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Abstract

In the past few years, there has been an explosive surge in the use of machine
learning (ML) techniques to address combinatorial optimization (CO) problems,
especially mixed-integer linear programs (MILPs). Despite the achievements,
the limited availability of real-world instances often leads to sub-optimal deci-
sions and biased solver assessments, which motivates a suite of synthetic MILP
instance generation techniques. However, existing methods either rely heavily on
expert-designed formulations or struggle to capture the rich features of real-world
instances. To tackle this problem, we propose G2MILP, the first deep generative
framework for MILP instances. Specifically, G2MILP represents MILP instances
as bipartite graphs, and applies a masked variational autoencoder to iteratively
corrupt and replace parts of the original graphs to generate new ones. The appeal-
ing feature of G2MILP is that it can learn to generate novel and realistic MILP
instances without prior expert-designed formulations, while preserving the struc-
tures and computational hardness of real-world datasets, simultaneously. Thus the
generated instances can facilitate downstream tasks for enhancing MILP solvers
under limited data availability. We design a suite of benchmarks to evaluate
the quality of the generated MILP instances. Experiments demonstrate that our
method can produce instances that closely resemble real-world datasets in terms
of both structures and computational hardness. The deliverables are released at
https://miralab-ustc.github.io/L2O-G2MILP.

1 Introduction

Mixed-integer linear programming (MILP)—a powerful and versatile modeling technique for many
real-world problems—lies at the core of combinatorial optimization (CO) research and is widely
adopted in various industrial optimization scenarios, such as scheduling [1], planning [2], and
portfolio [3]. While MILPs are NP-hard problems [4], machine learning (ML) techniques have
recently emerged as a powerful approach for either solving them directly or assisting the solving
process [5, 6]. Notable successes include [7] for node selection, [8] for branching decision, and [9]
for cut selection, etc.

Despite the achievements, the limited availability of real-world instances, due to labor-intensive data
collection and proprietary issues, remains a critical challenge to the research community [5, 10, 11].
Developing practical MILP solvers usually requires as many instances as possible to identify issues
through white-box testing [12]. Moreover, machine learning methods for improving MILP solvers
often suffer from sub-optimal decisions and biased assessments under limited data availability, thus
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compromising their generalization to unseen problems [13]. These challenges motivate a suite
of synthetic MILP instance generation techniques, which fall into two categories. Some methods
rely heavily on expert-designed formulations for specific problems, such as Traveling Salesman
Problems (TSPs) [14] or Set Covering problems [15]. However, these methods cannot cover real-
world applications where domain-specific expertise or access to the combinatorial structures, due to
proprietary issues, is limited. Other methods construct general MILP instances by sampling from an
encoding space that controls a few specific statistics [16]. However, these methods often struggle to
capture the rich features and the underlying combinatorial structures, resulting in an unsatisfactory
alignment with real-world instances.

Developing a deep learning (DL)-based MILP instance generator is a promising approach to address
this challenge. Such a generator can actively learn from real-world instances and generate new ones
without expert-designed formulations. The generated instances can simulate realistic scenarios, cover
more cases, significantly enrich the datasets, and thereby enhance the development of MILP solvers at
a relatively low cost. Moreover, this approach has promising technical prospects for understanding the
problem space, searching for challenging cases, and learning representations, which we will discuss
further in Section 5. While similar techniques have been widely studied for Boolean satisfiability
(SAT) problems [17], the development of DL-based MILP instance generators remains a complete
blank due to higher technical difficulties, i.e., it involves not only the intrinsic combinatorial structure
preservation but also high-precision numerical prediction. This paper aims to lay the foundation for
the development of such generators and further empower MILP solver development under limited
data availability.

In this paper, we propose G2MILP, which is the first deep generative framework for MILP instances.
We represent MILP instances as weighted bipartite graphs, where variables and constraints are vertices,
and non-zero coefficients are edges. With this representation, we can use graph neural networks
(GNNs) to effectively capture essential features of MILP instances [8, 18]. Using this representation,
we recast the original task as a graph generation problem. However, generating such complex graphs
from scratch can be computationally expensive and may destroy the intrinsic combinatorial structures
of the problems [19]. To address this issue, we propose a masked variational autoencoder (VAE)
paradigm inspired by masked language models (MLM) [20, 21] and VAE theories [22–24]. The
proposed paradigm iteratively corrupts and replaces parts of the original graphs using sampled latent
vectors. This approach allows for controlling the degree to which we change the original instances,
thus balancing the novelty and the preservation of structures and hardness of the generated instances.
To implement the complicated generation steps, we design a decoder consisting of four modules that
work cooperatively to determine multiple components of new instances, involving both structure and
numerical prediction tasks simultaneously.

We then design a suite of benchmarks to evaluate the quality of generated MILP instances. First,
we measure the structural distributional similarity between the generated samples and the input
training instances using multiple structural statistics. Second, we solve the instances using the
advanced solver Gurobi [12], and we report the solving time and the numbers of branching nodes
of the instances, which directly indicate their computational hardness [19, 25]. Our experiments
demonstrate that G2MILP is the very first method capable of generating instances that closely
resemble the training sets in terms of both structures and computational hardness. Furthermore,
we show that G2MILP is able to adjust the trade-off between the novelty and the preservation
of structures and hardness of the generated instances. Third, we conduct a downstream task, the
optimal value prediction task, to demonstrate the potential of generated instances in enhancing
MILP solvers. The results show that using the generated instances to enrich the training sets
reduces the prediction error by over 20% on several datasets. The deliverables are released at
https://miralab-ustc.github.io/L2O-G2MILP.

2 Related Work

Machine Learning for MILP Machine learning (ML) techniques, due to its capability of capturing
rich features from data, has shown impressive potential in addressing combinatorial optimization (CO)
problems [26–28], especially MILP problems [5]. Some works apply ML models to directly predict
the solutions for MILPs [29–31]. Others attempt to incorporate ML models into heuristic components
in modern solvers [7, 9, 32, 33]. Gasse et al. [8] proposed to represent MILP instances as bipartite
graphs, and use graph neural networks (GNNs) to capture features for branching decisions. Our
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proposed generative framework can produce novel instances to enrich the datasets, which promises to
enhance the existing ML methods that require large amounts of i.i.d. training data.

MILP Instance Generation Many previous works have made efforts to generate synthetic MILP
instances for developing and testing solvers. Existing methods fall into two categories. The first
category focuses on using mathematical formulations to generate instances for specific combinatorial
optimization problems such as TSP [14], set covering [15], and mixed-integer knapsack [34]. The
second category aims to generate general MILP instances. Bowly [16] proposed a framework to
generate feasible and bounded MILP instances by sampling from an encoding space that controls a
few specific statistics, e.g., density, node degrees, and coefficient mean. However, the aforementioned
methods either rely heavily on expert-designed formulations or struggle to capture the rich features of
real-world instances. G2MILP tackles these two issues simultaneously by employing deep learning
techniques to actively generate instances that resemble real-world problems, and it provides a versatile
solution to the data limitation challenge. In [35], we further extend G2MILP to learn to generate
challenging MILP instance.

Deep Graph Generation A plethora of literature has investigated deep learning models for graph
generation [36], including auto-regressive methods [37], varational autoencoders (VAEs) [23], and
generative diffusion models [38]. These models have been widely used in various fields [39] such
as molecule design [21, 40, 41] and social network generation [42, 43]. G2SAT [17], the first
deep learning method for SAT instance generation, has received much research attention [19, 44].
Nevertheless, it is non-trivial to adopt G2SAT to MILP instance generation (see Appendix C.1), as
G2SAT does not consider the high-precision numerical prediction, which is one of the fundamental
challenges in MILP instance generation. In this paper, we propose G2MILP—the first deep generative
framework designed for general MILP instances—and we hope to open up a new research direction
for the research community.

3 Methodology

In this section, we present our G2MILP framework. First, in Section 3.1, we describe the approach
to representing MILP instances as bipartite graphs. Then, in Section 3.2, we derive the masked
variational autoencoder (VAE) generative paradigm. In Section 3.3, we provide details on the
implementation of the model framework. Finally, in Section 3.4, we explain the training and inference
processes. The model overview is in Figure 1. More implementation details can be found in
Appendix A. The code is released at https://github.com/MIRALab-USTC/L2O-G2MILP.

