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Abstract

Cross-device Federated Learning (FL) faces significant challenges where low-
end clients that could potentially make unique contributions are excluded from
training large models due to their resource bottlenecks. Recent research efforts have
focused on model-heterogeneous FL, by extracting reduced-size models from the
global model and applying them to local clients accordingly. Despite the empirical
success, general theoretical guarantees of convergence on this method remain
an open question. This paper presents a unifying framework for heterogeneous
FL algorithms with online model extraction and provides a general convergence
analysis for the first time. In particular, we prove that under certain sufficient
conditions and for both IID and non-IID data, these algorithms converge to a
stationary point of standard FL for general smooth cost functions. Moreover, we
introduce the concept of minimum coverage index, together with model reduction
noise, which will determine the convergence of heterogeneous federated learning,
and therefore we advocate for a holistic approach that considers both factors to
enhance the efficiency of heterogeneous federated learning.

1 Introduction

Federated Learning (FL) is a machine learning paradigm that enables a massive number of distributed
clients to collaborate and train a centralized global model without exposing their local data [1].
Heterogeneous FL is confronted with two fundamental challenges: (1) mobile and edge devices that
are equipped with drastically different computation and communication capabilities are becoming the
dominant source for FL [2], also known as device heterogeneity; (2) state-of-the-art machine learning
model sizes have grown significantly over the years, limiting the participation of certain devices
in training. This has prompted significant recent attention to a family of FL algorithms relying on
training reduced-size heterogeneous local models (often obtained through extracting a subnet or
pruning a shared global model) for global aggregation. It includes algorithms such as HeteroFL [3]
that employ fixed heterogeneous local models, as well as algorithms like PruneFL [4] and FedRolex
[5] that adaptively select and train pruned or partial models dynamically during training. However,
the success of these algorithms has only been demonstrated empirically (e.g., [2, 4, 3]). Unlike
standard FL that has received rigorous analysis [6, 7, 8, 9], the convergence of heterogeneous FL
algorithms is still an open question.
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This paper aims to answer the following questions: Given a heterogeneous FL algorithm that trains a
shared global model through a sequence of time-varying and client-dependent local models, what
conditions can guarantee its convergence? And intrinsically how do the resulting models compare to
that of standard FL? There have been many existing efforts in establishing convergence guarantees for
FL algorithms, such as the popular FedAvg [1], on both IID (independent and identically distributed
data) and non-IID[9] data distributions, but all rely on the assumption that local models share the
same uniform structure as the global model 1. Training heterogeneous local models, which could
change both over time and across clients in FL is desirable due to its ability to adapt to resource
constraints and training outcomes[10].

Figure 1: In this paper we show that instead of
pruning small parameters greedily, local clients
when applied with different local models not only
will converge under certain conditions, it might
even converge faster.

For general smooth cost functions and under
standard FL assumptions, we prove that hetero-
geneous FL algorithms satisfying certain suffi-
cient conditions can indeed converge to a neigh-
borhood of a stationary point of standard FL
(with a small optimality gap that is character-
ized in our analysis), at a rate of O( 1√

Q
) in Q

communication rounds. Moreover, we show not
only that FL algorithms involving local clients
training different subnets (pruned or extracted
from the global model) will converge, but also
that the more they cover the parameters space
in the global model, the faster the training will
converge. Thus, local clients should be encour-
aged to train with reduced-size models that are
of different subnets of the global model rather
than pruning greedily. The work extends pre-
vious analysis on single-model adaptive prun-
ing and subnetwork training[11, 12] to the FL
context, where a fundamental challenge arises
from FL’s local update steps that cause hetero-
geneous local models (obtained by pruning the
same global model or extracting a submodel) to
diverge before the next aggregation. We prove
a new upperbound and show that the optimality gap (between heterogeneous and standard FL) is
affected by both model-reduction noise and a new notion of minimum coverage index in FL (i.e., any
parameters in the global model are included in at least Γmin local models).

The key contribution of this paper is to establish convergence conditions for federated learning
algorithms that employ heterogeneous arbitrarily-pruned, time-varying, and client-dependent local
models to converge to a stationary point of standard FL. Numerical evaluations validate the sufficient
conditions established in our analysis. The results demonstrate the benefit of designing new model
reduction strategies with respect to both model reduction noise and minimum coverage index.

2 Background

Standard Federated Learning A standard FL problem considers a distributed optimization for N
clients:

min
θ

{
F (θ) ≜

N∑
i=1

piFi(θ)

}
, with F (θi) = Eξ∼Di l(ξi, θi), (1)

where θ is as set of trainable weights/parameters, Fn(θ) is a cost function defined on data set Di

with respect to a user specified loss function l(x, θ), and pi is the weight for the i-th client such that
pi ≥ 0 and

∑
N
i=1pi = 1.

1Throughout this paper, “non-IID data” means that the data among local clients are not independent and
identically distributed. "Heterogeneous" means each client model obtained by model reduction from a global
model can be different from the global model and other clients. "Dynamic" means time-varying, i.e. the model
for one local client could change between each round.
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The FL procedure, e.g., FedAvg [1], typically consists of a sequence of stochastic gradient descent
steps performed distributedly on each local objective, followed by a central step collecting the
workers’ updated local parameters and computing an aggregated global parameter. For the q-th
round of training, first, the central server broadcasts the latest global model parameters θq to clients
n = 1, . . . , N , who perform local updates as follows:

θq,n,t = θq,n,t−1 − γ∇Fn(θq,n,t−1; ξn,t−1) with θq,n,0 = θq

where γ is the local learning rate. After all available clients have concluded their local updates (in T
epochs), the server will aggregate parameters from them and generate the new global model for the
next round, i.e., θq+1 =

∑N
n=1 piθq,n,T The formulation captures FL with both IID and non-IID data

distributions.

3 Related Work

Federated Averaging and Related Convergence Analysis. FedAvg [1] is consi dered the first and
the most commonly used federated learning algorithm . Several works have shown the convergence of
FedAvg under several different settings with both homogeneous (IID) data [6, 13] and heterogeneous
(non-IID) data [9, 7, 8] even with partial clients participation [14]. Specifically, [8] demonstrated
LocalSGD achieves O( 1√

NQ
) convergence for non-convex optimization and [9] established a conver-

gence rate of O( 1
Q ) for strongly convex problems on FedAvg, where Q is the number of SGDs and N

is the number of participated clients.

Efficient and Heterogeneous FL through Neural Network Pruning and Sparsification. Several
works [15, 16, 17, 18, 19, 20] are proposed to further reduce communication costs in FL. One
direction is to use data compression such as quantization [21, 7, 22, 23], sketching [24, 25], split
learning [26], learning with gradient sparsity [27] and sending the parameters selectively[28]. This
type of work does not consider computation efficiency. There are also works that address the reduction
of both computation and communication costs, including one way to utilize lossy compression and
dropout techniques[29, 30]. Although early works mainly assume that all local models share the same
architecture as the global model [31], recent works have empirically demonstrated that federated
learning with heterogeneous client models to save both computation and communication is feasible.
PruneFL[4] proposed an approach with adaptive parameter pruning during FL. [32] proposed FL
with a personalized and structured sparse mask. FjORD[33] and HetroFL[3] proposed to generate
heterogeneous local models as a subnet of the global network by extracting a static sub-models,
Hermes[34] finds the small sub-network by applying the structured pruning. There are also researches
on extracting a subnetwork dynamically, e.g. Federated Dropout[29] extracts submodels randomly
and FedRolex[5] applies a rolling sub-model extraction.

