
NeRF Revisited: Fixing Quadrature Instability in
Volume Rendering

Mikaela Angelina Uy1 George Kiyohiro Nakayama1 Guandao Yang1,2
Rahul Krishna Thomas1 Leonidas Guibas1 Ke Li3,4

1Stanford University 2Cornell University 3Simon Fraser University 4Google
{mikacuy, w4756677, guandao, rt03mas, guibas}@stanford.edu, keli@sfu.ca

Abstract
Neural radiance fields (NeRF) rely on volume rendering to synthesize novel views.
Volume rendering requires evaluating an integral along each ray, which is numeri-
cally approximated with a finite sum that corresponds to the exact integral along
the ray under piecewise constant volume density. As a consequence, the rendered
result is unstable w.r.t. the choice of samples along the ray, a phenomenon that
we dub quadrature instability. We propose a mathematically principled solution
by reformulating the sample-based rendering equation so that it corresponds to
the exact integral under piecewise linear volume density. This simultaneously
resolves multiple issues: conflicts between samples along different rays, imprecise
hierarchical sampling, and non-differentiability of quantiles of ray termination
distances w.r.t. model parameters. We demonstrate several benefits over the clas-
sical sample-based rendering equation, such as sharper textures, better geometric
reconstruction, and stronger depth supervision. Our proposed formulation can be
also be used as a drop-in replacement to the volume rendering equation for existing
methods like NeRFs. Our project page can be found at pl-nerf.github.io.

1 Introduction
The advent of neural radiance fields (NeRF) [18] has sparked a flurry of work on neural rendering
and has opened the way to many exciting applications [5, 11, 8, 20]. One of the key underpinnings of
NeRF is volume rendering [14] – it is especially well-suited to end-to-end differentiable rendering [9],
since the rendered image is a smooth function of the model parameters. This has made it possible to
learn the 3D geometry and appearance solely from a 2D photometric loss on rendered images.

In volume rendering, the rendered colour ŷ for every pixel is an expectation of the colours along the
ray cast through the pixel w.r.t. the distribution over ray termination distance s [6].

ŷ = Es∼p(s)[c(s)] =
∫ ∞

0

p(s)c(s) ds (1)

where p(s) denotes the probability density function (PDF) of the distribution over ray termination
distance s and c(s) denotes the the colour as a function of different points along the ray.

In general, p(s) and c(s) can be of arbitrary forms, so evaluating this integral analytically is not
possible. Therefore, in practice, Es∼p(s)[c(s)] is approximated with quadrature. The quadrature
formula that is most commonly used in the NeRF literature takes the following form:

Es∼p(s)[c(s)] =
N∑
j=0

Tj

(
1− e−τj(sj+1−sj)

)
cj , (2)

where Tj = exp
(
−
∑j
k=0 −τk(sk+1 − sk)

)
and τk is the opacity evaluated at a sample sk along

the ray.

This expression is derived from the exact integral under a piecewise constant assumption to the
opacity and colour along the given ray [14].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://pl-nerf.github.io


However, this seemingly simple, innocuous assumption can result in the rendered image being
sensitive to the choice of samples along the ray at which the opacity σ(s) and colour c(s) are evaluated.
While this does not necessarily cause a practical issue in classical rendering pipelines [14, 15, 10],
it has surprising consequences when used in neural rendering. Specifically, because the opacity
at all points within the interval between two samples is assumed to be the same, there is a band
near the surface of the geometry where opacity at all points within the band is as high as points on
the surface itself. Because different rays cast from different cameras can pass through this band at
different angles and offsets, both the number and the positions of samples within this band can be very
different across different rays (see Fig 1 and Fig 2 for two example scenarios). Hence, simultaneously
supervising these rays to produce the same colour values as in the real image captures can give rise to
conflicting supervisory signals, which can result in artifacts like fuzzy surfaces and blurry texture.

Moreover, because the piecewise constant opacity assumption gives rise to a closed form expression
that is equivalent to an expectation w.r.t. a discrete random variable, it is common practice in the
NeRF literature to draw samples along the ray from the discrete distribution [17]. This is commonly
used to draw importance samples, and also to supervise the samples along the ray [28], for example
in losses that penalize deviation of the samples from the true depth [6]. Sampling from the discrete
distribution requires the definition of a continuous surrogate function to the cumulative distribution
function (CDF) of the discrete random variable, which unfortunately yields imprecise samples. As
a result, samples that are drawn may not be close to the surface even if the underlying probability
density induced by the NeRF is concentrated at the surface. Additionally, individual supervision
cannot be provided to each sample drawn from the surrogate, because the gradient of the loss w.r.t.
each sample would be almost zero everywhere.

All these issues, i.e. conflicting supervision, imprecise samples and lack of supervision on the CDF
from the samples, stem from the assumption that opacity is piecewise constant causing the sensitivity
to the choice of samples both during rendering and sampling. We dub this problem as quadrature
instability. In this paper, we revisit the quadrature used to approximate volume rendering in NeRF
and devise a different quadrature formula [14] based on a different approximation to the opacity. We
first show that interestingly a closed-form expression can be derived under any piecewise polynomial
approximation for opacity. When the polynomial degree is 0, it reduces to the piecewise constant
opacity as in existing literature, and when the degree is 2 or more, we show that it would lead to poor
numerical conditioning

Therefore, we further explore a degree of 1 (i.e., piecewise linear) and show that it both resolves
quadrature instability and has good numerical conditioning. We derive the rendering equation under
piecewise linear opacity explicitly and show that it has a simple and intuitive form. This results
in a new quadrature method for volume rendering, which can serve as a drop-in replacement for
existing methods like NeRFs. We demonstrate that this reduces artifacts, improves rendering quality
and results in better geometric reconstruction. We also devise a new way to sample directly from
the distribution of samples along each ray induced by NeRF without going through the surrogate,
which opens the way to a more refined importance sampling approach and a more effective method
to supervise samples using depth.

2 Related Work
NeRFs. Neural Radiance Field (NeRF) is a powerful representation for novel-view synthesis [18]
that represents a scene using the weights of an MLP that is rendered by volumetric rendering [14].
A key finding to the success of NeRF was the use of positional encoding [26, 29] to effectively
increase the capacity of the MLPs that models the opacity and emitted color as a function of a 3D
coordinate and viewing direction. Many works extend NeRF such as handling larger or unbounded
scenes [40, 3, 37, 25], unconstrained photo collections [13], dynamic and deformable scenes [11, 19]
and sparser input views [6, 39, 31, 28]. There are a number of papers that aim to improve the
rendering quality of NeRF. Some do so by utilizing different kinds of supervision such as NeRF in
the Dark [16], while others tackle this by improving the model [2, 36, 4]. MipNeRF [2] changes
the model input by introducing integrated positional encoding (IPE) to reduce the aliasing effect
along the xy coordinates. DiVeR [36] predicts the rendered colour within a line interval directly
from a trilinearly interpolated feature in a voxel-based representation ZipNeRF [4] modifies the
proposal network to a grid enabling it to be used together with IPE. In contrast, our work focuses on
changing the objective function by modifying the rendering equation from piecewise constant opacity
to piecewise linear, while keeping the model and supervision fixed. Additionally, ZipNeRF [4] also

2



brings up a model specific issue on z-aliasing, where their model struggles under this setting. Similar
to z-aliasing observed by ZipNeRF, we consider the setting of having conflicting supervision when
presented with training views at different distances from the scene. While they may appear similar on
the surface, the phenomena we study is different in that it is general and independent of the model,
on having conflicting ray supervision from camera views, e.g. different camera-to-scene distances
and the grazing angle setup.

Importance Sampling on NeRFs. Densely sampling and evaluating NeRF along multiple points
in each camera ray is inefficient. Inspired by an early work on volume rendering [10], prior works
typically use a coarse-to-fine hierarchical sampling strategy where the final samples are obtained
by importance sampling of a coarse proposal distribution [18, 2, 3, 8]. These importance samples
are drawn using inverse transform sampling where a sample is obtained by taking the inverse of the
cumulative density function (CDF) of the proposal ray distribution. However, prior NeRF works that
assume piecewise constant opacity result in a non-invertible CDF, and instead introduce a surrogate
invertible function derived from the CDF in order to perform importance sampling. In contrast,
our work that utilizes a piecewise linear opacity assumption results in an invertible CDF and a
closed-form solution to obtain samples with inverse transform sampling. Other works also attempt
to alter sampling using neural networks or occupancy caching [31, 23, 24, 12]. These techniques
are orthogonal to our work as they propose changes to the model as opposed to our work where
importance sampling is derived from a given model.

Volume rendering. Volume rendering is an important technique in various computer graphics and
vision applications as explored in different classical works [10, 33, 7, 14]. These works include
studying ray sampling efficiency [10] and data structures, e.g. octree [22] and volume hierarchy [21]
for coarse-to-fine hierarchical sampling. The crux behind volume rendering is the integration over
the weighted average of the color along the ray, where the weights is a function of the volume density
(opacity). Max and Chen [14, 15] derive the volume rendering equation under the assumption of
piecewise constant opacity and color, which NeRF [17] and its succeeding works use to learn their
neural scene representation. However, the piecewise constant assumption results in rendering outputs
that are sensitive to the choice of samples as well the non-invertible CDF introducing drawbacks to
NeRF training. Following up on [14], works also [34] derive the volume rendering equation under the
assumption that both opacity and color are piecewise linear that yield unwieldy expressions that lead
to numerical issues and/or are expensive to compute. Some earlier works on rendering unstructured
polygonal meshes that attempt to use this model [35], but it is in general not commonly used in
practice due to the mentioned issues and hence has yet to be adopted into learning neural scene
representations. In this work, we address both sets of issues that arise from the piecewise constant
opacity and color and piecewise linear opacity and color by reformulating the volume rendering
equation to assume piecewise linear opacity and piecewise constant color. Our derivation results in a
simple and closed-form formulation to volume rendering making it suitable for NeRFs.