3.1 Data Representation

A mixed-linear programming (MILP) problem takes the form of:

min
x∈Rn

c⊤x, s.t.Ax ≤ b, l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I, (1)

where c ∈ Rn,A ∈ Rm×n, b ∈ Rm, l ∈ (R ∪ {−∞})n,u ∈ (R ∪ {+∞})n, and the index set
I ⊂ {1, 2, · · · , n} includes those indices j where xj is constrained to be an integer.

To represent each MILP instance, we construct a weighted bipartite graph G = (V ∪ W, E) as
follows [18, 29].

• The constraint vertex set V = {v1, · · · , vm}, where each vi corresponds to the ith constraint
in Equation 1. The vertex feature vi of vi is described by the bias term, i.e., vi = (bi).

• The variable vertex setW = {w1, · · · , wn}, where each wj corresponds to the jth vari-
able in Equation 1. The vertex feature wj of wj is a 9-dimensional vector that contains
information of the objective coefficient cj , the variable type, and the bounds lj , uj .

• The edge set E = {eij}, where an edge eij connects a constraint vertex vi ∈ V and a variable
vertex wj ∈ W . The edge feature eij is described by the coefficient, i.e., eij = (aij), and
there is no edge between vi and wj if aij = 0.

As described above, each MILP instance is represented as a weighted bipartite graph, equipped with
a tuple of feature matrices (V ,W ,E), where V ,W ,E denote stacks of vertex features vi, wj and
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Figure 1: Overview of G2MILP. (a) Masking Process p̃(G̃|G). Given a MILP instance, which is
represented as a bipartite graph G, we randomly label a constraint vertex ṽ as [mask] to obtain the
masked graph G̃. (b) Encoder qϕ(Z|G). The encoder is GNNϕ followed by two networks, µϕ and
Σϕ, for resampling. During training, we use the encoder to obtain the latent vectors zvi and zwj

for
all vertices. (c) Decoder pθ(G|G̃,Z). We use GNNϕ to obtain the node features hṽ and hwj . Then
four modules work cooperatively to reconstruct the original graph G based on the node features and
the latent vectors. They sequentially determine ① the bias terms, ② the degrees, ③ the logits, and
④ the weights. During inference, the model is decoder-only, and we draw the latent vectors from a
standard Guassian distribution to introduce randomness. We repeat the above mask-and-generate
process several times so as to produce new instances.

edge features eij , respectively. Such a representation contains all information of the original MILP
instance [18]. We use the off-the-shelf observation function provided by Ecole [45] to build the
bipartite graphs from MILP instances. We then apply a graph neural network (GNN) to obtain the
node representations hG

vi
and hG

wj
, also denoted as hvi and hwj for simplicity. More details on the

data representation can be found in Appendix A.1.

3.2 Masked VAE Paradigm

We then introduce our proposed masked VAE paradigm. For the ease of understanding, we provide
an intuitive explanation here, and delay the mathematical derivation to Appendix A.2.

Given a graph G drawn from a dataset D, we corrupt it through a masking process, denoted by
G̃ ∼ p̃(G̃|G). We aim to build a parameterized generator pθ(Ĝ|G̃) that can generate new instances Ĝ
from the corrupted graph G̃. We train the generator by maximizing the log-likelihood log pθ(G|G̃) =
log pθ(Ĝ = G|G̃) of reconstructing G given G̃. Therefore, the optimization objective is:

argmax
θ

EG∼DEG̃∼p̃(G̃|G) log pθ(G|G̃). (2)

To model the randomnesss in the generation process and produce diverse instances, we follow the
standard VAE framework [22, 23] to introduce a latent variable Z = (zv1 , · · · , zvm , zw1 , · · · , zwn),
which contains the latent vectors for all vertices. During training, the latent vectors are sampled
from a posterior distribution given by a parameterized encoder qϕ, while during inference, they
are independently sampled from a prior distribution such as a standard Gaussian distribution. The
decoder pθ in the masked VAE framework generates new instances from the masked graph G̃ together
with the sampled latent variable Z.
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The evidence lower bound (ELBO), also known as the variational lower bound, is a lower bound
estimator of the log-likelihood, and is what we actually optimize during training, because it is more
tractable. We can derive the ELBO as:

log pθ(G|G̃) ≥ EZ∼qϕ(Z|G)

[
log pθ(G|G̃,Z)

]
−DKL [qϕ(Z|G)∥pθ(Z)] , (3)

where pθ(Z) is the prior distribution of Z and is usually taken as the standard GaussianN (0, I), and
DKL[ · ∥ · ] denotes the KL divergence. Therefore, we formulate the loss function as:

L = EG∼DEG̃∼p̃(G̃|G)

EZ∼qϕ(Z|G)

[
− log pθ(G|G̃,Z)

]
︸ ︷︷ ︸

Lrec

+β ·DKL [qϕ(Z|G)∥N (0, I)]︸ ︷︷ ︸
Lprior

 . (4)

In the formula: (1) the first term Lrec is the reconstruction loss, which urges the decoder to rebuild the
input data according to the masked data and the latent variables. (2) The second term Lprior is used to
regularize the posterior distribution in the latent space to approach a standard Gaussian distribution,
so that we can sample Z from the distribution when inference. (3) β is a hyperparameter to control
the weight of regularization, which is critical in training a VAE model [46].

3.3 Model Implementation

To implement Equation 4, we need to instantiate the masking process p̃(G̃|G), the encoder qϕ(Z|G),
and the decoder pθ(G|G̃,Z), respectively.

Masking Process For simplicity, we uniformly sample a constraint vertex ṽ ∼ U(V) and mask
it and its adjacent edges, while keeping the variable vertices unchanged. Specifically, we label the
vertex ṽ with a special [mask] token, and add virtual edges that link ṽ with each variable vertex. The
vertex ṽ and the virtual edges are assigned special embeddings to distinguish them from the others.
We further discuss on the masking scheme in Appendix C.2.

Encoder The encoder qϕ(Z|G) is implemented as:

qϕ(Z|G) =
∏

u∈V∪W
qϕ(zu|G), qϕ(zu|G) = N (µϕ(h

G
u), expΣϕ(h

G
u)), (5)

where hG
u is the node representation of u obtained by a GNNϕ, N denotes the Gaussian distribution,

and µ and Σ output the mean and the log variance, respectively.

Decoder The decode pθ aims to reconstruct G during training. We apply a GNNθ to obtain the
node representations hG̃

u , denoted as hu for simplicity. To rebuild the masked constraint vertex ṽ,
the decoder sequentially determines: ① the bias bṽ (i.e., the right-hand side of the constraint), ②
the degree dṽ of ṽ (i.e., the number of variables involved in the constraint), ③ the logits δṽ,u for
all variable vertices u to indicate whether they are connected with ṽ (i.e., whether the variables are
in the constraint), and ④ the weights eṽ,u of the edges (i.e., the coefficients of the variables in the
constraint). The decoder is then formulated as:

pθ(G|G̃,Z) = pθ(bṽ|G̃,Z) · pθ(dṽ|G̃,Z) ·
∏
u∈W

pθ(δṽ,u|G̃,Z, dṽ) ·
∏

u∈W:δṽ,u=1

pθ(eṽ,u|G̃,Z). (6)

Therefore, we implement the decoder as four cooperative modules: ① Bias Predictor, ② Degree
Predictor, ③ Logits Predictor, and ④ Weights Predictor.

