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Abstract

The differential equation (DE) approach for convex optimization, which relates
optimization methods to specific continuous DEs with rate-revealing Lyapunov
functionals, has gained increasing interest since the seminal paper by Su–Boyd–
Candès (2014). However, the approach still lacks a crucial component to make
it truly useful: there is no general, consistent way to transition back to discrete
optimization methods. Consequently, even if we derive insights from continuous
DEs, we still need to perform individualized and tedious calculations for the
analysis of each method. This paper aims to bridge this gap by introducing a new
concept called “weak discrete gradient” (wDG), which consolidates the conditions
required for discrete versions of gradients in the DE approach arguments. We then
define abstract optimization methods using wDG and provide abstract convergence
theories that parallel those in continuous DEs. We demonstrate that many typical
optimization methods and their convergence rates can be derived as special cases
of this abstract theory. The proposed unified discretization framework for the
differential equation approach to convex optimization provides an easy environment
for developing new optimization methods and achieving competitive convergence
rates with state-of-the-art methods, such as Nesterov’s accelerated gradient.

1 Introduction

In this paper, we consider unconstrained convex optimization problems:

min
x∈Rd

f(x). (1)

Various optimization methods, such as standard gradient descent and Nesterov’s accelerated gradient
methods (Nesterov, 1983), are known for these problems. The convergence rates of these methods
have been intensively investigated based on the classes of objective functions (L-smooth and/or µ-
strongly convex). We focus on the convergence rate of function values f

(
x(k)

)
−f⋆, while the rates for

∥∇f
(
x(k)

)
∥ or ∥x(k)−x⋆∥ have also been discussed. Topics particularly relevant to this study include

the lower bound of convergence rates for first-order methods (see Remark 4.3 for the relationship
between our framework and first-order methods) for convex and strongly convex functions: O

(
1/k2

)
for L-smooth and convex functions (cf. Nesterov (2018)) and O

(
(1−

√
µ/L)2k

)
for L-smooth and

µ-strongly convex functions (Drori and Taylor, 2022). These lower bounds are tight, as they are
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achieved by some optimization methods, such as Nesterov (1983) for convex functions and Van Scoy
et al. (2018); Taylor and Drori (2022a) for strongly convex functions. In these studies, the discussion
is typically conducted for each method, utilizing various techniques accumulated in the optimization
research field.

Whereas, it has long been known that some optimization methods can be related to continuous
differential equations (DEs). Early works on this aspect include the following: the continuous
gradient flow ẋ = −∇f(x) as a continuous optimization method was discussed in Bruck (1975).
Similar arguments were later applied to second-order differential equations (Alvarez, 2000; Alvarez
et al., 2002; Cabot et al., 2009). An important milestone in this direction was Su et al. (2014), where
it was shown that Nesterov’s famous accelerated gradient method (Nesterov, 1983) could be related
to a second-order system with a convergence rate-revealing “Lyapunov functional.” The insights
gained from this relationship have been useful in understanding the behavior of the Nesterov method
and in considering its new variants. This success has followed by many studies, including Wilson
(2018); Wilson et al. (2021). The advantage of the DEs with Lyapunov functional approach (which we
simply call the “DE approach” hereafter) is that the continuous DEs are generally more intuitive, and
convergence rate estimates are quite straightforward thanks to the Lyapunov functionals. However,
the DE approach still lacks one important component; although we can draw useful insights from
continuous DEs, there is no known general way to translate them into a discrete setting. Consequently,
we still need to perform complex discrete arguments for each method. This limitation was already
acknowledged in Su et al. (2014): “... The translation, however, involves parameter tuning and tedious
calculations. This is the reason why a general theory mapping properties of ODEs into corresponding
properties for discrete updates would be a welcome advance.”

In this paper we attempt to provide this missing piece by incorporating the concept of “discrete
gradients” (DGs) from numerical analysis, which is used to replicate some properties of continuous
DEs in discrete settings. We demonstrate that a relaxed concept of DG, which we call “weak discrete
gradient” (wDG), can serve a similar purpose in the optimization context. More precisely, we
show that for known DEs in the DE approach, if we define abstract optimization methods using
wDGs analogously to the DEs, their abstract convergence theories can be obtained by following the
continuous arguments and replacing gradients with wDGs. The tedious parts of the case-specific
discrete arguments are consolidated in the definition of wDG, which simplifies the overall arguments:
we can now consider “simple continuous DE arguments” and “case-specific discrete discussions
summarized in wDG” separately. We demonstrate that many typical existing optimization methods
and their rate estimates, previously done separately for each method, can be recovered as special cases
of the abstract methods/theories, providing a simpler view of them. Any untested combination of a
known DE and wDG presents an obvious new method and its rate, further expanding the potential for
innovation in the optimization field. Creating a new wDG leads to a series of optimization methods
by applying it to known DEs. One simply needs to verify if the wDG satisfies the conditions for wDG
(Theorem 4.2) and reveal the constants of the wDG. If, in the future, a new DE with a rate-revealing
Lyapunov functional is discovered, it should be possible to achieve similar results. We suggest first
defining an abstract wDG method analogous to the DE and then examining whether the continuous
theory can be translated to a discrete setting, as demonstrated in this paper.

The aforementioned paper (Su et al., 2014) concludes in the following way (continued from the
previous quote) “Indeed, this would allow researchers to only study the simpler and more user-friendly
ODEs.” Although there is still room for minor adjustments (see the discussion on limitations below),
we believe the wDG framework substantially reduces the complexity of discussions in discrete
methods, allowing researchers to focus on more accessible and intuitive aspects of optimization.

We consider the problems (1) on the d-dimensional Euclidean space Rd (d is a positive integer)
with the standard inner product ⟨·, ·⟩ and the induced norm ∥·∥, where f : Rd → R represents a
differentiable convex objective function. We assume the existence of the optimal value f⋆ and the
optimal solution x⋆. In the following discussion, we use the inequality

µ

2
∥y − x∥2 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩, (2)

which holds for any x, y ∈ Rd when f is µ-strongly convex and differentiable.
Remark 1.1. Although the scope of this paper is limitted due to the restriction of space, the framework
can be naturally extended to more general cases. Extension to the objective functions satisfying the
Polyak–Łojasiewicz (PŁ) condition is provided in Appendix H. The framework can be extended to
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constrained optimizations by the DE approach for mirror descent methods (cf. Krichene et al. (2015);
Wilson et al. (2021)), which the authors have already confirmed. Stochastic methods such as the
stochastic gradient descent can be handled by considering random compositions of wDGs, which is
left as our future work.

2 Short summary of the differential equation approach

Let us first consider the gradient flow:

ẋ = −∇f(x), x(0) = x0 ∈ Rd. (3)

It is easy to see that

d

dt
f(x(t)) = ⟨∇f(x(t)), ẋ(t)⟩ = −∥∇f(x(t))∥2 ≤ 0. (4)

This means the flow can be regarded as a continuous optimization method. Notice that the proof is
quite simple, once we admit the chain rule of differentiation, and the form of the flow itself (3); this
will be quite important in the subsequent discussion.

Despite its simplicity, the convergence rate varies depending on the class of objective functions.
Below we show some known results. The following rates are proven using the so-called Lyapunov
argument, which introduces a “Lyapunov functional” that explicitly contains the convergence rate.
The proof is left to Appendix B (we only note here that, in addition to the two key tools the chain rule
and the form of the flow we need the convexity inequality (2) to complete the proof.)

Theorem 2.1 (Convex case). Suppose that f is convex. Let x : [0,∞) → Rd be the solution of the
gradient flow (3). Then the solution satisfies

f(x(t))− f⋆ ≤ ∥x0 − x⋆∥2

2t
.

Theorem 2.2 (Strongly convex case). Suppose that f is µ-strongly convex. Let x : [0,∞) → Rd be
the solution of the gradient flow (3). Then the solution satisfies

f(x(t))− f⋆ ≤ e−µt∥x0 − x⋆∥2.

An incomplete partial list of works using the Lyapunov approach includes, in addition to Su et al.
(2014), Karimi and Vavasis (2016); Attouch et al. (2016); Attouch and Cabot (2017); Attouch et al.
(2018); França et al. (2018); Defazio (2019); Shi et al. (2019); Wilson et al. (2021) (see also a
comprehensive list in Suh et al. (2022)). A difficulty in this approach is that the Lyapunov functionals
were found only heuristically. A remedy is provided in Suh et al. (2022); Du (2022), but its target is
still limited.

Next, we consider DEs corresponding to accelerated gradient methods, including Nesterov’s method.
As is well known, the forms of accelerated gradient methods differ depending on the class of objective
functions, and consequently, the DEs to be considered also change. In this paper, we call them
accelerated gradient flows.

When the objective functions are convex, we consider the following DE proposed in Wilson et al.
(2021): let A : R≥0 → R≥0 be a differentiable strictly monotonically increasing function with
A(0) = 0, and

ẋ =
Ȧ

A
(v − x), v̇ = − Ȧ

4
∇f(x), (5)

with (x(0), v(0)) = (x0, v0) ∈ Rd × Rd.

Theorem 2.3 (Convex case (Wilson et al. (2021))). Suppose that f is convex. Let (x, v) : [0,∞) →
Rd × Rd be the solution of the DE (5). Then it satisfies

f(x(t))− f⋆ ≤ 2∥x0 − x⋆∥2

A(t)
.
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Remark 2.4. If we set A(t) = t2, this system coincides with a continuous limit DE of the accelerated
gradient method for convex functions

ẍ+
3

t
ẋ+∇f(x) = 0,

which is derived in Su et al. (2016).
Remark 2.5. From Theorem 2.3, it might seem that we can achieve an arbitrarily high order rate.
Although it is surely true in the continuous context, it does not imply we can construct discrete
optimization methods from the ODE. In fact, greedily demanding a higher rate is penalized at the
timing of discretization from the numerical stability. See, for example, the discussion in Ushiyama
et al. (2022b).

Next, for strongly convex objective functions, let us consider the DE (again in Wilson et al. (2021)):

ẋ =
√
µ(v − x), v̇ =

√
µ(x− v −∇f(x)/µ) (6)

with (x(0), v(0)) = (x0, v0) ∈ Rd × Rd. (Note that this system coincides with the continuous
limit ODE of the accelerated gradient method for strongly convex functions by Polyak (1964):
ẍ+ 2

√
µẋ+∇f(x) = 0.)