3 Background
3.1 Volume Rendering Review
Definitions. In classical literature, the process of volume rendering [15] mapping a 3D field of
optical properties to a 2D image and the visual appearance is computed through the exact integration
of these optical properties along the viewing rays. In this optical model, each point in space is an
infinitesimal particle with a certain opacity τ that emits varying amounts of light, represented as a
scalar color c, in all viewing directions. The opacity τ is the differential probability of a viewing
ray hitting a particle – that is for a viewing ray r(s) = o + sd, where o is the view origin and d
is the ray direction, the probability of ray r hitting a particle along an infinitesimal interval ds is
τ(r(s))ds. Moreover, the transmittance Tr(s) is defined as the probability that the viewing ray r
travels a distance s from the view origin without terminating, i.e. without hitting any particles.

Continuous probability distribution along the ray r. As illustrated by Max and Chen [15], the
probability of hitting a particle s+ ds only depends on the probability of hitting a particle at s and
not any particles before it the probability of ray r terminating at distance s is given by τ(r(s))Tr(s),
where Tr(s) = exp(−

∫ s
0
τ(u)du). Hence the continuous probability density function (PDF) of ray

r(s), which describes the likelihood of a ray terminating and emitting at s, is given by

p(s) = τ(r(s))Tr(s), (3)

3



Rendered Test View

X

X

Piecewise Constant Opacity

Grazing 
Angle Views Region of 

high opacity

surface

Perpendicular 
Views

Piecewise Linear Opacity

Grazing 
Angle Views

surface

Perpendicular 
Views

Probability Density

Cumulative Density

Figure 1: Ray Conflicts: Grazing Angle. (Left) Illustration of conflicting ray supervision at the
grazing under the piecewise constant opacity. For the constant setting, to render perpendicular rays
(yellow) correctly, the model has to store the associated optical properties at a region in front of the
surface as a sample takes the values of the left bin boundary. In the presence of a ray near the grazing
angle, it will be crossing this region of high opacity (the gradient in front of the surface), associating
it with conflicting opacity/color signals. (Middle) This results in fuzzier surfaces as shown along
the side of the microphone as there is a conflict in ray supervision between the perpendicular and
grazing angle rays. Our piecewise linear opacity assumption alleviates this issue and results in a
clearer rendered view. (Right) As shown, the resulting PDF is peakier and the CDF is sharper for our
linear setting, where the plotted distributions correspond to the ray from the marked pixel in red.

where s ∈ [0,∞] and r(s) is a point on the ray r. For notational simplicity we omit r and write it as
p(s) = τ(s)T (s).

Volume Rendering as a Continuous Integral. The observed color of the ray is then the expected
value of the colors c(s) of all particles s along the ray weighted by the probability of hitting them.
Mathematically, this results in the following continuous integral1:

Es∼p(s)[c(s)] =
∫ ∞

0

p(s)c(s) ds =

∫ ∞

0

τ(s)T (s)c(s) ds . (4)

Quadrature under Piecewise Constant Opacity τ . Since this integral cannot in general be
evaluated analytically, it is approximated with quadrature. Let s1, s2, ..., sN be N (ordered) samples
on the ray that define the intervals, where Ij = [sj , sj+1] is the jth interval, and I0 = [0, s1], IN =
[sN ,∞]. The volume density for particles along the interval Ij is then approximated under the
assumption that opacity is constant along each interval, making it piecewise constant along the
ray [15]. That is, for all j we have:

∀s ∈ [sj , sj+1], τ(s) = τ(sj), (5)

for brevity we denote τ(sj) = τj , i.e. τj is the opacity for sample sj . Under this piecewise constant
opacity assumption, the volume rendering equation Eq. 4 then becomes as follows:

Es∼p(s)[c(s)] =
N∑
j=0

Pjcj =

N∑
j=0

(∫ sj+1

sj

τ(u)T (u) du

)
cj =

N∑
j=0

Tj

(
1− e−τj(sj+1−sj)

)
cj ,

(6)

1Practically the integral is taken with near sn and far sf bounds.

4



where Tj = exp
(
−
∑j
k=0 −τk(sk+1 − sk)

)
. Here, color cj is also approximated to be constant

along each interval Ij , and Pj is the probability of each interval. Now, let us define the discrete
random variable s̃ = f̃(s), where

f̃(x) =


s0 x ≤ s0
sj sj ≤ x < sj+1 for all j ∈ {1, ..., N − 1}
sN x > sN

, (7)

which gives corresponding probability mass function P̃ (s). Observe that the analytical expression of
the integral Eq. 6 turns out to be the same as taking the expectation w.r.t. the discrete random variable
s̃, i.e. Es∼p(s)[c(s)] = Es̃∼P̃ (s)[c(s̃)]. This piecewise constant opacity assumption in the volume
rendering equation is used in most, if not all, existing NeRF works. We recommend the reader to
read [15] for more detailed derivations and our supplementary for a more thorough walkthrough.

3.2 Neural Radiance Fields.
Following Max and Chen [14], Mildenhall et.al. [18] introduced neural radiance fields, a neural
scene representation that uses the volume rendering equation under the piecewise constant opacity
assumption for novel view synthesis. A neural radiance field (NeRF) is a coordinate-based neural
scene representation, where opacity τθ : R3 → R≥0 and color cψ : R3 × S2 → [0, 255]3 are
predicted at each continuous coordinate by parameterizing them as a neural network. To train the
neural network, 2D images are used as supervision where each viewing ray is associated with a
ground truth color. Volume rendering allows for the 3D coordinate outputs to be aggregated into an
observed pixel color allowing for end-to-end training with 2D supervision. The supervision signal
are on the coordinates of the ray samples s1, ..., sN , which updates the corresponding output opacity
and color at those samples. NeRF uses a importance sampling strategy by drawing samples from the
ray distribution from a coarse network to generate better samples for rendering of their fine network.
To sample from a distribution, inverse transform sampling is needed, that is, one draws u ∼ U(0, 1)
then passes it to the inverse of a cumulative distribution (CDF), i.e. a sample x = F−1(u), where F
is the CDF of the distribution. Under the piecewise constant assumption, the CDF of the discrete
random variable s̃ is given by:

F̃ (x) =


0 x ≤ s0∑
k<j P̃ (sk) 1 ≤ x < sj+1 for all j ∈ {1, ..., N − 1}

1 x > sN

. (8)

This CDF is however non-continuous and non-invertible. NeRF’s approach to get around this is to
define a surrogate invertible function G derived from its CDF, then taking x = G−1(u). Concretely,
G(y) =

y−sj−1

sj−sj−1
F̃ (sj) +

sj−y
sj−sj−1

F̃ (sj−1),where y ∈ [sj−1, sj ]. However, this does not necessarily
result in the samples from the actual ray distribution p(s) from the model.

4 Drawbacks of Piecewise Constant Opacity τ in NeRFs
Unfortunately, there are properties associated with the piecewise constant opacity formulation that
may not be desirable in the context of NeRFs. First, it is sensitive to the choice of samples, i.e.
sample positions s, along the ray, a phenomenon we dub as quadrature instability. This quadrature
instability is due to the assumption that all points in an interval take the opacity of the left bin (Eq 5),
making it sensitive to sample positions. As illustrated in Figure 1, this would lead to ray conflicts
in optimizing a NeRF when you have rays that are directly facing, i.e. perpendicular to, the surface
(yellow rays) and rays that are close to the grazing angle (red ray), i.e. parallel to, the object. To
render the perpendicular rays correctly, vanilla NeRF has to store the optical properties (opacity and
color) associated with the perpendicular rays at a point before its intersection with the surface. This
creates inaccurate signals to the optimization process when NeRF renders the ray at a grazing angle,
as it will cross multiple conflicting opacity/colors (illustrated by the blue gradient). The sample
sensitivity issue also arises when having cameras at different distances from the object as illustrated
in Fig. 2, as this would lead to shifted sets of samples, causing inconsistencies when rendering at
different camera-to-object distances. Notice that the noise on the texture of the chair is different
across different viewing distances, where the middle view has fewer artifacts compared to the closer
and further views.

5



Figure 2: Ray Conflicts: Different Camera-to-Scene Distances. (Left) Rendered views from
cameras at different distances from the object. At all distances, the rendered output for linear have
sharper texture than constant because of the latter’s sensitivity to the choice of samples. We also
highlight the instability of the constant model as shown by the noisier texture of the middle view
compared to the closer and further views. (Right) An illustration that moving the camera to different
distances from the object result in different samples that lead to conflicts.
The second issue comes from the CDF F̃ being piecewise constant (Eq 8). This leads to two
consequences. First, the piecewise constant assumption makes F̃ non-invertible, hence, as mentioned
in the previous section, importance sampling needs to be performed via a surrogate function G. This
results in uniformity across the samples within the bin - samples within a bin are assigned with equal
probability, leading to imprecise importance samples. The second consequence comes from the fact
that F̃ is not continuous, leading to an issue in training a NeRF that has a loss based on its samples.
In other words, there will be a vanishing gradient effect when taking the gradient w.r.t. the samples,
and one such example of a sample-based loss used for NeRFs is depth [28].

5 Generalized Form for Pj

We first show a generalized derivation for the probability Pj of each interval Ij , which we use to for-
mulate our approach that alleviates the problems described above. From T (s) = exp (−

∫ s
0
τ(u)du),

we first notice that:

dT

ds
= − exp (−

∫ s

0

τ(u)du)τ(s) = −T (s)τ(s)

T ′(s) = −T (s)τ(s).

This results in the probability of each interval Ij given as follows:

Pj =

∫ sj+1

sj

τ(s)T (s) ds = −
∫ sj+1

sj

T ′(s) ds = T (sj)− T (sj+1). (9)

Since sj’s are arbitrarily sampled, Pj can be exactly evaluated in a closed-form expression, if and
only if T (·) is in closed-form.