① Bias Predictor For effective prediction, we incorporate the prior of simple statistics of the
dataset—the minimum b and the maximum b of the bias terms that occur in the dataset—into the
predictor. Specifically, we normalize the bias bṽ to [0, 1] via b∗ṽ = (bṽ − b)/(b− b). To predict b∗ṽ,
we use one MLP that takes the node representation hṽ and the latent vector zṽ of ṽ as inputs:

b̂∗ṽ = σ
(
MLPbias

θ ([hṽ, zṽ])
)
, (7)

where σ(·) is the sigmoid function used to restrict the outputs. We use the mean squared error (MSE)
loss to train the predictor. At inference time, we apply the inverse transformation to obtain the
predicted bias values: b̂ṽ = b+ (b− b) · b̂∗ṽ .1

1Notation-wise, we use x̂ to denote the predicted variable in Ĝ that corresponds to x in G.
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② Degree Predictor We find that the constraint degrees are crucial to the graph structures and
significantly affect the combinatorial properties. Therefore, we use the Degree Predictor to determine
coarse-grained degree structure, and then use the Logits Predictor to determine the fine-grained
connection details. Similarly to Bias Predictor, we normalize the degree dṽ to d∗ṽ = (dṽ−d)/(d−d),
where d and d are the minimum and maximum degrees in the dataset, respectively. We use one MLP
to predict d∗ṽ:

d̂∗ṽ = σ
(

MLPdeg
θ ([hṽ, zṽ])

)
. (8)

We use MSE loss for training, and round the predicted degree to the nearest integer d̂ṽ for inference.

③ Logits Predictor To predict the logits δṽ,u indicating whether a variable vertex u ∈ W is
connected with ṽ, we use one MLP that takes the representation hu and the latent vector zu of u as
inputs:

δ̂′ṽ,u = σ
(

MLPlogits
θ ([hu, zu])

)
. (9)

We use binary cross-entropy (BCE) loss to train the logistical regression module. As positive samples
(i.e., variables connected with a constraint) are often scarce, we use one negative sample for each
positive sample during training. The loss function is:

Llogits = −E(ṽ,u)∼ppos

[
log (δ̂′ṽ,u)

]
− E(ṽ,u)∼pneg

[
log (1− δ̂′ṽ,u)

]
, (10)

where ppos and pneg denote the distributions over positive and negative samples, respectively. At
inference time, we connect d̂ṽ variable vertices with the top logits to ṽ., i.e.,

δ̂ṽ,u =

{
1, u ∈ arg TopK({δ̂′ṽ,u|u ∈ W}, d̂ṽ),
0, otherwise.

(11)

④ Weights Predictor Finally, we use one MLP to predict the normalized weights e∗ṽ,u for nodes u
that are connected with ṽ:

ê∗ṽ,u = σ
(

MLPweights
θ ([hu, zu])

)
. (12)

The training and inference procedures are similar to those of Bias Predictor.

3.4 Training and Inference

During training, we use the original graph G to provide supervision signals for the decoder, guiding it
to reconstruct G from the masked G̃ and the encoded Z. As described above, the decoder involves four
modules, each optimized by a prediction task. The first term in Equation 4, i.e., the reconstruction
loss, is written as

Lrec = EG∼D,G̃∼p̃(G̃|G)

[
4∑

i=1

αi · Li(θ,ϕ|G, G̃)
]
, (13)

where Li(θ,ϕ|G, G̃) (i = 1, 2, 3, 4) are loss functions for the four prediction tasks, respectively, and
αi are hyperparameters.

During inference, we discard the encoder and sample Z from a standard Gaussian distribution, which
introduces randomness to enable the model to generate novel instances. We iteratively mask one
constraint vertex in the bipartite graph and replace it with a generated one. We define a hyperparameter
η to adjust the ratio of iterations to the number of constraints, i.e., Niters = η · |V|. Naturally, a larger
value of η results in instances that are more novel, while a smaller value of η yields instances that
exhibit better similarity to the training set. For further details of training and inference procedures,
please refer to Appendix A.3.

4 Experiments

4.1 Setup

We conduct extensive experiments to demonstrate the effectiveness of our model. More experimental
details can be found in Appendix B. Additional results are in Appendix C.
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Benchmarking To evaluate the quality of the generated MILP instances, we design three bench-
marks so as to answer the following research questions. (1) How well can the generated instances
preserve the graph structures of the training set? (2) How closely do the generated instances resemble
the computational hardness of real-world instances? (3) How effectively do they facilitate downstream
tasks to improve solver performance?

I. Structural Distributional Similarity We consider 11 classical statistics to represent features of
the instances [17, 47], including coefficient density, node degrees, graph clustering, graph modularity,
etc. In line with a widely used graph generation benchmark [48], we compute the Jensen-Shannon
(JS) divergence [49] for each statistic to measure the distributional similarity between the generated
instances and the training set. We then standardize the metrics into similarity scores that range from
0 to 1. The computing details can be found in Appendix B.3.

II. Computational Hardness The computational hardness is another critical metric to assess
the quality of the generated instances. We draw an analogy from the SAT generation community,
where though many progresses achieved, it is widely acknowledged that the generated SAT instances
differs significantly from real-world ones in the computational hardness [25], and this issue remains
inadequately addressed. In our work, we make efforts to mitigate this problem, even in the context
of MILP generation, a more challenging task. To this end, we leverage the state-of-the-art solver
Gurobi [12] to solve the instances, and we report the solving time and the numbers of branching nodes
during the solving process, which can directly reflect the computational hardness of instances [19].

III. Downstream Task We consider two downstream tasks to examine the the potential benefits
of the generated instances in practical applications. We employ G2MILP to generate new instances
and augment the original datasets, and then evaluate whether the enriched datasets can improve the
performance of the downstream tasks. The considered tasks include predicting the optimal values of
the MILP problem, as discussed in Chen et al. [18], and applying a predict-and-search framework for
solving MILPs, as proposed by Han et al. [31].

Datasets We consider four different datasets of various sizes. (1) Large datasets. We evaluate
the model’s capability of learning data distributions using two well-known synthetic MILP datasets:
Maximum Independent Set (MIS) [50] and Set Covering [15]. We follow previous works [8, 9] to
artificially generate 1000 instances for each of them. (2) Medium dataset. Mixed-integer Knapsack
(MIK) is a widely used dataset [34], which consists of 80 training instances and 10 test instances. We
use this dataset to evaluate the model’s performance both on the distribution learning benchmarks
and the downstream task. (3) Small dataset. We construct a small subset of MIPLIB 2017 [10]
by collecting a group of problems called Nurse Scheduling problems. This dataset comes from
real-world scenarios and consists of only 4 instances, 2 for training and 2 for test, respectively. Since
the statistics are meaningless for such an extremely small dataset, we use it only to demonstrate the
effectiveness of generated instances in facilitating downstream tasks.

Baselines G2MILP is the first deep learning generative framework for MILP isntances, and thus,
we do not have any learning-based models for comparison purpose. Therefore, we compare G2MILP
with a heuristic MILP instance generator, namely Bowly [16]. Bowly can create feasible and bounded
MILP instances while controlling some specific statistical features such as coefficient density and
coefficient mean. We set all the controllable parameters to match the corresponding statistics of the
training set, allowing Bowly to imitate the training set to some extent. We also consider a useful
baseline, namely Random, to demonstrate the effectiveness of deep neural networks in G2MILP.
Random employs the same generation procedure as G2MILP, but replaces all neural networks in the
decoder with random generators. We set the masking ratio η for Random and G2MILP to 0.01, 0.05,
and 0.1 to show how this hyperparameter helps balance the novelty and similarity.

4.2 Quantitative Results Table 1: Structural similarity scores be-
tween each pair of datasets. Higher is better.

MIS SetCover MIK

MIS 0.998 0.182 0.042
SetCover - 1.000 0.128

MIK - - 0.997

I. Structural Distributional Similarity We present
the structural distributional similarity scores between
each pair of datasets in Table 1. The results indicate
that our designed metric is reasonable in the sense that
datasets obtain high scores with themselves and low
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Table 3: Average solving time (s) of instances solved by Gurobi (mean ± std). η is the masking ratio.
Numbers in the parentheses are relative errors with respect to the training sets (lower is better).

