Multi-Swap k-Means++

Anonymous Author(s)
Affiliation
Address
email

Abstract

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is often the practitioners' choice algorithm for optimizing the popular k-means clustering objective and is known to give an $O(\log k)$-approximation in expectation. To obtain higher quality solutions, Lattanzi and Sohler (ICML 2019) proposed augmenting k-means++ with $O(k \log \log k)$ local search steps obtained through the k-means++ sampling distribution to yield a c-approximation to the k-means clustering problem, where c is a large absolute constant. Here we generalize and extend their local search algorithm by considering larger and more sophisticated local search neighborhoods hence allowing to swap multiple centers at the same time. Our algorithm achieves a $9+\varepsilon$ approximation ratio, which is the best possible for local search. Importantly we show that our approach yields substantial practical improvements, we show significant quality improvements over the approach of Lattanzi and Sohler (ICML 2019) on several datasets.

1 Introduction

Clustering is a central problem in unsupervised learning. In clustering one is interested in grouping together "similar" object and separate "dissimilar" one. Thanks to its popularity many notions of clustering have been proposed overtime. In this paper, we focus on metric clustering and on one of the most studied problem in the area: the Euclidean k-means problem.
In the Euclidean k-means problem one is given in input a set of points P in \mathbb{R}^{d}. The goal of the problem is to find a set of k centers so that the sum of the square distances to the centers is minimized. More formally, we are interested in finding a set C of k points in \mathbb{R}^{d} such that $\sum_{p \in P} \min _{c \in C}\|p-c\|^{2}$, where with $\|p-c\|$ we denote the Euclidean distance between p and c.
The k-means problem has a long history, in statistics and operations research. For Euclidean k means with running time polynomial in both n, k and d, a 5.912 -approximation was recently shown in Cohen-Addad et al. [2022a], improving upon Kanungo et al. [2004], Ahmadian et al. [2019], Grandoni et al. [2022] by leveraging the properties of the Euclidean metric. In terms of lower bounds, the first to show that the high-dimensional k-means problems were APX-hard were Guruswami and Indyk [2003], and later Awasthi et al. [2015] showed that the APX-hardness holds even if the centers can be placed arbitrarily in \mathbb{R}^{d}. The inapproximability bound was later slightly improved by Lee et al. [2017] until the recent best known bounds of Cohen-Addad and Karthik C. S. [2019], Cohen-Addad et al. [2022d] that showed that it is NP-hard to achieve a better than 1.06-approximation and hard to approximate it better than 1.36 assuming a stronger conjecture. From a more practical point of view, Arthur and Vassilvitskii] [2009] showed that the widely-used popular heuristic of Lloyd Lloyd [1957] can lead to solutions with arbitrarily bad approximation guarantees, but can be improved by a simple seeding strategy, called k-means++, so as to guarantee that the output is within an $O(\log k)$ factor of the optimum Arthur and Vassilvitskii [2007].

Thanks to its simplicity k-means++ is widely adopted in practice. In an effort to improve its performances Lattanzi and Sohler [2019], Choo et al. [2020] combine k-means++ and local search to efficiently obtain a constant approximation algorithm with good practical performance. These two studies show that one can use the k-means++ distribution in combination with a local search algorithm to get the best of both worlds: a practical algorithm with constant approximation guarantees.
However, the constant obtained in Lattanzi and Sohler [2019], Choo et al. [2020] is very large (several thousands in theory) and the question as whether one could obtain a practical algorithm that would efficiently match the $9+\varepsilon$-approximation obtained by the $n^{O(d / \epsilon)}$ algorithm of Kanungo et al. [2004] has remained open. Bridging the gap between the theoretical approach of Kanungo et al. |2004] and k-means++ has thus been a long standing goal.
Our Contributions. We make significant progress on the above line of work.

- We adapt techniques from the analysis of Kanungo et al. [2004] to obtain a tighter analysis of the algorithm in Lattanzi and Sohler [2019]. In particular in Corollary 4, we show that their algorithm achieves an approximation of ratio of ≈ 26.64.
- We extend this approach to multi-swaps, where we allow swapping more than one center at each iteration of local search, improving significantly the approximation to ≈ 10.48 in time $O(n d \cdot \operatorname{poly}(k))$.
- Leveraging ideas from Cohen-Addad et al. [2021], we design a better local search swap that improves the approximation further to $9+\varepsilon$ (see Theorem [12]. This new algorithm matches the $9+\varepsilon$-approximation achieved by the local search algorithm in Kanungo et al. [2004], but it is significantly more efficient. Notice that 9 is the best approximation achievable through local search algorithms, as proved in Kanungo et al. [2004].
- We provide experiments where we compare against k-means++ and Lattanzi and Sohler [2019]. We study a variant of our algorithm that performs very competitively with our theoretically sound algorithm. The variant is very efficient and still outperforms previous work in terms of solution quality, even after the standard postprocessing using Lloyd.

Additional Related Work. We start by reviewing the approach of Kanungo et al. [2004] and a possible adaptation to our setting. The bound of $9+\varepsilon$ on the approximation guarantee shown by Kanungo et al. [2004] is for the following algorithm: Given a set S of k centers, if there is a set S^{+}of at most $2 / \varepsilon$ points in \mathbb{R}^{d} together with a set S^{-}of $\left|S^{+}\right|$points in S such that $S \backslash S^{-} \cup S^{+}$ achieves a better k-means cost than S, then set $S:=S \backslash S^{-} \cup S^{+}$and repeat until convergence. The main drawback of the algorithm is that it asks whether there exists a set S^{+}of points in \mathbb{R}^{d} that could be swapped with elements of S to improve the cost. Identifying such a set, even of constant size, is already non-trivial. The best way of doing so is through the following path: First compute a coreset using the state-of-the-art coreset construction of Cohen-Addad et al. [2022b] and apply the dimensionality reduction of Becchetti et al. [2019], Makarychev et al. [2019], hence obtaining a set of $\tilde{O}\left(k / \varepsilon^{4}\right)$ points in dimension $O\left(\log k / \varepsilon^{2}\right)$. Then, compute grids using the discretization framework of Matousek 2000] to identify a set of $\varepsilon^{-O(d)} \sim k^{O\left(\varepsilon^{-2} \log (1 / \varepsilon)\right)}$ grid points that contains nearly-optimum centers. Now, run the local search algorithm where the sets S^{+}are chosen from the grid points by brute-force enumeration over all possible subsets of grid points of size at most, say s. The running time of the whole algorithm with swaps of magnitude s, i.e.: $\left|S^{+}\right| \leq s$, hence becomes $k^{O\left(s \cdot \varepsilon^{-2} \log (1 / \varepsilon)\right)}$ for an approximation of $(1+\varepsilon)(9+2 / s)$, meaning a dependency in k of $k^{O\left(\varepsilon^{-3} \log (1 / \varepsilon)\right)}$ to achieve a $9+\varepsilon$-approximation. Our results improves upon this approach in two ways: (1) it improves over the above theoretical bound and (2) does so through an efficient and implementable, i.e.: practical, algorithm.
Recently, Grunau et al. [2023] looked at how much applying a greedy rule on top of the k-means++ heuristic improves its performance. The heuristic is that at each step, the algorithm samples ℓ centers and only keeps the one that gives the best improvement in cost. Interestingly the authors prove that from a theoretical standpoint this heuristic does not improve the quality of the output. Local search algorithms for k-median and k-means have also been studied by Gupta and Tangwongsan |2008] who drastically simplified the analysis of Arya et al. [2004]. Cohen-Addad and Schwiegelshohn|[2017] demonstrated the power of local search for stable instances. Friggstad et al. [2019], Cohen-Addad et al. [2019] showed that local search yields a PTAS for Euclidean inputs of bounded dimension (and doubling metrics) and minor-free metrics. Cohen-Addad [2018] showed how to speed up the local search algorithm using $k d$-trees (i.e.: for low dimensional inputs).

For fixed k, there are several known approximation schemes, typically using small coresets Becchetti et al. [2019], Feldman and Langberg [2011], Kumar et al. [2010]. The state-of-the-art approaches are due to Bhattacharya et al. [2020], Jaiswal et al.|[2014]. The best known coreset construction remains Cohen-Addad et al. [2022c|b].

If the constraint on the number of output centers is relaxed, then we talk about bicriteria approximations and k-means has been largely studied Bandyapadhyay and Varadarajan [2016], Charikar and Guha [2005], Cohen-Addad and Mathieu [2015], Korupolu et al. [2000], Makarychev et al. [2016].

2 Preliminaries

Notation. We denote with $P \subseteq \mathbb{R}^{d}$ the set of input points and let $n=|P|$. Given a point set $Q \subseteq P$ we use $\mu(Q)$ to denote the mean of points in Q. Given a point $p \in P$ and a set of centers A we denote with $A[p]$ the closest center in A to p (ties are broken arbitrarily). We denote with \mathcal{C} the set of centers currently found by our algorithm and with \mathcal{O}^{*} an optimal set of centers. Therefore, given $p \in P$, we denote with $\mathcal{C}[p]$ and $\mathcal{O}^{*}[p]$ its closest ALG-center and OPT-center respectively. We denote by $\operatorname{cost}(Q, A)$ the cost of points in $Q \subseteq P$ w.r.t. the centers in A, namely

$$
\operatorname{cost}(Q, A)=\sum_{q \in Q} \min _{c \in A}\|q-c\|^{2}
$$

We use ALG and OPT as a shorthand for $\operatorname{cost}(P, \mathcal{C})$ and $\operatorname{cost}\left(P, \mathcal{O}^{*}\right)$ respectively. When we sample points proportionally to their current cost (namely, sample q with probability $\operatorname{cost}(q, \mathcal{C}) / \operatorname{cost}(P, \mathcal{C})$) we call this the D^{2} distribution. When using $O_{\varepsilon}(\cdot)$ and $\Omega_{\varepsilon}(\cdot)$ we mean that ε is considered constant. We use $\widetilde{O}(f)$ to hide polylogarithmic factors in f. The following lemma is folklore.
Lemma 1. Given a point set $Q \subseteq P$ and a point $p \in P$ we have

$$
\operatorname{cost}(Q, p)=\operatorname{cost}(Q, \mu(Q))+|Q| \cdot\|p-\mu(Q)\|^{2}
$$

Let O_{i}^{*} be an optimal cluster, we define the radius of O_{i}^{*} as ρ_{i} such that $\rho_{i}^{2} \cdot\left|O_{i}^{*}\right|=\operatorname{cost}\left(O_{i}^{*}, o_{i}\right)$, where $o_{i}=\mu\left(O_{i}^{*}\right)$. We define the δ-core of the optimal cluster O_{i}^{*} as the set of points $p \in O_{i}^{*}$ that lie in a ball of radius $(1+\delta) \rho_{i}$ centered in o_{i}. In symbols, core $\left(O_{i}^{*}\right)=P \cap B\left(o_{i},(1+\delta) \rho_{i}\right)$. Throughout the paper, δ is always a small constant fixed upfront, hence we omit it.
Lemma 2. Let O_{i}^{*} be an optimal cluster and sample $q \in O_{i}^{*}$ according to the D^{2}-distribution restricted to O_{i}^{*}. If $\operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right)>(2+3 \delta) \cdot \operatorname{cost}\left(O_{i}^{*}, o_{i}\right)$ then $\operatorname{Pr}\left[q \in \operatorname{core}\left(O_{i}^{*}\right)\right]=\Omega_{\delta}(1)$.

Proof. Define $\alpha:=\operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right) / \operatorname{cost}\left(O_{i}^{*}, o_{i}\right)>2+3 \delta$. Thanks to Lemma1, for each $c \in \mathcal{C}$ we have $\left\|c-o_{i}\right\|^{2} \geq(\alpha-1) \rho_{i}^{2}$. Therefore, for each $y \in \operatorname{core}\left(O_{i}^{*}\right)$ and every $c \in \mathcal{C}$ we have

$$
\operatorname{cost}(y, c)=\|y-c\|^{2} \geq(\sqrt{\alpha-1}-(1+\delta))^{2} \cdot \rho_{i}^{2}=\Omega_{\delta}\left(\alpha \rho_{i}^{2}\right)
$$

Moreover, by a Markov's inequality argument we have $\left|O_{i}^{*} \backslash \operatorname{core}\left(O_{i}^{*}\right)\right| \leq \frac{1}{1+\delta} \cdot\left|O_{i}^{*}\right|$ and thus $\left|\operatorname{core}\left(O_{i}^{*}\right)\right| \geq \Omega_{\delta}\left(\left|O_{i}^{*}\right|\right)$. Combining everything we get

$$
\operatorname{cost}\left(\operatorname{core}\left(O_{i}^{*}\right), \mathcal{C}\right) \geq\left|\operatorname{core}\left(O_{i}^{*}\right)\right| \cdot \min _{\substack{c \in \mathcal{C} \\ y \in \operatorname{core}\left(O_{i}^{*}\right)}} \operatorname{cost}(y, c)=\Omega_{\delta}\left(\left|O_{i}^{*}\right|\right) \cdot \Omega_{\delta}\left(\alpha \rho_{i}^{2}\right)
$$

and $\left|O_{i}^{*}\right| \cdot \alpha \rho_{i}^{2}=\operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right)$, hence $\operatorname{cost}\left(\operatorname{core}\left(O_{i}^{*}\right), \mathcal{C}\right)=\Omega_{\delta}\left(\operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right)\right)$.