6 Our PL-NeRF
We observe from Eq. 15 that we can obtain a closed-form expression for Pj for any piecewise
polynomial function in τ , which can be of any degree d = 0, 1, 2, ..., n. Commonly used in existing
NeRF literature is choosing d = 0, i.e. piecewise constant, that is unstable w.r.t. the choice of samples
as highlighted in the previous section. Interestingly, we also observe and show that the problem
becomes numerically ill-conditioned for d ≥ 2 making it difficult and unstable to optimize. Please
see supplementary for the full proof. Hence, we propose to make opacity piecewise linear (d = 1),
which we call PL-NeRF, leading to a simple and closed-form expression for the volume rendering
integral that is numerically stable and is a drop-in replacement to existing NeRF-based methods. We
show both theoretically and experimentally that the piecewise linear assumption is sufficient and
alleviates the problems caused by quadrature instability under the piecewise constant assumption.

6



Figure 3: Illustration of opacities
τ along a ray under the piecewise
constant (green) and piecewise
linear (orange) assumptions.

Volume Rendering with Piecewise Linear Opacity. We pro-
pose an elegant reformulation to the sample-based rendering
equation that corresponds to the exact integral under piecewise
linear opacity while keeping piecewise constant color leading
to a simple and closed-form expression for the integral. That is,
instead of piecewise constant opacity as in Eq 5, we assume a
linear opacity for each interval Ij . Concretely, for s ∈ [sj , sj+1],
where τj = τ(sj), τj+1 = τ(sj+1), we have

τ(s) =

(
sj+1 − s

sj+1 − sj

)
τj +

(
s− sj

sj+1 − sj

)
τj+1. (10)

which is linear w.r.t. s ∈ [sj , sj+1] as illustrated in Fig. 3.

Now, under the piecewise linear opacity assumption, transmittance is derived as the following
closed-form expression:

T (sj) = exp

[
−
∫ sj

0

τ(u) du

]
=

i∏
k=1

exp

[
−
∫ sk

sk−1

τ(u) du

]
,

T (sj) =

i∏
k=1

exp

[
− (τk + τk−1)(sk − sk−1)

2

]
. (11)

Together with Eq. 15, this leads to the following simple and closed-form expression for Pj , corre-
sponding to the exact integral under the piecewise linear opacity assumption:

Pj = T (sj) ·
(
1− exp

[
− (τj+1 + τj)(sj+1 − sj)

2

])
. (12)

Precision Importance Sampling. Moreover, it also turns out that with our piecewise linear opacity
assumption, we are able to derive an exact closed-form solution for inverse transform sampling.
Recall that in Sec 4, we pointed a drawback of the CDF F̃ being non-invertible and discontinuous
under piecewise constant opacity. We show that this is alleviated in our piecewise linear setting.
Concretely, given samples s1, ..., sN resulting in interval probabilities P1, ..., PN

2 from our derivation
(Eq 12), the CDF for continuous random variable t is then given as

F (t) =

∫ t

0

p(s) ds =
∑
sj<t

Pj +

∫ t

sj

p(s) ds =
∑
sj<t

Pj +

∫ t

sj

τ(s)T (s) ds. (13)

Note that unlike in piecewise constant opacity, we do not convert a continuous random variable s
to a discrete random variable s̃, thus, the resulting CDF F being continuous. Now, assuming that
opacity τ ≥ 0 everywhere, from Eq. 13 we see that F is strictly increasing. Since F is continuous
and strictly increasing, then it is invertible.

Finally, we have our precision importance sampling, where by inverse transform sampling, we can
solve for the exact sample x = F−1(u) for u ∼ U(0, 1) from the given ray distribution p(s) since
the CDF F is invertible under piecewise linear opacity. That is, without loss of generality, let sample
u ∼ U(0, 1) fall into the bin u ∈ [Ck, Ck+1], where Ck =

∑
j<k Pj , which is equivalent to solving

for x ∈ [sk, sk+1]. Reparameterizing x = sk + t, where t ∈ [0, sk+1 − sk], the exact solution for
sample u is given by

t =
sk+1 − sk
τk+1 − τk

−τk +

√√√√
τ2k +

2(τk+1 − τk)
(
− ln 1−u

T (sk)

)
(sk+1 − sk)

 . (14)

Please see supplementary for full derivation. This leads to precisely sampling from the ray distribution
p(s) resulting in better importance sampling and stronger depth supervision.

2We note that DS-NeRF [6] shows that this will sum to 1 assuming an opaque far plane. sN+1 would
correspond to the far plane.

7



GT
Co

ns
ta
nt

Li
ne

ar

Figure 4: Qualitative Results for Blender and Real Forward Facing.
Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑ Const. (Vanilla) 30.61 32.54 24.79 29.63 36.08 32.01 29.31 32.55 27.95
Linear (Ours) 31.10 32.92 25.07 30.18 36.46 32.90 29.52 33.08 28.71

SSIM↑ Const. (Vanilla) 0.943 0.966 0.918 0.960 0.975 0.959 0.943 0.978 0.846
Linear (Ours) 0.948 0.969 0.923 0.965 0.977 0.966 0.948 0.981 0.857

LPIPS↓ Const. (Vanilla) 5.17 3.19 7.97 4.14 2.48 2.33 4.32 2.16 14.8
Linear (Ours) 4.39 2.85 7.10 3.03 2.28 1.81 3.21 1.73 13.1
LLFF Avg. Fern Flower Fortress Horns Leaves Orchid Room Trex

PSNR↑ Const. (Vanilla) 27.53 26.79 28.23 32.53 28.54 22.35 21.20 33.03 27.58
Linear (Ours) 28.05 26.85 28.71 32.95 29.38 22.51 21.25 33.99 28.79

SSIM↑ Const. (Vanilla) 0.874 0.746 0.886 0.925 0.893 0.816 0.746 0.956 0.916
Linear (Ours) 0.885 0.863 0.902 0.932 0.911 0.826 0.754 0.961 0.933

LPIPS↓ Const. (Vanilla) 7.37 9.67 6.34 2.92 7.26 11.0 11.8 4.33 5.66
Linear (Ours) 6.06 7.92 4.93 2.46 5.51 9.59 10.2 3.54 4.38

Table 1: Quantitative Results on Blender and LLFF Datasets. LPIPS scores ×102.

7 Results
In this section, we present our experimental evaluations to demonstrate the advantages our piecewise
linear opacity formulation for volume rendering, which we call PL-NeRF.

7.1 Datasets, Evaluation Metrics and Implementation Details.
Datasets and Evaluation Metrics. We evaluate our method on the standard datasets: Blender and
Real Forward Facing (LLFF) datasets as used in [18]. We use the released training and test splits
for each. See supplementary for more details. For quantitative comparison, we follow the standard
evaluation metrics and report PSNR, SSIM [32] and LPIPS [41] on unseen test views. We also report
the root-mean-squared-error (RSME) on the expected ray termination in our depth experiments.
Implementation Details. PL-NeRF is implemented on top of NeRF-Pytorch [38], a reproducible
Pytorch implementation of the constant (vanilla) NeRF, where we simply change the volume rendering
to our formulation under piecewise linear opacity and utilize our exact importance sampling derivation.
Similar to [18] we optimize a separate network for the coarse and fine models that are jointly trained
with the MSE loss on ground truth images. We use a batch size of 1024 rays and a learning rate of
5× 10−4 that decays exponentially to 5× 10−5 throughout the course of optimization. We train each
scene for 500k iterations which takes ∼ 21 hours on a single Nvidia V100 GPU 3. Our precision
importance sampling enables us to use fewer samples for the fine network, hence keeping the total
number of rendering samples the same, we use 128 coarse samples and 64 fine samples to train and
test our method.

7.2 Experiments on Blender and LLFF Datasets

We first evaluate our PL-NeRF on the standard Blender and Real Forward Facing datasets. Table 1
shows that our PL-NeRF (linear) outperforms the vanilla [18] (constant) model that assumes piece-
wise constant opacity in all metrics for both the synthetic Blender and Real Forward Facing datasets.
Figure 1 and Figure 4 show qualitative results. As shown our PL-NeRF is able to achieve sharper

3We rerun and train the vanilla (constant) model using the released reproducible configs from [38].

8



Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑ Mip-NeRF 31.76 33.95 24.39 31.20 36.12 33.84 30.55 34.63 29.41
PL-MipNeRF 32.48 35.11 24.92 32.25 36.51 35.15 30.69 35.22 30.00

SSIM↑ Mip-NeRF 0.955 0.975 0.921 0.971 0.978 0.971 0.957 0.987 0.876
PL-MipNeRF 0.959 0.981 0.928 0.977 0.980 0.976 0.959 0.989 0.882

LPIPS↓ Mip-NeRF 3.64 1.80 6.82 2.35 1.97 1.44 2.39 0.973 11.4
PL-MipNeRF 3.09 1.32 5.78 1.66 1.67 1.07 2.09 0.788 10.3

Table 2: Quantitative Results of Mip-NeRF v.s. PL-MipNeRF LPIPS scores ×102.

textures as shown in the Lego’s scooper and the bread’s surface in the hotdog. Moreover, our approach
is also able to recover less fuzzy surfaces as shown in the microphone scene (Figure 1) where training
views are close to the grazing angle of its head. As illustrated, the resulting probability density of the
ray corresponding to the marked pixel is peakier than constant as our precision importance sampling
allows us to have better samples closer to the surface. We also see clearer ropes in ship, less cloudy
interior of the drum, and more solid surfaces such as cleaner leg of the swivel chair in the room scene.

7.3 Geometric Extraction

Figure 5: Geometry Extraction Qualitative Examples.

We also show improvement in
geometric reconstruction of PL-
NeRF. We extract the geom-
etry from the learned density
field from the trained models
of PL-NeRF and Vanilla NeRF
using marching cubes with a
threshold of 25 following [30].
Figure 5 shows qualitative re-
sults on the reconstruction of
our piecewise linear vs the orig-
inal piecewise constant formula-
tion. As shown, we are able to
better recover the holes on the
body and wheels of the Lego
scene as well as the interior structure inside the Mic. Moreover, interestingly, the surface of the drum
is reconstructed to be transparent as visually depicted in the images, as opposed to the ground truth
being opaque.