Theorem 2.6 (Strongly convex case (Wilson et al. (2021); Luo and Chen (2022))). Suppose that f is
µ-strongly convex. Let (x, v) : [0,∞) → Rd × Rd be the solution of (6). Then it satisfies

f(x(t))− f⋆ ≤ e−
√
µt
(
f(x0)− f⋆ +

µ

2
∥v0 − x⋆∥2

)
.

3 Discrete gradient method for gradient flows (from numerical analysis)

The remaining issue is how we discretize the above DEs. In the optimization context, it was done
separately in each study. One tempting strategy for a more systematic discretization is to import
the concept of “DG,” which was invented in numerical analysis for designing structure-preserving
numerical methods for gradient flows such as (3) (Gonzalez (1996); McLachlan et al. (1999)). Recall
that the automatic decrease of objective function came from the two keys: (a) the chain rule, and (b)
the gradient flow structure. The DG method respects and tries to imitate them in discrete settings.
Definition 3.1 (Discrete gradient (Gonzalez (1996); Quispel and Capel (1996))). A continuous map
∇df : Rd × Rd → Rd is said to be discrete gradient of f if the following two conditions hold for all
x, y ∈ Rd:

f(y)− f(x) = ⟨∇df(y, x), y − x⟩, ∇df(x, x) = ∇f(x). (7)

In the definition provided above, the second condition simply requires that ∇df approximates ∇f .
On the contrary, the first condition, referred to as the discrete chain rule, is a critical requirement
for the key (a). The discrete chain rule is a scalar equality constraint on the vector-valued function,
and for any given f , there are generally infinitely many DGs. The following is a list of some popular
choices of DGs. When it is necessary to differentiate them from wDGs, we call them strict DGs.
Proposition 3.2 (Strict discrete gradients). The following functions are strict DGs.
Gonzalez discrete gradient ∇Gf(y, x) (Gonzalez (1996)):

∇f

(
y + x

2

)
+

f(y)− f(x)− ⟨∇f
(
y+x
2

)
, y − x⟩

∥y − x∥2
(y − x).

Itoh–Abe discrete gradient ∇IAf(y, x) (Itoh and Abe (1988)):
f(y1,x2,x3...,xd)−f(x1,x2,x3,...,xd)

y1−x1
f(y1,y2,x3...,xd)−f(y1,x2,x3,...,xd)

y2−x2

...
f(y1,y2,y3,...,yd)−f(y1,y2,y3...,xd)

yd−xd

 .

Average vector field (AVF) ∇AVFf(y, x) (Quispel and McLaren (2008)):∫ 1

0

∇f(τy + (1− τ)x)dτ.
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Suppose we have a DG for a given f . Then we can define a discrete scheme for the gradient flow (3):

x(k+1) − x(k)

h
= −∇df

(
x(k+1), x(k)

)
, x(0) = x0,

where the positive real number h is referred to as the step size, and x(k) ≃ x(kh) is the numerical
solution. The left-hand side approximates ẋ and is denoted by δ+x(k) hereafter. Note that the
definition conforms to the key point (b) mentioned earlier.

The scheme decreases f(x(k)) as expected:(
f
(
x(k+1)

)
− f

(
x(k)

))
/h =

〈
∇df

(
x(k+1), x(k)

)
, δ+x(k)

〉
= −

∥∥∥∇df
(
x(k+1), x(k)

)∥∥∥2 ≤ 0.

In the first equality we used the discrete chain rule, and in the second, the form of the scheme itself.
Observe that the proof proceeds in the same manner as the continuous case (4). Due to the decreasing
property, the scheme should work as an optimization method. Additionally, the above argument does
not reply on the step size h, and it can be changed in every step (which will not destroy the decreasing
property).

In the numerical analysis community, the above approach has already been attempted for optimizations
(Grimm et al. (2017); Celledoni et al. (2018); Ehrhardt et al. (2018); Miyatake et al. (2018); Ringholm
et al. (2018); Benning et al. (2020); Riis et al. (2022)). Although they were successful on their own,
this does not immediately provide the missing piece we seek for the following reasons. First, the
DG framework does not include typical important optimization methods; it even does not include
the steepest descent. Second, as noted above, the proofs of rate estimates in the continuous DEs
(in Section 2) require the inequality of convexity (2). Unfortunately, however, existing DGs generally
do not satisfy it; see Appendix C for a counterexample. Next, we show how to overcome these
difficulties.
Remark 3.3. Some members of the optimization community may find the use of DGs peculiar, since
it involves referring to two solutions x(k+1), x(k). However, in some sense, it is quite natural because
the decrease of f occurs in a single step x(k) 7→ x(k+1). There may also be concerns about the
computational complexity of DGs because the method becomes “implicit” by referring to x(k+1).
In the field of structure-preserving numerical methods, however, it is widely known that in some
highly unstable DEs, implicit methods are often advantageous, allowing larger time-stepping widths,
while explicit methods require extremely small ones. In fact, it has been confirmed in Ehrhardt et al.
(2018) that this also applies to the optimization context. The Itoh–Abe DG results in a system of
d nonlinear equations, which is slightly less expensive. Moreover, note that the integral in the AVF
can be evaluated analytically before implementation, when f is a polynomial.

4 Weak discrete gradients and abstract optimization methods

We introduce the concept of a weak discrete gradient (wDG), which is a relaxed version of the DG
introduced earlier.
Definition 4.1 (Weak discrete gradient). A gradient approximation1 ∇f : Rd × Rd → Rd is said to
be weak discrete gradient of f if there exists α ≥ 0 and β, γ with β + γ ≥ 0 such that the following
two conditions hold for all x, y, z ∈ Rd:

f(y)− f(x) ≤
〈
∇f(y, z), y − x

〉
+ α∥y − z∥2 − β∥z − x∥2 − γ∥y − x∥2, ∇f(x, x) = ∇f(x).

(8)

Note that (8) can be regarded as a modification of the three points descent lemma, where the third
variable z is utilized to give some estimates. The freedom in variable z in (8) is fully utilized also in
this paper; see Theorems 5.4 and 5.5 and their proofs.

The condition (8) can be interpreted in two ways. First, it can be understood as a discrete chain rule
in a weaker sense. By substituting x with z, we obtain the inequality:

f(y)− f(x) ≤
〈
∇f(y, x), y − x

〉
+ (α− γ)∥y − x∥2. (9)

1Notice that we use the notation ∇ here, distinguishing it from ∇d denoted as the standard notation for strict
discrete gradients in numerical analysis.
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Compared to the strict discrete chain rule (7), it is weaker because it is an inequality and allows an
error term. Second, it can be interpreted as a weaker discrete convex inequality. By exchanging x and
y and rearranging terms, we obtain another expression

f(y)− f(x)−
〈
∇f(x, z), y − x

〉
≥ γ∥y − x∥2 + β∥y − z∥2 − α∥x− z∥2. (10)

Compared to the strongly convex inequality (2), the term (µ/2)∥y − x∥2 is now replaced with
β∥y − x∥2 + γ∥y − z∥2, which can be interpreted as the squared distance between y and the point
(x, z) where the gradient is evaluated. The term −α∥x− z∥2 is an error term.

We now list some examples of wDGs (proof is provided in Appendix D). Notice that these exam-
ples include various typical gradient approximations from the optimization and numerical analysis
literature. Note that for ease of presentation, we simply write “µ-strongly convex function,” which
includes convex functions by setting µ = 0.
Theorem 4.2. Suppose that f : Rd → R is a µ-strongly convex function. Let (L) and (SC) denote
the additional assumptions: (L) f is L-smooth, and (SC) µ > 0. Then, the following functions are
wDGs:

(i) If ∇f(y, x) = ∇f(x) and f satisfies (L), then (α, β, γ) = (L/2, µ/2, 0).

(ii) If ∇f(y, x) = ∇f(y), then (α, β, γ) = (0, 0, µ/2).

(iii) If ∇f(y, x) = ∇f(x+y
2 ) and f satisfies (L), then (α, β, γ) = ((L+ µ)/8, µ/4, µ/4).

(iv) If ∇f(y, x) = ∇AVFf(y, x) and f satisfies (L), then (α, β, γ) = (L/6 + µ/12, µ/4, µ/4).

(v) If ∇f(y, x) = ∇Gf(y, x) and f satisfies (L)(SC), then (α, β, γ) = ((L + µ)/8 +
(L− µ)2/16µ, µ/4, 0).

(vi) If ∇f(y, x) = ∇IAf(y, x) and f satisfies (L)(SC), then (α, β, γ) = (dL2/µ −
µ/4, µ/2,−µ/4).

Although we assumed the smoothness of f to simplify the presentation, the case (ii) does not demand
it (see the end of Appendix D). Thus, it can handle non-smooth convex optimization. While the
wDGs (i), (iii), (iv) only require (L), the wDGs (v) and (vi) demand (SC) (µ > 0). This implies that
the latter wDGs might be fragile for small µ’s.

We now define an abstract method using wDGs:

x(k+1) − x(k)

h
= −∇f

(
x(k+1), x(k)

)
, x(0) = x0, (11)

which is analogous to the gradient flow (3). By “abstract,” we mean that it is a formal formula, and
given a concrete wDG it reduces to a concrete method; see Table 1 which summarizes some typical
choices. Observe that the abstract method covers many popular methods from both optimization and
numerical analysis communities. The step size h may be selected using line search techniques, but
for simplicity, we limit our presentation to the fixed step size in this paper (see Remark 5.1).
Remark 4.3. Note that some wDGs are not directly connected to the original gradient ∇f ’s; the
Itoh–Abe wDG (vi) does not even refer to the gradient. Thus, the concrete methods resulting from our
framework do not necessarily fall into the so-called “first-order methods,” which run in a linear space
spanned by the past gradients (Nesterov (1983)). This is why we use the terminology “gradient-based
methods” in this paper, instead of first-order methods.

Similar to the aforementioned, we can define abstract methods for (5) and (6). Details and theoretical
results can be found in Theorems 5.4 and 5.5.

