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Abstract

Minimally-invasive surgery (MIS) and robot-assisted minimally invasive (RAMIS)
surgery offer well-documented benefits to patients such as reduced post-operative
pain and shorter hospital stays. However, the automation of MIS and RAMIS
through the use of AI has been slow due to difficulties in data acquisition and
curation, partially caused by the ethical considerations of training, testing and
deploying AI models in medical environments. We introduce SARAMIS, the first
large-scale dataset of anatomically derived 3D rendering assets of the human ab-
dominal anatomy. Using previously existing, open-source CT datasets of the human
anatomy, we derive novel 3D meshes, tetrahedral volumes, textures and diffuse
maps for over 104 different anatomical targets in the human body, representing
the largest, open-source dataset of 3D rendering assets for synthetic simulation
of vision tasks in MIS+RAMIS, increasing the availability of openly available
3D meshes in the literature by three orders of magnitude. We supplement our
dataset with a series of GPU-enabled rendering environments, which can be used to
generate datasets for realistic MIS/RAMIS tasks. Finally, we present an example of
the use of SARAMIS assets for an autonomous navigation task in colonoscopy from
CT abdomen-pelvis scans for the first time in the literature. SARAMIS is publically
made available at https://github.com/NMontanaBrown/saramis/, with as-
sets released under a CC-BY-NC-SA license.

1 Introduction

Laparoscopy and endoscopy are techniques in surgical and medical practice which involve inserting
video cameras into a patient in order to diagnose and treat a number of conditions, and have made it
possible to perform minimally invasive surgery (MIS). These techniques obviate the need for large
incisions at the operative site, replacing them with small incisions into which cameras and tools are
inserted to perform the intervention. The benefits of MIS have been well documented [8, 49, 71],
and can be summarised as follows: 1) Reduced post-operative pain, 2) Shortened hospital stays
[71, 47], 3) Improved rates of patient recovery [12], and 4) Lowered costs to hospital systems in a
number of interventions [8, 66, 47, 22]. Additionally, recent advances in robotics have enabled the
pairing of robotic elements with laparoscopic equipment, which provides further benefits such as
an improved ergonomic environment for surgeons [76] and the possibility of teleoperation [11]. In
tandem, (partially) autonomous robotic surgery has emerged as an increasingly important research
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topic [10, 62, 26]. Indeed, many surgeons consider the full automation of robot-assisted minimally
invasive surgery (RAMIS) as the ‘end goal’ of surgical practice [26].

Although there have been advances in technologies to facilitate both MIS and RAMIS [58] –such
as image overlay [64, 37, 77, 7], or 3D localisation of tools and cameras relative to a pre-op scan
[1]– the data collection and validation of such solutions has been limited by the equipment required
for validation. This can include, for example, optical trackers, stereo cameras, and/or LIDAR-like
sensors which are non-standard surgical objects that interrupt surgical workflow and are expensive to
accrue and implement [27, 10].

Whilst traditional computer vision applications have long exploited such devices to create large-scale
annotated datasets for relevant tasks such as camera-pose estimation or scene-reconstruction [23, 42],
the aforementioned difficulties regarding surgical logistics (e.g. sterilisation of all objects in theatre
requiring repeated calibration, time-sensitivity of surgical environments, and overhead equipment
cost) have resulted in limited datasets for these tasks in MIS/RAMIS. In parallel, synthetic data and
rendering environments have emerged as promising, alternative resources to enable computer vision
at scale [53, 68], and are important for the development and testing of safe autonomous systems.
However, in silico datasets for the development of deep learning algorithms and autonomous systems
in MIS/RAMIS are limited in number and application [38].

In this paper, we introduce Simulation Assets for Robotic Assisted and Minimally Invasive Surgery
(SARAMIS), the first large-scale, multi-organ, open-source collection of rendering assets for the
simulation of robotic and minimally invasive surgery. We summarise the contributions of this work
as follows:

• We provide the first, large-scale database of patient-data-derived rendering assets represent-
ing anatomical organs, textures, and tetrahedral meshes for the simulation of abdominal
minimally invasive interventions.

• We integrate SARAMIS with existing open-source environments for the procedural simulation
of endoscopic and laparoscopic procedures, including simulation of depth maps, stereo and
monocular cameras.