3 Multi-Swap k-Means++

The single-swap local search (SSLS) k-means++ algorithm in Lattanzi and Sohler [2019] works as follows. First, k centers are sampled using k-means++ (namely, they are sampled one by one according to the D^{2} distribution, updated for every new center). Then, $O(k \log \log k)$ steps of local search follow. In each local search step a point $q \in P$ is D^{2}-sampled, then let c be the center among the current centers \mathcal{C} such that $\operatorname{cost}(P,(\mathcal{C} \backslash\{c\}) \cup\{q\})$ is minimum. If $\operatorname{cost}(P,(\mathcal{C} \backslash\{c\}) \cup\{q\})<$ $\operatorname{cost}(P, \mathcal{C})$ then we swap c and q, or more formally we set $\mathcal{C} \leftarrow(\mathcal{C} \backslash\{c\}) \cup\{q\}$.
We extend the SSLS so that we allow to swap multiple centers simultaneously and call this algorithm multi-swap local search (MSLS) k-means++. Swapping multiple centers at the same time achieves a lower approximation ratio, in exchange for a higher time complexity. In this section, we present and analyse the p-swap local search (LS) algorithm for a generic number of p centers swapped at each step. For any constant $\delta>0$, we obtain an approximation ratio $\mathrm{ALG} / \mathrm{OPT}=\eta^{2}+\delta$ where

$$
\begin{equation*}
\eta^{2}-(2+2 / p) \eta-(4+2 / p)=0 \tag{1}
\end{equation*}
$$

The Algorithm. First, we initialize our set of centers using k-means++. Then, we run $O\left(n d k^{p-1}\right)$ local search steps, where a local search step works as follows. We D^{2}-sample a set $I n=\left\{q_{1} \ldots q_{p}\right\}$ of points from P (without updating costs). Then, we iterate over all possible sets $O u t=\left\{c_{1} \ldots c_{p}\right\}$ of p distinct elements in $\mathcal{C} \cup I n$ and select the set $O u t$ such that performing the swap (In,Out) maximally improves the cos ${ }^{11}$. If this choice of $O u t$ improves the cost, then we perform the swap (In, Out), else we do not perform any swap for this step.

Theorem 3. For any $\delta>0$, the p-swap local search algorithm above runs in $\widetilde{O}\left(n d k^{2 p}\right)$ time and, with constant probability, finds an $\left(\eta^{2}+\delta\right)$-approximation of k-means, where η satisfies Equation (1).

Notice that the SSLS algorithm of Lattanzi and Sohler [2019] is exactly the p-swap LS algorithm above for $p=1$.
Corollary 4. The single-swap local search in Lattanzi and Sohler [2019], Choo et al., [2020] achieves an approximation ratio <26.64.
Corollary 5. For $p=O(1)$ large enough, multi-swap local search achieves an approximation ratio <10.48 in time $O(n d \cdot \operatorname{poly}(k))$.

3.1 Analysis of Multi-Swap k-means++

In this section we prove Theorem 3. Our main stepping stone is the following lemma.
Lemma 6. Let ALG denote the cost at some point in the execution of MSLS. As long as ALG/OPT > $\eta^{2}+\delta$, a local search step improves the cost by a factor $1-\Omega(1 / k)$ with probability $\Omega\left(1 / k^{p-1}\right)$.

Proof of Theorem 3. First, we show that $O\left(k^{p} \log \log k\right)$ local steps suffice to obtain the desired approximation ratio, with constant probability. Notice that a local search step can only improve the cost function, so it is sufficient to show that the approximation ratio is achieved at some point in time. We initialize our centers using k-means++, which gives a $O(\log k)$-approximation in expectation. Thus, using Markov's inequality the approximation guarantee $O(\log k)$ holds with arbitrary high constant probability. We say that a local-search step is successful if it improves the cost by a factor of at least $1-\Omega(1 / k)$. Thanks to Lemma 6 , we know that unless the algorithm has already achieved the desired approximation ratio then a local-search step is successful with probability $\Omega\left(1 / k^{p-1}\right)$. To go from $O(\log k)$ to $\eta^{2}+\delta$ we need $O(k \log \log k)$ successful local search steps. Standard concentration bounds on the value of a Negative Binomial random variable show that, with high probability, the number of trial to obtain $O(k \log \log k)$ successful local-search steps is $O\left(k^{p} \log \log k\right)$. Therefore, after $O\left(k^{p} \log \log k\right)$ local-search steps we obtain an approximation ratio of $\eta^{2}+\delta$.

To prove the running time bound it is sufficient to show that a local search step can be performed in time $\widetilde{O}\left(n d k^{p-1}\right)$. This is possible if we maintain, for each point $x \in P$, a dynamic sorted dictionary ${ }^{2}$ storing the pairs $\left(\operatorname{cost}\left(x, c_{i}\right), c_{i}\right)$ for each $c_{i} \in \mathcal{C}$. Then we can combine the exhaustive search over all possible size- p subsets of $\mathcal{C} \cup I n$ and the computation of the new cost function using time $O\left(n d k^{p-1} \log k\right)$. To do so, we iterate over all possible size- $(p-1)$ subsets Z of $\mathcal{C} \cup I n$ and update all costs as if these centers were removed, then for each point $x \in P$ we compute how much its cost increases if we remove its closest center c_{x} in $(\mathcal{C} \cup I n) \backslash Z$ and charge that amount to c_{x}. In the end, we consider $O u t=Z \cup\{c\}$ where c is the cheapest-to-remove center found in this way.

The rest of this section is devoted to proving Lemma 6 . For convenience, we prove that Lemma 6 holds whenever ALG/OPT $>\eta^{2}+O(\delta)$, which is wlog by rescaling δ. Recall that we now focus on a given step of the algorithm, and when we say current cost, current centers and current clusters we refer to the state of these objects at the end of the last local-search step before the current one. Let $O_{1}^{*} \ldots O_{k}^{*}$ be an optimal clustering of P and let $\mathcal{O}^{*}=\left\{o_{i}=\mu\left(O_{i}^{*}\right) \mid\right.$ for $\left.i=1 \ldots k\right\}$ be the set of optimal centers of these clusters. We denote with $C_{1} \ldots C_{k}$ the current set of clusters at that stage of the local search and with $\mathcal{C}=\left\{c_{1} \ldots c_{k}\right\}$ the set of their respective current centers.

We say that c_{i} captures o_{j} if c_{i} is the closest current center to o_{j}, namely $c_{i}=\mathcal{C}\left[o_{j}\right]$. We say that c_{i} is busy if it captures more than p optimal centers, and we say it is lonely if it captures no optimal center. Let $\widetilde{\mathcal{O}}=\left\{o_{i} \mid \operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right)>\delta \cdot \operatorname{ALG} / k\right\}$ and $\widetilde{\mathcal{C}}=\mathcal{C} \backslash\left\{\mathcal{C}\left[o_{i}\right] \mid o_{i} \in \mathcal{O}^{*} \backslash \widetilde{\mathcal{O}}\right\}$. For ease of notation, we simply assume that $\widetilde{\mathcal{O}}=\left\{o_{1} \ldots o_{h}\right\}$ and $\widetilde{\mathcal{C}}=\left\{c_{1} \ldots c_{h^{\prime}}\right\}$. Notice that $h^{\prime}>h$.

[^0]Weighted ideal multi-swaps. Given $I n \subseteq P$ and $O u t \subseteq \widetilde{\mathcal{C}}$ of the same size we say that the swap (In, Out) is an ideal swap if In $\subseteq \widetilde{\mathcal{O}}$. We now build a set of weighted ideal multi-swaps \mathcal{S}. First, suppose wlog that $\left\{c_{1} \ldots c_{t}\right\}$ is the set of current centers in $\widetilde{\mathcal{C}}$ that are neither lonely nor busy. Let \mathcal{L} be the set of lonely centers in $\widetilde{\mathcal{C}}$. For each $i=1 \ldots t$, we do the following. Let In be the set of optimal centers in $\widetilde{\mathcal{O}}$ captured by c_{i}. Choose a set \mathcal{L}_{i} of $|I n|-1$ centers from \mathcal{L}, set $\mathcal{L} \leftarrow \mathcal{L} \backslash \mathcal{L}_{i}$ and define $O u t=\mathcal{L}_{i} \cup\left\{c_{i}\right\}$. Assign weight 1 to (In,Out) and add it to \mathcal{S}. For each busy center $c_{i} \in\left\{c_{t+1} \ldots c_{h^{\prime}}\right\}$ let A be the set of optimal centers in $\widetilde{\mathcal{O}}$ captured by c_{i}, pick a set \mathcal{L}_{i} of $|A|-1$ lonely current centers from \mathcal{L} (a counting argument shows that this is always possible). Set $\mathcal{L} \leftarrow \mathcal{L} \backslash \mathcal{L}_{i}$. For each $o_{j} \in A$ and $c_{\ell} \in \mathcal{L}_{i}$ assign weight $1 /(|A|-1)$ to $\left(o_{j}, c_{\ell}\right)$ and add it to \mathcal{S}.
Observation 7. The process above generates a set of weighted ideal multi-swaps such that: (i) Every swap has size at most p; (ii) The combined weights of swaps involving an optimal center o_{i} is 1 ; (iii) The combined weights of swaps involving a current center c_{i} is at most $1+1 / p$.

Consider an ideal swap (In, Out). Let $O_{I n}^{*}=\bigcup_{o_{i} \in I n} O_{i}^{*}$ and $C_{O u t}=\bigcup_{c_{j} \in O u t} C_{j}$. Define the reassignment cost Reassign(In,Out) as the increase in cost of reassigning points in $C_{O u t} \backslash O_{I n}^{*}$ to centers in $\mathcal{C} \backslash$ Out. Namely,

$$
\operatorname{Reassign}(I n, O u t)=\operatorname{cost}\left(C_{O u t} \backslash O_{I n}^{*}, \mathcal{C} \backslash O u t\right)-\operatorname{cost}\left(C_{O u t} \backslash O_{I n}^{*}, \mathcal{C}\right)
$$

We take the increase in cost of the following reassignment as an upper bound to the reassignment cost. For each $p \in C_{O u t} \backslash O_{I n}^{*}$ we consider its closest optimal center $\mathcal{O}^{*}[p]$ and reassign p to the current center that is closest to $\mathcal{O}^{*}[p]$, namely $\mathcal{C}\left[\mathcal{O}^{*}[p]\right]$. In formulas, we have

$$
\begin{aligned}
\operatorname{Reassign}(\text { In, Out }) & \leq \sum_{p \in C_{O u t} \backslash O_{I n}^{*}} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right)-\operatorname{cost}(p, \mathcal{C}[p]) \\
& \leq \sum_{p \in C_{\text {Out }}} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right)-\operatorname{cost}(p, \mathcal{C}[p])
\end{aligned}
$$

Indeed, by the way we defined our ideal swaps we have $\mathcal{C}\left[\mathcal{O}^{*}[p]\right] \notin O u t$ for each $p \notin O_{I n}^{*}$ and this reassignment is valid. Notice that the right hand side in the equation above does not depend on $I n$.
Lemma 8. $\sum_{p \in P} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right) \leq 2 O P T+A L G+2 \sqrt{A L G} \sqrt{O P T}$.
Proof. Deferred to the supplementary material.
Lemma 9. The combined weighted reassignment costs of all ideal multi-swaps in \mathcal{S} is at most $(2+2 / p) \cdot(O P T+\sqrt{A L G} \sqrt{O P T})$.