MIS SetCover MIK

Training Set 0.349 ± 0.05 2.344± 0.13 0.198± 0.04

Bowly 0.007± 0.00 (97.9%) 0.048± 0.00 (97.9%) 0.001± 0.00 (99.8%)

η = 0.01
Random 0.311± 0.05 (10.8%) 2.044± 0.19 (12.8%) 0.008± 0.00 (96.1%)

G2MILP 0.354± 0.06 (1.5%) 2.360± 0.18 (0.8%) 0.169± 0.07 (14.7%)

η = 0.05
Random 0.569± 0.09 (63.0%) 2.010± 0.11 (14.3%) 0.004± 0.00 (97.9%)

G2MILP 0.292± 0.07 (16.3%) 2.533± 0.15 ( 8.1%) 0.129± 0.05 (35.1%)

η = 0.1
Random 2.367± 0.35 (578.2%) 1.988± 0.17 (15.2%) 0.005± 0.00 (97.6%)

G2MILP 0.214± 0.05 (38.7%) 2.108± 0.21 (10.0%) 0.072± 0.02 (63.9%)

Table 4: Average numbers of branching nodes of instances solved by Gurobi. η is the masking ratio.
Numbers in the parentheses are relative errors with respect to the training sets (lower is better).

MIS SetCover MIK

Training Set 16.09 838.56 175.35

Bowly 0.00 (100.0%) 0.00 (100.0%) 0.00 (100.0%)

η = 0.01
Random 20.60 (28.1%) 838.51 (0.0%) 0.81 (99.5%)

G2MILP 15.03 (6.6%) 876.09 (4.4%) 262.25 (14.7%)

η = 0.05
Random 76.22 (373.7%) 765.30 (8.7%) 0.00 (100%)

G2MILP 10.58 (34.2%) 874.46 (4.3%) 235.35 (34.2%)

η = 0.1
Random 484.47 (2911.2%) 731.14 (12.8%) 0.00 (100%)

G2MILP 4.61 (71.3%) 876.92 (4.6%) 140.06 (20.1%)

Table 2: Structural distributional similarity scores
between the generated instances with the training
datasets. Higher is better. η is the masking ratio.
We do not report the results of Bowly on MIK
because Ecole [45] and SCIP [51] fail to read the
generated instances due to large numerical values.

MIS SetCover MIK

Bowly 0.184 0.197 -

η = 0.01
Random 0.651 0.735 0.969

G2MILP 0.997 0.835 0.991

η = 0.05
Random 0.580 0.613 0.840

G2MILP 0.940 0.782 0.953

η = 0.1
Random 0.512 0.556 0.700

G2MILP 0.895 0.782 0.918

scores with different domains. Table 2 shows the
similarity scores between generated instances
and the corresponding training sets. We gener-
ate 1000 instances for each dataset to compute
the similarity scores. The results suggest that
G2MILP closely fits the data distribution, while
Bowly, which relies on heuristic rules to control
the statistical features, falls short of our expec-
tations. Furthermore, we observe that G2MILP
outperforms Random, indicating that deep learn-
ing contributes to the model’s performance. As
expected, a higher masking ratio η results in gen-
erating more novel instances but reduces their
similarity to the training sets.

II. Computational Hardness We report the
average solving time and numbers of branching
nodes in Table 3 and Table 4, respectively. The results indicate that instances generated by Bowly
are relatively easy, and the hardness of those generated by Random is inconclusive. In contrast,
G2MILP is capable of preserving the computational hardness of the original training sets. Notably,
even without imposing rules to guarantee the feasibility and boundedness of generated instances,
G2MILP automatically learns from the data and produces feasible and bounded instances.

III. Downstream Task First, we follow Chen et al. [18] to construct a GNN model for predicting
the optimal values of MILP problems. We train a predictive GNN model on the training set. After
that, we employ 20 generated instances to augment the training data, and then train another predictive
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Figure 2: Results of the optimal value prediction task. Bars indicate the relative MSE to the model
trained on the original training sets, and lines represent the relative performance improvement.

Training Set

Training Set

G2MILP

G2MILP (η = 0.01) G2MILP (η = 0.05) G2MILP (η = 0.1)

Figure 3: The t-SNE visualization of MILP instance representations for MIK. Each point represents
an instance. Red points are from the training set and blue points are instances generated by G2MILP.

model using the enriched dataset. We use the prediction mean squared error (MSE) to assess the
resulting models, and we present the MSE relative to the default model trained on the original training
sets in Figure 2. For the MIK dataset, instances generated by Bowly introduce numerical issues so that
Ecole and SCIP fail to read them. For the Nurse Scheduling dataset, Random fails to generate feasible
instances. Notably, G2MILP is the only method that demonstrates performance improvement on both
datasets, reducing the MSE by 73.7% and 24.3%, respectively. The detailed results are in Table 8
in Appendix B.4. Then, we conduct experiments on the neural solver, i.e., the predict-and-search
framework proposed by Han et al. [31], which employs a model to predict a solution and then uses
solvers to search for the optimal solutions in a trust region. The results are in Table 9 in Appendix B.4.

4.3 Analysis

Masking Process We conduct extensive comparative experiments on different implementations of
the masking process. First, we implement different versions of G2MILP, which enable us to mask
and modify either constraints, variables, or both. Second, we investigate different orders of masking
constraints, including uniformly sampling and sampling according to the vertex indices. Third, we
analyze the effect of the masking ratio η on similarity scores and downstream task performance
improvements. The experimental results are in Appendix C.2.

Size of Dataset We conduct experiments on different sizes of the original datasets and different
ratio of generated instances to original ones on MIS. Results are in Table 15 in Appendix C.4. The
results show that G2MILP yields performance improvements across datasets of varying sizes.

Visualization We visualize the instance representations for MIK in Figure 3. Specifically, we use
the G2MILP encoder to obtain the instance representations, and then apply t-SNE dimensionality
reduction [52] for visualization. We observe that the generated instances, while closely resembling
the training set, contribute to a broader and more continuous exploration of the problem space,
thereby enhancing model robustness and generalization. Additionally, by increasing the masking
ratio η, we can effectively explore a wider problem space beyond the confines of the training sets.
For comparison with the baseline, we present the visualization of instances generated by Random in
Figure 5 in Appendix C.5.
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5 Limitations, Future Avenues, and Conclusions

Limitations In this paper, we develop G2MILP by iteratively corrupting and replacing the con-
straints vertices. We also investigate different implementations of the masking process. However,
more versatile masking schemes should be explored. Moreover, employing more sophisticated
designs would enable us to control critical properties such as feasibility of the instances. We intend
to develop a more versatile and powerful generator in our future work.

Future Avenues We open up new avenues for research on DL-based MILP instance generative
models. In addition to producing new instances to enrich the datasets, this research has many other
promising technical implications [35]. (1) Such a generator will assist researchers to gain insights
into different data domains and the explored space of MILP instances. (2) Based on a generative
model, we can establish an adversarial framework, where the generator aims to identify challenging
cases for the solver, thus automatically enhancing the solver’s ability to handle complex scenarios.
(3) Training a generative model involves learning the data distribution and deriving representations
through unsupervised learning. Consequently, it is possible to develop a pre-trained model based on a
generative model, which can benefit downstream tasks across various domains. We believe that this
paper serves as an entrance for the aforementioned routes, and we expect further efforts in this field.

Conclusions In this paper, we propose G2MILP, which to the best of our knowledge is the first
deep generative framework for MILP instances. It can learn to generate MILP instances without
prior expert-designed formulations, while preserving the structures and computational hardness,
simultaneously. Thus the generated instances can enhance MILP solvers under limited data availability.
This work opens up new avenues for research on DL-based MILP instance generative models.

Acknowledgements

The authors would like to thank all the anonymous reviewers for their insightful comments. This
work was supported in part by National Key R&D Program of China under contract 2022ZD0119801,
National Nature Science Foundations of China grants U19B2026, U19B2044, 61836011, 62021001,
and 61836006.

References
[1] John A Muckstadt and Richard C Wilson. An application of mixed-integer programming duality

to scheduling thermal generating systems. IEEE Transactions on Power Apparatus and Systems,
(12), 1968.

[2] Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming,
volume 149. Springer, 2006.

[3] Rodrigo Moreno, Roberto Moreira, and Goran Strbac. A milp model for optimising multi-
service portfolios of distributed energy storage. Applied Energy, 137:554–566, 2015.

[4] Robert E Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. Mixed-
integer programming: A progress report. In The sharpest cut: the impact of Manfred Padberg
and his work, pages 309–325. SIAM, 2004.