Figure 6: Qualitative Results for Mip-NeRF vs PL-MipNeRF. We see that under difficult scenarios
such as in fine texture details of the chair and grazing angle views on the mic, PL-MipNeRF visually
shows significant improvement.

7.4 Effectiveness of our formulation on other Radiance Field Methods

We also demonstrate our formulation’s effectiveness on other radiance field methods and show that
our approach can be used as a drop-in replacement to existing NeRF-based methods. We integrate our
piecewise linear opacity formulation to the volume rendering integral into Mip-NeRF (PL-MipNeRF).
Table 2 shows our quantitative results demonstrating consistent improvement across all scenes in
the original hemisphere Blender dataset. Figure 6 shows qualitative examples where we see that
under difficult scenarios such as when ray conflicts arise in the fine details of the Chair and in the
presence of grazing angle views in the Mic, our PL-MipNeRF shows significant improvement over the
baseline. Our results show that our piecewise linear opacity and piecewise constant color formulation
scales well to Mip-NeRF as well. See supplementary for implementation details. We also plug our

9



Dist 0.25x Dist 0.5x Dist 0.75x

Train Set PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Hemisphere Const. (Vanilla) 20.18 0.612 54.1 22.80 0.753 30.4 25.97 0.867 14.1

Linear (Ours) 20.34 0.637 50.0 23.00 0.767 27.5 26.28 0.876 12.6

Multi Dist. Const. (Vanilla) 22.30 0.677 45.7 25.51 0.811 23.1 28.02 0.891 11.3
Linear (Ours) 22.66 0.705 41.1 26.04 0.828 20.3 28.55 0.900 9.90

Table 3: Testing on close-up views: Hemisphere are with training cameras located on the original
hemisphere. Multi Dist. with training cameras are at random distances across a depth scale range of
0.5− 1.0 of the original hemisphere. Reported LPIPS score is multiplied by 102.

piecewise linear opacity formulation into DIVeR [36], a voxel-based NeRF model, and show that our
formulation is also an effective drop-in replacement outperforming the original DIVeR [36]. Please
see supplementary for experiment results and implementation details.

7.5 Experiments on Close-up Views
We further consider the challenging setting of testing on cameras closer to the objects. Table 3
(top) shows quantitative results when training on the original hemisphere dataset and tested on
different close-up views. As shown by the drop in metrics, the difficulty increases as the camera
moves closer to the object (0.75x to 0.5x to 0.25x of the original radius) where details get more
apparent. Our PL-NeRF outperforms the vanilla piecewise constant model in all settings and the gap
(SSIM and LPIPS) between ours and the constant assumption increases as the setting becomes harder
highlighting the importance of recovering shaper texture and less fuzzy surfaces.

We also consider the set-up of training with cameras with different distances to the object that result
in different sets of ray samples causing conflicts. We generate training views following the data
processing pipeline from [18] with a random distance scaling factor sampled from U(0.5, 1.0). As
shown in Table 3 (bottom), our PL-NeRF outperforms the vanilla constant baseline in all metrics
across different camera distances, where the gap (LPIPS and SSIM) is also larger the closer the
camera is to the object, where details are more apparent. The difficulty for the constant (vanilla) case
under multiple camera distances is its sensitivity to the choice of samples along the ray. Figure 2
shows that the conflicting rays cause quadrature instability for under piecewise constant opacity leads
to unstable outputs as shown by the noisy texture on the chair. For the constant, the level of noise
(gold specs) and blurriness vary at different camera distances, whereas our PL-NeRF renders crisper
and more consistent outputs even as the camera is moved closer or further for the object.
7.6 Experiments with Depth Supervision

PSNR↑ SSIM↑ LPIPS↓ RMSE↓
Const. (Vanilla) 29.20 0.898 11.2 0.178
Linear (Ours) 29.54 0.905 10.4 0.147

Table 4: Depth Supervision. Reported LPIPS
score is multiplied by 102.

Finally, we also show that our PL-NeRF enables
stronger depth supervision under our piecewise
linear opacity assumption due our precision im-
portance sampling that allows for gradients to
flow to these more refined samples resulting in
more accurate depth. As in previous works [28],
we use a sample-based loss for to incorporate
depth supervision4. Table 4 shows quantitative
results when training and testing on the less constrained Blender dataset with cameras at random
distances from the object, as described in the previous section, with depth supervision. As shown,
our PL-NeRF outperforms the vanilla constant baseline on all metrics including depth RSME
demonstrating that our approach allows for stronger depth supervision.

8 Conclusion
We proposed a new way to approximate the volume rendering integral that avoids quadrature
instability, by considering a piecewise linear approximation to opacity and a piecewise constant
approximation to color. We showed that this results in a simple closed-form expression for the
integral that is easy to evaluate. We turned this into a new objective for training NeRFs that is a
drop-in replacement to existing methods and demonstrated improved rendering quality and geometric
reconstruction, more accurate importance sampling and stronger depth supervision.

4We use the original hyperparameters from [28] in this experiment.

10



Acknowledgements. This work is supported by a Apple Scholars in AI/ML PhD Fellowship, a
Snap Research Fellowship, a Vannevar Bush Faculty Fellowship, ARL grant W911NF-21-2-0104, a
gift from the Adobe corporation, the Natural Sciences and Engineering Research Council of Canada
(NSERC), the BC DRI Group and the Digital Research Alliance of Canada.

References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.

Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, pages 1–16, 2016.
13

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P.
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In ICCV, 2021.
2, 3

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In CVPR, 2022. 2, 3

[4] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. ICCV, 2023. 2

[5] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. Mobilenerf: Exploiting the
polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In CVPR, 2023.
1

[6] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views and
faster training for free. In CVPR, pages 12882–12891, 2022. 1, 2, 7

[7] Robert A Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. SIGGRAPH, 22(4):65–74, 1988.
3

[8] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking neural
radiance fields for real-time view synthesis. In ICCV, pages 5875–5884, 2021. 1, 3

[9] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and Adrien
Gaidon. Differentiable rendering: A survey. ArXiv, abs/2006.12057, 2020. 1

[10] Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics (TOG), 9(3):245–261,
1990. 2, 3

[11] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In CVPR, pages 6498–6508, 2021. 1, 2

[12] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields.
In NeurIPS, 2020. 3

[13] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and
Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In CVPR,
2021. 2

[14] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 1(2):99–108, 1995. 1, 2, 3, 5

[15] Nelson Max and Min Chen. Local and global illumination in the volume rendering integral. In Hans
Hagen, editor, Scientific Visualization: Advanced Concepts, volume 1 of Dagstuhl Follow-Ups, pages
259–274, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 2, 3, 4, 5, 13, 17

[16] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan, and Jonathan T. Barron.
NeRF in the dark: High dynamic range view synthesis from noisy raw images. In CVPR, 2022. 2

[17] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi,
Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with prescriptive sampling
guidelines. ACM Transactions on Graphics, 2019. 2, 3

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020. 1, 2, 3, 5, 8, 10, 13

[19] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M. Seitz,
and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In ICCV, 2021. 2

[20] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. ACM Transactions on Graphics, 40(6), dec 2021. 1

[21] Steven M Rubin and Turner Whitted. A 3-dimensional representation for fast rendering of complex scenes.
In Proceedings of the 7th annual conference on Computer graphics and interactive techniques, pages
110–116, 1980. 3

[22] Hanan Samet. The design and analysis of spatial data structures, volume 85. Addison-wesley Reading,
MA, 1990. 3

[23] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast convergence for
radiance fields reconstruction. In CVPR, 2022. 3

[24] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Improved direct voxel grid optimization for radiance fields
reconstruction. arXiv preprint arXiv:2206.05085, 2022. 3

[25] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan,
Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. In
CVPR, 2022. 2

11



[26] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. NeurIPS, 33:7537–7547, 2020. 2

[27] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander
Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, and Angjoo Kanazawa.
Nerfstudio: A modular framework for neural radiance field development. In ACM SIGGRAPH 2023
Conference Proceedings, 2023. 28

[28] Mikaela Angelina Uy, Ricardo Martin-Brualla, Leonidas Guibas, and Ke Li. Scade: Nerfs from space
carving with ambiguity-aware depth estimates. In CVPR, 2023. 2, 6, 10, 28

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 2

[30] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. In NeurIPS, 2021. 9

[31] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T Barron,
Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning multi-view image-based
rendering. In ICCV, 2021. 2, 3

[32] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004. 8

[33] Lee Westover. Interactive volume rendering. In Proceedings of the 1989 Chapel Hill workshop on Volume
visualization, pages 9–16, 1989. 3

[34] Peter L Williams and Nelson Max. A volume density optical model. pages 61–68, 1992. 3
[35] Peter L Williams, Nelson L Max, and Clifford M Stein. A high accuracy volume renderer for unstructured

data. IEEE Transactions on Visualization and Computer Graphics, 4(1):37–54, 1998. 3
[36] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yuxiong Wang, and David Forsyth. Diver: Real-time and

accurate neural radiance fields with deterministic integration for volume rendering. In CVPR, 2022. 2, 10
[37] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and

Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In
ECCV, 2022. 2

[38] Lin Yen-Chen. Nerf-pytorch. https://github.com/yenchenlin/nerf-pytorch/, 2020. 8
[39] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or

few images. In CVPR, pages 4578–4587, 2021. 2, 13
[40] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving neural

radiance fields. ArXiv, abs/2010.07492, 2020. 2
[41] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable

effectiveness of deep features as a perceptual metric. In CVPR, pages 586–595, 2018. 8

12

https://github.com/yenchenlin/nerf-pytorch/


Appendix

We conduct further experiments, analysis and discussions on our proposed reformulation, where we
take a piecewise linear approximation to opacity and piecewise constant approximation to color
that results in an integral that is a simple and closed-form expression. This allows us to address
the drawbacks of current piecewise constant assumption in NeRFs such as ray conflicts during
optimization and a non-invertible CDF that lead to imprecise importance samples and vanishing
gradients. We provide additional results in Sec A.1: ablation study (Sec A.1.1), a video demo
(Sec A.1.2), additional results on a real dataset (Sec A.1.3), additional qualitative results (Sec A.1.4),
comparison with PL-DIVeR A.1.5, additional geometric extraction results A.1.6 and comparison with
less number of samples A.1.7. We then provide a walkthrough of the piecewise constant derivation
from [15] (Sec A.2), which is followed by the thorough step-by-step derivation of our piecewsie
linear opacity in volume rendering and precise importance sampling (Sec A.3). We also include
analyses on piecewise quadratic and higher order polynomials in Sec A.4. Finally, we end with
additional implementation and experiment details (Sec A.5), Limitations (Sec A.6) and Societal
Impact (Sec A.7).