Proof. Denote by $w(I n, O u t)$ the weight associated with the swap (In, Out).

$$
\begin{array}{r}
\sum_{(\text {In }, \text { Out }) \in \mathcal{S}} w(\text { In,Out }) \cdot \operatorname{Reassign}(\text { In }, \text { Out }) \leq \\
\sum_{(\text {In,Out }) \in \mathcal{S}} w(\text { In }, \text { Out }) \cdot \sum_{p \in C_{\text {Out }}} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right)-\operatorname{cost}(p, \mathcal{C}[p]) \leq \\
(1+1 / p) \cdot \sum_{c_{j} \in \mathcal{C}} \sum_{p \in C_{j}} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right)-\operatorname{cost}(p, \mathcal{C}[p]) \leq \\
(1+1 / p) \cdot\left(\sum_{p \in P} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right)-\mathrm{ALG}\right)
\end{array}
$$

The second inequality uses (iii) from Observation 7 Applying Lemma 8 completes the proof.
Recall the notions of radius and core of an optimal cluster introduced in Section 2. We say that a swap (In, Out) is strongly improving if $\operatorname{cost}(P,(\mathcal{C} \cup I n) \backslash O u t) \leq(1-\delta / k) \cdot \operatorname{cost}(P, \mathcal{C})$. Let In $=\left\{o_{1} \ldots o_{s}\right\} \subseteq \widetilde{\mathcal{O}}$ and $O u t=\left\{c_{1} \ldots c_{s}\right\} \subseteq \widetilde{\mathcal{C}}$ we say that an ideal swap (In,Out) is good if for every $q_{1} \in \operatorname{core}\left(o_{1}\right) \ldots q_{s} \in \operatorname{core}\left(o_{s}\right)$ the swap $(\mathcal{Q}, O u t)$ is strongly improving, where $\mathcal{Q}=\left\{q_{1} \ldots q_{s}\right\}$. We call an ideal swap bad otherwise. We say that an optimal center $o_{i} \in \widetilde{\mathcal{O}}$ is good if that's the case for at least one of the ideal swaps it belongs to. Recalling how we constructed our
set of weighted ideal swaps \mathcal{S}, if o_{i} belongs to a s-swap (In,Out) $\in \mathcal{S}$ for $s>1$ then it is good if and only if (In, Out) is good; else o_{i} might belong to up to $p-1$ single swaps and then any of them being good would suffice. Denote with G the union of cores of good optimal centers in $\widetilde{\mathcal{O}}$.
Lemma 10. If an ideal swap (In, Out) is bad, then we have

$$
\begin{equation*}
\operatorname{cost}\left(O_{I n}^{*}, \mathcal{C}\right) \leq(2+\delta) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right)+\text { Reassign }(\text { In }, O u t)+\delta A L G / k \tag{2}
\end{equation*}
$$

Proof. Let $\operatorname{In}=\left\{o_{1} \ldots o_{s}\right\}, \mathcal{Q}=\left\{q_{1} \ldots q_{s}\right\}$ such that $q_{1} \in \operatorname{core}\left(o_{1}\right) \ldots q_{s} \in \operatorname{core}\left(o_{s}\right)$. Then, by Lemma $1 \operatorname{cost}\left(O_{I n}^{*}, \mathcal{Q}\right) \leq(2+\delta) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right)$. Moreover, Reassign $(\operatorname{In}, O u t)=$ $\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C} \backslash O u t\right)-\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C}\right)$ because points in $P \backslash C_{O u t}$ are not affected by the swap. Therefore, $\operatorname{cost}(P,(\mathcal{C} \cup \mathcal{Q}) \backslash O u t) \leq(2+\delta) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right)+\operatorname{Reassign}(\operatorname{In}, O u t)+$ $\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C}\right)$. Suppose by contradiction that Equation (4) does not hold, then

$$
\begin{aligned}
\operatorname{cost}(P, \mathcal{C}) & -\operatorname{cost}(P,(\mathcal{C} \cup \mathcal{Q}) \backslash O u t)
\end{aligned}=\left\{\begin{aligned}
\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C}\right)+\operatorname{cost}\left(O_{I n}^{*}, \mathcal{C}\right)-\operatorname{cost}(P,(\mathcal{C} \cup \mathcal{Q}) \backslash O u t) \geq \delta \mathrm{ALG} / k .
\end{aligned}\right.
$$

Hence, $(\mathcal{Q}, O u t)$ is strongly improving and this holds for any choice of \mathcal{Q}, contradiction.
Lemma 11. If $A L G / O P T>\eta^{2}+\delta$ then $\operatorname{cost}(G, \mathcal{C})=\Omega_{\delta}(\operatorname{cost}(P, \mathcal{C}))$. Thus, if we D^{2}-sample q we have $P[q \in G]=\Omega_{\delta}(1)$.

Proof. First, we observe that the combined current cost of all optimal clusters in $\mathcal{O}^{*} \backslash \widetilde{\mathcal{O}}$ is at most $k \cdot \delta \mathrm{ALG} / k=\delta \mathrm{ALG}$. Now, we prove that the combined current cost of all O_{i}^{*} such that o_{i} is bad is $\leq(1-2 \delta)$ ALG. Suppose, by contradiction, that it is not the case, then we have:

$$
\begin{gathered}
(1-2 \delta) \mathrm{ALG}<\sum_{\text {Bad } o_{i} \in \widetilde{\mathcal{O}}} \operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right) \leq \sum_{\operatorname{Bad}(\text { In,Out }) \in \mathcal{S}} w(\text { In }, \text { Out }) \cdot \operatorname{cost}\left(O_{I n}^{*}, \mathcal{C}\right) \leq \\
\sum_{\operatorname{Bad}(\text { In }, \text { Out })} w(\text { In }, \text { Out }) \cdot\left((2+\delta) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right)+\operatorname{Reassign}(\text { In }, \text { Out })+\delta \mathrm{ALG} / k\right) \leq \\
(2+\delta) \mathrm{OPT}+(2+2 / p) \mathrm{OPT}+(2+2 / p) \sqrt{\mathrm{ALG}} \sqrt{\mathrm{OPT}}+\delta \mathrm{ALG} .
\end{gathered}
$$

The second and last inequalities make use of Observation 7. The third inequality uses Lemma 10 .
Setting $\eta^{2}=$ ALG/OPT we obtain the inequality $\eta^{2}-(2+2 / p \pm O(\delta)) \eta-(4+2 / p \pm O(\delta)) \leq 0$. Hence, we obtain a contradiction in the previous argument as long as $\eta^{2}-(2+2 / p \pm O(\delta)) \eta-$ $(4+2 / p \pm O(\delta))>0$. A contradiction there implies that at least an δ-fraction of the current cost is due to points in $\bigcup_{\text {Good } o_{i} \in \widetilde{\mathcal{O}}} O_{i}^{*}$. We combine this with Lemma 2 and conclude that the total current cost of $G=\bigcup_{\text {Good } o_{i} \in \widetilde{\mathcal{O}}} \operatorname{core}\left(O_{i}^{*}\right)$ is $\Omega_{\delta}(\operatorname{cost}(P, \mathcal{C}))$.
Finally, we prove Lemma 6. Whenever $q_{1} \in G$ we have that $q_{1} \in \operatorname{core}\left(o_{1}\right)$ for some good o_{1}. Then, for some $s \leq p$ we can complete o_{1} with $o_{2} \ldots o_{s}$ such that $I n=\left\{o_{1} \ldots o_{s}\right\}$ belongs to a good swap. Concretely, there exists $O u t \subseteq \mathcal{C}$ such that (In,Out) is a good swap. Since In $\subset \widetilde{\mathcal{O}}$ we have $\operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right)>\delta \mathrm{OPT} / k$ for all $o_{i} \in I n$, which combined with Lemma 2 gives that for $i=2 \ldots s P\left[q_{i} \in \operatorname{core}\left(o_{i}\right)\right] \geq \Omega_{\delta}(1 / k)$. Hence, we have $P\left[q_{i} \in \operatorname{core}\left(o_{i}\right)\right.$ for $i=$ $1 \ldots s] \geq \Omega_{\delta, p}\left(1 / k^{p-1}\right)$. Whenever we sample $q_{1} \ldots q_{s}$ from core $\left(o_{1}\right) \ldots \operatorname{core}\left(o_{s}\right)$, we have that $(\mathcal{Q}$, Out) is strongly improving. Notice, however, that $(\mathcal{Q}, O u t)$ is a s-swap and we may have $s<p$. Nevertheless, whenever we sample $q_{1} \ldots q_{s}$ followed by any sequence $q_{s+1} \ldots q_{p}$ it is enough to choose $O u t^{\prime}=O u t \cup\left\{q_{s+1} \ldots q_{p}\right\}$ to obtain that $\left(\left\{q_{1} \ldots q_{p}\right\}, O u t^{\prime}\right)$ is an improving p-swap.

4 A Faster $(9+\varepsilon)$-Approximation Local Search Algorithm

The MSLS algorithm from Section 3 achieves an approximation ratio of $\eta^{2}+\varepsilon$, where $\eta^{2}-(2+$ $2 / p) \eta-(4+2 / p)=0$ and $\varepsilon>0$ is an arbitrary small constant. For large p we have $\eta \approx 10.48$. On the other hand, employing p simultaneous swaps, Kanungo et al. [2004] achieve an approximation factor of $\xi^{2}+\varepsilon$ where $\xi^{2}-(2+2 / p) \xi-(3+2 / p)=0$. If we set $p \approx 1 / \varepsilon$ this yields a $(9+O(\varepsilon))-$ approximation. In the same paper, they prove that 9 -approximation is indeed the best possible for p-swap local search, if p is constant (see Theorem 3.1 in Kanungo et al. [2004]). They showed that 9 is the right locality gap for local search, but they matched it with a very slow algorithm. To achieve a $(9+\varepsilon)$-approximation, they discretize the space reducing to $O\left(n \varepsilon^{-d}\right)$ candidate centers and perform an exhaustive search over all size- $(1 / \varepsilon)$ subsets of candidates at every step. As we saw in the related
work section, it is possible to combine techniques from coreset and dimensionality reduction to reduce the number of points to $n^{\prime}=k \cdot \operatorname{poly}\left(\varepsilon^{-1}\right)$ and the number of dimensions to $d^{\prime}=\log k \cdot \varepsilon^{-2}$. This reduces the complexity of Kanungo et al. 2004 to $k^{O\left(\varepsilon^{-3} \log \varepsilon^{-1}\right)}$.
In this section, we leverage techniques from Cohen-Addad et al. [2021] to achieve a $(9+\varepsilon)$ approximation faster ${ }^{3}$ In particular, we obtain the following.
Theorem 12. Given a set of n points in \mathbb{R}^{d} with aspect ratio Δ, there exists an algorithm that computes a $9+\varepsilon$-approximation to k-means in time $n d k^{O\left(\varepsilon^{-2}\right)} \log O\left(\varepsilon^{-1}\right)(\Delta) \cdot 2^{-p o l y\left(\varepsilon^{-1}\right)}$.

Notice that, besides being asymptotically slower, the pipeline obtained combining known techniques is highly impractical and thus it did not make for an experimental test-bed. Moreover, it is not obvious how to simplify such an ensemble of complex techniques to obtain a practical algorithm.

Limitations of MSLS. The barrier we need to overcome in order to match the bound in Kanungo et al. [2004] is that, while we only consider points in P as candidate centers, the discretization they employ considers also points in $\mathbb{R}^{d} \backslash P$. In the analysis of MSLS we show that we sample each point q_{i} from core $\left(O_{i}^{*}\right)$ or equivalently that $q_{i} \in B\left(o_{i},(1+\epsilon) \rho_{i}\right)$, where ρ_{i} is such that O_{i}^{*} would have the same cost w.r.t. o_{i} if all its points were moved on a sphere of radius ρ_{i} centered in o_{i}. This allows us to use a Markov's inequality kind of argument and conclude that there must be $\Omega_{\epsilon}\left(\left|O_{i}^{*}\right|\right)$ points in $O_{i}^{*} \cap B\left(o_{i},(1+\epsilon) \rho_{i}\right)$. However, we have no guarantee that there is any point at all in $O_{i}^{*} \cap B\left(o_{i},(1-\varepsilon) \rho_{i}\right)$. Indeed, all points in O_{i}^{*} might lie on $\partial B\left(o_{i}, \rho_{i}\right)$. The fact that potentially all our candidate centers q are at distance at least ρ_{i} from o_{i} yields (by Lemma 1) $\operatorname{cost}\left(O_{i}^{*}, q\right) \geq 2 \operatorname{cost}\left(O_{i}^{*}, o_{i}\right)$, which causes the zero-degree term in $\xi^{2}-(2+2 / p) \xi-(3+2 / p)=0$ from Kanungo et al. [2004] to become a 4 in our analysis.