[5] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[6] Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

[7] He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

10



[8] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural
information processing systems, 32, 2019.

[9] Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang,
and Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical
sequence model. In The Eleventh International Conference on Learning Representations, 2023.

[10] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib
2017: data-driven compilation of the 6th mixed-integer programming library. Mathematical
Programming Computation, 13(3):443–490, 2021.

[11] Jun Sakuma and Shigenobu Kobayashi. A genetic algorithm for privacy preserving com-
binatorial optimization. In Annual Conference on Genetic and Evolutionary Computation,
2007.

[12] LLC Gurobi Optimization. Gurobi optimizer. URL http://www. gurobi. com, 2021.

[13] Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang
Yang, and Junchi Yan. Roco: A general framework for evaluating robustness of combinato-
rial optimization solvers on graphs. In The Eleventh International Conference on Learning
Representations, 2023.

[14] Russ J Vander Wiel and Nikolaos V Sahinidis. Heuristic bounds and test problem generation for
the time-dependent traveling salesman problem. Transportation Science, 29(2):167–183, 1995.

[15] Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: A computational study, pages 37–60. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1980. ISBN 978-3-642-00802-3. doi: 10.1007/BFb0120886. URL
https://doi.org/10.1007/BFb0120886.

[16] Simon Andrew Bowly. Stress testing mixed integer programming solvers through new test
instance generation methods. PhD thesis, School of Mathematical Sciences, Monash University,
2019.

[17] Jiaxuan You, Haoze Wu, Clark Barrett, Raghuram Ramanujan, and Jure Leskovec. G2sat:
learning to generate sat formulas. Advances in neural information processing systems, 32, 2019.

[18] Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In The Eleventh International Conference on Learning
Representations, 2023.

[19] Yang Li, Xinyan Chen, Wenxuan Guo, Xijun Li, Wanqian Luo, Junhua Huang, Hui-Ling Zhen,
Mingxuan Yuan, and Junchi Yan. Hardsatgen: Understanding the difficulty of hard sat formula
generation and a strong structure-hardness-aware baseline. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2023.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[21] Omar Mahmood, Elman Mansimov, Richard Bonneau, and Kyunghyun Cho. Masked graph
modeling for molecule generation. Nature communications, 12(1):3156, 2021.

[22] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[23] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[24] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

11

https://doi.org/10.1007/BFb0120886


[25] Tomáš Balyo, Nils Froleyks, Marijn JH Heule, Markus Iser, Matti Järvisalo, and Martin Suda.
Proceedings of sat competition 2020: Solver and benchmark descriptions. 2020.

[26] Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to
gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

[27] Xijun Li, Qingyu Qu, Fangzhou Zhu, Mingxuan Yuan, Jia Zeng, and Jie Wang. Accelerating
linear programming solving by exploiting the performance variability via reinforcement learning.
2023.

[28] Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang
Li, Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via
reinforcement learning. arXiv preprint arXiv:2310.11845, 2023.

[29] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[30] Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for
guiding combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 10219–10227, 2022.

[31] Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun,
and Xiaodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear
programming. arXiv preprint arXiv:2302.05636, 2023.

[32] Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks. preprint:
http://www. optimization-online. org/DB_ HTML/2018/11/6943. html, 2019.

[33] Qingyu Qu, Xijun Li, Yunfan Zhou, Jia Zeng, Mingxuan Yuan, Jie Wang, Jinhu Lv, Kexin Liu,
and Kun Mao. An improved reinforcement learning algorithm for learning to branch. arXiv
preprint arXiv:2201.06213, 2022.

[34] Alper Atamtürk. On the facets of the mixed–integer knapsack polyhedron. Mathematical
Programming, 98(1-3):145–175, 2003.

[35] Jie Wang, Zijie Geng, Xijun Li, Jianye Hao, Yongdong Zhang, and Feng Wu. G2milp: Learning
to generate mixed-integer linear programming instances for milp solvers. nov 2023. doi: 10.
36227/techrxiv.24566554.v1. URL http://dx.doi.org/10.36227/techrxiv.24566554.
v1.

[36] Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph
generation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[37] Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021.

[38] Wenqi Fan, Chengyi Liu, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and
Qing Li. Generative diffusion models on graphs: Methods and applications. arXiv preprint
arXiv:2302.02591, 2023.

[39] Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A
survey on deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714,
2022.

[40] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

[41] Zijie Geng, Shufang Xie, Yingce Xia, Lijun Wu, Tao Qin, Jie Wang, Yongdong Zhang, Feng
Wu, and Tie-Yan Liu. De novo molecular generation via connection-aware motif mining. In
The Eleventh International Conference on Learning Representations, 2023.

12

http://dx.doi.org/10.36227/techrxiv.24566554.v1
http://dx.doi.org/10.36227/techrxiv.24566554.v1


[42] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[43] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahra-
mani. Kronecker graphs: an approach to modeling networks. Journal of Machine Learning
Research, 11(2), 2010.

[44] Iván Garzón, Pablo Mesejo, and Jesús Giráldez-Cru. On the performance of deep generative
models of realistic sat instances. In 25th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[45] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https:
//openreview.net/forum?id=IVc9hqgibyB.

[46] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

[47] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111, 2014.

[48] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: bench-
marking models for de novo molecular design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

[49] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on
Information theory, 37(1):145–151, 1991.

[50] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker. Decision diagrams
for optimization, volume 1. Springer, 2016.

[51] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming
Computation, 1:1–41, 2009.

[52] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

13

https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB


A Implementation Details

A.1 Data Representation

As described in the main paper, we represent each MILP instance as a weighted bipartite graph
G = (V ∪W, E), where V represents the constraint vertex set,W represents the variable vertex set,
and E represents the edge set, respectively. The graph is equipped with a tuple of feature matrices
(V,W,E), and the description of these features can be found in Table 5.

Table 5: Description of the constraint, variable, and edge features in our bipartite graph representation.

Tensor Feature Description

V bias The bias value bi.

W

type Variable type (binary, continuous, integer, implicit integer) as a
4-dimensional one-hot encoding.

objective Objective coefficient cj .

has_lower_bound Lower bound indicator.

has_upper_bound Upper bound indicator.

lower_bound Lower bound value lj .

upper_bound Upper bound value uj .

E coef Constraint coefficient aij .

To ensure consistency, we standardize each instance to the form of Equation 1. However, we do
not perform data normalization in order to preserve the potential information related to the problem
domain in the original formulation. When extracting the bipartite graph, we utilize the readily
available observation function provided by Ecole. For additional details on the observation function,
readers can consult the following link: https://doc.ecole.ai/py/en/stable/reference/
observations.html#ecole.observation.MilpBipartite.

A.2 The Derivation of Masked Variational Auto-Encoder

We consider a variable with a distribution p(x). We draw samples from this distribution and apply a
masking process to transform each sample x into x̃ through a given probability p̃(x̃|x). Our objective
is to construct a parameterized generator pθ(x|x̃) to produce new data based on the the masked data
x̃. We assume that the generation process involves an unobserved continuous random variable z that
is independent of x̃, i.e., z ⊥ x̃. Consequently, we obtain the following equation:

pθ(x|x̃) =
pθ(x|z, x̃)pθ(z|x̃)

pθ(z|x, x̃)
=

pθ(x|z, x̃)pθ(z)
pθ(z|x, x̃)

. (14)

We introduce a probabilistic encoder qϕ(z|x) for approximating the intractable latent variable
distribution. We can then derive the follows:

log pθ(x|x̃) =Ez∼qϕ(z|x) [log pθ(x|x̃)]

=Ez∼qϕ(z|x)

[
log

pθ(x|z, x̃)pθ(z)
qϕ(z|x)

qϕ(z|x)
pθ(z|x, x̃)

]
=Ez∼qϕ(z|x)

[
log

pθ(x|z, x̃)pθ(z)
qϕ(z|x)

]
+ Ez∼qϕ(z|x)

[
log

(
qϕ(z|x)

pθ(z|x, x̃)

)]
=− L(θ,ϕ|x, x̃) +DKL [qϕ(z|x)∥pθ(z|x, x̃)]
≥− L(θ,ϕ|x, x̃). (15)
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In the formula, the term −L(θ,ϕ|x, x̃) is referred to as the evidence lower bound (ELBO), or the
variational lower bound. It can be expressed as:

−L(θ,ϕ|x, x̃) =Ez∼qϕ(z|x)

[
log

pθ(x|z, x̃)pθ(z)
qϕ(z|x)

]
=Ez∼qϕ(z|x) [log pθ(x|z, x̃)]− Ez∼qϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]
=Ez∼qϕ(z|x) [log pθ(x|z, x̃)]−DKL [qϕ(z|x)∥pθ(z)] . (16)

Consequently, the loss function can be formulated as follows:

L(θ,ϕ) = Ex∼DEx̃∼p̃(x̃|x) [L(θ,ϕ|x, x̃)] , (17)

where

L(θ,ϕ|x, x̃) =Ez∼qϕ(z|x) [− log pθ(x|z, x̃)]︸ ︷︷ ︸
Lrec

+DKL [qϕ(z|x)∥pθ(z)]︸ ︷︷ ︸
Lprior

. (18)

In the formula, the first term Lrec is referred to as the reconstruction loss, as it urges the decoder to
reconstruct the input data x. The second term Lprior is referred to as the prior loss, as it regularizes
the posterior distribution qϕ(z|x) of the latent variable to approximate the prior distribution pθ(z).
In practice, the prior distribution pθ(z) is commonly taken asN (0, I), and a hyperparameter is often
introduced as the coefficient for the prior loss. Consequently, the loss function can be expressed as:

L(θ,ϕ) = Ex∼DEx̃∼p̃(x̃|x) [L(θ,ϕ|x, x̃)] , (19)

where

L(θ,ϕ|x, x̃) = Lrec(θ,ϕ|x, x̃) + β · Lprior(ϕ|x),
Lrec(θ,ϕ|x, x̃) = Ez∼qϕ(z|x) [− log pθ(x|z, x̃)] , (20)

Lprior(ϕ|x) = DKL [qϕ(z|x)∥N (0, I)] .

In G2MILP, the loss function is instantiated as:

L(θ,ϕ) = EG∼DEG̃∼p̃(G̃|G)

[
L(θ,ϕ|G, G̃)

]
, (21)

where

L(θ,ϕ|G, G̃) = Lrec(θ,ϕ|G, G̃) + β · Lprior(ϕ|G),
Lrec(θ,ϕ|G, G̃) = EZ∼qϕ(Z|G)

[
− log pθ(G|Z, G̃)

]
, (22)

Lprior(ϕ|G) = DKL [qϕ(Z|G)∥N (0, I)] .

A.3 G2MILP Implementation

A.3.1 Encoder

The encoder implements qϕ(Z|G) in Equation 22. Given a bipartite graph G = (V ∪W, E) equipped
with the feature metrices (V,W,E), we employ a GNN structure with parameters ϕ to extract the
representations. Specifically, we utilize MLPs as embedding layers to obtain the initial embeddings
h
(0)
vi , h(0)

wj , and heij , given by:

h(0)
vi = MLPϕ(vi), h(0)

wj
= MLPϕ(wj), heij = MLPϕ(eij). (23)

Next, we perform K graph convolution layers, with each layer in the form of two interleaved
half-convolutions. The convolution layer is defined as follows:

h(k+1)
vi ← MLPϕ

h(k)
vi ,

∑
j:eij∈E

MLPϕ

(
h(k)
vi ,heij ,h

(k)
vj

) ,

h(k+1)
wj

← MLPϕ

h(k)
wj

,
∑

i:eij∈E
MLPϕ

(
h(k+1)
vi ,heij ,h

(k)
wj

) . (24)
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The convolution layer is followed by two GraphNorm layers, one for constraint vertices and the other
for variable vertices. We employ a concatenation Jumping Knowledge layer to aggregate information
from all K layers and obtain the node representations:

hvi = MLPϕ

(
CONCAT
k=0,··· ,K

(
h(k)
vi

))
, hwj = MLPϕ

(
CONCAT
k=0,··· ,K

(
h(k)
wj

))
. (25)

The obtained representations contain information about the instances. Subsequently, we use two
MLPs to output the mean and log variance, and then sample the latent vectors for each vertex from a
Gussian distribution as follows:

zvi ∼ N (MLPϕ (hvi) , expMLPϕ (hvi)) ,

zwj
∼ N

(
MLPϕ

(
hwj

)
, expMLPϕ

(
hwj

))
. (26)

A.3.2 Decoder

The decoder implements pθ(G|Z, G̃) in Equation 22. It utilizes a GNN structure to obtain the
representations, which has the same structure as the encoder GNN, but is with parameters θ instead
of ϕ. To encode the masked graph, we assign a special [mask] token to the masked vertex ṽ. Its
initial embedding h

(0)
ṽ is initialized as a special embedding h[mask]. We mask all edges between ṽ

and the variable vertices and add virtual edges. In each convolution layer, we apply a special update
rule for ṽ:

h
(k+1)
ṽ ← MLPθ

(
h
(k)
ṽ ,MEAN

wj∈W

(
h(k+1)
wj

))
, h(k+1)

wj
← MLPθ

(
h(k+1)
wj

,h
(k+1)
ṽ

)
. (27)

This updating is performed after each convolution layer, allowing ṽ to aggregate and propagate the
information from the entire graph.

The obtained representations are used for the four networks—Bias Predictor, Degree Predictor, Logits
Predictor, and Weights Predictor—to determine the generated graph. The details of these networks
have been described in the main paper. Here we provide the losses for the four prediction tasks. In the
following context, the node features, e.g., hṽ , refer to those from G̃ obtained by the decoder GNN.

① Bias Prediction Loss:

L1(θ,ϕ|G, G̃) = MSE
(
σ
(
MLPbias

θ ([hṽ, zṽ])
)
, b∗ṽ

)
. (28)

② Degree Prediction Loss:

L2(θ,ϕ|G, G̃) = MSE
(
σ
(

MLPdeg
θ ([hṽ, zṽ])

)
, d∗ṽ

)
. (29)

③ Logits Prediction Loss:

L3(θ,ϕ|G, G̃) = −E(ṽ,u)∼ppos

[
log (δ̂′ṽ,u)

]
− E(ṽ,u)∼pneg

[
log (1− δ̂′ṽ,u)

]
,

δ̂′ṽ,u = σ
(

MLPlogits
θ ([hu, zu])

)
. (30)

④ Weights Prediction Loss:

L4(θ,ϕ|G, G̃) = MSE
(
σ
(

MLPweights
θ ([hu, zu])

)
, e∗ṽ,u

)
. (31)

With these four prediction tasks, the reconstruction loss in Equation 22 is instantiated as:

Lrec(θ,ϕ|G, G̃) =
4∑

i=1

αi · Li(θ,ϕ|G, G̃), (32)

A.3.3 Training and Inference

We describe the training and inference procedures in Algorithm 1 and Algorithm 2, respectively.
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Algorithm 1: Train G2MILP
Input: Dataset D, number of training steps N , batch size B.
Output: Trained G2MILP, dataset statistics b, b, d, d, e, e.

1 Calculate the statistics b, b, d, d, e, e over D;
2 for n = 1, · · · , N do
3 B ← ∅;
4 for b = 1, · · · , B do
5 G ∼ D, ṽ ∼ VG ;
6 G̃ ← G.MaskNode(ṽ);
7 B ← B ∪ {(G, G̃)};
8 Compute b∗ṽ, d

∗
ṽ, δṽ,u, e

∗
ṽ,u;

9 Compute L(θ,ϕ|G, G̃) in Equation 22;
10 L(θ,ϕ)← 1

|B|
∑

(G,G̃)∈B L(θ,ϕ|G, G̃);
11 Update θ,ϕ to minimize L(θ,ϕ).

Algorithm 2: Generate a MILP instance

Input: Dataset D, trained G2MILP, dataset statistics b, b, d, d, e, e, masking ratio η.
Output: A novel instance Ĝ.