• We develop a Markov decision process environment for navigation within the colon, us-
ing the above-described simulations, and subsequently use this environment to train an
autonomous reinforcement learning (RL) function which learns to navigate to four different
structures within the colon and is generalisable to different patient cases; we open-source
this environment for further research and development.

Figure 1: Summary of SARAMIS pipeline. We annotate a large-scale dataset of open-source CT scans
(A), remesh and convert them into simulation files (triangular and tetrahedral meshes, normal maps,
diffuse maps) (B) that can be used with a open-source renderers (C) to produce synthetic training
data for MIS applications.

2 Related Work

Open Source MIS Datasets In contrast to tasks such as 3D medical image segmentation [45, 35],
the number of freely available, annotated datasets focussed on MIS tasks is small [10]. Most available
datasets focus on 2D segmentation from intra-operative images for tasks such as organ [9, 30],
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pathology [5, 41], and tool [61] segmentation, as well as action recognition[74]. Datasets to validate
steps in MIS pipelines which are critical to workflow automation, such as camera pose estimation,
3D-to-3D registration, and organ deformation, are comparatively limited. The lack of varied datasets
can be attributed to the comparatively high cost of label acquisition and cleaning [46, 39], which
involves the introduction of (previously discussed) non-standard equipment into the surgical workflow
[39]. Furthermore, unlike traditional computer vision applications, deformable object modelling is a
prerequisite to achieving clinically relevant accuracies [59, 70, 63, 14]. Whilst animal models [48]
may be used to validate algorithms through the use of irradiating scans, few patient open-source
datasets to validate deformation models exist in the literature [59, 36].

Synthetic datasets for applications related to MIS represent an alternative approach, with promising
results in terms of simulation-to-real transfer for deformation simulation [55, 54, 63, 57, 70, 67, 69],
segmentation [16, 15] and depth estimation [60, 72]. However, current work either does not release
3D assets to simulate or manipulate scenes [54] or uses non-open-source frameworks [60, 16] and
can be limited in terms of application [60, 72, 16, 70, 69]. Existing work is further limited in the
number of anatomical variations of 3D assets due to the use of a small cohort to produce the datasets
[60, 36, 16, 67, 69]. We summarise the existing literature of 3D assets of simulation of MIS+RAMIS
tasks in Table 1.

Dataset # 3D Assets # Organs # Subjects Open-Source?
CV3D [72] 1 1 (Colon) 1 ✗

Dowrick et al. [16] 1 1 (Liver) 1 ✗
Tagliabue et al. [70] 1 1 (Tissue Retraction) 1 ✗
Suwelack et al. [69] 1 1 (Liver) 1 ✗

DEPOLL [59] 2 1 (Porcine Liver) 2 ✔
Dowrick et al. [15] 1 1 (Liver, Colon ) 1 ✔

OpenHELP [36] 18 18 1 ✔
SimCol [60] 1 1 (Colon) 1 ✔

IRCAD 3D Liver Dataset [67] 20 1 (Liver) 20 ✔
SARAMIS 114,838 106 2527 ✔

Table 1: Summary of existing 3D datasets for simulation of MIS+RAMIS tasks in the literature as
compared to SARAMIS

Simulation Environments for MIS Rendering frameworks are abundant in the computer vision
literature [24, 20, 34], and there are a number that support physics-based multi-object rigid-body
interactions [73, 20, 24]. Whilst there has been an interest in deformable-object interactions in
computer vision [3, 43], robotics, and MIS tasks [55, 54], the majority of these works are not open-
source [70], or have limited support for realistic soft-body interactions [73]. Frameworks that use
finite-element modelling, required for realism and accuracy in MIS/RAMIS, are limited [70, 21, 2].

Autonomy in RAMIS Several advances have been made towards task-level automation in the
field of RAMIS [28], with reported success in tasks such as path planning [65], suturing of various
structures [62, 40], and tissue retraction in an ex vivo environment [63]. However, there exist
significant ongoing ethical questions surrounding the regulation and deployment of autonomous
surgical systems [51]. This is especially the case for more complex tasks such as navigation or full
surgical automation. Many studies evaluate tasks in phantom models [62], animal models [62], or
a limited number of synthetic patient-specific models [63]. Synthetic assessment environments are
promising, but much like the MIS simulation environment literature, these suffer from very small
patient cohorts to generate the datasets [38] and thus a limited representation of anatomical variance.