Improving MSLS by taking averages. First, we notice that, in order to achieve $(9+\varepsilon)$ approximation we need to set $p=\Theta(1 / \varepsilon)$. The main hurdle to achieve a $(9+\varepsilon)$-approximation is that we need to replace the q_{i} in MSLS with a better approximation of o_{i}. We design a subroutine that computes, with constant probability, an ε-approximation \hat{o}_{i} of o_{i} (namely, $\operatorname{cost}\left(O_{i}^{*}, \hat{o}_{i}\right) \leq$ $\left.(1+\varepsilon) \operatorname{cost}\left(O_{i}^{*}, o_{i}\right)\right)$. The key idea is that, if sample uniformly $O(1 / \varepsilon)$ points from O_{i}^{*} and define \hat{o}_{i} to be the average of our samples then $\operatorname{cost}\left(O_{i}^{*}, \hat{o}_{i}\right) \leq(1+\varepsilon) \operatorname{cost}\left(O_{i}^{*}, o_{i}\right)$
Though, we do not know O_{i}^{*}, so sampling uniformly from it is non-trivial. To achieve that, for each q_{i} we identify a set N of nice candidate points in P such that a poly $(\varepsilon) / k$ fraction of them are from O_{i}^{*}. We sample $O(1 / \varepsilon)$ points uniformly from N and thus with probability $(\varepsilon / k)^{O(1 / \varepsilon)}$ we sample only points from O_{i}^{*}. Thus far, we sampled $O(1 / \varepsilon)$ points uniformly from $N \cap O_{i}^{*}$. What about the points in $O_{i}^{*} \backslash N$? We can define N so that all points in $O_{i}^{*} \backslash N$ are either very close to some of the $\left(q_{j}\right)_{j}$ or they are very far from q_{i}. The points that are very close to points $\left(q_{j}\right)_{j}$ are easy to treat. Indeed, we can approximately locate them and we just need to guess their mass, which is matters only when $\geq \operatorname{poly}(\varepsilon)$ ALG, and so we pay only a $\log ^{O(1 / \varepsilon)}(1 / \varepsilon)$ multiplicative overhead to guess the mass close to q_{j} for $j=1 \ldots p=\Theta(1 / \varepsilon)$. As for a point f that is very far from q_{i} (say, $\left\|f-q_{i}\right\| \gg \rho_{i}$) we notice that, although f 's contribution to $\operatorname{cost}\left(O_{i}^{*}, o_{i}\right)$ may be large, we have $\operatorname{cost}(f, o) \approx \operatorname{cost}\left(f, o_{i}\right)$ for each $o \in B\left(q_{i}, \rho_{i}\right) \subseteq B\left(o_{i},(2+\varepsilon) \rho_{i}\right)$ assuming $q_{i} \in \operatorname{core}\left(o_{i}\right)$.

5 Experiments

In this section, we show that our new algorithm using multi-swap local search can be employed to design an efficient seeding algorithm for Lloyd's which outperforms both the classical k-means++ seeding and the single-swap local search from Lattanzi and Sohler [2019].

Algorithms. The multi-swap local search algorithm that we analysed above performs very well in terms of solution quality. This empirically verifies the improved approximation factor of our algorithm, compared to the single-swap local search of Lattanzi and Sohler [2019].
Motivated by practical considerations, we heuristically adapt our algorithm to make it very competitive with SSLS in terms of running time and still remain very close, in terms of solution quality, to the theoretically superior algorithm that we analyzed. The adaptation of our algorithm replaces the phase where it selects the p centers to swap-out by performing an exhaustive search over $\binom{k+p}{p}$ subsets of

[^1]

Figure 1: Comparison between MSLS and MSLS-G, for $p=3$, for $k=25$, on the datasets KDDBIO and RNA. The y axis shows the solution cost divided by the means solution cost of KM++.
centers. Instead, we use an efficient heuristic procedure for selecting the p centers to swap-out, by greedily selecting one by one the centers to swap-out. Specifically, we select the first center to be the cheapest one to remove (namely, the one that increases the cost by the least amount once the points in its cluster are reassigned to the remaining centers). Then, we update all costs and select the next center iteratively. After p repetitions we are done. We perform an experimental evaluation of the "greedy" variant of our algorithm compared to the theoretically-sound algorithm from Section 3 and show that employing the greedy heuristic does not measurably impact performance.
The four algorithms that we evaluate are the following: 1) KM++: The k-means++ from Arthur and Vassilvitskii [2007], 2) SSLS: The Single-swap local search method from Lattanzi and Sohler [2019], 3) MSLS: The multi-swap local search from Section3, and 4) MSLS-G: The greedy variant of multi-swap local search as described above.
We use MSLS-G- $p=x$ and MSLS- $p=x$, to denote MSLS-G and MSLS with $p=x$, respectively. Notice that MSLS-G- $p=1$ is exactly SSLS. Our experimental evaluation explores the effect of p-swap LS, for $p>1$, in terms of solution cost and running time.
Datasets. We consider the three datasets used in Lattanzi and Sohler [2019] to evaluate the performance of SSLS: 1) KDD-PHY - 100, 000 points with 78 features representing a quantum physic task kdd [2004], 2) RNA - 488, 565 points with 8 features representing RNA input sequence pairs Uzilov et al. [2006], and 3) KDD-BIO - 145, 751 points with 74 features measuring the match between a protein and a native sequence kdd [2004]. We discuss the results for two or our datasets, namely KDD-BIO and RNA. We deffer the results on KDD-PHY to the appendix and note that the results are very similar to the results on RNA.

We performed a preprocessing step to clean-up the datasets. We observed that the standard deviation of some features was disproportionately high. This causes all costs being concentrated in few dimensions making the problem, in some sense, lower-dimensional. Thus, we apply min-max scaling to all datasets and observed that this causes all our features' standard deviations to be comparable.

Experimental setting. All our code is written in Python. The code will be made available upon publication of this work. We did not make use of parallelization techniques. To run our experiments, we used a personal computer with 8 cores, a 1.8 Ghz processor, and 15.9 GiB of main memory We run all experiments 5 times and report the mean and standard deviation in our plots. All our plots report the progression of the cost either w.r.t local search steps, or Lloyd's iterations. We run experiments on all our datasets for $k=10,25,50$. The main body of the paper reports the results for $k=25$, while the rest can be found in the appendix. We note that the conclusions of the experiments for $k=10,50$ are similar to those of $k=25$.

Removing centers greedily. We first we compare MSLS-G with MSLS. To perform our experiment, we initialize $k=25$ centers using k-means++ and then run 50 iterations of local search for both algorithms, for $p=3$ swaps. Due to the higher running of the MSLS we perform this experiments on 1% uniform sample of each of our datasets. We find out that the performance of the two algorithms is comparable on all our instances, while they both perform roughly $15 \%-27 \%$ at convergence. Figure 1 shows the aggregate results, over 5 repetitions of our experiment.

It may happen that MSLS, which considers all possible swaps of size p at each LS iteration, performs worse than MSLS-G as a sub-optimal swap at intermediate iterations may still lead to a better local

Figure 2: The first row compares the cost of MSLS-G, for $p \in\{1,4,7,10\}$, divided by the mean cost of KM++ at each LS step, for $k=25$. The legend reports also the running time of MSLS-G per LS step (in seconds). The second row compares the cost after each of the 10 iterations of Lloyd with seeding from MSLS-G, for $p \in\{1,4,7,10\}$ and 15 local search steps and KM++, for $k=25$.
optimum by coincidence. Given that MSLS-G performs very comparably to MSLS, while it is much faster in practice, we use MSLS-G for the rest of our experiments where we compare to baselines. This allows us to consider higher values of p, without compromising much the running time.

Results: Evaluating the quality and performance of the algorithms. In our first experiment we run $\mathrm{KM}++$ followed by 50 iterations of MSLS-G with $p=1,4,7,10$ and plot the relative cost w.r.t. $\mathrm{KM}++$ at each iteration, for $k=25$. The first row of Figure 2 plots the results. Our experiment shows that, after 50 iterations MSLS-G for $p=4,7,10$ achieves improvements of roughly 10% compared to MSLS-G- $p=1$ and of the order of $20 \%-30 \%$ compared to KM++. We also report the time per iteration that each algorithm takes. For comparison, we report the running time of a single iteration of Lloyd's next to the dataset's name. It is important to notice that, although MSLS-G- $p=1$ is faster, running more iterations MSLS-G- $p=1$ is not sufficient to compete with MSLS-G when $p>1$.

Results: Evaluating the quality after postprocessing using Lloyd. In our second experiment, we use KM++ and MSLS-G as a seeding algorithm for Lloyd's and measure how much of the performance improvement measured in the first experiment is retained after running Lloyd's. First, we initialize our centers using KM++ and the run 15 iterations of MSLS-G for $p=1,4,7$. We measure the cost achieved by running 10 iterations of Lloyd's starting from the solutions found by MSLS-G as well as KM++. In Figure 2 (second row) we plot the results. Notice that, according to the running times from the first experiment, 15 iterations iterations of MSLS-G take less than 10 iterations of Lloyd's for $p=4,7$ (and also for $p=10$, except on RNA). We observe that MSLS-G for $p>1$ performs at least as good as SSLS from Lattanzi and Sohler [2019] and in some cases maintains non-trivial improvements.

Conclusion and Future Directions

We present a new algorithm for the k-means problem and we show that it outperforms theoretically and experimentally state-of-the-art practical algorithms with provable guarantees in terms of solution quality. A very interesting open question is to improve our local search procedure by avoiding the exhaustive search over all possible size- p subsets of centers to swap out, concretely an algorithm with running time $\tilde{O}\left(2^{\text {poly }(1 / \varepsilon)} n d k\right)$.

References

Kdd cup. 2004. URLhttp://osmot.cs.cornell.edu/kddcup/datasets.html.
Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for kmeans and Euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4): FOCS17-97-FOCS17-156, 2019.

David Arthur and Sergei Vassilvitskii. K-means++ the advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035, 2007.

David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. SIAM J. Comput., 39(2):766-782, 2009. doi: 10.1137/ 070683921. URLhttp://dx.doi.org/10.1137/070683921.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM J. Comput., 33(3):544-562, 2004. doi: 10.1137/S0097539702416402. URL https://doi.org/10.1137/ S0097539702416402.

Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The hardness of approximation of euclidean k-means. In Lars Arge and János Pach, editors, 31st International Symposium on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, volume 34 of LIPIcs, pages 754-767. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.SOCG.2015.754. URLhttps://doi.org/10.4230/LIPIcs.SOCG. 2015.754

Sayan Bandyapadhyay and Kasturi Varadarajan. On variants of k-means clustering. In 32nd International Symposium on Computational Geometry (SoCG 2016). Schloss Dagstuhl-LeibnizZentrum fuer Informatik, 2016.

Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris Schwiegelshohn. Oblivious dimension reduction for k-means: beyond subspaces and the johnson-lindenstrauss lemma. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1039-1050, 2019. doi: 10.1145/3313276. 3316318. URL https://doi.org/10.1145/3313276.3316318

Anup Bhattacharya, Dishant Goyal, Ragesh Jaiswal, and Amit Kumar. On sampling based algorithms for k-means. In Nitin Saxena and Sunil Simon, editors, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 13:1-13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10. 4230/LIPIcs.FSTTCS.2020.13. URL https://doi.org/10.4230/LIPIcs.FSTTCS. 2020.13

Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location problems. SIAM J. Comput., 34(4):803-824, 2005. doi: 10.1137/S0097539701398594. URL https: //doi.org/10.1137/S0097539701398594.

Davin Choo, Christoph Grunau, Julian Portmann, and Vaclav Rozhon. k-means++: few more steps yield constant approximation. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 1909-1917. PMLR, 2020. URL https://proceedings.mlr.press/v119/ choo20a.html

Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 430-440. SIAM, 2018. doi: 10.1137/1.9781611975031.29. URL https://doi.org/10.1137/1.9781611975031.29

Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in lp metrics. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 519-539. IEEE Computer Society, 2019. doi: 10.1109/FOCS.2019.00040. URL https://doi.org/10.1109/FOCS.2019.00040

Vincent Cohen-Addad and Claire Mathieu. Effectiveness of local search for geometric optimization. In 31st International Symposium on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, pages 329-343, 2015. doi: 10.4230/LIPIcs.SOCG.2015.329. URL http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.329.

Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering instances. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 49-60. IEEE Computer Society, 2017. doi: 10.1109/FOCS.2017.14. URL https://doi.org/10.1109/FOCS. 2017.14.

Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput., 48(2): 644-667, 2019. doi: 10.1137/17M112717X. URLhttps://doi.org/10.1137/17M112717X.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. Improved coresets and sublinear algorithms for power means in euclidean spaces. Advances in Neural Information Processing Systems, 34:21085-21098, 2021.

Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Improved approximations for euclidean k-means and k-median, via nested quasi-independent sets. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20-24, 2022, pages 1621-1628. ACM, 2022a. doi: 10.1145/3519935.3520011. URL https://doi.org/10.1145/3519935.3520011.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards optimal lower bounds for k-median and k-means coresets. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20-24, 2022, pages 1038-1051. ACM, 2022b. doi: 10.1145/3519935.3519946. URL https://doi.org/10.1145/3519935.3519946

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and Omar Ali Sheikh-Omar. Improved coresets for euclidean k-means. In NeurIPS, 2022c. URL http://papers.nips.cc/paper_files/paper/2022/hash/ 120c9ab5c58ba0fa9dd3a22ace1de245-Abstract-Conference.html.

Vincent Cohen-Addad, Euiwoong Lee, and Karthik C. S. Johnson coverage hypothesis: Inapproximability of k-means and k-median in ℓ_{p} metrics. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM, 2022d.
D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In STOC, pages 569-578, 2011.

Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452-480, 2019. doi: 10.1137/ 17M1127181. URL https://doi.org/10.1137/17M1127181.

Fabrizio Grandoni, Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Rakesh Venkat. A refined approximation for euclidean k-means. Inf. Process. Lett., 176:106251, 2022. doi: 10.1016/j.ipl.2022.106251. URL https://doi.org/10.1016/j.ipl.2022.106251

Christoph Grunau, Ahmet Alper Özüdogru, Václav Rozhon, and Jakub Tetek. A nearly tight analysis of greedy k-means++. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 2225, 2023, pages 1012-1070. SIAM, 2023. doi: 10.1137/1.9781611977554.ch39. URL https: //doi.org/10.1137/1.9781611977554.ch39

Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554, 2008. URL http://arxiv.org/abs/0809.2554.

Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of geometric problems. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 537-538, 2003. URL http://dl.acm.org/ citation.cfm?id=644108.644198.

Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and randomization to variance-based k-clustering. In Proceedings of the tenth annual symposium on Computational geometry, pages 332-339, 1994.

Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D 2-sampling based PTAS for k-means and other clustering problems. Algorithmica, 70(1):22-46, 2014. doi: 10.1007/s00453-013-9833-9. URL https://doi.org/10.1007/s00453-013-9833-9.

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Computational Geometry, 28(2):89-112, 2004. ISSN 0925-7721. doi: https://doi.org/10.1016/ j.comgeo.2004.03.003. URL https://www.sciencedirect.com/science/article/pii/ S0925772104000215. Special Issue on the 18th Annual Symposium on Computational Geometry - SoCG2002.

Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local search heuristic for facility location problems. J. Algorithms, 37(1):146-188, 2000. doi: 10.1006/jagm. 2000.1100. URLhttp://dx.doi.org/10.1006/jagm.2000.1100

Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for clustering problems in any dimensions. J. ACM, 57(2):5:1-5:32, 2010. doi: 10.1145/1667053.1667054. URL https://doi.org/10.1145/1667053.1667054

Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3662-3671. PMLR, 2019. URLhttps://proceedings.mlr.press/v97/lattanzi19a.html.

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability for k-means. Inf. Process. Lett., 120:40-43, 2017. doi: 10.1016/j.ipl.2016.11.009. URL https: //doi.org/10.1016/j.ipl.2016.11.009.

SP Lloyd. Least square quantization in pcm. bell telephone laboratories paper. published in journal much later: Lloyd, sp: Least squares quantization in pcm. IEEE Trans. Inform. Theor.(1957/1982), 18, 1957.

Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A bi-criteria approximation algorithm for k-means. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 14:1-14:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi: 10.4230/LIPIcs. APPROX-RANDOM.2016.14. URL https://doi.org/10.4230/LIPIcs.APPROX-RANDOM 2016.14

Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnsonlindenstrauss transform for k-means and k-medians clustering. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1027-1038. ACM, 2019. doi: 10.1145/3313276. 3316350. URLhttps://doi.org/10.1145/3313276.3316350

Jirí Matousek. On approximate geometric k-clustering. Discrete \& Computational Geometry, 24(1):61-84, 2000. doi: 10.1007/s004540010019. URL http://dx.doi.org/10.1007/ s004540010019.

Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding rnas on the basis of predicted secondary structure formation free energy change. BMC bioinformatics, 7(1): 1-30, 2006.

Supplementary Material

Proofs from Section 3

Lemma 8. $\sum_{p \in P} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right) \leq 2 O P T+A L G+2 \sqrt{A L G} \sqrt{O P T}$.

Proof.

$$
\begin{aligned}
& \sum_{p \in P} \operatorname{cost}\left(p, \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right)= \\
& \sum_{o_{i} \in \mathcal{O}^{*}} \sum_{p \in O_{i}^{*}} \operatorname{cost}\left(p, \mathcal{C}\left[o_{i}\right]\right)= \\
& \sum_{o_{i} \in \mathcal{O}^{*}}\left|O_{i}^{*}\right| \cdot \operatorname{cost}\left(o_{i}, \mathcal{C}\left[o_{i}\right]\right)+\operatorname{cost}\left(O_{i}^{*}, o_{i}\right)= \\
& \mathrm{OPT}+\sum_{p \in P} \operatorname{cost}\left(\mathcal{O}^{*}[p], \mathcal{C}\left[\mathcal{O}^{*}[p]\right]\right) \leq \\
& \mathrm{OPT}+\sum_{p \in P} \operatorname{cost}\left(\mathcal{O}^{*}[p], \mathcal{C}[p]\right) \leq \\
& \mathrm{OPT}+\sum_{p \in P}\left(\left\|\mathcal{O}^{*}[p]-p\right\|+\|p-\mathcal{C}[p]\|\right)^{2}= \\
& 2 \mathrm{OPT}+\mathrm{ALG}+2 \sum_{p \in P}\left\|\mathcal{O}^{*}[p], p\right\| \cdot\|p, \mathcal{C}[p]\| \leq 2 \mathrm{OPT}+\mathrm{ALG}+2 \sqrt{\mathrm{ALG} \sqrt{\mathrm{OPT}}}
\end{aligned}
$$

The second equality is due to Lemma 1 and the last inequality is due to Cauchy-Schwarz.

Proofs from Section 4

In this section, we prove the following.
Theorem 12. Given a set of n points in \mathbb{R}^{d} with aspect ratio Δ, there exists an algorithm that computes a $9+\varepsilon$-approximation to k-means in time $n d k^{O\left(\varepsilon^{-2}\right)} \log ^{O\left(\varepsilon^{-1}\right)}(\Delta) \cdot 2^{-p o l y\left(\varepsilon^{-1}\right)}$.

We start with a key lemma showing that a sample of size $O(1 / \varepsilon)$ is enough to approximate 1-mean.
Lemma 13 (Form Inaba et al. 1994]). Given an instance $P \subseteq \mathbb{R}^{d}$, sample $m=1 /(\varepsilon \delta)$ points uniformly at random from P and denote the set of samples with S. Then $\cos t(P, \mu(S)) \leq(1+$ $\varepsilon) \operatorname{cost}(P, \mu(P))$ with probability at least $1-\delta$.

Proof. We want to prove that with probability $1-\delta$ we have $\|\mu(S)-\mu(P)\|^{2} \leq$ $\varepsilon \operatorname{cost}(P, \mu(P)) /|P|$. Then, applying Lemma 1 gives the desired result. First, we notice that $\mu(P)$ is an unbiased estimator of $\mu(P)$, namely $E[\mu(S)]=\mu(P)$. Then, we have

$$
E\left[\|\mu(S)-\mu(P)\|^{2}\right]=\frac{1}{m} \sum_{i=1}^{|S|} E\left[\left\|s_{i}-\mu(P)\right\|^{2}\right]=\frac{\operatorname{cost}(P, \mu(P))}{m \cdot|P|}
$$

where s_{i} are uniform independent samples from P. Applying Markov's inequality concludes the proof.

The algorithm that verifies Theorem 12 is very similar to the MSLS algorithm from Section 3 and we use the same notation to describe it. The intuition is that in MSLS we sample $\mathcal{Q}=\left\{q_{1} \ldots q_{p}\right\}$ hoping that $q_{i} \in \operatorname{core}\left(o_{i}\right)$ for each i; here we refine q_{i} to a better approximation \hat{o}_{i} of o_{i} and swap the points $\left(\hat{o}_{i}\right)_{i}$ rather than $\left(q_{i}\right)_{i}$. Our points \hat{o}_{i} are generated taking the average of some sampled point, thus we possibly have $\hat{o}_{i} \notin P$ while, on the other hand, $q_{i} \in P$.

A $(9+\varepsilon)$-approximation MSLS algortihm. First, we initialize our set of centers using k-means++. Then, we run $n d k^{O\left(\varepsilon^{-2}\right)} \cdot 2^{\text {poly }\left(\varepsilon^{-1}\right)}$ local search steps, where a local search step works as follows. Set $p=\Theta\left(\varepsilon^{-1}\right)$. We D^{2}-sample a set $\mathcal{Q}=\left\{q_{1} \ldots q_{p}\right\}$ of points from P (without updating costs). Then, we iterate over all possible sets $O u t=\left\{c_{1} \ldots c_{p}\right\}$ of p distinct elements in $\mathcal{C} \cup \mathcal{Q}$. We define the set of temporary centers $\mathcal{T}=(\mathcal{C} \cup \mathcal{Q}) \backslash$ Out and run a subroutine APX-CENTERS (\mathcal{T}) which returns a list of poly $\left(\varepsilon^{-1}\right) \cdot \log { }^{O\left(\varepsilon^{-1}\right)}(\Delta)$ size-s sets $\widehat{I n}=\left\{\hat{o}_{1} \ldots \hat{o}_{s}\right\}$ (where $s=|\mathcal{Q} \backslash O u t|$). We select the set $\widehat{I n}$ in this list such that the swap $(\widehat{I n}, O u t \backslash \mathcal{Q})$ yields the maximum cost reduction. Then we select the set $O u t$ that maximizes the cost reduction obtained in this way. If $(\widehat{\operatorname{In}}$, Out $\backslash \mathcal{Q})$ actually reduces the cost then we perform that swap.

A subroutine to approximate optimal centers. Here we describe the subroutine $\operatorname{APX}-\operatorname{Centers}(\mathcal{T})$. Let $\mathcal{Q} \backslash O u t=\left\{q_{1} \ldots q_{s}\right\}$. Recall that $s \leq p=O\left(\varepsilon^{-1}\right)$. This subroutine outputs a list of $2^{\text {poly }\left(\varepsilon^{-1}\right)} \cdot \log { }^{O\left(\varepsilon^{-1}\right)}(\Delta)$ size-s sets $\widehat{I n}=\left\{\hat{o}_{1} \ldots \hat{o}_{s}\right\}$. Here we describe how to find a list of $2^{\text {poly }\left(\varepsilon^{-1}\right)} \cdot \log (\Delta)$ values for \hat{o}_{1}. The same will apply for $\hat{o}_{2} \ldots \hat{o}_{s}$ and taking the Cartesian product yields a list of $2^{\text {poly }\left(\varepsilon^{-1}\right)} \cdot \log { }^{O\left(\varepsilon^{-1}\right)}(\Delta)$ size- s sets. Assume wlog that the pairwise distances between points in P lie in $[1, \Delta]$. We iterate over all possible values of $\rho_{1} \in\left\{1,(1+\varepsilon) \ldots(1+\varepsilon)^{\left\lceil\log _{1+\varepsilon} \Delta\right\rceil}\right\}$. We partition P in three sets: the set of far points $F=\left\{x \in P \mid \operatorname{cost}\left(x, q_{1}\right)>\rho_{1}^{2} / \varepsilon^{3}\right\}$, the set of close points $C=\left\{x \in P \backslash F \mid \operatorname{cost}(x, \mathcal{T}) \leq \varepsilon^{3} \rho_{1}^{2}\right\}$ and the set of nice points $N=P \backslash(C \cup F)$. Then, we sample uniformly from N a set S of size $\Theta\left(\varepsilon^{-1}\right)$. For each $(s+1)$-tuple of coefficients $\alpha_{0}, \alpha_{1} \ldots \alpha_{s} \in\left\{1,(1-\varepsilon),(1-\varepsilon)^{2}, \ldots(1-\varepsilon)^{\left\lceil\log _{1-\varepsilon}\left(\varepsilon^{7}\right)\right\rceil}\right\} \cup\{0\}$ we output the candidate solution given by the convex combination

$$
\begin{equation*}
\hat{o}_{1}=\hat{o}_{1}\left(\alpha_{0} \ldots \alpha_{s}\right)=\frac{\alpha_{0} \mu(S)+\sum_{i=1}^{s} \alpha_{i} q_{i}}{\sum_{i=0}^{s} \alpha_{i}} \tag{3}
\end{equation*}
$$

so, for each value of ρ_{1}, we output $2^{\text {poly }\left(\varepsilon^{-1}\right)}$ values for \hat{o}_{1}. Hence, $2^{\text {poly }\left(\varepsilon^{-1}\right)} \cdot \log (\Delta)$ values in total.