We also introduce the next lemma, which is useful in expanding the scope of our framework.
Lemma 4.4. Suppose f can be expressed as a sum of two functions f1, f2. If ∇1f1 and ∇2f2 are
wDGs of f1 and f2 with parameters (α1, β1, γ1) and (α2, β2, γ2), respectively, then ∇1f1 +∇2f2
is a weak discrete gradient of f with (α, β, γ) = (α1 + α2, β1 + β2, γ1 + γ2).

This lemma allows us to consider the following discretization of the gradient flow:

x(k+1) − x(k)

h
= −∇f1

(
x(k)

)
−∇f2

(
x(k+1)

)
(12)
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within our framework. For instance, if f1 is L1-smooth and µ1-strongly convex, and f2 is µ2-strongly
convex, then the right-hand side of (12) is a wDG with (α, β, γ) = (L1/2, µ1/2, µ2/2). In this case,
the method is known as the proximal gradient method or the forward-backward splitting algorithm
in optimization (cf. Bauschke and Combettes (2017)). Discretizing the accelerated gradient flows
allows for obtaining accelerated versions. (Acceleration of the proximal gradient method has been
studied for some time (Beck and Teboulle, 2009b,a).)

Table 1: Examples of wDGs and their corresponding convergence rates for a µ-strongly convex
and L-smooth function f on Rd. The numbers in the ∇f column correspond to the numbers in
Theorem 4.2. The line in the figure corresponding to the proximal gradient method is described in the
setting of (12). The notation (DG) represents a strict discrete gradient. The convergence rates shown
in the table are the best possible for the step sizes chosen in Theorems 5.3 and 5.5.

Opt. meth. Convergence rates

∇f (for (3)) Numer. meth. Theorem 5.3 Theorem 5.5

(i) steep. des. exp. Euler O

((
1− 2 µ

L+µ

)k)
O
((

1−
√

µ
L

)k)
(ii) prox. point imp. Euler 0 0

(i)+(ii) prox. grad. (splitting) O

((
1− 2 µ1+µ2

L1+µ1+2µ2

)k)
O

((
1−

√
µ1+µ2

L1+µ2

)k)
(iii) — imp. midpoint O

((
1− 8 µ

L+7µ

)k)
O

((
1−

√
4µ

L+3µ

)k)
(iv) — AVF (DG) O

((
1− 6 µ

L+5µ

)k)
O

((
1−

√
3µ

L+2µ

)k)
(v) — Gonzalez (DG) O

((
1− 8 µ2

L2+4µ2

)k)
O

((
1−

√
4µ2

L2+3µ2

)k)
(vi) — Itoh–Abe (DG) O

((
1− 2 µ2

4d2L2−µ2

)k)
O

((
1−

√
µ2

4dL2−2µ2

)k)

5 Convergence rates of abstract optimization methods

We establish the discrete counterparts of Theorems 2.1 to 2.3 and 2.6. Although the proofs are left
to Appendix E, we emphasize that they can be performed analogously to those of the continuous
cases. The discrete theorems are established in four cases: the gradient flow (3) (for f convex and
µ-strongly convex), and the accelerated flows (for f convex (5) and µ-strongly convex (6)). For ease
of understanding, we summarize the results for µ-strongly convex cases in Table 1. A similar table
for convex cases is included in Appendix A.
Remark 5.1. The following theorems are presented under the assumption that the step size h is fixed
for simplicity. However, if all varying step sizes satisfy the step size condition (with a finite number
of violations allowed), the theorems still hold true. The step sizes must be bounded by a positive
number from below to ensure the designated rates.)

5.1 For the abstract method based on the gradient flow

The abstract method is given in (11).

Theorem 5.2 (Convex case). Let f be a convex function. Let ∇f be a wDG of f , and suppose that f
also satisfies the necessary conditions required by the wDG. Suppose that in the wDG β ≥ 0, γ ≥ 0.
Let

{
x(k)

}
be the sequence given by (11). Then, under the step size condition h ≤ 1/(2α), the

sequence satisfies

f
(
x(k)

)
− f⋆ ≤ ∥x0 − x⋆∥2

2kh
.

Let us demonstrate how to use the theorem using the proximal gradient method (12) as an example.
Suppose that f1 is L1-smooth and convex, and f2 is convex. Then, ∇f(y, x) = ∇f1(x) +∇f2(y) is
a wDG with the parameter (α, β, γ) = (L1/2, 0, 0) due to Theorem 4.2 and Lemma 4.4. Therefore,
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the proximal gradient method (12) satisfies the assumption of Theorem 5.2 and thus the convergence
rate is O(1/k) under the step size condition h ≤ (1/L1).
Theorem 5.3 (Strongly convex case). Let f be a strongly convex function. Let ∇f be a wDG of
f , and suppose that f also satisfies the necessary conditions required by the wDG. Suppose that in
the wDG β + γ > 0. Let

{
x(k)

}
be the sequence given by (11). Then, under the step size condition

h ≤ 1/(α+ β), the sequence satisfies

f
(
x(k)

)
− f⋆ ≤

(
1− 2(β + γ)h

1 + 2γh

)k

∥x0 − x⋆∥2.

In particular, the sequence satisfies

f
(
x(k)

)
− f⋆ ≤

(
1− 2(β + γ)

α+ β + 2γ

)k

∥x0 − x⋆∥2,

when the optimal step size h = 1/(α+ β) is employed.

5.2 For the abstract methods based on the accelerated gradient flows

We consider abstract methods with wDGs based on the accelerated gradient flows (5) and (6), which
will be embedded in the theorems below. We note one thing: when using (8) as an approximation of
the chain rule, we can determine z independently of x and y, which gives us some degrees of freedom
(thus allowing for adjustment.) Below we show some choices of z(k) that are easy to calculate from
known values while keeping the decrease of the Lyapunov functional.
Theorem 5.4 (Convex case). Let f be a convex function. Let ∇f be a wDG of f , and suppose that f
also satisfies the necessary conditions required by the wDG. Suppose that in the wDG β ≥ 0, γ ≥ 0.
Let
{(

x(k), v(k)
)}

be the sequence given by

δ+x(k) =
δ+Ak

Ak

(
v(k+1) − x(k+1)

)
,

δ+v(k) = −δ+Ak

4
∇f
(
x(k+1), z(k)

)
,

z(k) − x(k)

h
=

δ+Ak

Ak+1

(
v(k) − x(k)

)
with

(
x(0), v(0)

)
= (x0, v0), where Ak := A(kh). Then if Ak = (kh)2 and h ≤ 1/

√
2α, the

sequence satisfies

f
(
x(k)

)
− f⋆ ≤ 2∥x0 − x⋆∥2

Ak
.

Theorem 5.5 (Strongly convex case). Let f be a strongly convex function. Let ∇f be a wDG of f ,
and suppose that f also satisfies the necessary conditions required by the wDG. Suppose that in the
wDG β + γ > 0. Let

{(
x(k), v(k)

)}
be the sequence given by

δ+x(k) =
√
2(β + γ)

(
v(k+1) − x(k+1)

)
,

δ+v(k) =
√
2(β + γ)

(
β

β + γ
z(k) +

γ

β + γ
x(k+1) − v(k+1) −

∇f
(
x(k+1), z(k)

)
2(β + γ)

)
,

z(k) − x(k)

h
=
√
2(β + γ)

(
x(k) + v(k) − 2z(k)

)
with

(
x(0), v(0)

)
= (x0, v0). Then if h ≤ h :=

(√
2(
√
α+ γ −

√
β + γ)

)−1
, the sequence satisfies

f
(
x(k)

)
− f⋆ ≤

(
1 +

√
2(β + γ)h

)−k(
f(x0)− f⋆ + β∥v0 − x⋆∥2

)
.

In particular, the sequence satisfies

f
(
x(k)

)
− f⋆ ≤

(
1−

√
β + γ

α+ γ

)k(
f(x0)− f⋆ + β∥v0 − x⋆∥2

)
,

when the optimal step size h = h is employed.
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Remark 5.6. Time scaling can eliminate the factor
√
2(β + γ) from the scheme and simplify it, as

shown in Luo and Chen (2022). However, we do not use time scaling here to match the time scale
with the accelerated gradient method and to maintain correspondence with the continuous system.

6 Discussions including Limitations

Relation to some other systematic/unified frameworks A systematic approach to obtaining
optimization methods with convergence estimates was developed using the “performance estimation
problems" (PEPs) technique, as seen in works such as Taylor et al. (2018); Taylor and Drori (2022b).
While our framework unifies discussions in both continuous and discrete settings, the design of
methods is not automatic and requires finding a new wDG. In contrast, the PEP framework automates
method design but separates discussions between the continuous and discrete settings. Combining
these two approaches could be a promising research direction, such as applying our framework to the
Lyapunov functionals obtained in Taylor and Drori (2022b).

Another unified convergence analysis is presented in Chen and Luo (2021), where the authors cite the
same passage in the Introduction from Su et al. (2016). However, this seems to focus on unifying
discussions in the continuous setting, and it is still necessary to individualize the discretization for
each method in the discrete setting.

In Diakonikolas and Orecchia (2019), a unified method for deriving continuous DEs describing
first-order optimization methods was proposed using the “approximate duality gap technique.” While
this work is capable of finding new DEs, it does not provide insight into how to discretize the DEs for
obtaining discrete optimization methods.

Another closely related work is De Sa et al. (2022), which proposed a framework to construct
Lyapunov functionals for continuous ODEs. This is strong in view of the fact that generally Lyapunov
functionals can be found only in ad hoc ways. Instead, they considered only the simplest gradient
descent (and its stochastic version), while the main focus of the present paper lies in the discretizations.

As said in Section 3, in the field of numerical analysis, the use of discrete gradients has been
tried. Among them, Ehrhardt et al. (2018) is a pioneering work that comes with several theoretical
results. Both this and the present work aim at convex, strongly convex, and the PŁ functions (in the
Appendix, in the present paper). The scope of Ehrhardt et al. (2018) was limited in the sense that they
considered only discretizations of gradient flows with strict discrete gradients. Our target ODEs and
discretizations are not limited to that, but as its price, our rate is worse in some strict discrete gradient
discretizations of gradient flow. This comes from the difference in proof techniques: they proved
convergence rates directly and algebraically, while our analysis is via Lyapunov functionals. They
also gave several theoretical results besides the convergence analysis, such as the (unique) existence
of solutions, and step-size analysis which are important in actual implementations. Whether these
two frameworks could be unified would be an interesting future research topic.