1 G ∼ D, Niters ← η · |VG |, Ĝ ← G;
2 for n = 1, · · · , Niters do
3 ṽ ∼ V Ĝ ;
4 Compute b̂∗ṽ , b̂ṽ ← b+ (b− b) · b̂∗ṽ , G̃.ṽ.bias← b̂ṽ;
5 Compute d̂∗ṽ , d̂ṽ ← d+ (d− d) · d̂∗ṽ;
6 for u ∈ W G̃ do
7 Compute δ̂′ṽ,u;

8 for u ∈ arg TopK({δ̂′ṽ,u|u ∈ W G̃}, d̂ṽ) do
9 Compute ê∗ṽ,u, êṽ,u ← e+ (e− e) · ê∗ṽ,u;

10 G̃.AddEdge(ṽ, u);
11 G̃.eṽ,u.weights← êṽ,u;
12 Ĝ ← G̃;
13 Output Ĝ.

B Experimental Details

B.1 Dataset

The three commonly used datasets, namely MIS, SetCover, and MIK, are the same
as those used in [9]. Nurse Scheduling contains a group of 4 instances from MI-
PLIB 2017: nursesched-medium04 and nursesched-sprint-hidden09 for training, and
nursesched-sprint02 and nursesched-sprint-late03 for test. Table 6 summarizes some
statistics of these datasets.

Table 6: Statistics of datasets. Size means the number of instances in the training set. |V| and |W| are
the numbers of constraints and variables, respectively.

Dataset MIS SetCover MIK Nurse Scheduling

Size 1000 1000 80 2
Mean |V| 1953 500 346 8707
Mean |W| 500 1000 413 20659
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B.2 Hyperparameters

We report some important hyperparameters in this section. Further details can be found in our code
once the paper is accepted to be published.

We run our model on a single GeForce RTX 3090 GPU. The hidden dimension and the embedding
dimension are set to 16. The depth of the GNNs is 6. Each MLP has one hidden layer and uses
ReLU() as the activation function.

In this work, we simply set all αi to 1. We find that the choice of β significantly impacts the model
performance. For MIS, we set β to 0.00045. For SetCover, MIK and Nurse Scheduling, we apply a
sigmoid schedule [46] to let β to reach 0.0005, 0.001, and 0.001, respectively. We employ the Adam
optimizer, train the model for 20, 000 steps, and choose the best checkpoint based on the average
error in solving time and the number of branching nodes. The learning rate is initialized to 0.001
and decays exponentially. For MIS, SetCover, and MIK, we set the batch size to 30. Specifically, to
provide more challenging prediction tasks in each batch, we sample 15 graphs and use each graph to
derive 2 masked ones for training. For Nurse Scheduling, we set the batch size as 1 due to the large
size of each graph.

B.3 Structural Distributional Similarity

Table 7: Description of statistics used for measuring the structural distributional similarity. These
statistics are calculated on the bipartite graph extracted by Ecole.

Feature Description

coef_dens Fraction of non-zero entries in A, i.e., |E|/(|V| · |W|).
cons_degree_mean Mean degree of constraint vertices in V .

cons_degree_std Std of degrees of constraint vertices in V .

var_degree_mean Mean degree of variable vertices inW .

var_degree_std Std of degrees of variance vertices inW .

lhs_mean Mean of non-zero entries in A.

lhs_std Std of non-zero entries in A.

rhs_mean Mean of b.

rhs_std Std of b.

clustering_coef Clustering coefficient of the graph.

modularity Modularity of the graph.

Table 7 presents the 11 statistics that we use to measure the structural distributional similarity. First,
we calculate the statistics for each instance. We then compute the JS divergence DJS,i between
the generated samples and the training set for each descriptor i ∈ {1, · · · , 11}. We estimate the
distributions using the histogram function in numpy and the cross entropy using the entropy function
in scipy. The JS divergence falls in the range [0, log 2], so we standardize it to a score si via:

si =
1

log 2
(log 2−DJS,i) . (33)

Then we compute the mean of the 11 scores for the descriptors to obtain the final score s:

s =
1

11

11∑
i=1

si. (34)

Hence the final score ranges from 0 to 1, with a higher score indicating better similarity.

We use the training set to train a G2MILP model for each dataset and generate 1000 instances to
compute the similarity scores. For MIK, which has only 80 training instances, we estimated the score
using put-back sampling.
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Table 8: Results on the optimal value prediction task (mean±std). On each dataset and for each
method, we sample 5 different sets of 20 instances for augmentation.

MIK Nurse Scheduling
MSE Improvement MSE Improvement

Dataset 0.0236 0.0% 679.75 0.0%
Bowly - - 663.52 (±95.33) 2.3% (±14.0%)

Random 0.0104 (±0.0023) 55.9% (±9.7%) - -
G2MILP 0.0073 (±0.0014) 69.1% (±5.9%) 548.70 (±44.68) 19.3% (±6.6%)

Table 9: Results on the predict-and-search framework on MIS. The training set contains 100
instances, and we generate 100 new instances. For Random and G2MILP, masking ratio is 0.01. Time
means the time for Gurobi to find the optimal solution with augmenting data generated by different
models. Bowly leads to the framework failing to find optimal solutions in the trust region.

Method Training Set Bowly Random G2MILP

Time 0.041
(±0.006) 17/100 fail 0.037

(±0.003)
0.032

(±0.004)

Notice that for a fair comparison, we exclude statistics that remain constant in our approach, such as
problem size and objective coefficients. We implement another version of metric that involves more
statistics, and the results are in Appendix C.3.

B.4 Downstream Tasks

The generated instances have the potential to enrich dataset in any downstream task. In this work, we
demonstrate this potential through two application scenarios, i.e., the optimal value prediction task
and the predict-and-search framework.

Optimal Value Prediction Two datasets, MIK and Nurse Scheduling, are considered, with medium
and extremely small sizes, respectively. Following [18], we employ a GNN as a predictive model.
The GNN structure is similar to the GNNs in G2MIL. We obtain the graph representation using mean
pooling over all vertices, followed by a two-layer MLP to predict the optimal values of the instances.

For each dataset, we train a GNN predictive model on the training set. Specifically, for MIK, we use
80% of instances for training, 20% of instances for validating, and train for 1000 epochs to select
the best checkpoint based on validation MSE. For Nurse Scheduling, we use both instances to train
the model for 80 epochs. We use the generative models, Bowly, Random, and G2MILP, to generate
20 instances similar to the training sets. For Random and G2MILP, we mix together the instances
generated by setting the masking ratio η to 0.01 and 0.05, respectively. Next, we use the generated
instances to enrich the original training sets, and use the enriched data to train another predictive
model. We test all the trained model on previously unseen test data. Table 8 presents the predictive
MSE on the test sets of the models trained on different training sets. As the absolute values of MSE
are less meaningful than the relative values, we report the performance improvements brought by
different generative technique. The improvement of Model2 relative to Model1 is calculate as follows:

Improvement2,1 =
MSE1 −MSE2

MSE1
. (35)

On MIK, Bowly results in numerical issues as some generated coefficients are excessively large.
G2MILP significant improves the performance and outperforms Random. On Nurse Scheduling,
Random fails to generate feasible instances, and Bowly yields a minor improvement. Notably,
G2MILP allows for the training of the model with even minimal data.

Predict-and-Search We conduct experiments on a neural solver, i.e., the predict-and-search frame-
work proposed by Han et al. [31] Specifically, they propose a framework that first predicts a solution
and then uses solvers to search for the optimal solutions in a trust region. We consider using generated
instances to enhance the predictive model. We first train the predictive model on 100 MIS instances,
and then use the generative models to generate 100 new instances to augment the dataset. The results
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are in Table 9 . Bowly generates low-quality data that disturbs the model training, so that there is
no optimal solution in the trust region around the predicted solution. Though both Random and
G2MILP can enhance the solving framework to reduce solving time, we can see G2MILP significantly
outperforms Random.

Discussions These two downstream tasks, despite their simplicity, possess characteristics that make
them representative problems that could benefit from generative models. Specifically, we identify the
following features.

1. More is better. We want as many data instances as possible. This condition is satisfied
when we can obtain precise labels using existing methods, e.g., prediction-based neural
solvers [31], or when unlabeled data is required for RL model training, e.g., RL for cut
selection [9].