Analysis

The key insight in the analysis of the MSLS algorithm form Section 3 was that every q_{i} was a proxy for o_{i} because $q_{i} \in \operatorname{core}\left(o_{i}\right)$, and thus q_{i} provided a good center for O_{i}^{*}. In the analysis of this improved version of MSLS we replace q_{i} with \hat{o}_{i} which makes a better center for O_{i}^{*}. Formally, fixed Out, we say that a point \hat{o}_{i} is a perfect approximation of o_{i} when $\operatorname{cost}\left(O_{i}^{*},\left(\mathcal{C} \cup\left\{\hat{o}_{i}\right\}\right) \backslash\right.$ Out $) \leq$ $(1+\varepsilon) \mathrm{OPT}_{i}+\varepsilon \mathrm{OPT} / k$. We define $\widetilde{\mathcal{O}}$ and $\widetilde{\mathcal{C}}$ as in Section 3 . except that we replace δ with ε (which here is not assumed to be a constant). Likewise, we build the set \mathcal{S} of ideal multi-swaps as in Section 3 Recall that we say that a multi-swap (In, Out) is strongly improving if cost $(P,(\mathcal{C} \cup$ In $) \backslash O u t) \leq$ $(1-\varepsilon / k) \cdot \operatorname{cost}(P, \mathcal{C})$. Let $I n=\left\{o_{1} \ldots o_{s}\right\} \subseteq \widetilde{\mathcal{O}}$ and $O u t=\left\{c_{1} \ldots c_{s}\right\} \subseteq \widetilde{\mathcal{C}}$, we overload the definition from Section 3 and say that the ideal multi-swap (In,Out) is good if for every $\widehat{I n}=\left\{\hat{o}_{1} \ldots \hat{o}_{s}\right\}$ such that each \hat{o}_{i} is a perfect approximation of o_{i} for each $i=1 \ldots s$ the swap ($\widehat{I n}, O u t$) is strongly improving. We call an ideal swap bad otherwise. As in Section 3 , we define the core of an optimal center; once again we replace δ with ϵ, which is no longer constant. The two following lemmas are our stepping stones towards Theorem 12
Lemma 14. If $A L G / O P T>9+O(\varepsilon)$ then, with probability $k^{-O\left(\varepsilon^{-1}\right)} \cdot 2^{-p o l y\left(\varepsilon^{-1}\right)}$, there exists Out $\subseteq \mathcal{C} \cup \mathcal{Q}$ such that:
(i) If $\mathcal{Q} \backslash$ Out $=\left\{q_{1} \ldots q_{s}\right\}$ then $q_{1} \in \operatorname{core}\left(o_{1}\right) \ldots q_{s} \in \operatorname{core}\left(o_{s}\right)$ for some $o_{1} \ldots o_{s} \in \mathcal{O}^{*}$
(ii) If we define In $=\left\{o_{1} \ldots o_{s}\right\}$ then $(\operatorname{In}, O u t \backslash \mathcal{Q})$ is a good ideal swap.

Lemma 15. If (i) from Lemma 14 holds, then with probability $k^{-O\left(\varepsilon^{-2}\right)} \cdot 2^{-p o l y\left(\varepsilon^{-1}\right)}$, the list returned by APX-CENTERS contains $\widehat{I n}=\left\{\hat{o}_{1} \ldots \hat{o}_{s}\right\}$ such that \hat{o}_{i} is a perfect approximation of o_{i} for each $i=1 \ldots s$.

Proof of Theorem 12 . Here we prove that our improved MSLS algorithm achieves a $(9+O(\varepsilon))$ approximation, which is equivalent to Theorem 12 up to rescaling ε. Combining Lemma 14 and

Lemma 15 we obtain that, as long as ALG/OPT $>9+O(\varepsilon)$, with probability at least $k^{-O\left(\varepsilon^{-2}\right)}$. $2^{-\operatorname{poly}\left(\varepsilon^{-1}\right)}$, the list returned by APX-CENTERS contains $\widehat{I n}=\left\{\hat{o}_{1} \ldots \hat{o}_{s}\right\}$ such that $(\widehat{I n}$, Out $\backslash \mathcal{Q})$ is strongly improving. If this happens, we call such a local step successful. Now the proof goes exactly as the proof of Theorem 3 . Indeed, We show that $k^{O\left(\varepsilon^{-2}\right)} \cdot 2^{\text {poly }\left(\varepsilon^{-1}\right)}$ local steps suffice to obtain $\Omega(k \log \log k / \varepsilon)$ successful local steps, and thus to obtain the desired approximation ratio, with constant probability.

To prove the running time bound it is sufficient to notice that a local search step can be performed in time $n d \log O\left(\varepsilon^{-1}\right)(\Delta) \cdot 2^{\text {poly }\left(\varepsilon^{-1}\right)}$.

In the rest of this section, we prove Lemma 14 and Lemma 15 .
Observation 16. If we assume $\delta=\varepsilon$ non-constant in Lemma 2 then performing the computations explicitly we obtain $\operatorname{Pr}\left[q \in \operatorname{core}\left(O_{i}^{*}\right)\right] \geq \operatorname{poly}(\varepsilon)$.

In order to prove Lemma 14 , we first prove the two lemmas. Lemma 17 is the analogous of Lemma 10 and Lemma 18 is the analogous of Lemma 11 Overloading once again the definition from Section 3 , we define G as the union of cores of good optimal centers in $\widetilde{\mathcal{O}}$, where an optimal center is defined to be good if at least one of the ideal multi-swaps in \mathcal{S} it belongs to is good (exactly as in Section 3).
Lemma 17. If an ideal swap (In, Out) is bad, then we have

$$
\begin{equation*}
\operatorname{cost}\left(O_{I n}^{*}, \mathcal{C}\right) \leq(1+\varepsilon) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right)+\text { Reassign }(\text { In }, O u t)+\varepsilon A L G / k \tag{4}
\end{equation*}
$$

Proof. Let $\operatorname{In}=\left\{o_{1} \ldots o_{s}\right\}, \widehat{\operatorname{In}}=\left\{\hat{o}_{1} \ldots \hat{o}_{s}\right\}$ such that \hat{o}_{i} is a perfect approximation of o_{i} for each $i=1 \ldots s$. Recall that $O_{I n}^{*}:=\bigcup_{i=1}^{s} O_{i}^{*}$, then

$$
\begin{equation*}
\operatorname{cost}\left(O_{I n}^{*},(\mathcal{C} \cup \widehat{I n}) \backslash O u t\right) \leq \sum_{i=1}^{s} \operatorname{cost}\left(O_{i}^{*},\left(\mathcal{C} \cup\left\{\hat{o}_{i}\right\}\right) \backslash O u t\right) \leq(1+\varepsilon) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right) \tag{5}
\end{equation*}
$$

Moreover, Reassign $(I n, O u t)=\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C} \backslash O u t\right)-\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C}\right)$ because points in $P \backslash C_{\text {Out }}$ are not affected by the swap. Therefore, $\operatorname{cost}(P,(\mathcal{C} \cup \widehat{I n}) \backslash O u t) \leq(1+$ $\varepsilon) \operatorname{cost}\left(O_{I n}^{*}, O^{*}\right)+$ Reassign $(\operatorname{In}, O u t)+\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C}\right)$. Suppose by contradiction that Equation (4) does not hold, then

$$
\begin{gathered}
\operatorname{cost}(P, \mathcal{C})-\operatorname{cost}(P,(\mathcal{C} \cup \widehat{I n}) \backslash O u t)= \\
\operatorname{cost}\left(P \backslash O_{I n}^{*}, \mathcal{C}\right)+\operatorname{cost}\left(O_{I n}^{*}, \mathcal{C}\right)-\operatorname{cost}(P,(\mathcal{C} \cup \widehat{I n}) \backslash O u t) \geq \epsilon \mathrm{ALG} / k
\end{gathered}
$$

Hence, $(\widehat{I n}, O u t)$ is strongly improving and this holds for any choice of $\widehat{I n}$, contradiction.
Lemma 18. If $A L G / O P T>9+O(\varepsilon)$ then $\operatorname{cost}(G, \mathcal{C}) \geq \operatorname{cost}(P, \mathcal{C}) \cdot \operatorname{poly}(\varepsilon)$. Thus, if we D^{2}-sample q we have $P[q \in G] \geq \operatorname{poly}(\varepsilon)$.

Proof. First, we observe that the combined current cost of all optimal clusters in $\mathcal{O}^{*} \backslash \widetilde{\mathcal{O}}$ is at most $k \cdot \varepsilon \mathrm{ALG} / k=\varepsilon$ ALG. Now, we prove that the combined current cost of all O_{i}^{*} such that o_{i} is bad is $\leq(1-2 \varepsilon)$ ALG. Suppose, by contradiction, that it is not the case, then we have:

$$
\begin{gathered}
(1-2 \varepsilon) \mathrm{ALG}<\sum_{\operatorname{Bad} o_{i} \in \widetilde{\mathcal{O}}} \operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right) \leq \sum_{\operatorname{Bad}(\text { In }, \text { Out }) \in \mathcal{S}} w(\text { In }, \text { Out }) \cdot \operatorname{cost}\left(O_{I n}^{*}, \mathcal{C}\right) \leq \\
\sum_{\operatorname{Bad}, \text { Out })} w(\text { In }, \text { Out }) \cdot\left((1+\varepsilon) \operatorname{cost}\left(O_{I n}^{*}, \mathcal{O}^{*}\right)+\operatorname{Reassign}(\text { In }, \text { Out })+\varepsilon \mathrm{ALG} / k\right) \leq \\
(1+\varepsilon) \mathrm{OPT}+(2+2 / p) \mathrm{OPT}+(2+2 / p) \sqrt{\mathrm{ALG}} \sqrt{\mathrm{OPT}}+\varepsilon \mathrm{ALG} .
\end{gathered}
$$

The second and last inequalities make use of Observation 7. The third inequality uses Lemma 17 .
Setting $\eta^{2}=$ ALG/OPT we obtain the inequality $\eta^{2}-(2+2 / p \pm O(\varepsilon)) \eta-(3+2 / p \pm O(\varepsilon)) \leq 0$. Hence, we obtain a contradiction in the previous argument as long as $\eta^{2}-(2+2 / p \pm O(\varepsilon)) \eta-(3+$
$2 / p \pm O(\varepsilon))>0$, which holds for $p=\Theta\left(\varepsilon^{-1}\right)$ and $\eta^{2}=9+O(\varepsilon)$. A contradiction there implies that at least an ε-fraction of the current cost is due to points in $\bigcup_{\operatorname{Good} o_{i} \in \widetilde{\mathcal{O}}} O_{i}^{*}$. Thanks to Observation 16 we have $P_{q \sim \operatorname{cost}(q, \mathcal{C})}\left[q \in \operatorname{core}\left(O_{i}^{*}\right) \mid q \in O_{i}^{*}\right] \geq \operatorname{poly}(\varepsilon)$. Therefore, we can conclude that the current cost of $G=\bigcup_{\text {Good } o_{i} \in \widetilde{\mathcal{O}}} \operatorname{core}\left(O_{i}^{*}\right)$ is at least a poly (ε)-fraction of the total current cost.