Limitations of the proposed framework. Although we believe that the current framework provides
an easy environment for working on the DE approach to optimization, it still has some limitations.

First, methods that do not fall into the current framework exist, such as the following splitting method
(cf. the Douglas–Rachford splitting method (Eckstein and Bertsekas, 1992)):

x(k+1/2) − x(k)

h
= −∇1f1

(
x(k+1/2), x(k)

)
,

x(k+1) − x(k+1/2)

h
= −∇2f2

(
x(k+1), x(k+1/2)

)
.

The right-hand side cannot be written by a single wDG. Additionally, methods based on Runge–Kutta
(RK) numerical methods (Zhang et al. (2018); Ushiyama et al. (2022a)) appear difficult to be captured
by wDG because RK methods cannot be expressed by DG in the first place. Investigating whether
these methods can be captured by the concept of DG is an interesting future research topic.

Second, there is still some room for adjustment in wDG methods. A typical example is z(k)

in Section 5.2, which is chosen in the theorems to optimize efficiency and rates. Another example is
the adjustment of time-stepping in the last phase of constructing a method to achieve a better rate or
practical efficiency. Although these optimizations in the construction of optimization methods are
standard in optimization studies, we feel that they are difficult to capture in the current framework,
as they fall between the intuitive continuous argument and the discrete wDG arguments that aim to
capture common structures.
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Third, some rates in the theorems are not optimal. For example, on strongly convex func-
tions, the scheme proposed in Theorem 5.5 with the choice (i) achieves the convergence rate of
O
(
(1−

√
µ/L)k

)
, which is not the optimal rate of O

(
(1−

√
µ/L)2k

)
. This is because the choice

of the DE and Lyapunov functional used in this work is not optimal. A DE and Lyapunov functional
for obtaining the optimal rate are known (Sun et al., 2020), but the DE is a so-called high-resolution
DE (known as a “modified equation” in numerical analysis), which involves the Hessian. Whether
these DEs can be captured with the wDG perspective is an interesting future research topic.

7 Concluding remaks

In this paper, we proposed a new unified discretization framework for the DE approach to convex
optimization. Our framework provides an easy environment for those working on the DE approach,
and some new methods are immediate from the framework, both as methods and for their convergence
estimates. For example, any combination of strict DGs with the accelerated gradient flows are
new methods, and their rates are given by the theorems. Although we did not include numerical
experiments in the main body owing to the space restrictions, some preliminary numerical tests
confirming the theory can be found in Appendix I. These tests show that some new methods can be
competitive with state-of-the-art methods, such as Nesterov’s accelerated gradient.
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A Table summarizing the convex cases

In contrast to the strongly convex cases, in the convex cases the convergence rates are the same in the
order, and the difference appears in its coefficients, which actually depends on the maximum step
sizes allowed. See Theorems 5.2 and 5.4 for the rates. In the table below we summarize the step size
information.

Table 2: Examples of weak discrete gradients and resulting convergence rates when f is an L-smooth
function on Rd. The numbers in the ∇f column correspond to the numbers in Theorem 4.2. The line
of the proximal gradient method is described in the setting of (12). (DG) represents that this weak
discrete gradient is a strict discrete gradient.

Opt. meth. Max. step sizes

∇f (for (3)) Numer. meth. Theorem 5.3 Theorem 5.5

(i) steep. des. exp. Euler 1/L 1/
√
L

(ii) prox. point imp. Euler ∞ ∞
(i)+(ii) prox. grad. (splitting) 1/L1 1/

√
L1

(iii) — imp. midpoint 4/L 2/
√
L

(iv) — AVF (DG) 3/L
√

3/L

B Proofs of theorems in Section 2

B.1 Proof of Theorem 2.1

It is sufficient to show that a Lyapunov function

E(t) := t(f(x(t))− f⋆) +
1

2
∥x(t)− x⋆∥2

is monotonically nonincreasing since

f(x(t))− f⋆ ≤ E(t)

t
≤ E(0)

t
=

∥x(0)− x⋆∥2

2t
.

Indeed,
Ė = t⟨∇f(x), ẋ⟩+ f(x)− f⋆ + ⟨x− x⋆, ẋ⟩

= −t∥∇f(x)∥2 + f(x)− f⋆ − ⟨∇f(x), x− x⋆⟩
≤ 0

holds. Here, at each line, we applied the Leibniz rule and the chain rule, substituted the ODE, and
used the convexity of f in this order. ■

B.2 Proof of Theorem 2.2

It is sufficient to show a Lyapunov function

E(t) := eµt
(
f(x(t))− f⋆ +

µ

2
∥x(t)− x⋆∥2

)
is monotonically nonincreasing and thus it is sufficient to show that Ẽ(t) := e−µtE(t) satisfies
˙̃E ≤ −µẼ. Indeed,

˙̃E = ⟨∇f(x), ẋ⟩+ µ⟨x− x⋆, ẋ⟩
= −∥∇f(x)∥2 − µ⟨∇f(x), x− x⋆⟩

≤ −∥∇f(x)∥2 − µ
(
f(x)− f⋆ +

µ

2
∥x− x⋆∥2

)
≤ −µẼ

holds. Here, at each line, we applied the chain rule, substituted the ODE, and used strong convexity
of f in this order. ■
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B.3 Proof of Theorem 2.3

It is sufficient to show that
E(t) := A(t)(f(x(t))− f⋆) + 2∥v(t)− x⋆∥2

is nonincreasing. Actually,

Ė = Ȧ(f(x)− f⋆) +A
d

dt
(f(x)− f⋆) +

d

dt
(2∥v(t)− x⋆∥2)

= Ȧ(f(x)− f⋆) +A⟨∇f(x), ẋ⟩+ 4⟨v̇, v − x⋆⟩

= Ȧ(f(x)− f⋆) +A

〈
∇f(x),

Ȧ

A
(v − x)

〉
− 4

〈
Ȧ

4
∇f(x), v − x⋆

〉
= Ȧ(f(x)− f⋆ − ⟨∇f(x), x− x⋆⟩)
≤ 0

holds. Here, at each line, we applied the Leibniz rule, used the chain rule, substituted the ODE, and
used the convexity of f in this order. ■

B.4 Proof of Theorem 2.6

It is sufficient to show that

E(t) := e
√
µt
(
f(x)− f⋆ +

µ

2
∥v − x⋆∥2

)
is nonincreasing and thus it is sufficient to show that Ẽ(t) := e−

√
µtE(t) satisfies ˙̃E ≤ −√

µẼ.
Actually,

˙̃E = ⟨∇f(x), ẋ⟩+ µ⟨v̇, v − x⋆⟩
= ⟨∇f(x),

√
µ(v − x)⟩+ µ⟨√µ(x− v −∇f(x)/µ), v − x⋆⟩

=
√
µ(⟨∇f(x), x⋆ − x⟩ − µ⟨v − x, v − x⋆⟩)

=
√
µ
(
⟨∇f(x), x⋆ − x⟩ − µ

2
(∥v − x∥2 + ∥v − x⋆∥2 − ∥x− x⋆∥2)

)
≤ −√

µ
((

f(x)− f⋆ +
µ

2
∥v − x⋆∥2

)
− µ

2
∥v − x∥2

)
≤ −√

µẼ

holds. Here, at each line, we applied the chain rule, substituted the ODE, rearranged terms, decom-
posed the inner product by the law of cosines (see Appendix F), and used the strong convexity of
f . ■

C Strict discrete gradients and convexity

In this section, we describe that strict discrete gradients are not generally compatible with the convex
inequality; this complements the discussion in Section 3. For example, let us consider imitating the
discussion in Appendix B.1 by using a discrete gradient scheme δ+x(k) = −∇df

(
x(k+1), x(k)

)
.

Then, since we use the inequality
f(x)− f⋆ − ⟨∇f(x), x− x⋆⟩ ≤ 0

that holds due to the convexity of f , we should ensure that the discrete counterpart of the left-hand
side

f(x)− f⋆ − ⟨∇df(y, x), x− x⋆⟩
is nonpositive for any x, y ∈ Rd. However, there is a simple counterexample as shown below.

Let us consider a quadratic and convex objective function f(x) = 1
2 ⟨x,Qx⟩, where Q ∈ Rd×d is a

positive definite matrix. In this case, x⋆ = 0 and f⋆ = 0 hold. Then, when we choose a discrete
gradient ∇df(y, x) = ∇Gf(y, x) = ∇AVFf(y, x) = Q

(
y+x
2

)
, we see

f(x)− f⋆ − ⟨∇df(y, x), x− x⋆⟩ = 1

2
⟨x,Qx⟩ −

〈
Q

(
y + x

2

)
, x

〉
= −1

2
⟨y,Qx⟩,

which is positive when y = −x and x ̸= 0.
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D Proof of Theorem 4.2

(i) Since we assume f is L-smooth and µ-strongly convex,

f(y)− f(z) ≤ ⟨∇f(z), y − z⟩+ L

2
∥y − z∥2,

f(z)− f(x) ≤ ⟨∇f(z), z − x⟩ − µ

2
∥z − x∥2

holds for any x, y, z ∈ Rd. By adding each side of these inequalities, we obtain

f(y)− f(x) ≤ ⟨∇f(z), y − x⟩+ L

2
∥y − z∥2 − µ

2
∥z − x∥2. (13)

(This inequality is known as the three points descent lemma in optimization.)
(ii) It follows immediately from the µ-strong convexity of f .

(iii) By replacing z in (13) with θy + (1− θ)z, and invoking Lemma F.2, we have
f(y)− f(x)− ⟨∇f(θy + (1− θ)z), y − x⟩

≤ L

2
∥y − (θy + (1− θ)z)∥2 − µ

2
∥θy + (1− θ)z − x∥2

=
L

2
(1− θ)2∥y − z∥2 − µ

2
(−θ(1− θ)∥y − z∥2 + (1− θ)∥z − x∥2 + θ∥y − x∥2).