SARAMIS tackles a number of these issues in important ways. It provides one of the largest dataset
of heterogenous patient-derived meshes to date, with a total of 116,018 meshes from 2529 patient
models over more than 104 different anatomical structures. Additionally, SARAMIS may be paired with
commonly-used rendering environments to sample monocular video with different camera intrinsics,
depth maps, pose labels, optical flow, and segmentation maps, such as Blender-based Kubric [24], or
Mitsuba3 [34] - we provide examples of interfacing the SARAMIS assets with Mitsuba3, Kubric, and
PyBullet, which can leverage GPU simulation of finite-element modelling or particle-based dynamics
deformation simulation, for RL or otherwise.

3



3 Dataset Generation

Data Collection and Annotation Three open-source, anonymised, medical image datasets of
patient CT scans [45, 35, 75] were selected for analysis. A human-in-the-loop, semi-automatic data
annotation strategy (Fig. 1, Panel A) was used to generate 3D rendering assets from patient-specific CT
scans using 3DSlicer [56], PyTorch [52], and MeshLab [13]. Initially, CT scans were automatically
segmented with TotalSegmentator [75], which is composed of several nnU-Nets [32] trained to
detect 104 anatomical labels from CT scans. Given that the TotalSegmentator dataset contains 3D
segmentations for all anatomical organs of interest verified by a radiologist, only the Abdomen-1k
[45] and AMOS [35] datasets are processed using the segmentation pipeline. The generated labels
were assessed with a collaborative-iterative strategy involving seven trained anatomical annotators
and four radiologists. Initially, all annotations were inspected by the anatomical annotators under
the supervision of a clinician. The following criteria were adopted to flag cases in need of further
review: 1) Verify class homogeneity within an anatomical structure, 2) Flag topological errors (e.g.,
slices missing, holes within an anatomical structure), 3) Flag under- or over-segmentation, and 4)
Flag potential pathology. Additionally, annotators were instructed to log the type of CT scan from
the data {full-body (FBCT), chest-abdomen-pelvis (CTCAP), abdomen-pelvis (CTAP), abdominal
(ACT)}. The full annotation protocol, including training practice for the junior annotators, is made
available in the Supp. Mat. (Appendix B Datasheet for Datasets). Subsequently, cases that were
flagged for potential errors were individually reviewed and manually corrected under the supervision
of a clinician. Finally, a subset of 450 of the verified CT scans were reviewed by four radiologists,
instructed to verify the correctness of the segmentations and note any other relevant pathology or
errors.

Colon Mesh Generation Human bowel segmentation in CT is a challenging task due to a com-
bination of tortuous anatomy and inconsistent contrast (itself due to the air-fluid interfaces in the
colon), which can result in an incomplete tubular segmentation in non-contrast enhanced CT scans.
Therefore, in order to generate more realistic and continuous mesh models that are tubular, a pro-
cedural generation approach was considered instead [15]. All colon models from FBCT, CTCAP,
and CTAP scans were manually inspected in 3DSlicer to detect the presence of the rectum, hepatic
and splenic flexures, and the caecum. Models were then categorised as complete segmentations (all
landmarks detected and a full segmentation is obtained), partial segmentations (all landmarks are
detected, but may be disconnected in regions), or erroneous segmentations (≥ 1 of the previous
landmarks missing). Complete and partial segmentations were then manually processed with the
Vascular Modelling Toolkit (VMTK) [33] in order to extract the colon centerlines. This was achieved
by the manual placement of landmarks at the beginning and end of distinct regions (e.g., the beginning
and end-point of the rectum) in order to extract line segments describing the tubular structure of
that region. A matching algorithm was used to find a continuous line segment describing the entire
colon by defining a start point on each colon, the subsequent closest segments are matched one by
one (Appendix A, Supp. Mat.). A BSpline curve was then fit to the data points for each colon to
obtain a smooth representation of the centerline and resampled to 1000 points each. We provide
generic interfaces from which the extracted curves can be converted into mesh representations of
colons. We consider the colon topologically as a closed tube - by extruding the mesh along the
centerline with varying radius parameters, we can obtain a patient-derived representation of the colon.
Full procedural simulation parameters are summarised the Supplementary Materials, and provided
open-source for future research.