Despite their empirical success, they either lack theoretical convergence analysis or are specific to
their own work. PruneFL only shows a convergence of the proposed algorithm and does not ensure
convergence to a solution of standard FL. Meanwhile, static subnet extraction like Hermes does not
allow the pruned local networks to change over time nor develop general convergence conditions.
Following Theorem 1 works like Hermes can now employ time-varying subnet extractions, rather than
static subnets, while still guaranteeing the convergence to standard FL. The convergence of HeteroFL
and FedRolex– which was not available – now follows directly from Theorem 1. Once PruneFL
satisfies the conditions established in our Theorem 1, convergence to a solution of standard FL can
be achieved, rather than simply converging to some point. In summary, our general convergence
conditions in Theorem 1 can provide support to existing FL algorithms that employ heterogeneous
local models, ensuring convergence to standard FL. It also enables the design of optimized pruning
masks/models to improve the minimum coverage index and thus the resulting gap to standard FL.

4 Methodology

4.1 Problem Formulation for FL with Heterogeneous Local models

Given an FL algorithm that trains heterogeneous local models for global aggregation, our goal
is to analyze its convergence with respect to a stationary point of standard FL. We consider a
general formulation where the heterogeneous local models can be obtained using any model reduction
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strategies that are both (i) time-varying to enable online adjustment of reduced local models during the
entire training process and (ii) different across FL clients with respect to their individual heterogeneous
computing resource and network conditions. More formally, we denote the sequence of local models
used by a heterogeneous FL algorithm by masks mq,n ∈ {0, 1}|θ|, which can vary at any round
q and for any client n. Let θq denote the global model at the beginning of round q and ⊙ be the
element-wise product. Thus, θq ⊙mq,n defines the trainable parameters of the reduced local model2
for client n in round q. Our goal is to find sufficient conditions on such masks mq,n ∀q, n for the
convergence of heterogeneous FL.

Here, we describe one around (say the qth) of the heterogeneous FL algorithm. First, the central server
employs a given model reduction strategy P(·) to reduce the latest global model θq and broadcast the
resulting local models to clients:

θq,n,0 = θq ·mq,n, with mq,n = P(θq, n, q), ∀n. (2)

We note that the model reduction strategy P(θq, n, q) can vary over time q and across clients n in
heterogeneous FL. Each client n then trains the reduced local model by performing T local updates
(in T epochs):

θq,n,t = θq,n,t−1 − γ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n, for t = 1 . . . T,

where γ is the learning rate and ξn,t−1 are independent samples uniformly drawn from local data Dn

at client n. We note that ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n is a local stochastic gradient evaluated using
only local parameters in θq,n,t−1 (available to the heterogeneous local model) and that only locally
trainable parameters are updated by the stochastic gradient (via an element-wise product with mq,n).

Finally, the central server aggregates the local models θn,q,T ∀n and produces an updated global
model θq+1. Due to the use of heterogeneous local models, each global parameter is included in a
(potentially) different subset of the local models. Let N (i)

q be the set of clients, whose local models
contain the ith modeling parameter in round q. That is n ∈ N (i)

q if m(i)
q,n = 1 and n /∈ N (i)

q if
m

(i)
q,n = 0. Global update of the ith parameter is performed by aggregating local models with the

parameter available, i.e.,

θ
(i)
q+1 =

1

|N (i)
q |

∑
n∈N (i)

q

θ
(i)
q,n,T , ∀i, (3)

where |N (i)
q | is the number of local models containing the ith parameter. We summarize the algorithm

details in Algorithm 1 and the explanation of the notations in the Appendix.

The fundamental challenge of convergence analysis mainly stems from the local updates in Eq.(3).
While the heterogeneous models θq,n,0 provided to local clients at the beginning of round q are
obtained from the same global model θq, performing T local updates causes these heterogeneous
local models to diverge before the next aggregation. In addition, each parameter is (potentially)
aggregated over a different subset of local models in Eq.(3). These make existing convergence
analysis intended for single-model adaptive pruning [11, 12] non-applicable to heterogeneous FL.
The impact of local model divergence and the global aggregation of heterogeneous models must be
characterized in order to establish convergence.

The formulation proposed above captures heterogeneous FL with any model pruning or sub-model
extraction strategies since the resulting masks mq,n ∀q, n can change over time q and across clients
n. It incorporates many model reduction strategies (such as pruning, sparsification, and sub-model
extraction) into heterogeneous FL, allowing the convergence results to be broadly applicable. It
recovers many important FL algorithms recently proposed, including HeteroFL [3] that uses fixed
masks mn, PruneFL [4] that periodically trains a full-size local model with mn,q = 1, Prune-and-
Grow [12] that can be viewed as a single-client version, as well as FedAvg [1] that employs full-size
local models with mn,q = 1 at all clients. Our analysis establishes general conditions for any
heterogeneous FL with arbitrary online model reduction that may vary over communication rounds
to converge to standard FL.

2While a reduced local model has a smaller number of parameters than the global model. We adopt the
notations in [4, 35, 12] and use θq ⊙mq,n with an element-wise product to denote the pruned local model or the
extracted submodel - only parameter corresponding to a 1-value in the mask is accessible and trainable in the
local model.
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Our paper establishes convergence conditions in the general form, which apply to both static and
dynamically changing masks. With dynamically changing masks, we denote the reduced model-
s/networks as θq,n,t, which means that the model structure (with its corresponding mask) can change
between each round of communications and during each local training epoch, and can be different
from other local clients. We show that as long as the dynamic heterogenous FL framework can be
framed as the setting above, our convergence analysis in this paper applies.

4.2 Notations and Assumptions

We make the following assumptions that are routinely employed in FL convergence analysis. In
particular, Assumption 1 is a standard and common setting assuming Lipschitz continuous gradients.
Assumption 2 follows from [12] (which is for a single-worker case) and implies the noise introduced
by model reduction is bounded and quantified. This assumption is required for heterogeneous FL to
converge to a stationary point of standard FL. Assumptions 3 and 4 are standard for FL convergence
analysis following from [36, 37, 8, 9] and assume the stochastic gradients to be bounded and unbiased.
Assumption 1. (Smoothness). Cost functions F1, . . . , FN are all L-smooth: ∀θ, ϕ ∈ Rd and any n,
we assume that there exists L > 0:

∥∇Fn(θ)−∇Fn(ϕ)∥ ≤ L∥θ − ϕ∥. (4)

Assumption 2. (Model Reduction Noise). We assume that for some δ2 ∈ [0, 1) and any q, n, the
model reduction error is bounded by

∥θq − θq ⊙mq,n∥2 ≤ δ2 ∥θq∥2 . (5)

Assumption 3. (Bounded Gradient). The expected squared norm of stochastic gradients is bounded
uniformly, i.e., for constant G > 0 and any n, q, t:

Eξq,n,t ∥∇Fn(θq,n,t, ξq,n,t)∥2 ≤ G. (6)

Assumption 4. (Gradient Noise for IID data). Under IID data distribution, ∀q, n, t, we assume a
gradient estimate with bounded variance:

Eξn,t
∥∇Fn(θq,n,t, ξn,t)−∇F (θq,n,t)∥2 ≤ σ2 (7)

4.3 Convergence Analysis

We now analyze the convergence of heterogeneous FL for general smooth cost functions. We begin
with introducing a new notion of minimum covering index, defined in this paper by

Γmin = min
q,i

|N (i)
q |, (8)

where Γmin
3 measures the minimum occurrence of the parameter in the local models in all rounds,

considering |N (i)
q | is the number of heterogeneous local models containing the ith parameter. In-

tuitively, if a parameter is never included in any local models, it is impossible to update it. Thus
conditions based on the covering index would be necessary for the convergence toward standard FL
(with the same global model). All proofs for theorems and lemmas are collected in the Appendix
with a brief proof outline provided here.
Theorem 1. Under Assumptions 1-4 and for arbitrary masks satisfying Γmin ≥ 1, when choosing
γ ≤ 1/(6LT )∧γ ≤ 1/(T

√
Q), heterogeneous FL converges to a small neighborhood of a stationary

point of standard FL as follows:

1

Q

Q∑
q=1

E||∇F (θq)||2 ≤ G0√
Q

++
V0

T
√
Q

+
H0

Q
+

I0
Γ∗ · 1

Q

Q∑
q=1

E∥θq∥2

where G0 = 4E[F (θ0)], V0 = 6LNσ2/(Γ∗)2, H0 = 2L2NG/Γ∗, and I0 = 3L2δ2N are constants
depending on the initial model parameters and the gradient noise.