Especially when θ = 1/2, (α, β, γ) = (L/8 + µ/8, µ/4, µ/4).
(iv) By the same calculation as (iii), we obtain

f(y)− f(x)−
〈∫ 1

0

∇f(τy + (1− τ)z)dτ , y − x

〉
=

∫ 1

0

[f(y)− f(x)− ⟨∇f(τy + (1− τ)z), y − x⟩] dτ

≤
∫ 1

0

[
L

2
(1− τ)2∥y − z∥2 − µ

2
(−τ(1− τ)∥y − z∥2 + (1− τ)∥z − x∥2 + τ∥y − x∥2)

]
dτ

=

(
L

6
+

µ

12

)
∥y − z∥2 − µ

4
∥z − x∥2 − µ

4
∥y − x∥2.

(v) By (13), we obtain

f(y)− f(z)−
〈
∇f

(
y + z

2

)
, y − z

〉
≤ L

2

∥∥∥∥y − y + z

2

∥∥∥∥2 − µ

2

∥∥∥∥y + z

2
− z

∥∥∥∥2 =
L− µ

8
∥y − z∥2.

Since this inequality holds with y and z swapped, we have∣∣∣∣f(y)− f(z)−
〈
∇f

(
y + z

2

)
, y − z

〉∣∣∣∣ ≤ L− µ

8
∥y − z∥2.

Thus,
f(y)− f(x)− ⟨∇Gf(y, z), y − x⟩

= f(y)− f(x)−

〈
∇f

(
y + z

2

)
+

f(y)− f(z)−
〈
∇f
(
y+z
2

)
, y − z

〉
∥y − z∥2

(y − z), y − x

〉

≤ f(y)− f(x)−
〈
∇f

(
y + z

2

)
, y − x

〉
+

∣∣∣∣∣f(y)− f(z)−
〈
∇f
(
y+z
2

)
, y − z

〉
∥y − z∥2

∣∣∣∣∣|⟨y − z, y − x⟩|

≤ L

2

∥∥∥∥y − y + z

2

∥∥∥∥2 − µ

2

∥∥∥∥y + z

2
− x

∥∥∥∥2 + L− µ

8

(
L− µ

8µ
∥y − z∥2 + 2µ

L− µ
∥y − x∥2

)
=

L

8
∥y − z∥2 − µ

2

(
1

2
∥y − x∥2 + 1

2
∥z − x∥2 − 1

4
∥y − z∥2

)
+

(L− µ)2

16µ
∥y − z∥2 + µ

4
∥y − x∥2

=

(
L

8
+

µ

8
+

(L− µ)2

16µ

)
∥y − z∥2 − µ

4
∥z − x∥2
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holds, where the second inequality follows from the arithmetic-geometric means (AM-GM)
inequality.

(vi) In the following, for y, z ∈ Rd and k = 2, . . . , d, y1:k−1zk:d denotes a vector
(y1, . . . , yk−1, zk, . . . , zd)

⊤ ∈ Rd, while y1:0z1:d and y1:dzd+1:d denote z and y, respectively.
By the telescoping sum and µ-strong convexity of f , we obtain

f(y)− f(x)− ⟨∇IAf(y, z), y − x⟩

= f(y)− f(x)−
d∑

k=1

f(y1:kzk+1:d)− f(y1:k−1zk:d)

yk − zk
(yk − xk)

= f(y)− f(x)−
d∑

k=1

f(y1:kzk+1:d)− f(y1:k−1zk:d)

yk − zk
(yk − zk + zk − xk)

= f(z)− f(x)−
d∑

k=1

f(y1:kzk+1:d)− f(y1:k−1zk:d)

yk − zk
(zk − xk)

≤ ⟨∇f(z), z − x⟩ − µ

2
∥z − x∥2

+

d∑
k=1


(∇f(y1:k−1zk:d))k(zk − yk)− µ

2 (zk − yk)
2

yk − zk
(zk − xk) if

zk − xk

yk − zk
> 0

(∇f(y1:kzk+1:d))k(yk − zk)− µ
2 (yk − zk)

2

zk − yk
(zk − xk) if

zk − xk

yk − zk
< 0

= ⟨∇f(z), z − x⟩ − µ

2
∥z − x∥2

−
d∑

k=1


(∇f(y1:k−1zk:d))k(zk − xk) +

µ
2 (yk − zk)(zk − xk) if

zk − xk

yk − zk
> 0

(∇f(y1:kzk+1:d))k(zk − xk) +
µ
2 (zk − yk)(zk − xk) if

zk − xk

yk − zk
< 0

=

d∑
k=1


((∇f(z))k − (∇f(y1:k−1zk:d))k)(zk − xk) if

zk − xk

yk − zk
> 0

((∇f(z))k − (∇f(y1:kzk+1:d))k)(zk − xk) if
zk − xk

yk − zk
< 0

− µ

2
∥z − x∥2 − µ

2

d∑
k=1

|zk − yk||zk − xk|.

To evaluate the first term of the most right-hand side, we use the following inequalities:

|(∇f(z))k − (∇f(y1:k−1zk:d))k| ≤ L∥z − y1:k−1zk:d∥ ≤ L∥z − y∥,
|(∇f(z))k − (∇f(y1:kzk+1:d))k| ≤ L∥z − y1:kzk+1:d∥ ≤ L∥z − y∥,

which hold due to the L-smoothness of f , and also

d∑
k=1

|zk − xk| ≤

√√√√d

d∑
k=1

|zk − xk|2 =
√
d∥z − x∥,

which holds due to Jensen’s inequality. Using them, we obtain

f(y)− f(x)− ⟨∇IAf(y, z), y − x⟩

≤
√
dL∥z − y∥∥z − x∥ − µ

2
∥z − x∥2 − µ

2

d∑
k=1

|zk − yk||zk − xk|

≤ dL2

µ
∥z − y∥2 + µ

4
∥z − x∥2 − µ

2
∥z − x∥2 − µ

2

d∑
k=1

|zk − yk||zk − xk|,
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where the last inequality holds due to the AM-GM inequality. Finally, the last term is bounded
by

µ

2

d∑
k=1

|zk − yk||zk − xk| = −µ

4

d∑
k=1

(
|zk − yk|2 + |zk − xk|2 − ||zk − yk| − |zk − xk||2

)
≤ −µ

4

d∑
k=1

(
|zk − yk|2 + |zk − xk|2 − |yk − xk|2

)
= −µ

4

(
∥z − y∥2 + ∥z − x∥2 − ∥y − x∥2

)
.

This proves the theorem.

■

For (ii), as noted in the above proof, the assumption of differentiability of f is unnecessary, let alone
L-smoothness. Since f is a proper convex function on Rd in our setting, the subdifferential ∂f(x) is
nonempty for all x ∈ Rd. Thus we can use ∇f(y, x) ∈ ∂f(y) instead of ∇f(y, x) = ∇f(y). By
definition of subgradients, we can recover the same parameters (α, β, γ) as the differentiable case.

If µ = 0, the proofs for (v) and (vi) cease to work where we apply the AM-GM inequality to the
inner product. This is also pointed out in the main body of the paper.

E Proofs of theorems in Section 5

E.1 Proof of Theorem 5.2

It is sufficient to show that the discrete Lyapunov function

E(k) := kh
(
f
(
x(k)

)
− f⋆

)
+

1

2

∥∥∥x(k) − x⋆
∥∥∥2

is nonincreasing. Actually,

δ+E(k)

= kh
(
δ+f

(
x(k)

))
+ f

(
x(k+1)

)
− f⋆ + δ+

(
1

2

∥∥∥x(k) − x⋆
∥∥∥2)

≤ kh

(〈
∇f
(
x(k+1), x(k)

)
, δ+x(k)

〉
+ αh

∥∥∥δ+x(k)
∥∥∥2)+ f

(
x(k+1)

)
− f⋆ +

〈
x(k+1) − x⋆, δ+x(k)

〉
− h

2

∥∥∥δ+x(k)
∥∥∥2

= −kh(1− αh)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2 + f
(
x(k+1)

)
− f⋆ −

〈
∇f
(
x(k+1), x(k)

)
, x(k+1) − x⋆

〉
− h

2

∥∥∥δ+x(k)
∥∥∥2

≤ −kh(1− αh)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2 − (h

2
− αh2

)∥∥∥δ+x(k)
∥∥∥2

holds, and thus if h ≤ 1/(2α), the right-hand side is not positive. Here, at each line, we applied
the discrete Leibniz rule, the weak discrete gradient condition (8), Lemma F.1 as the chain rule,
substituted the scheme, and applied again (8) as the convex inequality. ■

E.2 Proof of Theorem 5.3

Let

Ẽ(k) := f
(
x(k)

)
− f⋆ + (β + γ)

∥∥∥x(k) − x⋆
∥∥∥2.

17



If δ+Ẽ(k) ≤ −cẼ(k+1) for c > 0, it can be concluded that E(k) = (1 + ch)kẼ(k) is nonincreasing,
and hence f(x(k))− f⋆ ≤ (1 + ch)−kE(0). Actually,

δ+Ẽ(k)

= δ+f
(
x(k)

)
+ δ+

(
(β + γ)

∥∥∥x(k) − x⋆
∥∥∥2)

≤
〈
∇f
(
x(k+1), x(k)

)
, δ+x(k)

〉
+ (α− γ)h

∥∥∥δ+x(k)
∥∥∥2 + 2(β + γ)

〈
x(k+1) − x⋆, δ+x(k)

〉
− (β + γ)h

∥∥∥δ+x(k)
∥∥∥2

= −(1− (α− γ)h+ (β + γ)h)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2 − 2(β + γ)
〈
x(k+1) − x⋆,∇f

(
x(k+1), x(k)

)〉
≤ −2(β + γ)

(
f
(
x(k)

)
− f⋆ + β

∥∥∥x(k) − x⋆
∥∥∥2 + γ

∥∥∥x(k+1) − x⋆
∥∥∥2)

−
(
1− (α− γ)h+ (β + γ)h− 2α(β + γ)h2

)∥∥∥∇f
(
x(k+1), x(k)

)∥∥∥2 (14)

holds. Here, after the second line we used the weak discrete gradient condition (8) as the chain rule,
substituted the scheme and used (8) as the strongly convex inequality.