Mesh Generation All anatomical segmentations bar the colon were automatically extracted and
converted into 3D mesh (Fig. 1, Panel B) models using a marching cubes algorithm [44]. Given
the voxelised nature of CT scans with varying resolution between 0.5-5mm, the resulting meshes
were post-processed using Laplacian smoothing [18]. Additionally, meshes are mean-centered in
their patient frame-of-reference as well as their local frame-of-reference. Finally, patient frame-of-
reference meshes are converted into tetrahedral volumes using fTetWild [31].

Texture and normal mapping We procedurally generate bone, bowel, soft abdominal organ, and
muscle normal and diffuse maps using Blender. Based on open-source images of the aforementioned
textures, we create Shader nodes (Supp. Mat. Appendix D) in Blender using Principled BSDF nodes
to replicate the visual appearance of the structures. Subsequently, each mesh, it’s corresponding
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Table 2: Summary of CT data of three datasets from which SARAMIS is derived. FBCT = Full Body
CT, CTCAP = chest-abdomen-pelvis CT, CTAP = abdomen-pelvis CT, ACT = Abdomen CT. Other
refers to a alternative CT scans, as described in the datasheet for [75].

Type of CT Scan

Dataset Initial FBCT CTCAP CTAP ACT Other Included No changes

Abdomen-1k 1063 10 366 71 592 0 1048 526
Amos 600 0 72 220 0 0 321 140
TotalSegmentator 1200 169 197 110 0 724 1200 1200

SARAMIS 2863 179 635 401 592 724 2527 1866

normal maps and diffuse characteristics are baked in 2k resolution. Example renders can be visualised
in Fig 2 B).

Figure 2: Textured and shaded assets from SARAMIS. In A), we render a procedurally generated
colon, with two examples of synthetic renders of the colon, as well as reference real images from the
HyperKvasir dataset [6]. We showcase other assets from SARAMIS in B), namely the liver (top left),
vertebrae (top right), pancreas (bottom left), and muscle (bottom right).

4 SARAMIS

4.1 3D Dataset Generation

Overall, SARAMIS consists of a total of 114,838 meshes, textures, and normal map tuples that
are derived from a total of 2527 patient scans. From the initial 2863 scans, a total of 336 were
excluded from segmentation analysis for the following reasons: 194 due to lack of availability of
test set label, 15 due to significant pathology making organ differentiation difficult, 13 due to the
presence of fluid in the abdomen (e.g. haemoperitoneum or ascites) occluding organs of interest,
100 due to alternative imaging modality (MRI), 2 due to metallic artefacts in the scan, 1 due to a
poor quality scan, and 1 due to original file corruption leading to lack of a segmentation file. In
total, 15, 321, and 0 scans were excluded from the Abdomen-1k, AMOS, and TotalSegmentator
datasets, respectively. Overall, this results in the inclusion of 1048, 279, 1200 scans from the
Abdomen-1k, AMOS, and TotalSegmentator datasets in the SARAMIS dataset. The average voxel
resolution is [0.77x0.77x3.26] ± [0.13x0.14x1.64]mm (mean voxel size for Abdomen-1k, AMOS
and TotalSegmentator [0.81x0.81x2.70], [0.70x0.70x4.23], [0.70x0.70x4.23]mm each, respectively).
The data split is documented in Table 2, and the dataset split by mesh type is documented in Fig 3.
The resulting dataset and full compilation, processing, and texturing instructions are provided in the
SARAMIS Datasheet for Datasets (Datasheet for Datasets, Supp. Mat.).

In total, 637 (48 %) of reviewed scans required correction. In addition, 78 scans (17% of the meta-
reviewed subset) were flagged by the radiologists and required additional corrections. A total of
343,495,425 voxels were edited, where 18,526,556 voxels were corrected in the AMOS dataset, and
324,968,869 voxels were corrected in the Abdomen-1k dataset. Where corrections were necessary, a
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Figure 3: Number of meshes per organ in SARAMIS, split by constituent datasets.

median 27,924 [IQR=7239, 98857] voxels were corrected per scan, with an average 12.6 [IQR=3.0,
15.0] structures corrected per scan. The most commonly corrected structure was the liver (315
instances corrected), with the least corrected structures being vertebrae C1, C2, and C3, and the
brain (1 correction each). In addition, two previously unseen labels were corrected in the dataset:
L6 and T13, denoting transitional vertebrae (which can result e.g. from congenital spinal deformity,
resulting in additional or fewer lumbar or thoracic vertebra). A total of 48 scans were flagged as
having transitional vertebra, with a total of 8 L6 segments, 26 T13 segments, and 14 as sacralised L5.
A full description of organs changed per dataset is supplied in the Supp. Mat. Appendix I. Additional
analyses of mesh density, surface area, and vertex are provided in Supp. Mat. Appendix G.