3We refer to Γ∗ for all equations and derivations.
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An obvious case here is that when Γmin = 0, where there exists at least one parameter that is not
covered by any of the local clients and all the client models can not cover the entire global model,
we can consider the union of all local model parameters, the “largest common model" among them,
as a new equivalent global model θ̂ (which have a smaller size than θ). Then, each parameter in θ̂

is covered in at least one local model. Thus Theorem 1 holds for θ̂ instead and the convergence is
proven – to a stationary point of θ̂ rather than θ.4

Assumption 5. (Gradient Noise for non-IID data). Let ĝ(i)q,t =
1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t, ξn,t).

Under non-IID data distribution, we assume ∀i, q, t a gradient estimate with bounded variance:

Eξ

∥∥∥ĝ(i)q,n,t −∇F (i)(θq,n,t)
∥∥∥2 ≤ σ2.

Theorem 2. Under Assumptions 1-3 and 5, heterogeneous FL satisfying Γmin ≥ 1, when choosing
γ ≤ 1/

√
TQ and γ ≤ 1/(6LT ), heterogeneous FL converges to a small neighborhood of a stationary

point of standard FL as follows:

1

Q

Q∑
q=1

E∥∇F (θq)∥2 ≤ G1√
TQ

+
V0√
Q

+
I0
Γ∗ · 1

Q

Q∑
q=1

E∥θq∥2 (9)

where G1 = 4E[F (θ0)] + 6LKσ2.

Proof outline. There are a number of challenges in delivering main theorems. We begin the proof
by analyzing the change of loss function in one round as the model goes from θq to θq+1, i.e.,
F (θq+1)− F (θ1). It includes three major steps: reducing the global model to obtain heterogeneous
local models θq,n,0 = θq ⊙mq,n, training local models in a distributed fashion to update θq,n,t, and
parameter aggregation to update the global model θq+1.

Due to the use of heterogeneous local models whose masks mq,n both vary over rounds and change
for different workers, we first characterize the difference between local model θq,n,t at any epoch t
and global model θq at the beginning of the current round. It is easy to see that this can be factorized
into two parts: model reduction error ∥θq,n,0 − θq∥2 and local training ∥θq,n,t − θq,n,0∥2, which will
be analyzed in Lemma 1.
Lemma 1. Under Assumption 2 and Assumption 3, for any q, we have:

T∑
t=1

N∑
n=1

E∥θq,n,t−1 − θq∥2 ≤ γ2T 2NG+ δ2NT · E∥θq∥2 (10)

We characterize the impact of heterogeneous local models on global parameter updates. Specifically,
we use an ideal local gradient ∇Fn(θq) as a reference point and quantify the difference between
aggregated local gradients and the ideal gradient. This will be presented in Lemma 2.
Lemma 2. Under Assumptions 1-3, for any q, we have:

K∑
i=1

E∥ 1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[∇F (i)
n (θq,n,t−1)−∇F (i)

n (θq)]∥2 ≤ L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2,

where we relax the inequality by choosing the smallest Γ∗ = minq,i Γ
(i)
q . We also quantify the norm

difference between a gradient and a stochastic gradient (with respect to the global update step) using
the gradient noise assumptions, in Lemma 3.

4To better illustrate this scenario of Γmin = 0 , we will introduce an illustrative simplified example as
follows: A global model θ =< θ1, θ2, θ3 > where there will be two local models θa =< θ1 > and θb =< θ3 >.
Although Γmin = 0 regarding the global model θ, but for their largest common model, the union of θa and θb
which is < θ1, θ3 > will become the new conceptual global model θ̂, where Γmin = 1 regarding this conceptual
global model. Thus the convergence still stands, but it will converge to a stationary point of FL with a different
global model.
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Since IID and non-IID data distributions in our model differ in the gradient noise assumption (i.e.,
Assumption 4 and Assumption 5), we present a unified proof for both cases. We will explicitly
state IID and non-IID data distributions only if the two cases require different treatments (when the
gradient noise assumptions are needed). Otherwise, the derivations and proofs are identical for both
cases.
Lemma 3. For IID data distribution under Assumptions 4, for any q, we have:

K∑
i=1

E∥ 1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

∇F (i)
n (θq,n,t−1, ξn,t−1)−∇F (i)(θq,n,t−1)∥2 ≤ Nσ2

T (Γ∗)2

For non-IID data distribution under Assumption 5, for any q, we have:

K∑
i=1

E∥ 1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

∇F (i)
n (θq,n,t−1, ξn,t−1)−∇F (i)(θq,n,t−1)∥2 ≤ Kσ2

T

Finally, under assumption 1, we have F (θq+1)− F (θq) ≤ ⟨∇F (θq), θq+1 − θq⟩+ L
2 ∥θq+1 − θq∥2

and use the preceding lemmas to obtain two upperbounds for the two terms. Combining these results
we prove the desired convergence result in theorem 1 and theorem 2.

Theorem 1 shows the convergence of heterogenous FL to a neighborhood of a stationary point of
standard FL albeit a small optimality gap due to model reduction noise, as long as Γmin ≥ 1. The
result is a bit surprising since Γmin ≥ 1 only requires each parameter to be included in at least
one local model – which is obviously necessary for all parameters to be updated during training.
But we show that this is also a sufficient condition for convergence. Moreover, we also establish a
convergence rate of O( 1√

Q
) for arbitrary model reduction strategies satisfying the condition. When

the cost function is strongly convex (e.g., for softmax classifier, logistic regression, and linear
regression with l2-normalization), the stationary point becomes the global optimum. Thus, Theorem 1
shows convergence to a small neighborhood of the global optimum of standard FL for strongly convex
cost functions.

5 Interpreting and Applying the Unified Framework

Discussion on the Impact of model reduction noise. In Assumption 2, we assume the model reduc-
tion noise is relatively small and bounded with respect to the global model: ∥θq − θq ⊙mq,n∥2 ≤
δ2 ∥θq∥2. This is satisfied in practice since most pruning strategies tend to focus on eliminating
weights/neurons that are insignificant, therefore keeping δ2 indeed small. We note that similar
observations are made on the convergence of single-model adaptive pruning [11, 12], but the analysis
does not extend to FL problems where the fundamental challenge comes from local updates causing
heterogeneous local models to diverge before the next global aggregation. We note that for hetero-
geneous FL, reducing a model will incur an optimality gap δ2 1

Q

∑Q
q=1 E∥θq∥2 in our convergence

analysis, which is proportional to δ2 and the average model norm (averaged over Q). It implies that
a more aggressive model reduction in heterogeneous FL may lead to a larger error, deviating from
standard FL at a speed quantified by δ2. We note that this error is affected by both δ2 and Γmin.

Discussion on the Impact of minimum covering index Γmin. The minimum number of occurrences
of any parameter in the local models is another key factor in deciding convergence in heterogeneous
FL. As Γmin increases, both constants G0, V0, and the optimality gap decrease. Recall that our
analysis shows the convergence of all parameters in θq with respect to a stationary point of standard
FL (rather than for a subset of parameters or to a random point). The more times a parameter is
covered by local models, the sooner it gets updated and convergences to the desired target. This is
quantified in our analysis by showing that the optimality gap due to model reduction noise decreases
at the rate of Γmin.