Now we aim to bound
∥∥x(k) − x⋆

∥∥2 with
∥∥x(k+1) − x⋆

∥∥2. By the same calculation for

δ+
∥∥x(k) − x⋆

∥∥2 as above, we get the evaluation

δ+
∥∥∥x(k) − x⋆

∥∥∥2 ≤ −2(f(x(k+1))−f⋆+β
∥∥∥x(k) − x⋆

∥∥∥2+γ
∥∥∥x(k+1) − x(k)

∥∥∥2)−(h−2αh2)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2.
(15)

Thus, if h ≤ 1/(2α), we get
∥∥x(k+1) − x⋆

∥∥2 ≤
∥∥x(k) − x⋆

∥∥2. In this case, since the second term of
(14) is nonpositive, it follows that

δ+Ẽ(k) ≤ −2(β + γ)Ẽ(k+1).

To obtain a better rate which is included in the statement of the theorem, by directly using (15) for
(14), we see

δ+Ẽ(k) ≤ −2(β + γ)

1− 2βh

(
f(x(k+1))− f⋆ + (β + γ)

∥∥∥x(k+1) − x⋆
∥∥∥2)

−
(
1− 2αh

1− 2βh
2(β + γ)βh2 + 1− (α− γ)h+ (β + γ)h− 2α(β + γ)h2

)∥∥∥∇f
(
x(k+1), x(k)

)∥∥∥2.
Since the second term of the right-hand side is nonpositive under h ≤ 1/(α+ β), it can be concluded
that

δ+Ẽ(k) ≤ −2(β + γ)

1− 2βh
Ẽ(k+1).

In this case the convergence rate is(
1

1 + 2(β+γ)h
1−2βh

)k

=

(
1− 2(β + γ)h

1 + 2γh

)k

.

■

E.3 Proof of Theorem 5.4

It is sufficient to show that

E(k) := Ak

(
f
(
x(k)

)
− f⋆

)
+ 2∥v(k) − x⋆∥2
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is nonincreasing. Actually,

δ+E(k)

= (δ+Ak)
(
f
(
x(k+1)

)
− f⋆

)
+Ak

(
δ+f

(
x(k)

))
+ 2δ+

(∥∥∥v(k) − x⋆
∥∥∥2)

≤ (δ+Ak)
(
f
(
x(k+1)

)
− f⋆

)
+Ak

〈
∇f
(
x(k+1), z(k)

)
, δ+x(k)

〉
+ 4
〈
δ+v(k), v(k+1) − x⋆

〉
+

Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

≤ (δ+Ak)
(
f
(
x(k+1)

)
− f⋆

)
+Ak

〈
∇f
(
x(k+1), z(k)

)
,
δ+Ak

Ak

(
v(k+1) − x(k+1)

)〉
− 4

〈
δ+Ak

4
∇f
(
x(k+1), z(k)

)
, v(k+1) − x⋆

〉
+

Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

= (δ+Ak)
(
f
(
x(k+1)

)
− f⋆ −

〈
∇f
(
x(k+1), z(k)

)
, x(k+1) − x⋆

〉)
+

Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

≤ (δ+Ak)α
∥∥∥x(k+1) − z(k)

∥∥∥2 + Ak

h
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − 2h
∥∥∥δ+v(k)∥∥∥2

=
1

h

(
Ak+1α

∥∥∥x(k+1) − z(k)
∥∥∥2 − 2

∥∥∥v(k+1) − v(k)
∥∥∥2) =: (err).

Here, at each line, we used the discrete Leibniz rule, applied (8) and Lemma F.1 as the chain rule,
substituted the scheme, and applied again (8) as the convex inequality.

Now we define z(k) so that (err) ≤ 0 holds. When z(k) := x(k+1), (err) becomes nonpositive
without step size constraints.

Or, since using the scheme we can write

∥∥∥x(k+1) − z(k)
∥∥∥2 =

∥∥∥∥Ak+1 −Ak

Ak+1
v(k+1) +

Ak

Ak+1
x(k) − z(k)

∥∥∥∥2,
by setting

z(k) :=
Ak+1 −Ak

Ak+1
v(k) +

Ak

Ak+1
x(k),

we obtain

h× (err) =

(
(Ak+1 −Ak)

2

Ak+1
α− 2

)∥∥∥v(k+1) − v(k)
∥∥∥2.

This choice of z(k) is shown in the theorem. When, for example, Ak = (kh)2, (err) ≤ 0, provided
that h ≤ 1/

√
2α. Here we see that only up to a quadratic function is allowed as Ak if α > 0. ■

E.4 Proof of Theorem 5.5

It is sufficient to show that

Ẽ(k) := f
(
x(k)

)
− f⋆ + (β + γ)

∥∥∥v(k) − x⋆
∥∥∥2
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satisfies δ+Ẽ(k) ≤ −
√
mẼ(k+1). To simplify notation, 2(β + γ) is written as m, and the error terms

are gathered into (err). Then, we see

δ+Ẽ(k) = δ+f
(
x(k)

)
+

m

2
δ+
∥∥∥v(k) − x⋆

∥∥∥2
≤
〈
∇f
(
x(k+1), z(k)

)
, δ+x(k)

〉
+

α

h

∥∥∥x(k+1) − z(k)
∥∥∥2 − β

h

∥∥∥z(k) − x(k)
∥∥∥2 − γh

∥∥∥δ+x(k)
∥∥∥2

+m
〈
δ+v(k), v(k+1) − x⋆

〉
− m

2
h
∥∥∥δ+v(k)∥∥∥2

=
〈
∇f
(
x(k+1), z(k)

)
,
√
m
(
v(k+1) − x(k+1)

)〉
+ (err)

+m

〈√
m

(
2β

m
z(k) +

2γ

m
x(k+1) − v(k+1) − 1

m
∇f
(
x(k+1), z(k)

))
, v(k+1) − x⋆

〉
=

√
m
〈
∇f
(
x(k+1), z(k)

)
, x⋆ − x(k+1)

〉
− 2

√
mβ
〈
v(k+1) − z(k), v(k+1) − x⋆

〉
− 2

√
mγ
〈
v(k+1) − x(k+1), v(k+1) − x⋆

〉
+ (err)

=
√
m
〈
∇f
(
x(k+1), z(k)

)
, x⋆ − x(k+1)

〉
−

√
mβ

(∥∥∥v(k+1) − z(k)
∥∥∥2 + ∥∥∥v(k+1) − x⋆

∥∥∥2 − ∥∥∥z(k) − x⋆
∥∥∥2)

−
√
mγ

(∥∥∥v(k+1) − x(k+1)
∥∥∥2 + ∥∥∥v(k+1) − x⋆

∥∥∥2 − ∥∥∥x(k+1) − x⋆
∥∥∥2)+ (err)

≤ −
√
m

(
f
(
x(k+1)

)
− f⋆ +

m

2

∥∥∥v(k+1) − x⋆
∥∥∥2)

+
√
m

(
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − β
∥∥∥v(k+1) − z(k)

∥∥∥2 − γ
∥∥∥v(k+1) − x(k+1)

∥∥∥2)+ (err)

= −
√
mẼ(k+1) + (err).

Here, the first inequality follows from (8) as the chain rule, the second equality from the substitution
of the form of the method, and the second inequality follows from again (8) as the strongly convex
inequality. In the second inequality, we also used

−
〈
∇f
(
x(k+1), z(k)

)
, x(k+1) − x⋆

〉
+β
∥∥∥z(k) − x⋆

∥∥∥2+γ
∥∥∥x(k+1) − x⋆

∥∥∥2 ≤ −
(
f
(
x(k+1)

)
− f⋆

)
+α
∥∥∥x(k+1) − z(k)

∥∥∥2.
Now we define x(k) so that (err) ≤ 0. An obvious choice is z(k) := x(k+1), where (err) is
nonpositive under any step size.

To derive another definition of z(k), we proceed with the calculation of the error terms by substituting
the form of the method:

h× (err) = α
∥∥∥x(k+1) − z(k)

∥∥∥2 − β
∥∥∥z(k) − x(k)

∥∥∥2 − γ
∥∥∥x(k+1) − x(k)

∥∥∥2 − (β + γ)
∥∥∥v(k+1) − v(k)

∥∥∥2
+
√
mh

(
α
∥∥∥x(k+1) − z(k)

∥∥∥2 − β
∥∥∥v(k+1) − z(k)

∥∥∥2 − γ
∥∥∥v(k+1) − x(k+1)

∥∥∥2)
= α(h+ 1)

∥∥∥x(k+1) − z(k)
∥∥∥2 − β

(∥∥∥z(k) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh
∥∥∥v(k+1) − z(k)

∥∥∥2)
− γ

(∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh
∥∥∥v(k+1) − x(k+1)

∥∥∥2)
= α(h+ 1)

∥∥∥x(k+1) − z(k)
∥∥∥2

− β

(∥∥∥z(k) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh

∥∥∥∥x(k+1) +
x(k+1) − x(k)

√
mh

− z(k)
∥∥∥∥2
)

− γ

(∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2 +√
mh

∥∥∥∥x(k+1) +
x(k+1) − x(k)

√
mh

− x(k+1)

∥∥∥∥2
)
.
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Hereafter,
√
mh is denoted by h̃. By using Lemma F.2, we have

h̃

∥∥∥∥x(k+1) +
x(k+1) − x(k)

h̃
− z(k)

∥∥∥∥2
= h̃

(
h̃+ 1

h̃

)2∥∥∥∥∥ h̃

h̃+ 1

(
x(k+1) − z(k)

)
+

1

h̃+ 1

(
x(k+1) − x(k)

)∥∥∥∥∥
2

=

(
h̃+ 1

)2
h̃

 h̃

h̃+ 1

∥∥∥x(k+1) − z(k)
∥∥∥2 + 1

h̃+ 1

∥∥∥x(k+1) − x(k)
∥∥∥2 − h̃(

h̃+ 1
)2 ∥∥∥z(k) − x(k)

∥∥∥2


=
(
h̃+ 1

)∥∥∥x(k+1) − z(k)
∥∥∥2 + h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 − ∥∥∥z(k) − x(k)

∥∥∥2.
Thus, we see

h̃× (err) = (α− β)
(
h̃+ 1

)∥∥∥x(k+1) − z(k)
∥∥∥2 − (β + γ)

(
h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2).
Here when we define z(k) := x(k), (err) is nonpositive under the condition

(α− β)
(
h̃+ 1

)
− (β + γ)

h̃+ 1

h̃
≤ 0.