A.1 Additional Results

A.1.1 Ablation Study

We conduct a further ablation study on our precise importance sampling. As described in Sec. 4 in the
main paper, our piecewise linear opacity approximation allows to solve for a closed-form solution for
inverse transform sampling leading to the formulation of our precise importance sampling. Unlike
the vanilla piecewise constant opacity approximation, our approach results in an invertible CDF, and
hence we do not need to define an invertible surrogate function G for inverse transform sampling
as in piecewise constant opacity (see Eq. 8 of main paper), which does not necessarily result in
samples from the actual ray distribution p(s). We quantitatively ablate the effectiveness of our precise
importance sampling (Precise) by replacing our formulation (Eq. 13 main paper) with the surrogate
function G as in the vanilla constant setting (Surrogate). As shown in Table A1 (first and second
row of each metric), our precise importance sampling consistently outperforms using the surrogate
on all metrics across all 8 scenes in the Blender dataset (hemisphere). Moreover, we also show that
our precise importance sampling enables us to use fewer samples for the fine network as it is able
to sample correctly from the ray distribution. Hence, keeping the same total number of rendering
samples, we are able to achieve a further boost in performance by using 128 coarse and 64 fine
samples as shown in Table A1 (second and third row of each metric). We use Nc and Ni to denote
the number of coarse and fine samples, respectively.

A.1.2 Video Demo

We also show a video demo of our results. Please see our project page (pl-nerf.github.io) for the
video (best viewed in full screen). In the mic scene, we observe that the structure inside the mic is
lost in the piecewise constant opacity approximation. Moreover, we see the blurriness along the sides
of the body of the mic caused by ray conflicts from the perpendicular and grazing angle views during
optimization of the vanilla NeRF model. For the chair scene, we see that our PL-NeRF is able to
achieve shaper textures on the back of the chair. Moreover, we see that there is an instability to the
samples as illustrated by the inconsistencies in the noise – the gold specs on the green texture (please
view in full screen). This is also evident when we vary the camera-to-scene distance. The chair model
was trained on multi-distance Blender data to highlight the difference when camera distances vary.

A.1.3 Real Dataset Results

We further evaluate our PL-NeRF on a real dataset - DTU [1]. We train and evaluate our approach
on the 15 test scenes used in [39], and report the standard metrics (PSNR, SSIM, LPIPS). We follow
the protocol used in [18] for the Real Forward Facing scene where 1

8 of the views were held out for
testing while the rest are used for training. Table A2 shows the quantitative results averaged over the
15 scenes, where our PL-NeRF outperforms the constant [18] baseline.

13

https://pl-nerf.github.io


Figure A1: DTU Qualitative Result Visualizations of rendered DTU dataset test views. Because of
the issue of grazing angle and binning inaccuracy of the piecewise constant opacity assumption, the
vanilla NeRF (constant) exhibits blurry geometry, and rendering artifacts in the zoomed-in views
(middle column). On the other hand, the piecewise linear opacity assumption in our model (linear)
alleviates these issues (right column). Overall, the rendered views exhibit sharper surface boundaries
and more faithful reconstruction compared to the constant model.

14



GT Constant Linear

Figure A2: Blender Qualitative Result Additonal visualizations of rendered Blender dataset test
views. We see that our PL-NeRF is able to achieve sharper and crisper texture (chair and hotdog
surface), better capture fine geometric detail (hole in lego, rope in ship) and avoid blurriness caused
by conflicting rays, e.g. grazing angle views as shown in the mic.

15



Metrics Method Nc Ni Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑
Surrogate 64 128 30.25 31.96 24.69 29.05 35.64 31.32 29.10 32.60 27.59
Precise 64 128 30.87 32.85 24.96 29.61 36.54 32.27 29.35 33.21 28.22
Precise 128 64 31.10 32.92 25.07 30.18 36.46 32.90 29.52 33.08 28.71

SSIM↑
Surrogate 64 128 0.940 0.962 0.914 0.957 0.973 0.953 0.943 0.978 0.841
Precise 64 128 0.946 0.969 0.921 0.961 0.977 0.962 0.947 0.982 0.848
Precise 128 64 0.948 0.969 0.923 0.965 0.977 0.966 0.948 0.981 0.857

LPIPS↓
Surrogate 64 128 5.50 3.85 8.52 4.15 2.70 2.94 4.04 2.30 15.5
Precise 64 128 4.77 2.94 7.54 3.85 2.27 2.25 3.39 1.59 14.3
Precise 128 64 4.39 2.85 7.10 3.03 2.28 1.81 3.21 1.73 13.1

Table A1: Ablation Study. Reported LPIPS scores are multiplied by 102. We use Nc and Ni to
denote the number of coarse and fine samples, respectively.

PSNR↑ SSIM↑ LPIPS↓
Const. (Vanilla) 27.96 0.909 8.58
Linear (Ours) 28.43 0.918 7.73

Table A2: DTU Quantative Results Metrics computed from the average of 15 scenes from DTU
dataset. The reported LPIPS score is multiplied by 102.

A.1.4 Additional Qualitative Results

We additionally show qualitative results from DTU dataset in Fig. A1. More qualitative results are
also shown in Fig. A2.

Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

PSNR↑ DIVeR 30.78 32.01 24.72 30.1 35.94 29.03 29.31 32.10 29.08
PL-DIVeR 30.88 32.92 24.7 30.23 35.94 33.42 32.06 33.08 28.99

SSIM↑ DIVeR 0.956 0.959 0.917 0.963 0.974 0.965 0.977 0.978 0.870
PL-DIVeR 0.947 0.969 0.916 0.963 0.966 0.966 0.977 0.981 0.871

LPIPS↓ DIVeR 3.39 2.79 6.13 2.34 1.92 1.46 1.77 2.16 7.77
PL-DIVeR 3.28 2.85 6.01 2.12 1.83 1.49 1.77 1.73 7.82

Table A3: Quantitative Results of DIVeR v.s. PL-DIVeR Reported LPIPS scores are multiplied by
102

A.1.5 PL-DiVER

We plug our method into DIVeR by using their voxed-based representation and feature integration,
and dropping in our piecewise linear opacity formulation for volume rendering (PL-DIVeR). Results
are shown in Table A3 demonstrating that our approach is on-par if not better across the different
scenes in the Blender dataset. We highlight that this shows the improvement of using our piecewise
linear opacity formulation, which is a drop-in replacement to existing methods.

A.1.6 Geometric Extraction

We also show quantitative results in geometric extraction improvement of PL-NeRF compared to the
original Vanilla NeRF. Table A4 reports the distance between the surface of the ground truth model
to the predicted meshes by sampling point clouds via ray casting. We see that our piecewise linear
approach achieves a lower error compared to Vanilla NeRF on almost all the scenes in the Blender
dataset.

A.1.7 Comparison with Less Samples

We run both our PL-NeRF and Vanilla NeRF with 64 coarse and 64 fine samples results in an
average of (30.09, 0.939, 0.056) and (29.86, 0.937, 0.059) for (PSNR, SSIM, LPIPS), respectively,
on the Blender dataset. This shows that under less number of samples our piecewise linear opacity
formulation is better than the original piecewise constant opacity assumption.

16



Blender Avg. Chair Drums Ficus Hotdog Lego Mat. Mic Ship

CD↓ Vanilla NeRF 10.43 5.162 6.842 29.94 7.555 7.474 6.833 5.214 11.44
PL-NeRF 10.10 4.676 7.754 29.58 7.004 6.825 6.061 5.213 10.44

Table A4: Geometry Extraction Error Distance between the surface of the GT to the predicted
meshes. Scores are ×103

A.2 Volume Rendering: Walkthrough of Piecewise Constant Derivation from [15]

From [15], under the approximation that both opacity and color are piecewise constant, for s ∈
[si, si+1], where τi = τ(si) and τ(s) = τi∀s ∈ [si, si+1], the probability of the interval Pi is derived
as follows:

Pi =

∫ si+1

si

τ(s)T (s)ds

=

∫ si+1

si

τi exp (−
∫ s

0

τ(u)du)ds

=

∫ si+1

si

τi exp (−
∫ si

0

τ(u)du) exp (−
∫ s

si

τ(u)du)ds

=

∫ si+1

si

τiT (si) exp (−
∫ s

si

τidu)ds

= τiT (si)

∫ si+1

si

exp (−τi(s− si))ds

= τiT (si)
exp (−τi(s− si))

−τi

∣∣∣si+1

si

= τiT (si)
(
1− exp (−τi(si+1 − si))

)
.

Moreover, under the piecewise constant assumption, transmittance T is derived and given by:

T (si) = exp (−
∫ si

0

τ(u)du)

=

i∏
j=1

exp (−
∫ sj

sj−1

τ(u)du)

=

i∏
j=1

exp (−
∫ sj

sj−1

τj−1du)

=

i∏
j=1

exp (τj−1(sj − sj−1)).

This is the formulation that is used in most, if not all, NeRF works, which has the drawbacks that
we raised such as ray conflicts during NeRF optimization and non-invertible CDF causing imprecise
importance sampling and vanishing gradients when defining a loss w.r.t. the samples. We propose to
approach this issue by deriving the volume rendering equation under a piecewise linear approximation
to opacity, which we detail in the next sections.