5 Autonomous Navigation with Colonoscopy

The SARAMIS dataset provides a reference set of data to simulate intraoperative navigation tasks.
These simulations may then be used to train autonomous agents to navigate within the anatomies of
interest. One such example explored in this work, specifically in the application of colonoscopy, is
detailed in the following subsections.

5.1 Methods

In this work, the navigation task in colonoscopy is formulated as a sequential decision problem
modelled by a finite horizon partially observable Markov Decision Process (MDP). The decision
policy is learnt using RL as described in the following sections. The navigation is performed based
on an image acquired from a camera inside the colon, where the task is for the camera to navigate to
a desired target which is visible from the camera pose.

5.1.1 The Markov decision process environment

The MDP environment for RL is modelled as a tuple (S,A, p, r, π, γ).

States Here, S is the state-space from which a state at time-step t may be sampled st ∈ S. In our
formulation st is an image acquired from a synthetic camera. In this work, the image is simulated
using Mitsuba3 [34], using the previously generated textures and diffuse maps.

Actions The pose of the camera is defined as ct ∈ R6 and a change in the pose is defined as the
action at ∈ A ∈ R6, where A may be denoted as the continuous action space, such that at is the
sampled action at time-step t. The updated pose may then be defined as ct+1 = ct + at, which is the
pose at which the new camera image st+1 is rendered. The state transition distribution conditioned
on state-action pairs is given by p : S × S ×A → [0, 1] where p(st+1|st, at) denotes the probability
of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A pair.

Rewards The reward function r : S × A → R produces a reward at time-step t denoted by
Rt = r(st, at) given the current state st and action at pair. In our formulation the reward is formed
of two parts: 1) rdist(·) which is the inverse of the distance between the camera position defined by ct
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and the target (clipped to prevent finding only the target centre); 2) rimage(·) which tests conditions
with the help of the image plane position and camera position, as follows:

rimage(st, at) =


−1 if target not in image st
+10 (and terminate episode) if target in image st
−10 (and terminate episode) if camera intersects with wall

(1)

where the target detection in the image st is done by checking the intersection of the camera line of
sight with coordinates of the target structure (a sphere placed in the region of interest), both computed
based on ct and additional preset camera parameters. The wall intersection of the camera is computed
using ct and a tolerance from centre-line coordinates of the colon. The final reward function r, is
then given by Rt = r(st, at) = rimage(st, at) + rdist(st, at). This reward is scaled in order to
balance the constituent rewards, with further details found within the implementation (Supp. Mat.).
The episode termination with high reward values triggered by the ‘target in image st’ and ‘camera
intersects with wall’ conditions prevents undesirable solutions e.g., navigating to structures through
walls or hovering around a target to maximise the distance-based reward.

5.1.2 The policy

The policy π(at|st) : S ×A ∈ [0, 1] denotes the probability of performing an action at given state
st. An action may then be sampled using at ∼ π(·).
Following the state transition distribution p and the policy π, for sampling next states and current
actions, respectively, together with the reward function r, we can generate a trajectory of collected
states, actions and corresponding rewards for multiple time-steps (s1, a1, R1, . . . , sT , aT , RT ).

If we consider the policy πθ to be parameterised by policy parameters θ then our aim is to find the
optimal parameters θ∗ such that if you follow πθ∗ , the accumulated reward r is maximised.

In practice the policy may be modelled as a neural network with parameters θ, that predicts a
distribution, from which to sample the action at. Practically, for continuous actions, the policy may
be defined by two parametric functions (neural networks) with shared parameters, which specify a
diagonal Gaussian distribution from which to sample the action; one function specifying the mean of
the distribution µ = µθ(st) and one specifying the standard deviation σ = σθ(st). The policy may
then be given by log πθ(at|st) = − 1

2

(∑k
i=1

(
(at,i−µi)

2

σ2
i

)
+ k log 2π

)
. However, for notational

convenience in further analysis, we simply use πθ instead of modelling two separate networks that
predict the parameters of the diagonal Gaussian distribution.