This condition reads as h̃ ≤ (β + γ)/(α− β), and the convergence rate is(
1 +

√
2(β + γ)

)−k

=
(
1 + h̃

)−k

≥
(
1− β + γ

α+ γ

)k

.

To obtain a better rate, we continue the computation of (err) without defining z(k). Let

η =
1

h̃+1
h̃

+ 1
=

h̃

2h̃+ 1
,

and again by inserting the form of the method, and by using Lemma F.2,

h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥v(k+1) − v(k)

∥∥∥2
=

h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 + ∥∥∥∥x(k+1) +

x(k+1) − x(k)

h̃
− v(k)

∥∥∥∥2
=

h̃+ 1

h̃

∥∥∥x(k+1) − x(k)
∥∥∥2 +( h̃+ 1

h̃

)2∥∥∥∥∥x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

∥∥∥∥∥
2

=
h̃+ 1

h̃

1

η

η
∥∥∥x(k+1) − x(k)

∥∥∥2 + (1− η)

∥∥∥∥∥x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

∥∥∥∥∥
2


=
h̃+ 1

h̃

1

η

∥∥∥∥∥η(x(k+1) − x(k)
)
+ (1− η)

(
x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

)∥∥∥∥∥
2

+η(1− η)

∥∥∥∥∥x(k+1) − x(k) −

(
x(k+1) − h̃

h̃+ 1
v(k) − 1

h̃+ 1
x(k)

)∥∥∥∥∥
2


=
h̃+ 1

h̃

2h̃+ 1

h̃

∥∥∥∥∥x(k+1) −

(
h̃+ 1

2h̃+ 1
x(k) +

h̃

2h̃+ 1
v(k)

)∥∥∥∥∥
2

+
h̃

2h̃+ 1

h̃+ 1

2h̃+ 1

(
h̃

h̃+ 1

)2∥∥∥v(k) − x(k)
∥∥∥2
 .
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Hence we obtain

h̃× (err) = (α− β)
(
h̃+ 1

)∥∥∥x(k+1) − z(k)
∥∥∥2 − (β + γ)

h̃

2h̃+ 1

∥∥∥v(k) − x(k)
∥∥∥2

− (β + γ)
h̃+ 1

h̃

2h̃+ 1

h̃

∥∥∥∥∥x(k+1) − h̃+ 1

2h̃+ 1
x(k) − h̃

2h̃+ 1
v(k)

∥∥∥∥∥
2

.

If we set

z(k) :=
h̃+ 1

2h̃+ 1
x(k) +

h̃

2h̃+ 1
v(k),

(err) is nonpositive under the condition

(α− β)
(
h̃+ 1

)
− (β + γ)

h̃+ 1

h̃

2h̃+ 1

h̃
≤ 0.

The definition of z(k) is shown in the theorem. By solving the above inequality, we obtain the step
size limitation

h̃ ≤
√
β + γ

√
α+ γ −

√
β + γ

,

which is shown in the theorem. ■

F Law of cosines and parallelogram identity

This section summarizes some useful lemmas used in the preceding sections.

In Hilbert spaces, especially in Euclidean spaces, the law of cosines holds:
∥y − x∥2 = ∥y∥2 + ∥x∥2 − 2⟨y, x⟩.

In this paper, we use this formula as an error-containing discrete chain rule of the squared norm.
Lemma F.1. For all x(k+1), x(k) ∈ Rd,∥∥∥x(k+1)

∥∥∥2 − ∥∥∥x(k)
∥∥∥2 = 2⟨x(k+1), x(k+1) − x(k)⟩ −

∥∥∥x(k+1) − x(k)
∥∥∥2

Another famous identity for the Hilbert norm (especially the Euclidean norm) is the parallelogram
identity: ∥∥∥∥x+ y

2

∥∥∥∥2 + ∥∥∥∥x− y

2

∥∥∥∥2 =
1

2
(∥x∥2 + ∥y∥2).

In this paper, we use a generalization of this identity. In the following lemma, we recover the
parallelogram identity by setting α = 1/2.
Lemma F.2. For all x, y ∈ Rd and α ∈ R,

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Proof. The claim is obtained by adding each side of the following equalities:
∥αx+ (1− α)y∥2 = α2∥x∥2 + (1− α)2∥y∥2 + 2α(1− α)⟨x, y⟩,
α(1− α)∥x− y∥2 = α(1− α)∥x∥2 + α(1− α)∥y∥2 − 2α(1− α)⟨x, y⟩.

■

G Proofs of theorems in Section 6

G.1 Proof of Theorem H.1

It is sufficient to show that
E(t) := f(x(t))− f⋆

satisfies Ė ≤ −2µE. Indeed,
Ė = ⟨∇f(x), ẋ⟩ = −∥∇f(x)∥2 ≤ −2µ(f(x)− f⋆) = −2µE

holds. Here, we used the chain rule, the continuous system itself, the PŁ condition, and the definition
of E in this order. ■
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G.2 Proof of Theorem H.3

By the PŁ condition, we observe that

−
∥∥∇f(y, x)

∥∥ ≤ −
√
2µ(f(x)− f⋆) + ∥∇f(x)∥ −

∥∥∇f(y, x)
∥∥

≤ −
√
2µ(f(x)− f⋆) +

∥∥∇f(x)−∇f(y, x)
∥∥.

Thus, the evaluation of
∥∥∇f(y, x)−∇f(x)

∥∥ yields β.

(i) From L-smoothness α = L/2 follows. By the definition β = 0.

(ii) L-smoothness yields α = L/2 and β = L. (Note that the convexity of f would imply α = 0,
but it is not assumed now. If we adopt the other definition (18) then β = 0.)

(iii) By the same application of L-smoothness, we obtain α = L/8 and β = L/2.

(iv) Since the discrete chain rule exactly holds, ∇AVFf satisfies α = 0. Then, by the L-smoothness
of f ,

∥∇AVFf(y, x)−∇f(x)∥ =

∥∥∥∥∫ 1

0

∇f(τy + (1− τ)x)dτ −∇f(x)

∥∥∥∥
≤
∫ 1

0

∥∇f(τy + (1− τ)x)−∇f(x)∥dτ

≤
∫ 1

0

L∥τy + (1− τ)x− x∥dτ

≤
∫ 1

0

Lτ∥y − x∥dτ

≤ L

2
∥y − x∥

holds, which implies β = L/2.

(v) Similar to the case (iv), α = 0 holds. By the L-smoothness of f ,

∥∇Gf(y, x)−∇f(x)∥ =

∥∥∥∥∥∇f

(
y + x

2

)
−

f(y)− f(x)−
〈
∇f
(
y+x
2

)
, y − x

〉
∥y − x∥2

(y − x)−∇f(x)

∥∥∥∥∥
≤
∥∥∥∥∇f

(
y + x

2

)
−∇f(x)

∥∥∥∥+ |f(y)− f(x)−
〈
∇f
(
y+x
2

)
, y − x

〉
|

∥y − x∥

≤ L

2
∥y − x∥+ L

8
∥y − x∥

=
5L

8
∥y − x∥,

which implies β = 5L/8.
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(vi) Similar to the previous cases, α = 0 holds. Using the same notation as in Appendix D (vi), we
obtain

∥∇IAf(y, x)−∇f(x)∥ =

∥∥∥∥∥∥∥∥∥∥


f(y1,x2,x3...,xd)−f(x1,x2,x3,...,xd)

y1−x1
f(y1,y2,x3...,xd)−f(y1,x2,x3,...,xd)

y2−x2

...
f(y1,y2,y3,...,yd)−f(y1,y2,y3...,xd)

yd−xd

−∇f(x)

∥∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥

∂1f(θ1y1 + (1− θ1)x1, x2, x3 . . . , xd)
∂2f(y1, θ2y2 + (1− θ2)x2, x3 . . . , xd)

...
∂df(y1, y2, y3, . . . , θdyd + (1− θd)xd)

−∇f(x)

∥∥∥∥∥∥∥∥
=

√√√√ d∑
k=1

|(∇f(θky1:kxk+1:d + (1− θk)y1:k−1xk:d))k − (∇f(x))k|2

≤

√√√√ d∑
k=1

L2∥y − x∥2

=
√
dL∥y − x∥,

where θk ∈ [0, 1] is a constant by the mean value theorem. Therefore, β =
√
dL holds.

■

G.3 Proof of Theorem H.5

Let
Ẽ(k) := f

(
x(k)

)
− f⋆.

If δ+Ẽ(k) ≤ −cẼ(k) for c > 0, it can be concluded that E(k) = (1− ch)−kẼ(k) is nonincreasing
and hence f

(
x(k)

)
− f⋆ ≤ (1− ch)kE(0). Before starting the computation of δ+Ẽ(k), we transform

the weak discrete PŁ condition (17) into a more convenient form. By substituting the scheme into
(17), we obtain

−
∥∥∥∇f(x(k+1), x(k))

∥∥∥2 ≤ − γ

(1 + βh)2

(
f
(
x(k)

)
− f⋆

)
.

Thus, it follows from the weak discrete chain rule (16), the scheme, and the above inequality, that

δ+Ẽ(k) = δ+f
(
x(k)

)
≤
〈
∇f
(
x(k+1), x(k)

)
, δ+x(k)

〉
+ αh

∥∥∥δ+x(k)
∥∥∥2

= −(1− αh)
∥∥∥∇f

(
x(k+1), x(k)

)∥∥∥2
≤ −(1− αh)

γ

(1 + βh)2

(
f
(
x(k)

)
− f⋆

)
= −γ

1− αh

(1 + βh)2
E(k).

Hence if h ≤ 1/α we have the convergence. ■

H Extension to Polyak–Łojasiewicz type functions.