2. More similar is better. We want independent identically distributed (i.i.d.) data instances
for training. Thus

3. More diverse is better. We want the data to be diverse, despite being i.i.d., so that the
trained model can generalize better.

Our experimental results demonstrate the potential of G2MILP in facilitating downstream tasks with
these characteristics, thus enhancing the MILP solvers. We intend to explore additional application
scenarios in future research.

C Additional Results

C.1 Comparison with G2SAT

Table 10: Results of G2SAT on MIS. In the table, “sim” denotes similarity score (higher is better),
“time” denotes solving time, and “#branch” denotes the number of branching nodes, respectively.
Numbers in brackets denote relative errors (lower is better).

sim time (s) #branch
Training Set 0.998 0.349 16.09

G2SAT 0.572 0.014 (96.0%) 2.11 (86.9%)

G2MILP (η = 0.01) 0.997 0.354 (1.5%) 15.03 (6.6%)

G2MILP (η = 0.1) 0.895 0.214 (38.7%) 4.61 (71.3%)

We conduct an additional experiment that transfers G2SAT to a special MILP dataset, MIS, in which
all coefficients are 1.0 and thus the instances can be modeled as homogeneous bipartite graphs. We
apply G2SAT to learn to generate new graphs and convert them to MILPs. Results are in Table 10.
The results show that G2MILP significantly outperforms G2SAT on the special cases.

C.2 Masking Process

Masking Variables In the mainbody, for simplicity, we define the masking process of uniformly
sampling a constraint vertex ṽ ∼ U(V) to mask, while keeping the variable vertices unchanged.
We implement different versions of G2MILP that allow masking and modifying either constraints,
variables, or both. The results are in Table 11.

Ablation on Masking Ratio We have conduct ablation studies on the effect of the masking ratio η
on MIK. The results are in Figure 4. The experimental settings are the same with those in Table 2 and
Figure 2. From the results we have the following conclusions. (1) though empirically a smaller leads
to a relatively better performance, G2MILP maintains a high similarity performance even when η is
large. (2) The downstream task performance does not drops significantly. This makes sense because
smaller η leads to more similar instances, while larger η leads to more diverse (but still similar)
instances, both of which can benefit downstream tasks. (3) G2MILP always outperforms Random,
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Table 11: Results of different implementations of G2MILP on MIK. In the table, η denotes mask
ratio, “v” denotes only modifying variables (objective coefficients and variable types), “c” denotes
only modifying constraints, and “vc” denotes first modifying variables and then modifying constraints.
We do not report the similarity scores for “v” models because the current similarity metrics exclude
statistics that measure only variables.

sim time (s) #branch
Training Set 0.997 0.198 175.35

G2MILP
(η = 0.01)

v - 0.183 (7.5%) 136.68 (22.0%)

c 0.989 0.169 (17.1%) 167.44 (4.5%)

vc 0.986 0.186 (6.1%) 155.40 (11.4%)

G2MILP
(η = 0.05)

v - 0.176 (11.1%) 136.68 (22.0%)

c 0.964 0.148 (25.3%) 150.90 (13.9%)

vc 0.964 0.147 (25.3%) 142.70 (18.6%)

G2MILP
(η = 0.1)

v - 0.172 (13.1%) 136.67 (22.1%)

c 0.905 0.117 (40.9%) 169.63 (3.3%)

vc 0.908 0.115 (41.9%) 112.29 (35.9%)
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Figure 4: (a) Distributional similarity score (higher is better) and (b) Relative MSE (lower is better)
v.s. masking ratio η.

which demonstrates that the learning paradigm helps maintain the performance. (4) Bowly fails on
this dataset because its generated instances lead to numerical issues and cannot be read by Gurobi
or SCIP. Moreover, in real applications, it is reasonable and flexible to adjust the hyperparameter to
achieve good performances in different scenarios.

Orders of Masked Constraints We also investigate different orders of masking constraint vertices,
including uniformly sampling and sampling according to the vertex indices. Results are in Table 12.
We find that uniformly sampling achieves the best performance. Sampling according to indices leads
to a performance decrease, maybe because near constraints are relevant and lead to error accumulation.
We think these results are interesting, and will study it in the future work.

C.3 Structural Distributional Similarity

In the mainbody, for a fair comparison, we exclude statistics that remain constant in our approach,
such as problem size and objective coefficients. However, these statistics are also important features
for MILPs. In this section, we incorporate three additional statistics in the computing of similarity
scores: (1) mean of objective coefficients c, (2) std of objective coefficients c, and (3) the ratio of
continuous variables. With these additional metrics, we recompute the structural similarity scores
and updated the results in both Table 2 and Table 11. The new results are in Table 13 and Table 14,
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Table 12: Results of different implementations of generation orders on MIK dataset. In the table,
“Uni” denotes uniformly sampling from constraints. “Idx↗” and “Idx↘” denote sampling constraints
according to indices in ascending order and descending order, respectively.

order model sim time (s) #branch

Uni G2MILP 0.953 0.129 (35.1%) 235.35 (34.2%)

Random 0.840 0.004 (97.9%) 0.00 (100%)

Idx↗ G2MILP 0.892 0.054 (72.7%) 108.30 (38.2%)

Random 0.773 0.002 (98.9%) 0.00 (100%)

Idx↘ G2MILP 0.925 0.027 (86.2%) 31.53 (82.0%)

Random 0.827 0.003 (98.6%) 0.00 (100%)

respectively. From the results, we can still conclude that G2MILP outperforms all baselines, further
supporting the effectiveness of our proposed method.

Table 13: (Table 2 recomputed.) Structural distributional similarity scores between the generated
instances with the training datasets. Higher is better. η is the masking ratio. We do not report the
results of Bowly on MIK because Ecole [45] and SCIP [51] fail to read the generated instances due
to large numerical values.

MIS SetCover MIK

Bowly 0.144 0.150 -

η = 0.01
Random 0.722 0.791 0.971

G2MILP 0.997 0.874 0.994

η = 0.05
Random 0.670 0.704 0.878

G2MILP 0.951 0.833 0.969

η = 0.1
Random 0.618 0.648 0.768

G2MILP 0.921 0.834 0.930

Table 14: (Table 11 recomputed.) Results of different implementations of G2MILP on MIK. In the
table, η denotes mask ratio, “v” denotes only modifying variables (objective coefficients and variable
types), “c” denotes only modifying constraints, and “vc” denotes first modifying variables and then
modifying constraints.

v c cv
G2MILP (η = 0.01) 0.998 0.988 0.985
G2MILP (η = 0.05) 0.996 0.968 0.967
G2MILP (η = 0.1) 0.996 0.928 0.912

C.4 Sizes of Datasets

We conduct experiments on different sizes of the original datasets, as well as the ratio of generated
instances to original ones, on MIS. The results are in Table 15. The results show that G2MILP can
bring performance improvements on varying sizes of datasets.

C.5 Visualization

The t-SNE visualization for baselines are in Figure 5. G2MILP generates diverse instances around
the training set, while instances generated by Random are more biased from the realistic ones.
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Table 15: Results on the optimal value prediction task on MIS with different dataset sizes. In the
table, “#MILPs” denotes the number of instances in the training sets, and “Augment%” denotes the
ratio of generated instances to training instances.

#MILPs Augment% MSE Improvement

50

0 1.318 0

25% 1.014 23.1%

50% 0.998 24.3%

100% 0.982 25.5%

100

0 0.798 0

25% 0.786 1.5%

50% 0.752 5.8%

100% 0.561 23.7%

200

0 0.294 0

25% 0.283 19.0%

50% 0.243 17.3%

100% 0.202 31.3%

500

0 0.188 0

25% 0.168 10.6%

50% 0.175 6.9%

100% 0.170 9.6%

G2MILP (η = 0.01) G2MILP (η = 0.05) G2MILP (η = 0.1)

Random (η = 0.01)

Training Set

Random

Random (η = 0.05) Random (η = 0.1)

Figure 5: The t-SNE visualization of MILP instance representations for MIK. Each point represents
an instance. Red points are from the training set, blue points are instances generated by G2MILP, and
green points are instances generated by Random.
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