Connections between model reduction noise and minimum covering index. In this paper, we
introduced the concept of minimum coverage index for the first time, where we show that only
model compression alone is not enough to allow a unified convergence analysis/framework for
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heterogeneous federated learning. The minimum coverage index, together with pruning/compression
noises, determines convergence in heterogeneous FL. Our results show that heterogeneous FL
algorithms satisfying certain sufficient conditions can indeed converge to a neighborhood of a
stationary point of standard FL. This is a stronger result as it shows convergence to standard FL,
rather than simply converging somewhere. A minimum coverage index of Γmin = 0 means that the
model would never be updated, which is meaningless even if it still converges.

Discussion for non-IID case. We note that Assumption 5 is required to show convergence with
respect to standard FL and general convergence may reply on weaker conditions. We also notice that
Γmin no longer plays a role in the optimality gap. This is because the stochastic gradients computed
by different clients in N (i)

q now are based on different datasets and jointly provide an unbiased
estimate, no longer resulting in smaller statistical noise.

Applying the main theoretical findings. Theorem 1 also inspires new design criteria for designing
adaptive model-reducing strategies in heterogeneous FL. Since the optimality gap is affected by both
model-reduction noise δ2 and minimum covering index Γmin, we may prefer strategies with small δ2
and large Γmin, in order to minimize the optimality gap to standard FL.

The example shown in Figure 1 illustrates alternative model reduction strategies in heterogeneous FL
for N = 10 clients. Suppose all 6 low-capacities clients are using the reduced-size model by pruning
greedily, which covers the same region of the global model, scenarios like this will only produce
a maximum Γmin = 4; however when applying low-capacities local clients with models covering
different regions of the global model, Γmin can be increased, as an example we show how to design
local models so Γmin is increased to 7 without increasing any computation and communication cost.
The optimal strategy corresponds to lower noise δ2 while reaching a higher covering index. Using
these insights, We present numerical examples with optimized designs in Section 6.

6 Experiments

6.1 Experiment settings

In this section, we evaluate heterogeneous FL with different model reduction strategies and aim to
validate our theory. We focus on two key points in our experiments: (i) whether heterogeneous FL
will converge with different local models and (ii) the impacts of key factors to the FL performances
including minimum coverage index Γmin and model-reduction noise δ2.
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(a) MLP trained on MNIST with IID data
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(b) MLP trained on MNIST with non-IID data

Figure 2: Selected experimental results for MNIST with IID (a) and Non-IID (b) with high data
heterogeneity data on medium model reduction level. "Opt" stands for optimized local model
distribution covering more regions for a higher Γmin, others do pruning greedily. As the shallow
MLP is already at a small size, applying a medium level of model reduction will bring a high model
reduction loss for subnet extraction method.

Datasets and Models. We examine the theoretical results on the following three commonly-used
image classification datasets: MNIST [38] with a shallow multilayer perception (MLP), CIFAR-10
with Wide ResNet28x2 [39], and CIFAR100 [40] with Wide ResNet28x8[39]. The first setting where
using MLP models is closer to the theoretical assumptions and settings, and the latter two settings are
closer to the real-world application scenarios. We prepare N = 100 workers with IID and non-IID
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Model
Reduction

Level
Model Setting Γmin

MNIST CIFAR-10 CIFAR100

IID Non-IID IID Non-IID IID Non-IID
L=5 L=2 L=5 L=2 L=50 L=20

FullModel Homogenous-Full 10 98.08 97.70 93.59 70.63 65.12 61.08 67.34 66.74 64.38

Low
Model

Reduction

Pruning-Greedy 6 98.18 97.60 93.15 72.66 62.49 57.17 67.41 65.67 65.06
Pruning-Optimised 8 98.53 98.25 95.85 76.26 66.25 59.98 67.47 66.56 67.47

Static Subnet Subtraction 6 97.62 95.12 92.33 73.20 61.25 56.09 66.60 65.24 65.79
Subnet Subtraction - Optimised 8 97.76 94.41 93.60 73.78 64.17 58.09 67.81 66.66 67.23

Homogenous-Large 10 97.52 96.08 93.23 69.05 63.72 57.42 66.81 65.57 63.90

Medium
Model

Reduction

Pruning-Greedy 4 97.51 95.05 91.86 66.85 60.93 56.98 52.92 45.88 45.68
Pruning-Optimised 8 98.39 98.02 95.48 71.43 66.94 56.93 55.32 46.81 45.74

Static Subnet Subtraction 4 95.56 92.33 92.05 61.87 58.08 46.03 50.59 44.22 45.25
Subnet Subtraction - Optimised 8 97.96 94.05 93.36 63.96 62.65 47.44 52.95 46.23 46.15

Homogenous-Medium 10 97.05 92.71 90.82 59.21 57.61 53.43 52.19 36.08 34.06

High
Model

Reduction

Pruning-Greedy 3 95.01 86.83 76.64 67.35 56.75 22.55 39.29 26.14 25.97
Pruning-Optimised 5 95.32 91.98 81.66 67.74 57.33 27.97 40.78 29.63 26.63

Static Subnet Subtraction 3 95.88 81.64 71.64 68.78 56.88 30.61 41.18 27.55 26.23
Subnet Subtraction - Optimised 5 94.41 90.70 85.82 69.15 57.98 33.46 37.42 24.98 22.40

Homogenous-Small 10 93.79 85.66 75.23 66.87 51.90 30.61 37.40 27.16 26.20

Table 1: Global model accuracy comparison between baselines and their optimized versions suggested
by our theory. We observe improved performance on almost all optimized results, especially on
subnet-extraction-based methods on high model reduction levels.

data with participation ratio c = 0.1 which will include 10 random active clients per communication
round. Please see the appendix for other experiment details.

Data Heterogeneity. We follow previous works [3, 5] to model non-IID data distribution by limiting
the maximum number of labels L as each client is accessing. We consider two levels of data
heterogeneity: for MNIST and CIFAR-10 we consider L = 2 as high data heterogeneity and L = 5 as
low data heterogeneity as used in [9]. For CIFAR-100 we consider L = 20 as high data heterogeneity
and L = 50 as low data heterogeneity. This will correspond to an approximate setting of DirK(α)
with α = 0.1 for MNIST, α = 0.1 for CIFAR-10, and α = 0.5 for CIFAR-100 respectively in
Dirichlet-distribution-based data heterogeneity.

Model Heterogeneity. In our evaluation, we consider the following client model reduction levels:
β = {1, 3

4 ,
1
2 ,

1
4} for MLP and β = {1, 1

2 ,
1
4 ,

1
8} for ResNet, where each fraction represents its model

capacity ratio to the largest client model (full model). To generate these client models, for MLP we
reduce the number of nodes in each hidden layer, for WResNet we reduce the number of kernels in
convolution layers while keeping the nodes in the output layer as the original.

Baselines and Testcase Notations. As this experiment is mainly to validate the proposed theory
and gather empirical findings, we choose the standard federated learning algorithm, i.e. FedAvg [1],
with several different heterogeneous FL model settings. Since this experiment section is to verify the
impact of our proposed theory rather than chasing a SOTA accuracy, no further tuning or tricks for
training were used to demonstrate the impacts of key factors from the main theorems.

We consider 3 levels of model reduction through pruning and static subnet Extraction: which will
reduce the model by only keeping the largest or leading β percentile of the parameters per layer. We
show 4 homogeneous settings with the full model and the models with 3 levels of model reduction,
each with at least one full model so that Γmin > 1 is achieved. Finally, we consider manually
increasing the minimum coverage index and present one possible case denoted as "optimized", by
applying local models covering different regions of the global model as illustrated in Fig 1.