A cumulative reward over a trajectory may be used to compute optimal policy parameters θ∗. The
cumulative reward may be computed as a discounted sum of rewards over a trajectory, starting from
time-step t and is given by:

Qπθ (st, at) =

T∑
k=0

γkRt+k (2)

where the discount factor γ discounts future rewards. An expectation of this cumulative reward may
be denoted as the return:

J(θ) = Eπθ
[Qπθ (st, at)] (3)

which may be computed over multiple trajectories.

The optimisation problem may then be summarised as:

θ∗ = argmax
θ

J(θ), (4)

and the objective function is maximised using gradient ascent.

The training procedure to obtain an optimised policy πθ∗ which maximises the cumulative reward,
representative of navigation performance, is summarised in the Supplementary Materials (Appendix
J “Reinforcement Learning Training Algorithm”). After training, this policy may be used to perform
navigation intraoperatively.
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5.2 Experiments and results

Data A total of 155 colon meshes were selected from the TotalSegmentator subset of the SARAMIS
dataset. To define navigation targets for the RL experiment, a single colon was manually labelled
for all anatomically relevant landmarks (namely the rectum, hepatic and splenic flextures, and the
caecum). Subsequently, the other 154 colons were deformably registered to the manually labelled
colon in order to obtain anatomically appropriate labels for these regions. Registration was performed
using Coherent Point Drift [50] (α = 1, β = 10) in order to propagate label annotations through the
dataset. An analysis of registration accuracy is provided in Supp. Mat. Appendix H. All centerline
labels were then mapped onto the procedural mesh using kd-Tree [4] search (n=20), given the
sufficiently dense procedural meshes. This defined the navigation areas on the surface mesh for each
patient. The subset was split into 91 meshes used for model training, 32 for model development
and 32 meshes as a hold-out test set. Images for navigation were subsequently simulated with a
Mitsuba3 renderer, with size 200x200 pixels. Full hyperparameters are available in the provided
implementation (Supp. Mat. Appendix A).

Figure 4: Summary of autonomous navigation experiment. Given a patient-derived mesh model of
the colon, and defined navigation targets (A), the camera pose in the environment is used to render the
synthetic view inside the colon. Using the rendering as the state st, a human observer or an RL agent
may sample action at with the aim of reaching navigation structures (B). We report the success rates
by sub-dataset on the hold-out test set in (C), showing good generalisation accross unseen test sets.

Evaluating RL policy vs a human observer To evaluate the efficacy of the autonomous navigation,
we compare the RL-learnt policy with the policy of a human observer ([S.U.S.], biomedical imaging
researcher with 4 years of experience with medical imaging). The efficacy is evaluated by the number
of steps taken to reach the target, across four patient volumes which were not encountered during
training. The human observer policy was within the same RL environment where interaction with
the environment was done by sampling actions, where the action space was limited and the step size
for at was fixed (i.e., movement allowed in only orthogonal directions to the camera line of sight,
controlled using arrow keys; and camera rotation controlled in the same orthogonal planes, controlled
using ‘W, A, S, D’ keys). A visualisation of the rendered scenes from the environment are presented
in Fig. 4. Example trajectories are generated in a representative navigation task from the rectum
to the caecum in the Supp. Mat. Appendix. E. The average number of steps to find targets for RL
and the human over 24 test cases were 77.8 ± 13.2 and 75.3 ± 15.6, respectively. There was no
statistically significant difference in RL vs human performance (p-value= 0.83).

Evaluating RL policy success rate for navigation We report the success rate of finding all four
targets, across 594 different patient cases held out from training, with 100 randomised starting
locations for each. For the random start locations experiment, a random location was picked as
the starting point before navigating to the next structure. This was repeated 100 times for each
patient case. For the sequential localisation task, the order in which to visit the 4 target locations was
randomised 100 times per case. If the RL function failed to localise the structure, a random starting
location was assigned for localising the next structure. Failure in the task is defined as the inability to
navigate to the structure within 256 steps or collision with the colonic wall. Results are presented in
Table 3, and performance split by sub-constituent dataset is reported in Fig. 4C. It should be noted
that the lowest success rate is for the hepatic flexure and splenic flexure localisation tasks and the
highest success rate is observed for the rectum localisation task. We observe a small performance
decline from the TotalSegmentator datasets in comparison to the unseen datasets during training
(Fig. 4 C).
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Structure Rectum Hepatic Flexure Splenic Flexure Caecum Overall
Random start locations 84.4 74.4 73.5 83.6 79.0
Sequential localisation 87.1 75.3 74.4 82.0 79.7

Table 3: Overall success rate (%) of navigating to a structure within the colon for 594 held-out
subjects across the AMOS, Abdomen-1k and TotalSegmentator datasets.