The weak discrete gradients can be useful also for non-convex functions. Here we illustrate it by
taking functions satisfying the Polylak–Łojasiewicz (PŁ) condition. A function f is said to satisfy
the PŁ condition if

−∥∇f(x)∥2 ≤ −2µ(f(x)− f⋆)
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holds for any x ∈ Rd. This was introduced as a sufficient condition for the steepest descent to
converge Polyak (1963). The set of functions satisfying the PŁ condition contains all differentiable
strongly convex functions and some nonconvex functions such as f(x) = x2 + 3 sin2(x).

Theorem H.1 (Continuous systems). Suppose that f satisfies the PŁ condition. Let x : [0,∞) → Rd

be the solution of the gradient flow (3). Then the solution satisfies

f(x(t))− f⋆ ≤ e−µt∥x0 − x⋆∥2.

Let us define another weak discrete gradient for functions satisfying the PŁ condition. Recall that
the first condition of weak discrete gradients (Definition 4.1) has two meanings: the discrete chain
rule (9) and the discrete convex inequality (10). One could consider the PŁ condition instead of
convexity.

Definition H.2. A gradient approximation ∇f : Rd × Rd → Rd is said to be PŁ-type weak discrete
gradient of f if there exists positive numbers α, β such that for all x, y ∈ Rd the following three
conditions hold:

∇f(x, x) = ∇f(x),

f(y)− f(x) ≤ ⟨∇f(y, x), y − x⟩+ α∥y − x∥2, (16)

−
∥∥∇f(y, x)

∥∥ ≤ −
√

2µ(f(x)− f⋆) + β∥y − x∥. (17)

Theorem H.3. If f is L-smooth and satisfies the PŁ condition with the parameter µ, the following
functions are PŁ-type weak discrete gradients:

(i) If ∇f(y, x) = ∇f(x); then (α, β) = (L/2, 0).

(ii) If ∇f(y, x) = ∇f(y), then (α, β) = (L/2, L).

(iii) If ∇f(y, x) = ∇f(x+y
2 ), then (α, β) = (L/8, L/2).

(iv) If ∇f(y, x) = ∇AVFf(y, x), then (α, β) = (0, L/2).

(v) If ∇f(y, x) = ∇Gf(y, x), then (α, β) = (0, 5L/8).

(vi) If ∇f(y, x) = ∇IAf(y, x), then (α, β) = (0,
√
dL).

Remark H.4. The parameters α and β imply the magnitude of the discretization error. As the second
condition in Definition H.2, we can adopt instead

−
∥∥∇f(y, x)

∥∥ ≤ −
√

2µ(f(y)− f⋆) + β∥y − x∥. (18)

Then, we obtain better parameters for the implicit Euler method (ii).

The proof of Theorem H.3 is postponed in Appendix G.2.

Theorem H.5 (Discrete systems). Let ∇f be a PŁ-type weak discrete gradient of f . Let f be a
function which satisfies the necessary conditions that the PŁ-type weak DG requires. Let

{
x(k)

}
be

the sequence given by (11). Then, under the step size condition h ≤ 1/α, the sequence satisfies

f
(
x(k)

)
− f⋆ ≤

(
1− 2µh

(1− αh)

(1 + βh)2

)k

(f(x0)− f⋆).

In particular, the sequence satisfies

f
(
x(k)

)
− f⋆ ≤

(
1− µ

2(α+ β)

)k

(f(x0)− f⋆),

when the optimal step size h = 1/(2α+ β) is employed.

I Some numerical examples

In this section, we give some numerical examples to complement the discussion in the main body
of this paper. Note that this is just to illustrate that we can actually easily construct new concrete
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methods just by assuring the conditions of weak discrete gradients (weak DGs), and that the resulting
methods in fact achieve the prescribed rates; we here do not intend to explore a method that beats
known state-of-the-art methods. It is of course an ultimate goal of the unified framework project, but
is left as an important future work.

Below we consider some explicit optimization methods derived as special cases of the abstract weak
DG methods. Here we pick up simple two-dimensional problems so that we can observe not only
the decrease of the objective functions but also the trajectories of the points x’s for our intuitive
understandings.

First, we consider the case where the objective function is a L-smooth convex function. An explicit
weak discrete gradient method is then found as

x(k+1) − x(k) =
2k + 1

k2

(
v(k+1) − x(k+1)

)
,

v(k+1) − v(k) = −2k + 1

4
h2∇f

(
z(k)

)
,

z(k) − x(k) =
2k + 1

(k + 1)2

(
v(k) − x(k)

)
.

(19)

We call this method (wDG-c). This is the simplest example of the abstract method in Theorem 5.4,
where we choose Ak = (kh)2 and ∇f(y, x) = ∇f(x). The authors believe this method itself has
not been explicitly pointed out in the literature, and is new. The expected rate is the one predicted in
the theorem, O

(
1/k2

)
, under the step size condition h ≤ 1/

√
L (recall that α for the weak DG is

L/2 as shown in Theorem 4.2). For comparison, we pick up Nesterov’s accelerated gradient method
for convex functions 

y(k+1) = x(k) − h2∇f
(
x(k)

)
,

x(k+1) = y(k+1) +
k

k + 3

(
y(k+1) − y(k)

)
.

(20)

We denote this method by (NAG-c). It is well-known that it achieves the same rate, under the same
step size condition; we summarize these information in Table 3.

As an objective function, we employ

f(x) = 0.1x1
4 + 0.001x2

4, (21)

which is not strongly convex. (Strictly speaking, this is not L-smooth as well, but we consider in the
following way: for each initial x we obtain the level set {x | f(x) = f(x(0))}. Then we consider the
function (21) inside the region, and extend the function outside it appropriately; for example such
that the function grows linearly as ∥x∥ → ∞.)

Numerical results are shown in Figure 1. The top-left panel of the figure shows the convergence
of the objective function f(x) when the optimal step size 1/

√
L is chosen. We see both methods

achieve the predicted rate O
(
1/k2

)
(mind the dotted guide line). We also see that under this setting,

(wDG-c) converges faster than (NAG-c). This suggests that the new framework can give rise to
an optimization method that is competitive to state-of-the-art methods (as said before, we do not
say anything conclusive on this point; in order to discuss practical performance, we further need to
discuss other implementation issues such as stepping schemes.) The trajectories of x(k)’s are almost
the same, for all the tested step sizes.

Next, we consider methods for strongly convex functions. We use the following explicit weak DG
method: 

x(k+1) − x(k) =
√
µh
(
v(k+1) − x(k+1)

)
,

v(k+1) − v(k) =
√
µh

(
z(k) − v(k+1) −

∇f
(
z(k)

)
µ

)
,

z(k) − x(k) =
√
µh
(
x(k) + v(k) − 2z(k)

)
.

(22)

We call this (wDG-sc). This can be obtained by setting ∇f(y, x) = ∇f(x) in Theorem 5.5.
Since for this choice we have α = L/2 and β = µ/2 (Theorem 4.2), the step size condition is
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Table 3: Step size limitations and convergence rates of the methods used in the experiments

scheme step size limitation convergence rate
NAG-c (20) 1/

√
L O

(
1
k2

)
wDG-c (19) 1/

√
L O

(
1
k2

)
NAG-sc (23) 1/

√
L O

((
1−

√
µ
L

)k)
wDG-sc (22) 1/(

√
L−√

µ) O
((

1−
√

µ
L

)k)
wDG2-sc (24)

√
µ/(L− µ) O

((
1− µ

L

)k)
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(a) Evolution of function values (h = 1/
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L).
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(c) Trajectory (h = 0.7/
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Figure 1: Trajectories and function values by (wDG-c) and (NAG-c). The objective function is (21)
and the initial solution is (2, 4).
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h ≤ 1/(
√
L −√

µ), and the predicted rate is O
(
(1−

√
µ/L)k

)
(which is attained by the largest

h = 1/(
√
L−√

µ)).

As before, we compare this method with Nesterov’s accelerated gradient method for strongly convex
functions (NAG-sc): 

y(k+1) = x(k) − h2∇f
(
x(k)

)
,

x(k+1) = y(k+1) +
1−√

µh

1 +
√
µh

(
y(k+1) − y(k)

)
.

(23)

Here, in addition to these, we also consider a simpler method, where z(k) = x(k) is chosen to find
x(k+1) − x(k) =

√
µh
(
v(k+1) − x(k+1)

)
,

v(k+1) − v(k) =
√
µh

(
x(k) − v(k+1) −

∇f
(
x(k)

)
µ

)
.

(24)

We call this (wDG2-sc). This method is more natural as a numerical method for the accelerated
gradient flow (6), compared to the methods above, and we expect it illustrates how “being natural as
a numerical method” affects the performance. The rate and the step size limitation were revealed in
the proof of Theorem 5.5 (Appendix E).

We summarized the step size limitations and rates in Table 3. Notice that the predicted rate of
(wDG-sc) is better than that of (wDG2-sc).

The objective function is taken to be the quadratic function

f(x) = 0.001(x1 − x2)
2 + 0.1(x1 + x2)

2 + 0.01x1 + 0.02x2, (25)

and results are shown is Figure 2. Again the top-left panel shows the convergence of the objective
function. We see that (wDG-sc) and (NAG-sc) with each optimal step size show almost the same
convergence, which is in this case much better than the predicted worst case rate (the dotted guide
line). (wDG2-sc) slightly falls behind the other two, but it eventually achieves almost the same
performance as k → ∞. The trajectories of the points x(k)’s are, however, quite different among the
three methods, which is interesting to observe. The trajectory of (wDG2-sc) seems to suffer from
wild oscillations, while (wDG-sc) generates milder trajectory. (NAG-sc) comes between these two.
We need careful discussion to conclude which dynamics is the best as an optimization method, but if
we consider such oscillations are not desirable (possibly causing some instability), it might suggest
that (wDG-sc) is the first choice for this problem. In any case, in this way we can explore various
concrete optimization method within the framework of the weak DG by varying the weak DG, which
is exactly the main claim of this paper.
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Figure 2: Trajectories and function values by (wDG-sc), (wDG2-sc) and (NAG-sc). The objective
function is (25) and the initial value is (2, 3).
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