Note that even when given a specific model reduction level and the minimum coverage index, there
could be infinite combinations of local model reduction solutions; at the same time model reduction
will inevitably lead to an increased model reduction noise, by conducting only weights pruning will
bring the lowest model reduction noise for a certain model reduction level. How to manage the
trade-off between increasing Γmin while keeping δ2 low is non-trivial and will be left for future
works on designing effective model reduction policies for heterogeneous FL.

6.2 Numerical Results and Further Discussion

We summarize the testing results with one optimized version for comparison in Table 1. We plot the
training results of Heterogeneous FL with IID and non-IID data on the MNIST dataset in Figure 2a
and Figure 2b, since the model and its reduction are closer to the theoretical setup and its assumptions.
We only present training results of medium-level model reduction (where we deploy 4 clients with
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fullmodel and 6 clients with 3
4 models) in the figure at the main paper due to page limit and simplicity.

We leave further details and more results in the appendix.

General Results. Overall, we observe improved performance on almost all optimized results,
especially on subnet-extraction-based methods on high model reduction levels. In most cases,
performances will be lower compared to the global model due to model-reduction noise.

Impact of model-reduction noise. As our analysis suggests, one key factor affecting convergence
is model-reduction noise δ2. When a model is reduced, inevitably the model-reduction noise δ2

will affect convergence and model accuracy. Yet, our analysis shows that increasing local epochs
or communication rounds cannot mitigate such noise. To minimize the convergence gap in the
upperbounds, it is necessary to design model reduction strategies in heterogeneous FL with respect to
both model-reduction noise and minimum coverage index, e.g., by considering a joint objective of
preserving large parameters while sufficiently covering all parameters.

Impact of minimum coverage index. Our theory suggests that for a given model reduction noise,
the minimum coverage index Γmin is inversely proportional to the convergence gap as the bound
in Theorem 1 indicates. Then for a given model reduction level, a model reduction strategy in
heterogeneous FL with a higher minimum coverage index may result in better training performance.
Note that existing heterogeneous FL algorithms with pruning often focus on removing the small
model parameters that are believed to have an insignificant impact on model performance, while
being oblivious to the coverage of parameters in pruned local models, and the model-extraction-based
method will only keep the leading subnet. Our analysis in this paper highlights this important design
for model reduction strategies in heterogeneous FL that parameter coverages matter.

More discussions and empirical findings. For the trade-off between minimum coverage index and
model reduction noise, it’s nearly impossible to fix one and investigate the impact of the other. In
addition, we found: (1) Large models hold more potential to be reduced while maintaining generally
acceptable accuracy. (2) Smaller models tend to be affected more by δ2 while the larger model is
more influenced by Γmin, which suggests that it’s more suitable to apply pruning on small networks
and apply subnet extraction on large networks.

Limitations In this work we consider full device participation, where arbitrary partial participation
scenario is not considered. Also, the optimal design of model extraction maintaining a balance
between a low δ2 and a high Γmin is highly non-trivial which would be left for future work.

7 Conclusion

In this paper, we present a unifying framework and establish sufficient conditions for FL with dynamic
heterogeneous client-dependent local models to converge to a small neighborhood of a stationary
point of standard FL. The optimality gap is characterized and depends on model reduction noise
and a new concept of minimum coverage index. The result recovers a number of state-of-the-art FL
algorithms as special cases. It also provides new insights on designing optimized model reduction
strategies in heterogeneous FL, with respect to both minimum coverage index Γmin and model
reduction noise δ2. We empirically demonstrated the correctness of the theory and the design insights.
Our work contributes to a deeper theoretical comprehension of heterogeneous FL with adaptive local
model reduction and offers valuable insights for the development of new FL algorithms in future
research.
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A Proof of Theorems

A.1 Problem summary and notations

We summarize the algorithm in a way that can present the convergence analysis more easily. We use
a superscript such as θ(i), m(i)

q,n, and ∇F (i) to denote the sub-vector of parameter, mask, and gradient
corresponding to region i. For the proof purpose and with slight abuse of notations, we denote all
modeling parameters contained in the same set of local models as a parameter region i (Ultimately
we can regard each modeling parameter as a separate region). In each round q, parameters in each
region i is contained in and only in a set of local models denoted by N (i)

q , implying that m(i)
q,n = 1 for

n ∈ N (i)
q and m

(i)
q,n = 0 otherwise, for all the parameters in the region. We define Γ∗ = minq,i N (i)

q

as the minimum coverage index, since it denotes the minimum number of local models that contain
any parameters in θq. With slight abuse of notations, we use ∇Fn(θ and ∇Fn(θ, ξ) to denote the
gradient and stochastic gradient, respectively.

Algorithm 1: The unifying heterogenous FL framework.

Input: Local data Dk
i on N clients, reduction policy P.

Executes:
Initialize θ0
for round q = 1, 2, . . . , Q do

for local workers n = 1, 2, . . . , N (In parallel) do
Generate model reduction mask mq,n = P(θq, n)
Generate local models θq,n,0 = θq ⊙mq,n

// Update local models:
for epoch t = 1, 2, . . . , T do

θq,n,t = θq,n,t−1 − γ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n

end
end
// Update global model:
for region i = 1, 2, . . . ,K do

Find N (i)
q = {n : m

(i)
q,n = 1}

Update θ
(i)
q+1 = 1

|N (i)
q |

∑
n∈N (i)

q
θ
(i)
q,n,T

end
end
Output θQ

A.2 Nomenclature

We present Table 1 to better summarize and explain the notations used. A more detailed explanation
of each term is available when they are first introduced in the main paper.

A.3 Assumptions

Assumption 1. (Smoothness). Cost functions F1, . . . , FN are all L-smooth: ∀θ, ϕ ∈ Rd and any n,
we assume that there exists L > 0:

∥∇Fn(θ)−∇Fn(ϕ)∥ ≤ L∥θ − ϕ∥. (1)

Assumption 2. (model reduction noise). We assume that for some δ2 ∈ [0, 1) and any q, n, t, the
model reduction noise is bounded by

∥θq,n,t − θq,n,t ⊙mq,n∥2 ≤ δ2 ∥θq,n,t∥2 . (2)

Assumption 3. (Bounded Gradient). The expected squared norm of stochastic gradients is bounded
uniformly, i.e., for constant G > 0 and any n, q, t:

E ∥∇Fn(θq,n,t, xq,n,t)∥2 ≤ G. (3)

1



Notation Explanation
q,Q Current and Total communication round
n,N Local client, total client number
i,K Region (or set of parameters), total region
θq Global model at q-th round
mq,n Model reduction mask
N (i)

q Parameter set, whose local models contain the ith modeling parameter or i-th region in round q
P Model reduction method
∇Fn(θ) Local stochastic gradient
ξ Sampled training data
Dn Data distribution
N (i) Number of local models that containing the ith parameter/region
δ2 Model reduction ratio
σ2 Gradient variance bound
G Stochastic gradients bound
Γmin Minimum covering index

Table 1

Assumption 4. (Gradient Noise for IID data). Under IID data distribution, for any q, n, t, we assume
that

E[∇Fn(θq,n,t, ξn,t)] = ∇F (θq,n,t) (4)
E∥∇Fn(θq,n,t, ξn,t)−∇F (θq,n,t)∥2 ≤ σ2 (5)

where σ2 > 0 is a constant and ξn,t) are independent samples for different n, t.
Assumption 5. (Gradient Noise for non-IID data). Under non-IID data distribution, we assume that
for constant σ2 > 0 and any q, n, t:

E
[

1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t, ξn,t)

]
= ∇F (i)(θq,n,t) (6)

E
∥∥∥∥ 1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t, ξn,t)−∇F (i)(θq,n,t)

∥∥∥∥2 ≤ σ2. (7)

A.4 Convergence Analysis

We now analyze the convergence of heterogeneous FL under adaptive online model pruning with
respect to any pruning policy P(θq, n) (and the resulting mask mq,n) and prove the main theorems in
this paper. We need to overcome a number of challenges as follows:

• We will begin the proof by analyzing the change of loss function in one round as the model
goes from θq to θq+1, i.e., F (θq+1) − F (θ1) . It includes three major steps: pruning to
obtain heterogeneous local models θq,n,0 = θq⊙mq,n, training local models in a distributed
fashion to update θq,n,t, and parameter aggregation to update the global model θq+1.