Proof of Lemma 14 Thanks to Lemma 18, we have that $P\left[q_{1} \in G\right] \geq \operatorname{poly}(\varepsilon)$. Whenever $q_{1} \in G$ we have that $q_{1} \in \operatorname{core}\left(o_{1}\right)$ for some good o_{1}. Then, for some $s \leq p$ we can complete o_{1} with $o_{2} \ldots o_{s}$ such that In $=\left\{o_{1} \ldots o_{s}\right\}$ belongs to a good swap. Concretely, there exists Out $\subseteq \mathcal{C}$ such that $($ In,$O u t)$ is a good swap. Since $\operatorname{In} \subset \widetilde{\mathcal{O}}$ we have $\operatorname{cost}\left(O_{i}^{*}, \mathcal{C}\right)>\varepsilon \mathrm{OPT} / k$ for all $o_{i} \in \operatorname{In}$, which combined with Observation 16 gives that, for each $i=2 \ldots s, P\left[q_{i} \in \operatorname{core}\left(o_{i}\right)\right] \geq \operatorname{poly}(\varepsilon) / k$. Hence, we have $P\left[q_{i} \in \operatorname{core}\left(o_{i}\right)\right.$ for $\left.i=1 \ldots s\right] \geq 2^{-\operatorname{poly}\left(\varepsilon^{-1}\right)} k^{-O\left(\varepsilon^{-1}\right)}$. Notice, however, that $(\widehat{I n}, O u t)$ is a s-swap and we may have $s<p$. Nevertheless, whenever we sample $q_{1} \ldots q_{s}$ followed by any sequence $q_{s+1} \ldots q_{p}$ it is enough to choose Out $=$ Out $\cup\left\{q_{s+1} \ldots q_{p}\right\}$ to obtain that ($\left\{q_{1} \ldots q_{p}\right\}, O u t^{\prime}$) is an improving p-swap.

In order to prove Lemma 15 we first need a few technical lemmas.
Lemma 19 (Lemma 2 from Lattanzi and Sohler 2019]). For each $x, y, z \in \mathbb{R}^{d}$ and $\varepsilon>0$, $\operatorname{cost}(x, y) \leq(1+\varepsilon) \operatorname{cost}(x, z)+(1+1 / \varepsilon) \operatorname{cost}(z, y)$.
Lemma 20. Given $q \in \mathbb{R}^{d}$ and $Z \subseteq \mathbb{R}^{d}$ such that $\cos t(Z, q) \leq \varepsilon^{2} \Gamma$ then, for each $o \in \mathbb{R}^{d}$

$$
(1-O(\varepsilon)) \operatorname{cost}(Z, o)-O(\varepsilon) \Gamma \leq|Z| \cos t(q, o) \leq(1+O(\varepsilon)) \operatorname{cost}(Z, o)+O(\varepsilon) \Gamma
$$

Proof. To obtain the first inequality, we apply Lemma 19 to bound $\operatorname{cost}(z, o) \leq(1+\varepsilon) \operatorname{cost}(z, o)+$ $(1+1 / \varepsilon) \operatorname{cost}(z, q)$ for each $z \in Z$. To obtain the second inequality, we bound cost $(q, o) \leq$ $(1+\varepsilon) \operatorname{cost}(z, o)+(1+1 / \varepsilon) \operatorname{cost}(z, q)$ for each $z \in Z$.

Lemma 21. Let $X=\left\{x_{1} \ldots x_{\ell}\right\}$ be a weighted set of points in \mathbb{R}^{d} such that x_{i} has weight w_{i}. Let μ be the weighted average of X. Let $\hat{\mu}=\hat{\mu}\left(\alpha_{1} \ldots \alpha_{\ell}\right)$ be the weighted average of X where x_{i} has weight α_{i}. If $w_{i} \leq \alpha_{i} \leq w_{i} /(1-\varepsilon)$ for each $i=1 \ldots \ell$, then if we interpret $\operatorname{cost}(X, C)$ as $\sum_{x_{i} \in X} w_{i} \cdot \operatorname{cost}\left(x_{i}, C\right)$ we have $\operatorname{cost}(X, \hat{\mu}) \leq(1+O(\varepsilon)) \operatorname{cost}(X, \mu)$.

Proof. We note that μ minimizes the expression $\operatorname{cost}(X, \mu)$. Moreover, $\operatorname{cost}(X, z) \leq \sum_{i=1}^{\ell} \alpha_{i}$. $\operatorname{cost}\left(x_{i}, z\right) \leq \operatorname{cost}(X, z) /(1-\varepsilon)$. Since $\hat{\mu}$ minimizes the expression $\sum_{i=1}^{\ell} \alpha_{i} \cdot \operatorname{cost}\left(x_{i}, z\right)$ it must be $\operatorname{cost}(X, \hat{\mu}) \leq \operatorname{cost}(X, \mu) /(1-\varepsilon)$.

Adopting the same proof strategy, we obtain the following.
Observation 22. Thanks to Lemma 20 we can assume that the points in Z are concentrated in q for the purpose of computing $a(1+O(\varepsilon))$-approximation to the 1-means problem on Z, whenever an additive error Γ is tolerable. Indeed, moving all points in Z to q introduces $a 1+O(\varepsilon)$ multiplicative error on $\operatorname{cost}(Z, \cdot)$ and a $O(\varepsilon) \Gamma$ additive error.

The next lemma shows that a point z that is far from a center o experiences a small variation of $\operatorname{cost}(z, o)$ when the position of o is slightly perturbed.

Lemma 23. Given $o, z \in \mathbb{R}^{d}$ such that $\|o-z\| \geq r / \varepsilon$ we have that for every $o^{\prime} \in B(o, r)$, $\operatorname{cost}\left(z, o^{\prime}\right)=(1 \pm O(\varepsilon)) \operatorname{cost}(z, o)$.

Proof. It is enough to prove it for all o^{\prime} that lie on the line L passing through o and z, any other point in $o^{\prime \prime} \in B(o, r)$ admits a point $o^{\prime} \in B(o, r) \cap L$ with $\left\|o^{\prime}-z\right\|=\left\|o^{\prime \prime}-z\right\|$. It is enough to compute the derivative of $\operatorname{cost}(z, \cdot)$ with respect to the direction of L and see that $\left.\frac{\partial \operatorname{cost}(z, \cdot)}{\partial L}\right|_{B(o, r)}=$ $(1 \pm O(\varepsilon)) r / \varepsilon$. Thus, $\operatorname{cost}\left(z, o^{\prime}\right)=\operatorname{cost}(z, o) \pm(1 \pm O(\varepsilon)) r^{2} / \varepsilon=(1 \pm O(\varepsilon)) \operatorname{cost}(z, o)$.

Proof of Lemma 15 Here we prove that for each $o_{1} \ldots o_{s}$ there exist coefficients $\alpha_{0}^{(i)} \ldots \alpha_{s}^{(i)} \in$ $\left.\left\{1,(1-\varepsilon) \ldots(1-\varepsilon)^{\left\lceil\log _{1-\varepsilon}\left(\varepsilon^{7}\right)\right.}\right\rceil\right\} \cup\{0\}$ such that the convex combination $\hat{o}_{i}=\hat{o}_{i}\left(\alpha_{0}^{(i)} \ldots \alpha_{s}^{(i)}\right)$ is a perfect approximation of o_{i}, with probability $k^{-O\left(\varepsilon^{-2}\right)} \cdot 2^{-\operatorname{poly}\left(\varepsilon^{-1}\right)}$. Wlog, we show this
for o_{1} only. Concretely, we want to show that, with probability $k^{-O\left(\varepsilon^{-1}\right)} \cdot 2^{-p o l y\left(\varepsilon^{-1}\right)}$, there exist coefficients $\alpha_{0} \ldots \alpha_{s}$ such that $\hat{o}_{1}=\hat{o}_{1}\left(\alpha_{0} \ldots \alpha_{s}\right)$ satisfies $\operatorname{cost}\left(O_{1}^{*},\left(\mathcal{C} \cup\left\{\hat{o}_{1}\right\}\right) \backslash\right.$ Out $) \leq$ $(1+O(\varepsilon)) \mathrm{OPT}_{1}+O(\varepsilon) \mathrm{OPT} / k$. Taking the joint probability of these events for each $i=1 \ldots s$ we obtain the success probability $k^{-O\left(\varepsilon^{-2}\right)} \cdot 2^{-\operatorname{poly}\left(\varepsilon^{-1}\right)}$. Note that we are supposed to prove that $\operatorname{cost}\left(O_{1}^{*},\left(\mathcal{C} \cup\left\{\hat{o}_{1}\right\}\right) \backslash O u t\right) \leq(1+\varepsilon) \mathrm{OPT}_{1}+\varepsilon \mathrm{OPT} / k$, however we prove a weaker version where ε is replaced by $O(\varepsilon)$, which is in fact equivalent up to rescaling ε.
Similarly to $\mathcal{C}[\cdot]$ and $\mathcal{O}^{*}[\cdot]$ define $\mathcal{T}[p]$ as the closest center to p in \mathcal{T}. Denote with C_{1}, F_{1} and N_{1} the intersections of O_{1}^{*} with C, F and N respectively. In what follows we define the values of $\alpha_{0} \ldots \alpha_{s}$ that define $\hat{o}_{1}=\hat{o}_{1}\left(\alpha_{0} \ldots \alpha_{s}\right)$ and show an assignment of points in O_{1}^{*} to centers in $\left(\mathcal{C} \cup\left\{\hat{o}_{1}\right\}\right) \backslash$ Out with cost $(1+O(\varepsilon)) \mathrm{OPT}_{1}+O(\varepsilon) \mathrm{OPT} / k$. Recall that we assume that $q_{i} \in \operatorname{core}\left(o_{i}\right)$ for each $i=1 \ldots s$.

In what follows, we assign values to the coefficients $\left(\alpha_{i}\right)_{i}$. It is understood that if the final value we choose for α_{i} is v then we rather set α_{i} to the smallest power of $(1-\varepsilon)$ which is larger than v, if $v>\varepsilon^{7}$. Else, set α_{i} to 0 . We will see in the end that this restrictions on the values of α_{i} do not impact our approximation.

In what follows, we will assign the points in O_{1}^{*} to $\mathcal{C} \backslash O u t$, if this can be done inexpensively. If it cannot, then we will assign points to \hat{o}_{1}. In order to compute a good value for \hat{o}_{1} we need an estimate of the average of points assigned to \hat{o}_{1}. For points in N_{1}, computing this average is doable (leveraging Lemma 13 while for points in $O_{1}^{*} \backslash N_{1}$ we show that either their contribution is negligible or we can collapse them so as to coincide with some $q_{i} \in \mathcal{Q}$ without affecting our approximation. The coefficients $\left(\alpha_{i}\right)_{i \geq 1}$ represent the fraction of points in O_{i}^{*} which is collapsed to q_{i}. α_{0} represents the fraction of points in O_{i}^{*} which average we estimate as $\mu(S)$. Thus, Equation (3) defines \hat{o}_{i} as the weighted average of points q_{i}, where the weights are the (approximate) fractions of points collapsed onto q_{i}, together with the the average $\mu(S)$ and its associated weight α_{0}.

Points in C_{1}. All points $p \in C_{1}$ such that $\mathcal{T}[p] \notin \mathcal{Q}$ can be assigned to $\mathcal{T}[p] \in \mathcal{C} \backslash$ Out incurring a total cost of at most $\varepsilon^{6} \mathrm{OPT}_{1}$, by the definition of C_{1}. Given a point $p \in C_{1}$ with $\mathcal{T}[p] \in \mathcal{Q}$ we might have $\mathcal{T}[p] \notin \mathcal{C} \backslash O u t$ and thus we cannot assign p to $\mathcal{T}[p]$. Denote with W the set of points p with $\mathcal{T}[p] \in \mathcal{Q}$. Our goal is now to approximate $\mu(W)$. In order to do that, we will move each $p \in W$ to coincide with $q_{i}=\mathcal{T}[p]$. We can partition W into $W_{1} \ldots W_{s}$ so that for each $z \in W_{i} \mathcal{T}[z]=q_{i}$. If $p \in Z_{i}$ then we have $\left\|p-q_{i}\right\|^{2} \leq \varepsilon^{3} \rho_{1}^{2}$. Hence, thanks to Observation 22, we can consider points in W_{i} as if they were concentrated in q_{i} while losing at most an additive factor $O(\varepsilon) \mathrm{OPT}_{1}$ and a multiplicative factor $(1+\varepsilon)$ on their cost. For $i=1 \ldots s$, set $\alpha_{i} \leftarrow\left|W_{i}\right| /\left|O_{1}^{*}\right|$. In this way, $\sum_{i=1}^{s} \alpha_{i} \cdot q_{i} / \sum_{i=1}^{s} \alpha_{i}$ is an approximates solution to 1-mean on W up to a multiplicative factor $(1+\varepsilon)$ and an additive factor $O(\varepsilon) \mathrm{OPT}_{1}$.