17



A.3 Volume Rendering: Our Piecewise Linear τ Derivation

We now show our full derivation for the volume rendering equation, under the assumption that the
opacity τ(s) is piecewise linear, i.e. it is linear within each interval [si, si+1], and piecewise constant
color. We then derive the probability of an interval under this assumption.

A.3.1 Generalized form for Pi.

Recall the generalized form of Pi as derived in the main paper. First from the definition of transmit-
tance, we have

T (s) = exp (−
∫ s

0

τ(u)du)

dT

ds
= − exp (−

∫ s

0

τ(u)du)τ(s) = −T (s)τ(s)

T ′(s) = −T (s)τ(s).

This results in the exact expression for the probability Pi of an interval given as follows:

Pi =

∫ si+1

si

τ(s)T (s) ds = −
∫ si+1

si

T ′(s) ds = T (si)− T (si+1). (15)

A.3.2 Evaluating τ(s) for s ∈ [si, si+1].

Let τj = τ(si), τi+1 = τ(si+1), be sampled points along the ray. For s ∈ [si, si+1], assuming
piecewise linear opacity τ , i.e. τ(s) is linear within each bin, we have

τ(s) = (
si+1 − s

si+1 − si
)τi + (

s− si
si+1 − si

)τi+1

=
1

si+1 − si
[(τi+1 − τi)s+ (si+1τi − siτi+1)]

A.3.3 Transmittance T (si)

We first derive expression for transmittance T (si) under the piecewise linear τ assumption.

18



T (si) = exp (−
∫ si

0

τ(u)du)

=

i∏
j=1

exp (−
∫ sj

sj−1

τ(u)du)

=

i∏
j=1

exp (
−1

sj − sj−1

∫ sj

sj−1

[(τj − τj−1)u+ (sjτj−1 − sj−1τj)]du)

=

i∏
j=1

exp
( −1

sj − sj−1

[
(
τj − τj−1

2
)(s2j − s2j−1) + (sjτj−1 − sj−1τj)(sj − sj−1)

])

=

i∏
j=1

exp
(
−
[
(
τj − τj−1

2
)(sj + sj−1) + (sjτj−1 − sj−1τj)

])

=
i∏

j=1

exp
(
− 1

2

[
τjsj + τjsj−1 − τj−1sj − τj−1sj−1 + 2sjτj−1 − 2sj−1τj

])

=

i∏
j=1

exp
(
− 1

2

[
τjsj − τjsj−1 + τj−1sj − τj−1sj−1

])

Thus we get

T (si) =

i∏
j=1

exp
(
− (τj + τj−1)(sj − sj−1)

2

)
. (16)

A.3.4 Probability of interval [si, si+1]

From the generalized form for Pi as derived in the main paper, we plug in the expression for
transmittance T (si) as derived above to obtain:

Pi =

∫ si+1

si

τ(s)T (s)ds

= T (si)− T (si+1)

=

i∏
j=1

exp
(
− (τj + τj−1)(sj − sj−1)

2

)
−
i+1∏
j=1

exp
(
− (τj + τj−1)(sj − sj−1)

2

)

Hence, we obtain

Pi = T (si) ·
(
1− exp

[
− (τi+1 + τi)(si+1 − si)

2

])
. (17)

A.3.5 Our Precision Importance Sampling

To sample from the ray distribution, inverse transform sampling is needed, that is, one draws u ∼
U(0, 1) then passes it to the inverse of a cumulative distribution (CDF), i.e. a sample x = F−1(u),
where F is the CDF of the distribution. Unlike the piecewise constant case, where F is not invertible,
needing for a surrogate function G derived from F, we show that under our piecewise linear opacity
assumption, we can solve for the solution x for each corresponding u.

19



As illustrated in the main paper, since F is continuous and increasing, under our assumption that
τ > 0 5, then F is invertible. Now, without loss of generality, let sample u fall into the CDF interval
[ck, ck+1], where ck =

∑
j<k Pj . We know that the probability of the corresponding interval is Pk

as given by Eq. 17. Thus we have:

ck+1 − ck = Pk

=

∫ sk+1

sk

T (s)τ(s)ds

= T (sk) ·
(
1− exp

(
− (τk+1 + τk)(sk+1 − sk)

2

))

We want to solve for sample x ∈ [sk, sk+1], such that x = F−1(u). Equivalently, since we know
that x ∈ [sk, sk+1], then we reparameterize and let x = sk + t, where t ∈ [0, sk+1 − sk]. We are
solving for x as follows:

u =

∫ x

0

T (s)τ(s)ds

=

∫ sk

0

T (s)τ(s)ds+

∫ x

sk

T (s)τ(s)ds

= ck +

∫ x

sk

T (s)τ(s)ds

u− ck =

∫ x

sk

T (s)τ(s)ds

Now, from the derivation of the general form for Pi in Eq. 15, we can similarly obtain

u− ck = T (sk)− T (x).

= T (sk) · (1− exp (−
∫ x

sk

τ(u)du)).

Thus, simplifying we get

u− ck
T (sk)

= 1− exp (−
∫ x

sk

τ(u)du)

exp (−
∫ x

sk

τ(u)du) = 1− u− ck
T (sk)

−
∫ x

sk

τ(u)du) = ln
(
1− u− ck

T (sk)

)

which gives us the expression∫ x

sk

τ(u)du = ln(T (sk))− ln(T (sk)− (u− ck)). (18)

5In practice, we can simply add a small ϵ, say ϵ = 10−6, to the model output resulting in positive τ , to make
τ positive everywhere.

20



This holds for T (sk) ̸= 0, which is true under our assumption that τ > 0, and T (sk)− (u− ck) ≥ 0,
which we will show in Sec. A.3.8 below.

A.3.6 Evaluating −
∫ x
sk

τ(u)du.

We evaluate the expression −
∫ x
sk

τ(u)du in order to solve for the exact sample x. Recall, for
s ∈ [sk, sk+1], we have

τ(s) = (
sk+1 − s

sk+1 − ki
)τk + (

s− ki
sk+1 − sk

)τk+1

=
1

sk+1 − sk
[(τk+1 − τk)s+ (sk+1τk − skτk+1)]

Let constants a = τk+1− τk, b = sk+1τk−skτk+1, d = 1
sk+1−sk , thus we can write τ(s) as follows:

τ(s) = d(as+ b). (19)

Thus, from Eq 19 we have:

∫ x

sk

τ(u)du =

∫ x

sk

d(au+ b)du

= d(

∫ x

sk

audu+

∫ x

sk

bdu)

= d[
au2

2

∣∣∣x
sk

+ b(x− si)]

= d[
a(x2 − s2k)

2
+ b(x− sk)]

= d[
a((sk + t)2 − s2k)

2
+ b((sk + t)− sk)]

= d[
a(t2 + 2skt)

2
+ bt]

= d[
a

2
t2 + (ask + b)t]

=
1

sk+1 − sk
[
τk+1 − τk

2
t2 + ((τk+1 − τk)sk + sk+1τk − skτk+1)t]

=
1

sk+1 − sk
[
τk+1 − τk

2
t2 + (sk+1τk − skτk)t]

=
τk+1 − τk

2(sk+1 − sk)
t2 + τkt

Hence, plugging this in Eq. 18, we get the quadratic equation

τk+1 − τk
2(sk+1 − sk)

t2 + τkt− (ln(T (sk))− ln(T (sk)− (u− ck))) = 0.

We want to solve for t ∈ [0, sk+1 − sk], and the roots of the quadratic equation is given by

21



t =
(sk+1 − sk)(−τk ±

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk) )

(τk+1 − τk)
(20)

That means to compute for the solution, we need to find the root

(−τk ±
√

τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))
(sk+1−sk) )

(τk+1 − τk)
∈ (0, 1)

which we will show always exists and is unique.

A.3.7 Bounding ∆ = τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))
(sk+1−sk)

Let us first bound the discriminant of the quadratic formula. We have

u− ck ≤ ck+1 − ck

=

k∑
j=0

Pj −
k−1∑
j=0

Pj = Pk

= T (sk) · (1− exp
(
− (τk+1 + τk)(sk+1 − sk)

2

)
)

Thus we have

ln(T (sk)− (u− ck)) ≥ ln
(
T (sk)− T (sk) · (1− exp

(
− (τk+1 + τk)(sk+1 − sk)

2

)
)
)

= ln(T (sk) · exp
(
− (τk+1 + τk)(sk+1 − sk)

2

)
)

= ln(T (sk))−
(τk+1 + τk)(sk+1 − sk)

2

lnT (sk)− ln(T (sk)− (u− ck)) ≤
(τk+1 + τk)(sk+1 − sk)

2

2(τk+1 − τk)(lnT (sk)− ln(T (sk)− (u− ck)))

(sk+1 − sk)
≤

2(τk+1 − τk)(
(τk+1+τk)(sk+1−sk)

2 )

(sk+1 − sk)

= τ2k+1 − τ2k

Hence, computing the discriminant we get:

∆ = τ2k +
2(τk+1 − τk)(lnT (sk)− ln(T (sk)− (u− ck)))

(sk+1 − sk)
≤ τ2k + (τ2k+1 − τ2k ) = τ2k+1.

Similarly, u− ck ≥ 0, where equality holds when u = ck. This gives us ∆ ≥ τ2k .

Hence, we know that τ2k+1 ≥ ∆ ≥ τ2k . Since we need

(−τk ±
√
∆)

(τk+1 − τk)
∈ (0, 1), and

(−τk −
√
∆)

(τk+1 − τk)
≤ 0

22



Thus to find the solution t, we need to take the positive root. We have

(−τk +
√
∆)

(τk+1 − τk)
≥

(−τk +
√
τ2k

(τk+1 − τk)
= 0

(−τk +
√
∆)

(τk+1 − τk)
≤

(−τk +
√
τ2k+1

(τk+1 − τk)
= 1

This shows that the solution is within the desired interval. Hence, the solution is

t =
(sk+1 − sk)(−τk +

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk) )

(τk+1 − τk)
(21)

Hence, for the positive root, we know that t ∈ [0, sk−1 − sk].