• Due to the use of heterogeneous local models whose masks mq,n both vary over rounds and
change for different workers, we first characterize the difference between local model θq,n,t
at any epoch t and global model θq at the beginning of the current round. It is easy to see
that this can be factorized into two parts: model reduction noise ∥θq,n,0 − θq∥2 and local
training ∥θq,n,t − θq,n,0∥2, which will be analyzed in Lemma 1.

• We characterize the impact of heterogeneous local models on global parameter update.
Specifically, we use an ideal local gradient ∇Fn(θq) as a reference point and quantify the
different between aggregated local gradients and the ideal gradient. This will be presented
in Lemma 2. We also quantify the norm difference between a gradient and a stochastic
gradient (with respect to the global update step) using the gradient noise assumptions, in
Lemma 3.

• Since IID and non-IID data distributions in our model differ in the gradient noise assumption
(i.e., Assumption 4 and Assumption 5), we present a unified proof for both cases. We will
explicitly state IID and non-IID data distributions only if the two cases require different
treatment (when the gradient noise assumptions are needed). Otherwise, the derivations and
proofs are identical for both cases.
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We will begin by proving a number of lemmas and then use them for convergence analysis.
Lemma 1. Under Assumption 2 and Assumption 3, for any q, we have:

T∑
t=1

N∑
n=1

E∥θq,n,t−1 − θq∥2 ≤ 2γ2T 3NG

3
+ 2δ2NT · E∥θq∥2. (8)

Proof. We note that θq is the global model at the beginning of current round. We split the difference
θq,n,t−1 − θq into two parts: changes due to local model training θq,n,t−1 − θq,n,0 and changes due
to pruning θq,n,0 − θq . That is

T∑
t=1

N∑
n=1

E∥θq,n,t−1 − θq∥2

=

T∑
t=1

N∑
n=1

E∥ (θq,n,t−1 − θq,n,0) + (θq,n,0 − θq) ∥2

≤
T∑

t=1

N∑
n=1

2E∥θq,n,t−1 − θq∥2 +
T∑

t=1

N∑
n=1

2E∥θq,n,t−1 − θq∥2 (9)

where we used the fact that ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2 in the last step.

For the first term in Eq.(9), we notice that θq,n,t−1 is obtained from θq,n,0 through t− 1 epochs of
local model updates on worker n. Using the local gradient updates from the algorithm, it is easy to
see:

T∑
t=1

N∑
n=1

E ∥θq,n,t−1 − θq,n,0∥2

=

T∑
t=1

N∑
n=1

E

∥∥∥∥∥∥
t−1∑
j=1

−γ∇Fn (θq,n,j−1; ξn,j−1)⊙mq,n

∥∥∥∥∥∥
2

≤
T∑

t=1

N∑
n=1

(t− 1)

t−1∑
j=1

E ∥−γ∇Fn (θq,n,j−1; ξn,j−1)⊙mq,n∥2

≤
T∑

t=1

N∑
n=1

(t− 1)

t−1∑
j=1

γ2G

≤ γ2NG

T∑
t=1

(t− 1)2

≤ γ2T 3NG

3
, (10)

where we use the fact that ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2 in step 2 above, and the fact that mq,n is a
binary mask in step 3 above together with Assumption 3 for bounded gradient.

For the second term in Eq.(9), the difference is resulted by model pruning using mask mn,q of work
n in round q. We have

∑T
t=1

∑N
n=1 E∥θq,n,0 − θq∥2 =

T∑
t=1

N∑
n=1

E∥θq ⊙mn,q − θq∥2

≤
T∑

t=1

N∑
n=1

δ2E∥θq∥2

= δ2NT · E∥θq∥2, (11)
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where we used the fact that θq,n,0 = θq ⊙mn,q in step 1 above, and Assumption 2 in step 2 above.

Plugging Eq.(10) and Eq.(11) into Eq.(9), we obtain the desired result.

Lemma 2. Under Assumptions 1-3, for any q, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

]∥∥∥∥∥∥∥
2

≤ L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2. (12)

Proof. Recall that Γ(i)
q = |N (i)

q | is the number of local models containing parameters of region i
in round q. The left-hand-side of Eq.(12) denotes the difference between an average gradient of
heterogeneous models (through aggregation and over time) and an ideal gradient. The summation
over i adds up such difference over all regions i = 1, . . . ,K, because the average gradient takes a
different form in different regions.

From the inequality ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2, we obtain ∥ 1
s

∑s
i=1 ai∥2 ≤ 1

s

∑s
i=1 ∥ai∥2. We

use this inequality on the left-hand-side of Eq.(12) to get:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

]∥∥∥∥∥∥∥
2

≤
K∑
i=1

1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

E
∥∥∥∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

∥∥∥2

≤ 1

TΓ∗

T∑
t=1

N∑
n=1

K∑
i=1

E
∥∥∥∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

∥∥∥2
=

1

TΓ∗

T∑
t=1

N∑
n=1

E ∥∇Fn(θq,n,t−1)−∇Fn(θq)∥2

≤ 1

TΓ∗

T∑
t=1

N∑
n=1

L2E ∥θq,n,t−1 − θq∥2 , (13)

where we relax the inequality by choosing the smallest Γ∗ = minq,i Γ
(i)
q and changing the summation

over n to all workers in the second step. In the third step, we use the fact that L2 gradient norm of a
vector is equal to the sum of norm of all sub-vectors (i.e., regions i = 1, . . . ,K). This allows us to
consider ∇Fn instead of its sub-vectors on different regions.

Finally, the last step is directly from L-smoothness in Assumption 1. Under Assumptions 2-3, we
notice that the last step of Eq.(13) is further bounded by Lemma 1, which yields the desired result of
this lemma after re-arranging the terms.

Lemma 3. For IID data distribution under Assumptions 4, for any q, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)(θq,n,t−1)
]∥∥∥∥∥∥∥

2

≤ Nσ2

T (Γ∗)2
.

For non-IID data distribution under Assumption 5, for any q, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)(θq,n,t−1)
]∥∥∥∥∥∥∥

2

≤ Kσ2

T
.
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Proof. This lemma quantifies the square norm of the difference between gradient and stochastic
gradient in the global parameter update. We present results for both IID and non-IID cases in this
lemma under Assumption 4 and Assumption 5, respectively.