Points in N_{1}. Consider the two cases: (i) $\operatorname{cost}\left(N_{1}, \mathcal{T}\right)>\varepsilon^{2} \mathrm{OPT} / k ;($ ii $) \operatorname{cost}\left(N_{1}, \mathcal{T}\right) \leq$ $\varepsilon^{2} \mathrm{OPT} / k$.
Case (i). We show that in this case $\mu(S)$ is a $(1+\varepsilon)$-approximation for 1-mean on N_{1}, with probability $k^{-O\left(\varepsilon^{-1}\right)} \cdot 2^{-p o l y\left(\varepsilon^{-1}\right)}$. First, notice that if we condition on $S \subseteq N_{1}$ then Lemma 13 gives that $\mu(S)$ is a $(1+\varepsilon)$-approximation for 1-mean on N_{1} with constant probability. Thus, we are left to prove that $S \subseteq N_{1}$ with probability $k^{-O\left(\varepsilon^{-1}\right)} \cdot 2^{-\operatorname{poly}\left(\varepsilon^{-1}\right)}$. We have that the $P_{p \sim \operatorname{cost}(p, \mathcal{T})}[p \in$ $\left.N_{1} \mid p \in N\right] \geq \varepsilon^{2} / k$, however the costs w.r.t. \mathcal{T} of points in N varies of at most a factor $\operatorname{poly}\left(\varepsilon^{-1}\right)$, thus $P_{p \sim U n i f}\left[p \in N_{1} \mid p \in N\right] \geq \operatorname{poly}(\varepsilon) / k$. The probability of $S \subseteq N_{1}$ is thus $(\operatorname{poly}(\varepsilon) / k)^{|S|}=k^{-O\left(\varepsilon^{-1}\right)} \cdot 2^{-\operatorname{poly}\left(\varepsilon^{-1}\right)}$. In this case, we set $\alpha_{0} \leftarrow\left|N_{1}\right| /\left|O_{1}^{*}\right|$ because $\mu(S)$ approximates the mean of the entire set N_{1}.
Case (ii). Here we give up on estimating the mean of N_{1} and set $\alpha_{0} \leftarrow 0$. The point $x \in N_{1}$ such that $\mathcal{T}[x] \notin \mathcal{Q}$ can be assigned to $\mathcal{T}[x]$ incurring a combined cost of $\varepsilon^{2} \mathrm{OPT} / k$. We partition the remaining points in N_{1} into $Z_{1} \cup \ldots Z_{s}$ where each point x is placed in Z_{i} if $\mathcal{T}[x]=q_{i}$. Now, we collapse the points in Z_{i} so as to coincide with q_{i} and show that this does not worsen our approximation factor. In terms of coefficients $\left(\alpha_{i}\right)_{i}$, this translates into the updates $\alpha_{i} \leftarrow \alpha_{i}+\left|Z_{i}\right| /\left|O_{i}^{*}\right|$ for each $i=1 \ldots s$.
Indeed, using Observation 22 we can move all points in Z_{i} to q_{i} incurring an additive combined cost of $\varepsilon \mathrm{OPT} / k$ and a multiplicative cost of $1+O(\varepsilon)$.

Points in F_{1}. Points in F_{1} are very far from q_{1} and thus far from o_{1}, hence even if their contribution to $\operatorname{cost}\left(O_{1}^{*}, o_{1}\right)$ might be large, we have $\operatorname{cost}\left(F_{1}, o_{1}\right)=(1 \pm O(\varepsilon)) \operatorname{cost}\left(F_{1}, o^{\prime}\right)$ for all o^{\prime} in a ball of radius ρ_{1} / ε centered in o_{1}, thanks to Lemma 23

Let H be the set of points that have not been assigned to centers in $\mathcal{C} \backslash O u t$. In particular, $H=W \cup N_{1}$ if points in N_{1} satisfy case (i) and $H=W \cup Z_{1} \ldots Z_{s}$ if points in N_{1} satisfy case (ii). We consider two cases.

If $\left\|\mu(H)-q_{1}\right\| \leq \rho / \varepsilon$, then $\left\|\mu(H)-o_{1}\right\| \leq \rho(1+\varepsilon+1 / \varepsilon)$ because $q_{1} \in \operatorname{core}\left(o_{1}\right)$. Since for each $f \in F_{1}$ we have $\left\|f-o_{1}\right\| \geq\left\|f-q_{1}\right\|-(1+\varepsilon) \rho \geq \Omega\left(\rho / \varepsilon^{3}\right)$ then $\operatorname{cost}\left(f, o^{\prime}\right)=$ $(1 \pm O(\varepsilon)) \operatorname{cost}\left(f, o_{1}\right)$ for each o^{\prime} in a ball of radius $O(\rho / \varepsilon)$ centered in o_{1}, and so in particular for $o^{\prime}=\mu(H)$. Thus in this case we can simply disregard all points in F_{1} and computing \hat{o}_{1} according to the $\left(\alpha_{i}\right)_{i}$ defined above yields a perfect approximation of o_{i}.
Else, if $\left\|\mu(H)-q_{1}\right\|>\rho / \varepsilon$, a similar argument applies to show that $\operatorname{cost}\left(H, o^{\prime}\right)=(1 \pm$ $\varepsilon) \operatorname{cost}(H, o)$ for each o^{\prime} in ball of radius $O(\rho)$ centered in o_{1}. Indeed, we can rewrite $\operatorname{cost}\left(H, o^{\prime}\right)$ as $|H| \cdot \operatorname{cost}\left(\mu(H), o^{\prime}\right)+\operatorname{cost}(\mu(H), H)$. If $\left\|\mu(H)-q_{1}\right\|<\rho / \varepsilon$ the first term varies of at most a factor $(1+\varepsilon)$ and the second term is constant. Thus in this case $\hat{o}_{1}=q_{1}$ is a perfect approximation of o_{1} and we simply set $\alpha_{1}=1$ and $\alpha_{j}=0$ for $j \neq 1$. In other words, here $\mu\left(N_{1} \cup H\right)$ is too far from q_{1} (and thus o_{1}) to significantlyt influence the position of \hat{o}_{1} and the same holds for any point in F_{1}. This works, of course, because we assumed $q_{1} \in \operatorname{core}\left(o_{1}\right)$.

Discussing the limitations on the coefficients values. The proof above would work smoothly if we were allowed to set α_{i} to exactly the values discussed above, representing the fractions of points from O_{i}^{*} captured by different q_{i} s. However, to make the algorithm efficient we limit ourselves to values in $\left\{1,(1-\varepsilon) \ldots(1-\varepsilon)^{\left\lceil\log _{1-\varepsilon}\left(\varepsilon^{7}\right)\right\rceil}\right\rceil \cup\{0\}$. Lemma 21 shows that as long as the values of $\left(\alpha_{i}\right)_{i}$ estimate the frequencies described above up to a factor $1 \pm O(\varepsilon)$ then the approximation error is within a multiplicative factor $1 \pm O(\varepsilon)$.
We are left to take care of the case in which α_{i} is set to a value $<\varepsilon^{7}$. We set α_{i} when dealing with points in $C_{1} \cup N_{1}$ and for each $x \in C_{1} \cup N_{1}$ we have, for each $o^{\prime} \in B\left(q_{1},(1+\varepsilon) \rho\right)$, $\operatorname{cost}\left(x, o^{\prime}\right) \leq 2 \operatorname{cost}\left(q_{1}, o^{\prime}\right)+2 \operatorname{cost}\left(x, q_{1}\right)=O\left(\rho_{1} \varepsilon^{-6}\right)$. Thus, if we simply set $\alpha_{i} \leftarrow 0$ whenever we have $\alpha_{i}<\varepsilon^{7}$ then the combined cost of points in O_{1}^{*} with respect to o^{\prime} varies by $\varepsilon^{7}\left|O_{1}^{*}\right| \cdot \rho_{1} \varepsilon^{-6}=$ $O(\varepsilon) \mathrm{OPT}_{1}$. Effectively, ignoring these points does not significantly impact the cost. hence solving 1-mean ignoring these points finds a $(1+O(\varepsilon))$-approximate solution to the original problem.

Additional Experimental Evaluation

In this section we report additional experiments which presentation did not fit in the main body. In particular, we run experiments on the dataset KDD-PHY and for $k=10,50$.
In Figure 3] we compare MSLS-G with MSLS. To perform our experiment, we initialize $k=25$ centers using KM++ and then run 50 iterations of local search for both algorithms, for $p \in\{2,3\}$ swaps. We repeat each experiment 5 times. For ease of comparison, we repeat the plot for the KDD-BIO and RNA datasets that we present in the main body of the paper. Due to the higher running of the MSLS we perform this experiments on 1% uniform sample of each of our datasets. We find out that the performance of the two algorithms is comparable on all our instances, while they both perform roughly $15 \%-27 \%$ better than k-means++ at convergence.
In Figure 4 we run KM++ followed by 50 iterations of MSLS-G with $p=1,4,7,10$ and $k=$ $10,25,50$ (expcluding the degenerate case $p=k=10$) and plot the relative cost w.r.t. KM++ at each iteration. The results for $k=25$ on KDD-BIO and RNA can be found in Figure 2. We repeat each experiment 5 times. Our experiment shows that, after 50 iterations MSLS-G for $p=4,7,10$ achieves improvements of roughly $5-10 \%$ compared to MSLS-G- $p=1$ and of the order of $20 \%-40 \%$ compared to KM++. These improvements are more prominent for $k=25,50$. We also report the time per iteration that each algorithm takes. For comparison, we report the running time of a single iteration of Lloyd's next to the dataset's name. Notice that the experiment on RNA for $k=50$ is performed on a 10% uniform sample of the original dataset, due to the high running time.
In Figure 5, we use KM++ and MSLS-G as a seeding algorithm for Lloyd's and measure how much of the performance improvement measured is retained after running Lloyd's. First, we initialize

Figure 3: Comparison between MSLS and MSLS-G, for $p=2$ (left column) and $p=3$ (right column), for $k=25$, on the datasets KDD-BIO (first row), KDD-PHY (second row) and RNA (third row). The y axis shows the mean solution cost, over the 5 repetitions of the experiment, divided by the means solution cost of KM++.

Figure 4: We compare the cost of MSLS-G, for $p \in\{1,4,7,10\}$, divided by the mean cost of $\mathrm{KM}++$ at each LS step, for $k \in\{10,25,50\}$, excluding the degenerate case $p=k=10$. The legend reports also the running time of MSLS-G per LS step (in seconds). The experiments were run on all datasets: KDD-BIO, RNA and KDD-PHY, excluding the case of $k=25$ for KDD-BIO and RNA which are reported in the main body of the paper.

759
our centers using KM++ and the run 15 iterations of MSLS-G for $p=1,4,7$. We measure the cost achieved by running 10 iterations of Lloyd's starting from the solutions found by MSLS-G as well as $\mathrm{KM}++$. We run experiments for $k=10,25,50$ and we repeat each experiment 5 times. We observe that for $k=25,50 \mathrm{MSLS}-\mathrm{G}$ for $p>1$ performs at least as good as SSLS from Lattanzi and Sohler [2019] and in some cases maintains non-trivial improvements. These improvements are not noticeable for $k=10$; however, given how Lloyd's behave for $k=10$ we conjecture that $k=10$ might be an "unnatural" number of clusters for our datasets.

Figure 5: We compare the cost after each of the 10 iterations of Lloyd with seeding from MSLS-G, for $p \in\{1,4,7,10\}$ and 15 local search steps and KM++, for $k \in\{10,25,50\}$. We excluded the degenerate case $p=k=10$, and the experiments reported in the main body of the paper.

[^0]: ${ }^{1}$ If $I n \cap O u t \neq \emptyset$ then we are actually performing the swap (In $\backslash O u t, O u t \backslash$ In) of size $<p$.
 ${ }^{2}$ Also known as dynamic predecessor search data structure.

[^1]: ${ }^{3}$ The complexity in Theorem 12 can be improved by applying the same preprocessing techniques using coresets and dimensionality reduction, similar to what can be used to speed up the approach of Kanungo et al. |2004|. Our algorithm hence becomes asymptotically faster.