A.3.8 Proof for T (sk) ≥ (u− ck)

ck =

k−1∑
j=0

Pj

=

k−1∑
j=0

T (sj) · (1− exp(− (τj+1 + τj)(sj+1 − sj)

2
))

We know that

T (sj) =

j∏
i=1

exp(− (τi + τi−1)(si − si−1)

2
)

Let ai = exp(− (τi+τi−1)(si−si−1)
2 ), and T (s0) = 1. Hence we have

T (sj) =

j∏
i=1

ai,

ck = T (s0)(1− a1) +

k−1∑
j=1

(

j∏
i=1

ai) · (1− aj+1))

= (1− a1) + (a1)(1− a2) + (a1a2)(1− a3) + ...

= 1− a1a2...ak

Since T (sk) = a1a2...ak and ai > 0∀i then

T (sk) + ck = a1a2...ak + (1− a1a2...ak)

= 1

≥ ck+1

≥ u.□

Note that above proof and solutions hold for τk ̸= τk+1 and T (sk) ̸= 0, which is all holds since we
have τ(s) > 0∀s, which is equivalent to F being an increasing function.

23



A.3.9 The solution for sample u:

Putting everything together, we have the solution t given as

t =
(sk+1 − sk)(−τk +

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(T (sk)−(u−ck)))

(sk+1−sk) )

(τk+1 − τk)
. (22)

From Sec A.3.8, we have T (sk) = a1a2...ak and ck = 1−a1a2...ak, thus T (sk)− (u−ck) = 1−u.
Hence we can simplify it to

t =
(sk+1 − sk)(−τk +

√
τ2k + 2(τk+1−τk)(lnT (sk)−ln(1−u))

(sk+1−sk) )

(τk+1 − τk)

t =
(sk+1 − sk)(−τk +

√
τ2k +

2(τk+1−τk)(− ln
(1−u)
T (sk)

)

(sk+1−sk) )

(τk+1 − τk)
. (23)

A.4 Piecewise Quadratic and Higher Order Polynomials

Now, we first consider the full derivation for volume rendering equation under the assumption that
opacity is piecewise quadratic and color is piecewise constant. Consider opacities τ1, . . . , τn queried
at n samples s1, . . . , sn along the ray. Here, we set s0 = tn and sn+1 = tf to the near and far plane,
with τ0 = 0 and τn+1 = 1010 denoting empty and opaque space.

To interpolate opacity, because a quadratic function can only be uniquely defined with 3 points, we
choose τ(s) to be quadratic within each interval [sj , sj+2] for even values of j. To encapsulate all
points, this forces n to be odd, e.g. using 127 coarse samples and 64 fine samples.

A.4.1 Derivation: Computing T (s)

In the same way as Sec. A.3.3, we can derive transmittance, which is in closed-form. The only
modification is that the formulae for integrals of opacity are different over left and right subintervals
[sj , sj+1] and [sj+1, sj+2], with j even (see the next section for a derivation of these integrals):

T (s2i) = exp (−
∫ s2i

s0

τ(u)du) =
i∏

j=1

exp (−
∫ s2j

s2j−1

τ(u)du) exp (−
∫ s2j+1

s2j

τ(u)du). (24)

Substituting the expressions in Eqs. 28 and 29 gives a closed form expression in terms of the sj’s and
τj’s. We can similarly compute

T (s2i+1) = exp(−
∫ s2i+1

s2i

τ(u)du)

i∏
j=1

exp (−
∫ s2j

s2j−1

τ(u)du) exp (−
∫ s2j+1

s2j

τ(u)du). (25)

Then the probability of the ith interval for each 0 ≤ i ≤ n is, as before,

Pi = T (si)− T (si+1). (26)

This leads to a closed-form expression for Pi. This means the behavior of Pi depends entirely on
that of the opacity integral. However, due to the form of

∫
τ(s)ds detailed in the next section, this

means Pi involves a piecewise exponential of a rational function in τj’s and sj’s, which leads to poor
numerical conditioning and thus optimization instability.

24



A.4.2 Derivation: Computing and Integrating τ(s) on Intervals

We now compute τ(s) and its integral on each interval. Fix the interval [sj , sj+2], with j odd, and
τj = τ(sj), τj+1 = τ(sj+1), τj+2 = τ(sj+2). By Lagrange interpolation, the quadratic τ(s)
passing through (sj , τj), (sj+1, τj+1), (sj+2, τj+2) is given by:

τ(s) =
τj

αjγj
(s− sj+1)(s− sj+2)−

τj+1

αjβj
(s− sj)(s− sj+2) +

τj+2

βjγj
(s− sj)(s− sj+1),

αj = sj+1 − sj , βj = sj+2 − sj+1, γj = sj+2 − sj .
(27)

Note the integrals of the three monic quadratics over [sj , sj+1] can be expressed in terms of αj , βj , γj :

∫ sj+1

sj

(s− sj+1)(s− sj+2)ds =

∫ 0

−αj

s(s− βj)ds =
α3
j

3
+

α2
jβj

2
,∫ sj+1

sj

(s− sj)(s− sj+2)ds =

∫ αj

0

s(s− γj)ds =
α3
j

3
−

α2
jγj

2
,∫ sj+1

sj

(s− sj)(s− sj+1)ds =

∫ αj

0

s(s− αj)ds = −
α3
j

6
.

Thus, using Eq. 27 gives the integral of opacity over [sj , sj+1]:

∫ sj+1

sj

τ(s)ds =
τj
γj

·

[
α2
j

3
+

αjβj
2

]
− τj+1

βj

[
α2
j

3
− αjγj

2

]
+

τj+2

βjγj
·

[
−
α3
j

6

]
. (28)

Similarly, the integrals of those same three quadratics over [sj+1, sj+2] factor out βj :

∫ sj+2

sj+1

(s− sj+1)(s− sj+2)ds =

∫ βj

0

s(s− βj)ds = −
β3
j

6
,∫ sj+2

sj+1

(s− sj)(s− sj+2)ds =

∫ 0

−βj

(s+ γj)sds =
β3
j

3
−

β2
j γj

2
,∫ sj+2

sj+1

(s− sj)(s− sj+1)ds =

∫ βj

0

(s+ αj)sds =
β3
j

3
+

β2
jαj

2
.

Then, summing these up along Eq. 27 gives the integral of opacity over [sj+1, sj+2]:

∫ sj+2

sj+1

τ(s)ds =
τj

αjγj
·

[
−
β3
j

6

]
− τj+1

αj

[
β2
j

3
− βjγj

2

]
+

τj+2

γj
·

[
β2
j

3
+

βjαj
2

]
. (29)

Observe in Eqs. 28 and 29 that the integral of opacity involves some terms with αj , βj , γj in the
denominator, which do not cancel. Thus, the integral of opacity over an interval is not a polynomial
in τi’s and si’s, but is instead a rational function. This contrasts with the linear derivation in Sec.
A.3.3, where this integral was a degree 2 multivariate polynomial in τi’s and si’s. This caveat causes
numerical instability, which will be discussed further in Secs. A.4.3 and A.4.4.

Generally, following the steps of the above derivation shows that if we interpolate τ piecewise by any
degree d polynomial, d ≥ 2, then the result is a rational function in si’s and τi’s, but not a polynomial,
which would also lead to training instability as in the quadratic case.

25



A.4.3 Piecewise Quadratic Problem 1: Negative Interpolated Opacity

Figure A3: Interpolation gives negative
τ -values when s-values are close.

As seen above, one problem with the piecewise quadratic
model is that the integral of opacity is a rational function
in αi, βi, γi. In particular, due to the presence of negatives
in front of certain rational terms in Eqs. 28 and 29, it
may become negative as the denominators of these terms
approach zero. One example is shown in Figure A.4.3,
for samples s1, s2, s3 with τ1 = τ2 < τ3 and s3 − s2 ≪
s2−s1, where the interpolated quadratic dips far below the
x-axis. Note this interpolation is physically implausible,
as opacity should be nonnegative everywhere.

Furthermore, from Eqs. 24 and 25, when the opacity
integral is negative on intervals, transmittance can then
be a product with exponentials of negative terms, and
potentially be greater than 1. This is incompatible with the
physical interpretation of transmittance as a probability
that a light travels a distance along a ray without being
absorbed.

A.4.4 Piecewise Quadratic Problem 2: Instability from Sample Proximity

In Eqs. 28 and 29, we observe the presence of terms such as αj , βj , γj in the denominator. These
do not appear in the piecewise linear model. As a result, because these quantities approach zero
as samples sj , sj+1, sj+2 become closer, then the integral of opacity can become an arbitrarily
large positive or even negative (as shown qualitatively in the previous section). Referencing the
transmittance formulae in Eqs. 24 and 25, this means transmittance can approach zero or infinity and
gradients can explode as samples are clustered together. This is fairly common in stratified sampling,
and even more so with importance sampling.

To formally describe this instability, we first look at what happens when sj and sj+1 coincide:

lim
sj+1→s+j

∫ sj+1

sj

τ(s)ds = 0

because τ : R≥0 → R is continuous. There is no instability in this integral when sj+1 → s+j .
However, when sj+1 and sj+2 coincide, because βj → 0+ and γj → α+

j , the integral approaches

lim
sj+2→s+j+1

∫ sj+1

sj

τ(s)ds = lim
sj+2→s+j+1

[
τj
γj

·

[
α2
j

3
+

αjβj
2

]
− τj+1

βj

[
α2
j

3
− αjγj

2

]
+

τj+2

βjγj
·

[
−
α3
j

6

]]

=
τjαj
3

− lim
sj+2→s+j+1

τj+1α
2
j

3 − τj+1αjγj
2 +

τj+2α
3
j

6γj

βj

=
τjαj
3

− lim
sj+2→s+j+1

2τj+1α
2
jγj − 3τj+1αjγ

2
j + τj+2α

3
j

6γjβj

=
τjαj
3

− lim
sj+2→s+j+1

τj+1αj(α
2
j + 2αjγj − 3γ2

j ) + α3
j (τj+2 − τj+1)

6γjβj

=
τjαj
3

− lim
sj+2→s+j+1

τj+1αj(αj + 3γj)(αj − γj) + α3
j (τj+2 − τj+1)

6γjβj

=
τjαj
3

− lim
sj+2→s+j+1

−τj+1αj(αj + 3γj)βj + α3
j (τj+2 − τj+1)

6γjβj

26



=
τjαj
3

+
2τj+1αj

3
− lim
sj+2→s+j+1

α3
j (τj+2 − τj+1)

6γjβj

=
τjαj
3

+
2τj+1αj

3
−

α2
j

6
lim

sj+2→s+j+1

τj+2 − τj+1

βj
.