We first consider IID data distributions. Since all the samples ξn,t−1 are independent from each
other for different n and t − 1, the difference between gradient and stochastic gradient, i.e.,
∇F

(i)
n (θq,n,t−1, ξn,t−1)−∇F

(i)
n (θq,n,t−1), are independent gradient noise. Due to Assumption 4,

these gradient noise has zero mean. Using the fact that E∥
∑

i xi∥2 =
∑

i E∥x2
i ∥ for zero-mean and

independent xi’s, we get:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

]∥∥∥∥∥∥∥
2

≤
K∑
i=1

1

(Γ
(i)
q T )2

T∑
t=1

∑
n∈N (i)

q

E
∥∥∥∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

∥∥∥2

≤ 1

(TΓ∗)2

K∑
i=1

T∑
t=1

N∑
n=1

E
∥∥∥∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

∥∥∥2
=

1

(TΓ∗)2

T∑
t=1

N∑
n=1

E ∥∇Fn(θq,n,t−1, ξn,t−1)−∇Fn(θq,n,t−1)∥2

≤ 1

(TΓ∗)2
· TNσ2 (14)

where we used the property of zero-mean and independent gradient noise in the first step above, relax
the inequality by choosing the smallest Γ∗ = minq,i Γ

(i)
q and changing the summation over n to all

workers in the second step. In the third step, we use the fact that L2 gradient norm of a vector is
equal to the sum of norm of all sub-vectors (i.e., regions i = 1, . . . ,K). This allows us to consider
∇Fn instead of its sub-vectors on different regions. Finally, we apply Assumption 4 to bound the
gradient noise and obtain the desired result.

For non-IID data distributions under Assumption 4 (instead of Assumption 5), we notice that

E
[

1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t−1, ξn,t−1)

]
= ∇F (i)(θq,n,t−1) is an unbiased estimate for any

epoch t, with bounded gradient noise. Again, due to independent samples ξn,t−1, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

]∥∥∥∥∥∥∥
2

≤ 1

T 2

K∑
i=1

T∑
t=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

∇F (i)
n (θq,n,t−1, ξn,t−1)−∇F (i)

n (θq,n,t−1)

∥∥∥∥∥∥∥
2

≤ 1

T 2

K∑
i=1

T∑
t=1

σ2

=
Kσ2

T
, (15)

where we use the property of zero-mean and independent gradient noise in the first step above, used
the fact that the norm of a sub-vector (in the region i) is bounded by that of the entire vector in the
second step above, as well as Assumption 5. This completes the proof of this lemma.

Proof of the main result. Now we are ready to present the main proof. We begin with the L-
smoothness property in Assumption 1, which implies

F (θq+1)− F (θq) ≤ ⟨∇F (θq), θq+1 − θq⟩+
L

2
∥θq+1 − θq∥2 . (16)
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We take expectations on both sides of the inequality and get:

E[F (θq+1)]− E[]F (θq)] ≤ E ⟨∇F (θq), θq+1 − θq⟩+
L

2
E ∥θq+1 − θq∥2 . (17)

In the following, we bound the two terms on the right-hand side above and finally combine the results
to complete the proof.

Upperbound for E ⟨∇F (θq), θq+1 − θq⟩. We notice that the inner product can be broken down and
reformulated as the sum of inner products over all regions i = 1, . . . ,K. This is necessary because
the global parameter update is different for different regions. More precisely, for any region i, we
have:

θ
(i)
q+1 − θ

(i)
q =

 1

Γ
(i)
q

∑
n∈N (i)

q

θ
(i)
q,n,T

− θ(i)q

=
1

Γ
(i)
q

∑
n∈N (i)

q

[
θ
(i)
q,n,0 −

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1) ·m(i)

n,q

]
− θ(i)q

= − 1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1) ·m(i)

n,q + θ(i)q ·m(i)
n,q − θ(i)q

= − 1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1), (18)

where global parameter updated is used in the first step, local parameter update is used in the
second step, and the third step follows from the fact that for any worker n ∈ N (i)

q participating
in the global update of θ(i)q contain the model parameters of region i, i.e., m(i)

q,n = 1. We also use
θ
(i)
q,n,0 = θ

(i)
q ·m(i)

n,q in the third step above because of to pruning.

Next we analyze E ⟨∇F (θq), θq+1 − θq⟩ by considering a sum of inner products over K regions.
We have

E ⟨∇F (θq), θq+1 − θq⟩

=

K∑
i=1

E
〈
∇F (i)(θq), θ

(i)
q+1 − θ(i)q

〉
=

K∑
i=1

E

〈
∇F (i)(θq), −

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1)

〉

=

K∑
i=1

E

〈
∇F (i)(θq), −

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γE
[
∇F (i)

n (θq,n,t−1, ξn,t−1)|θq
]〉

=

K∑
i=1

E

〈
∇F (i)(θq), −

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1)

〉

= −
K∑
i=1

E
〈
∇F (i)(θq), γT∇F (i)(θq)

〉
(19)

−
K∑
i=1

E

〈
∇F (i)(θq),

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]〉

where we use the first step to reformulate the inner product as a sum, the second step follows from
Eq.(18), the third step employs a conditional expectation over the random samples with respect to θq ,
and the last step splits the result into two parts with respect to a reference point γT∇F (i)(θq).
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For the first term on the right-hand side of Eq.(19), it is easy to see that

−
∑K

i=1 E
〈
∇F (i)(θq), γT∇F (i)(θq)

〉
= −γT

K∑
i=1

∥∥∥∇F (i)(θq)
∥∥∥2

= −γTE ∥∇F (θq)∥2 , (20)

where we add up the norm over K regions in the last step. For the second term on the right-hand-side
of Eq.(19), we use the inequality < a, b >≤ 1

2∥a∥
2 + 1

2∥b∥
2 for any vectors a, b. Applying this

inequality to the second term, we have

−
K∑
i=1

E

〈
∇F (i)(θq),

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]〉

= −
K∑
i=1

Tγ · E

〈
∇F (i)(θq),

1

TΓ
(i)
q

∑
n∈N (i)

q

T∑
t=1

[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]〉

≤ Tγ

2

K∑
i=1

E
∥∥∥∇F (i)(θq)

∥∥∥2 + Tγ

2

K∑
i=1

E

∥∥∥∥∥∥∥
1

TΓ
(i)
q

∑
n∈N (i)

q

T∑
t=1

[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]∥∥∥∥∥∥∥

=
Tγ

2
E ∥∇F (θq)∥2 +

Tγ

2

(
L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2
)

(21)

where the second step uses the inequality and the third step follows directly from Lemma 2. Plugging
Eq.(20) and Eq.(21) results into Eq.(19), we obtain the desired upperbound:

E ⟨∇F (θq), θq+1 − θq⟩ ≤ −Tγ

2
E ∥∇F (θq)∥2 +

Tγ

2

(
L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2
)
. (22)

Upperbound for L
2E ∥θq+1 − θq∥2. We use the again result in Eq.(18) and apply it to θq+1 − θq,

which gives:

L

2
E ∥θq+1 − θq∥2

=
L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1)

∥∥∥∥∥∥∥
2

≤ 3L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

]∥∥∥∥∥∥∥
2

+
3L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

]∥∥∥∥∥∥∥
2

+
3L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq)

∥∥∥∥∥∥∥
2

, (23)

where in the second step, we use the inequality ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2 and split stochastic
gradient [∇F

(i)
n (θq,n,t−1, ξn,t−1)] into s = 3 parts, i.e., [∇F

(i)
n (θq,n,t−1, ξn,t−1)−∇F

(i)
n (θq,n,t−1)],

[F
(i)
n (θq,n,t−1)− F

(i)
n (θq)], and [F

(i)
n (θq)].

Next, we notice that the third term on the right-hand side of Eq.(23) can be simplified, because (i)
for IID data distribution, the cost function of each worker n is the same as the global cost function,
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i.e., ∇Fn(θq) = ∇F (θq), and (ii) for non-IID data distribution, the gradient noise assumption
(Assumption 5) implies that 1

Γ
(i)
q

∑
n∈N (i)

q
∇Fn(θq) = F (θq). Thus in both cases, we have:

3L
2 E

∥∥∥∥ 1

Γ
(i)
q

∑
n∈N (i)

q

∑T
t=1 γ∇F

(i)
n (θq)

∥∥∥∥2 ≤ 3LT 2γ2

2

K∑
i=1

E∥∇F (i)(θq)∥2

=
3LT 2γ2

2
E∥∇F (θq)∥2, (24)

where we again used the sum of the norm of K regions in the last step.