The RL policy took approximately 7 days to train on a single Nvidia Tesla V100 GPU. During
inference the model predictions coupled with an environment had a speed of approximately 20
iterations per second.

6 Discussion

SARAMIS presents the first, large-scale dataset of patient-specific 3D rendering assets representing
the major structures of the visceral anatomy. As reported in Table 1, in comparison to previous
works, SARAMIS offers the following distinct advantages: 1) Scale: SARAMIS is over three orders
of magnitude larger than any previous set of 3D rendering assets for MIS in the literature, 2)
Heterogeneity: SARAMIS offers an order of magnitude larger number of anatomical targets than
previous datasets, and 3) Patient variability: SARAMIS features a significantly larger number of
subjects compared to previous datasets. Through multi-organ segmentation, the creation of new
labelling for all assets, data curation, and camera path generation, SARAMIS enables simulation-based
experimentation not possible from the underlying CT scans alone.

In addition to SARAMIS, we developed a Markov decision process environment for navigation within
the colon using simulated intraoperative images derived from patient CTAP scans (i.e., not from
dedicated CT colonography scans). The observed performance of the RL function and human
observer in the colonoscopy navigation task across four patients was comparable, which indicates
that an effective generalisable cross-patient navigation policy was learnt using our proposed training
scheme. Furthermore, it is interesting to note the overall high (79.0% and 79.7%) success rates of
finding structures within the colon, within 256 steps, for the held out test set across a variety of
randomised starting locations for the intraoperative imaging probe. The highest success rates were
observed for the rectum and caecum, possibly due to their distinct appearances compared to the
remainder of the colon, and tight curvature and blind-loop nature of the colonic flexures. While we
model wall intersection constraints within our work, we do not account for all possible constraints in
the endoscopic settings - for example, camera pose constraints such that the camera may not face
directly opposite the direction of endoscope insertion from one step to the next, or extra-luminal
boundaries imposed by surrounding visceral organs. Additionally, we qualitatively observe (Supp.
Mat. Appendix E) that human trajectories are smoother than RL trajectories, which may arise from
the lack of a smoothness prior or regularization on the generated actions. Accounting for these
constraints represents a natural avenue of future research. Overall, whilst training was performed
on a subset of the available assets, this indicates the robustness of the proposed training scheme
which allows for the trained policy to be generalisable not only across patients but also across starting
locations and the four target structures included during training.

7 Limitations

A limitation of this work lies in the design of shading nodes for the procedural texturing of SARAMIS
assets. Despite designing the anatomical textures under the supervision of a clinician with surgical
training and by referencing 2D intra-operative images of different anatomy, it is likely that deviations
from the proposed parameters in the associated shader nodes may result in non-clinically feasible
renders. Whilst procedural texturing is still an industry standard in the computer-graphics community
[17, 29, 19], this manual approach could be paired or replaced with learning-based texturing [25] in
order to texture SARAMIS meshes in a data-driven way. Another important limitation of this work is
that the dataset does not capture all structures of relevance for the full simulation of MIS/RAMIS
scenes (e.g. ligaments, fatty tissue, and fluids), due to the limited resolution of CT scans, and its
relatively poor detection of soft-tissue structures. This limitation presents a natural avenue for future
research, which could facilitate using SARAMIS to simulate different autonomous navigation tasks
within the human abdominal anatomy.
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8 Conclusions

In this work we introduce SARAMIS: Simulation Assets for Robotic-Assisted and Minimally-Invasive
Surgery, a large-scale dataset of 3D rendering assets composed of 3D meshes, textures and diffuse
maps for over 104 human anatomical structures. We warmly invite the wider research community to
use SARAMIS assets for vision tasks in RAMIS/MIS such as depth estimation, camera pose estimation,
or pairing tetrahedral meshes with open-source deformation modelling environments [20, 24] to
further develop surgical vision applications and autonomous navigation tasks in MIS/RAMIS research.
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