The behavior of this integral limit depends on the last limit. To analyze this, let h : R≥0 → R be the
network function which takes in samples on the ray and outputs opacity. The last limit is

lim
sj+2→s+j+1

τj+2 − τj+1

βj
= lim
sj+2→s+j+1

h(sj+2)− h(sj+1)

sj+2 − sj+1
. (30)

Because h is almost always differentiable at sj+1, this becomes h′(sj+1), and so

lim
sj+2→s+j+1

∫ sj+1

sj

τ(s)ds =
τjαj
3

+
2τj+1αj

3
−

α2
j

6
h′(sj+1). (31)

There are no constraints on the value of h′(sj+1) as the network trains, so the above limit can achieve
any real value. In particular, we can derive a condition for when the limit is negative:

lim
sj+2→s+j+1

∫ sj+1

sj

τ(s)ds < 0 ⇐⇒ h′(sj+1) >
2τj + 4τj+1

αj
. (32)

That is, whenever there is a sharp enough increase in opacity (which can happen at, say, a surface
crossing) and samples sj+1, sj+2 are sufficiently close, the interpolated quadratic can have a negative
integral on [sj , sj+1], which leads to the issues described in Sec. A.4.3. In other words, the integral
of opacity over [sj , sj+1] is unstable as sj+2 → s+j+1. A similar analysis holds to show the instability
of the opacity integral on [sj+1, sj+2] as sj+1 → s+j .

A.4.5 Piecewise Quadratic Problem 3: Importance Sampling

Suppose we wish to importance sample in the same manner as piecewise linear, that is, we use inverse
transform sampling. In essence, we draw u ∼ U(0, 1) and then sample x = F−1(u), with F the
CDF of the distribution. Recall F is computed as

f(x) =

∫ x

s0

T (s)τ(s)ds =

∫ sk

s0

T (s)τ(s)ds+

∫ x

sk

T (s)τ(s)ds = ck +

∫ x

sk

T (s)τ(s)ds. (33)

As before, the latter equation becomes
f(x) = ck + T (sk)− T (x). (34)

Hence, computing x amounts to solving the equation f(x) = u, which becomes from above:
T (x) = ck + T (sk)− u. (35)

As T is the exponential of a cubic, this amounts to solving a cubic above. This does have a real
solution, as F is increasing and continuous, so the Intermediate Value Theorem implies f(x) = u
has a solution; and the solution is unique because F is strictly increasing, as it is an exponential of a
polynomial. However, the complexity of exact importance sampling would be large.

This analysis reveals another downside of higher order polynomials. In general, suppose we wish
to interpolate opacity τ with a piecewise degree n polynomial. Then following the same method as
above, we see transmittance T is the piecewise exponential of a degree n+ 1 polynomial, which is
the integral of τ . So inverse transform sampling reduces to solving a degree n+ 1 polynomial. The
Abel-Ruffini Theorem asserts for n+ 1 ≥ 5 that this polynomial is in general not solvable by radicals.
In other words, there is no simple closed form for exact importance sampling when n ≥ 4.

Theoretically, this could be exactly solved for n = 2 and n = 3 (i.e. when opacity is piecewise
quadratic or cubic, respectively), but the formulae to derive cubic and quartic solutions can become
sufficiently complicated and the resulting complicated expressions may result in numerical instability
during optimization, especially when taking the gradient w.r.t. the samples.

27



A.5 Experiment details, Reproducibility and Compute

A.5.1 Implementation Details

We include the core code snippets of our implementation of PL-NeRF. Figure A4 shows the volume
rendering equation that includes the implementation of Eq. 10 and 11 (main paper). This is a direct
replacement of the original constant approximation, where we also show the code snippet in the figure
as reference. Figure A5 shows the implementation of our precise importance sampling from Eq. 13
(main paper), which is also a direct replacement of the constant importance sampling implementation
(Figure A6) for reference. We highlight that our formulation is a direct replacement of the functions
from the original implementation, and hence for the depth experiments, we are also able to directly
adapt the codebase from [28]. We use Nvidia v100 and A5000 GPU’s for our experiments. Each
scene is trained on a single GPU and takes 15− 20 hours. We used an internal academic cluster and
cloud compute resources to train and evaluate our models.

For the MipNeRF-based experiments, our experiments are also run on the standard train and test
split of the Blender dataset with the official released hyperparameters of Mip-NeRF using the
NerfStudio [27] codebase. For PL-MipNeRF, we use the two-MLP training scheme with a coarse
loss weight of 1.0.

For DIVeR-based experiments, we use their official implementation and configuration for DIVeR64
at 128 voxels. For PL-DIVeR, we utilize their voxel-based representation and feature integration
and dropping in our piecewise linear opacity rendering formulation. We similarly run the DIVeR
models on a single Nvidia v100 GPU trained using their default configurations and hyperparameters
for DIVeR64 at 128 voxels.

The total training time for 500k iterations on a single Nvidia v100 GPU is 17.78 and 21.43 hours
for Vanilla NeRF and PL-NeRF, respectively. Figure 2-c shows the head-to-head comparison of
training PSNR (y-axis) with respect to time (x-axis) of Vanilla NeRF vs PL-NeRF on the Lego scene.
Rendering a single 800x800 image takes 25.59 and 32.35 seconds for Vanilla NeRF and PL-NeRF,
respectively.

A.5.2 Computational complexity under different number of samples

We measured the total rendering time for a single 800x800 image under different numbers of samples
for our PL-NeRF. The total rendering time for (64+64), (64+128) and (128+64) are 19.20, 25.85 and
32.35 seconds, respectively.

A.5.3 Convergence plots under different number of samples

Figure ?? shows the convergence plots under different numbers of samples of our PL-NeRF vs Vanilla
NeRF. We see that under different number of samples, our linear approach converges to a higher
training PSNR.

A.6 Limitations

Our piecewise linear opacity approximation is able to handle arbitrarily small opacity, e.g. 1e−6,
however, we cannot handle coordinates with exactly zero opacity. This special case is not an issue in
practice. Also theoretically, any atom absorbs light and thus will not have exactly zero opacity, except
in a vacuum. Another limitation is our method is slightly slower than the original piecewise constant
approximation, and this is due to requiring more FLOPS for our importance sampling computation
(Eq. 13 main paper). Another additional limitation is we still assume piecewise color, i.e. within a
bin we do not handle color integration. Modeling this can potentially handle difficult scenarios such
as double-walled colored glass or atmospheric effects such as fog or smoke. Lastly, we also inherit
the limitations of NeRFs in general, such as requiring known camera poses.

A.7 Broader Impact

Our models require the usage of GPUs both in training time and rendering time, and GPUs use up
energy to run and power them. We acknowledge that this contributes to climate change that is an
important societal issue. Despite this, we observe the improvement in the results that is theoretically

28



Figure A4: Code snippet for volume rendering. The implementation for our piecewise linear
opacity approximation is a drop-in replacement from the original piecewise constant.

grounded and believe that it is beneficial for the pursuit of science. We responsibly ran our models by
first prototyping on selected scenes before scaling up to different scenes across datasets to minimize
its impact to climate change.

29



Figure A5: Code snippet for our Precise Importance Sampling. The implementation of our
precision importance sampling is also a direct replacement from the original function from the
constant implementation called sample_pdf (See next figure for reference).

30



Figure A6: This is the original importance sampling for the constant approximation for reference.

31


	Introduction
	Related Work
	Background
	Volume Rendering Review
	Neural Radiance Fields.

	Drawbacks of Piecewise Constant Opacity  in NeRFs
	Generalized Form for Pj
	Our PL-NeRF
	Results
	Datasets, Evaluation Metrics and Implementation Details.
	Experiments on Blender and LLFF Datasets
	Geometric Extraction
	Effectiveness of our formulation on other Radiance Field Methods
	Experiments on Close-up Views
	Experiments with Depth Supervision

	Conclusion
	Additional Results
	Ablation Study
	Video Demo
	Real Dataset Results
	Additional Qualitative Results
	PL-DiVER
	Geometric Extraction
	Comparison with Less Samples

	Volume Rendering: Walkthrough of Piecewise Constant Derivation from maxetal:DFU:2010:2709
	Volume Rendering: Our Piecewise Linear  Derivation
	Generalized form for Pi.
	Evaluating (s) for s [si, si+1].
	Transmittance T(si)
	Probability of interval [si, si+1]
	Our Precision Importance Sampling
	Evaluating -skx(u)du.
	Bounding = k2 + 2(k+1 - k)(T(sk) - (T(sk) - (u-ck)))(sk+1-sk)
	Proof for T(sk)(u-ck)
	The solution for sample u:

	Piecewise Quadratic and Higher Order Polynomials
	Derivation: Computing T(s)
	Derivation: Computing and Integrating (s) on Intervals
	Piecewise Quadratic Problem 1: Negative Interpolated Opacity
	Piecewise Quadratic Problem 2: Instability from Sample Proximity
	Piecewise Quadratic Problem 3: Importance Sampling

	Experiment details, Reproducibility and Compute
	Implementation Details
	Computational complexity under different number of samples
	Convergence plots under different number of samples

	Limitations
	Broader Impact


