥p + 3p∥A2S+2∥p + . . .

) 1
p

...(
∥AS∥p + · · ·+ ∥A2S−1∥p + 2p∥A2S∥p + . . . 2p∥A3S−1∥p + 3p∥A3S∥p + . . .

) 1
p .

The above expression cannot be easily simplified to O(Hp). However, for the special case of OCO
with finite memory, which follows linear sequence dynamics with the 2-norm, we can do so by
leveraging the special structure of the linear operator Afinite,m.

Theorem H.2. Consider an online convex optimization with finite memory problem with constant
memory length m specified by (X ,H = Xm, Afinite,m, Bfinite,m). Let the regularizer R : X → R be
α-strongly-convex and satisfy |R(x)−R(x̃)| ≤ D for all x, x̃ ∈ X . Algorithm 2 with batch size m
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and step-size η =
√

αmD

TL̃
(
Lm

1
2 +L̃

) satisfies

RT (Mini-Batch FTRL) ≤ O

(√
D

α
TLL̃m

3
2

)
≤ O

(
m

√
D

α
TL2

)
.

Furthermore, the decisions xt switch at most T
m times.

Proof. Given the proof of Theorem H.1 and the above discussion, it suffices to show that

S−1∑
o=0

(
N−1∑
n=1

S∑
s=1

(
n∥A(n−1)S+s+o∥

)2) 1
2

≤ H2 = m
3
2 .

Recall that ∥Ak
finite∥ = 1 if k ≤ m and 0 otherwise. Using this and S = m, we have that the above

sum is at most
√
m+

√
m− 1 + · · ·+

√
1 = O

(
m

3
2

)
. This completes the proof. ■

I Experiments

In this section we present some simple simulation experiments.2

Problem Setup. We consider the problem of online linear control with a constant input controller
class Π = {πu : π(s) = u ∈ U}. Let T denote the time horizon. Let S = Rd and U = {u ∈ Rd :
∥u∥2 ≤ 1} denote the state and control spaces. Let st and ut denote the state and control at time t with
s0 being the initial state. The system evolves according to linear dynamics st+1 = Fst +Gut + wt,
where F,G ∈ Rd×d are system matrices and wt ∈ Rd is a disturbance. The loss function in round t

is simply ct(st, ut) = ct(st) =
∑d

j=1 st,j , where st,j denotes the j-th coordinate of st. The goal is
to choose a sequence of control inputs u0, . . . , uT−1 ∈ U to minimize the regret

T−1∑
t=0

ct(st, ut)−min
u∈U

T−1∑
t=0

ct(s
u
t , u),

where sut denotes the state in round t upon choosing control input u in each round. Note that the state
in round t can be written as

st =
t∑

k=1

F kGut−k +
t∑

k=1

F kwt−k.

Therefore, we can formulate this problem as an OCO with unbounded memory problem by setting
X = U ,H = {y ∈ Rd : y =

∑t
k=0 F

kGu for some u ∈ U and t ∈ N}, A(h) = Fh,B(x) =

Gx, and ft(ht) = ct(
∑t

k=1 F
kGut−k +

∑t
k=1 F

kwt−k). Note that H, A, and B are all finite-
dimensional.

Data. We set the time horizon T = 750 and dimension d = 2. We sample the disturbances {wt}
from a standard normal distribution. We set the system matrix G to be the identity and the system
matrix F to be a diagonal plus upper triangular matrix with the diagonal entries equal to ρ and the
upper triangular entries equal to α. We run simulations with various values of ρ and α.

Implementation. We use the cvxpy library [Diamond and Boyd, 2016, Agrawal et al., 2018]
for implementing Algorithm 1. We use step-sizes according to Theorems 3.1 and 3.3. We run the
experiments on a standard laptop.

2https://github.com/raunakkmr/oco-with-memory-code.
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Results. We compare the regret with respect to the optimal control input of OCO with unbounded
memory and OCO with finite memory for various memory lengths m in Fig. 3 for ρ = 0.90 and Fig. 4
for ρ = 0.95. There are a few important takeaways.

1. OCO with unbounded memory either performs as well as or better than OCO with finite
memory, and it does so at comparable computational cost (Appendix G). In fact, the regret
curve for OCO with unbounded memory reaches an asymptote whereas this is not the case
for OCO with finite memory for a variety of memory lengths.

2. Knowledge of the spectral radius of F , ρ, is not sufficient to tune the memory length m
for OCO with finite memory. This is illustrated by comparing Figs. 3a to 3d. Even though
small memory lengths perform well when the upper triangular value is small, they perform
poorly when the upper triangular value is large. In contrast, OCO with unbounded memory
performs well in all cases.

3. For a fixed memory length, OCO with unbounded memory eventually performs better than
OCO with finite memory. This is illustrated by comparing Figs. 3a to 3d.

4. As we increase the memory length, the performance of OCO with finite memory eventually
approaches that of OCO with unbounded memory. However, an advantage of OCO with
unbounded memory is that it does not require tuning the memory length. For example, when
ρ = 0.90 and the upper triangular entry of F = 0.10, OCO with finite memory with m = 4
performs comparably to m = 8 and m = 16 (Fig. 3c). However, when the upper triangular
entry of F = 0.12, then it performs much worse (Fig. 3d). However, OCO with unbounded
memory performs well in all cases without the need for tuning an additional hyperparameter
in the form of memory length.

(a) (b)

(c) (d)

Figure 3: Regret plot for ρ = 0.90. The label OCO-UM refers to formulating the problem as an OCO
with unbounded memory problem. The OCO-FM-m refers to formulating the problem as an OCO with
finite memory problem with constant memory length m. The titles of the plots indicate the values of
the dimension, the diagonal entries of F , and the upper triangular entries of F .
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(a) (b)

(c) (d)

(e)

Figure 4: Regret plot for ρ = 0.95. The label OCO-UM refers to formulating the problem as an OCO
with unbounded memory problem. The OCO-FM-m refers to formulating the problem as an OCO with
finite memory problem with constant memory length m. The titles of the plots indicate the values of
the dimension, the diagonal entries of F , and the upper triangular entries of F .
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