Now we notice that the first and second terms of Eq.(23) have been bounded by Lemma 2 and
Lemma 3, except for constants γ and 1/T . Applying these results directly and also plugging in
Eq.(24) into Eq.(23), we obtain the desired upperbound:

L
2E ∥θq+1 − θq∥2 ≤ 3LTNγ2σ2

2(Γ∗)2
(for IID) or

3LTKγ2σ2

2
(for non− IID)

+
3L3γ4T 3NG

2Γ∗ +
3L3T 2γ2δ2N

2Γ∗ E∥θq∥2

+
3LT 2γ2

2
E∥∇Fn(θq)∥2. (25)

θq,n,t = θq,n,t−1 − γ∇Fn(θq,n,t−1; ξn,t−1) (26)

Combining the two Upperbounds. Finally, we will apply the upperbound for
E ⟨∇F (θq), θq+1 − θq⟩ in Eq.(22) as well as the upperbound for L

2E ∥θq+1 − θq∥2 in Eq.(25),
and plug them into Eq.(17). First we take the sum over q = 1, . . . , Q on both sides of Eq.(17), which
becomes:

E[F (θQ+1)]− E[F (θ0)]

=

Q∑
q=1

E[F (θq+1)]−
Q∑

q=1

E[F (θq)]

≤
Q∑

q=1

E ⟨∇F (θq), θq+1 − θq⟩+
Q∑

q=1

L

2
E ∥θq+1 − θq∥2 . (27)

Now plugging in the two upperbounds and re-arranging the terms, for IID data distribution, we derive:

E[F (θQ+1)]− E[F (θ0)]

≤ −Tγ

2
(1− 3LTγ)

Q∑
q=1

E∥∇F (θq)∥2

+
γTQ

2

(
TL2γ2NG

Γ∗ +
3LNγσ2

(Γ∗)2
+

3L3γ3T 3NG

Γ∗

)
+
Tγ

2

(
L2δ2N

Γ∗ +
3L3Tγδ2N

Γ∗

) Q∑
q=1

E∥θq∥2. (28)

We choose learning rate γ ≤ 1/(6LT ) and use the fact that E[F (θQ+1)] is non-negative. The
inequality above becomes:

Tγ
4

∑Q
q=1 E∥∇F (θq)∥2 ≤ E[F (θ0)] +

TγQ

2

(
3LNγσ2

(Γ∗)2
+

3L2γ2TNG

2Γ∗

)
+
Tγ

2

(
3L2δ2N

2Γ∗

) Q∑
q=1

E∥θq∥2. (29)
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Dividing both sides above by 4/(QTγ) and choosing γ ≤ 1/T
√
Q, we have:

1
Q

∑Q
q=1 E∥∇F (θq)∥2 ≤ 4E[F (θ0)]√

Q
+

6LNσ2

√
QT (Γ∗)2

(30)

+
2L2NG

QΓ∗ +
3L2δ2N

Γ∗ · 1

Q

T∑
q=1

E|θq|2

=
G0√
Q

++
V0

T
√
Q

+
H0

Q
+

I0
Γ∗ · 1

Q

Q∑
q=1

E∥θq∥2, (31)

where we introduce constants G0 = 4E[F (θ0)], V0 = 6LNσ2/(Γ∗)2, H0 = 2L2NG/Γ∗, and
I0 = 3L2δ2N . This completes the proof of Theorem 1.

Finally, for non-IID data distribution, we plug the two upperbounds into Eq.(27) and re-arrange the
terms. We follow a similar procedure and choose learning rate γ ≤ 1/

√
TQ and γ ≤ 1/(6LT ). It is

straightforward to show that for non-IID data distribution:

1

Q

Q∑
q=1

E∥∇F (θq)∥2 ≤ G1√
TQ

+
V0√
Q

+
I0
Γ∗ · 1

Q

Q∑
q=1

E∥θq∥2, (32)

where G1 = 4E[F (θ0)] + 6LKσ2 is a different constant. This completes the proof of Theorem 2.

B Experimental Details

B.1 Experiment Setup

The code implementation is open sourced and can be found at

Github Link(Link anonymized, see supplementary materials for code and other tools).

In this experimental section we evaluate different pruning techniques from state-of-the-art designs
and verify our proposed theory under unifying pruning framework using two datasets.

Unless stated otherwise, the accuracy reported is defined as
1

n

∑
i

pi
∑
j

Acc(fi(x
(i)
j , θi ⊙mi), y

i
j))

averaged over three random seeds with same random initialized starting θ0. Some key hyper-
parameters includes total training rounds Q = 100, local training epochs T = 5, testing batch
size bs = 128 and local batch size bl = 10. Momentum for SGD is set to 0.5. standard batch
normalization is used.

We focus on three points in our experiments: (i) the general coverage of federated learning with
heterogeneous models by pruning (ii) the impact of coverage index Γmin (iii) the impact of mask
error δ.

We examine the theoretical results on the following three commonly-used image classification
datasets: MNIST with a shallow multilayer perception (MLP), CIFAR-10 with Wide ResNet28x2,
and CIFAR100 with Wide ResNet28x8. The first setting where using MLP models is closer to the
theoretical assumptions and settings, and the latter two settings are closer to the real-world application
scenarios. We prepare N = 100 workers with IID and non-IID data with participation ratio c = 0.1
which will include 10 random active clients per communication round. For IID data, we follow
the design of balanced MNIST by previous research, and similarly obtain balanced CIFAR10. For
non-IID data, we obtained balanced partition with label distribution skewed, where the number of the
samples on each device is up to at most two out of ten possible classifications.

B.2 Pruning and submodel extraction Techniques

In the paper we select 4 pruning techniques as baselines and we elaborate the details of them. Let
Pm = ∥m∥0

|θ| be the sparsity of mask m, e.g.,Pm = 75% for a model when 25 % of its weights are

9
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pruned, and M is the number of the parameters in the model. Then a mask for weights pruning can be
defined as:

mi =

{
1 , if argsort(θ[i]) < Pm ∗M
0 , otherwise

, i ∈ M (33)

where N is the total number of neurons in the network, and fixed subnetwork:

mi =

{
1 , if i < Pm ∗M
0 , otherwise

, i ∈ M (34)

where M is the total number of parameters in the network.

Note in adaptive pruning such mask is subject to change after each round of global aggregation.

An illustration of those pruning techniques can be found in figure.

Figure 1: Illustration of pruning techniques used in this paper

B.3 Evaluation Metrics

We use global model accuracy as our evaluation metrics. Specifically, global model accuracy is
defined as the aggregated central server model accuracy on the test set. Local accuracy and other test
and model details (e.g. FLOPs, model reduction ratio, etc.) can be found in the appendix. For all 3
datasets, we report the correct classification accuracy. Unless stated otherwise, the accuracy reported
in this paper is defined as 1

n

∑
i pi

∑
j Acc(fi(x

(i)
j , θi ⊙mi), y

i
j)) averaged over three random seeds

with the same random initialized starting θ0, conducted on 4 NVIDIA RTX2080 GPUs.

C More Results on MNIST dataset

In this section we present more supplementary experimental results on MNIST dataset as it’s more
close to our theoretical assumptions. Specifically, we present the training progress in respect of global
loss and accuracy for selected pruning techniques.

C.1 Change of Notations

In the main paper we use code name for simplicity of notation and better understanding. Here we
present the results with their detailed settings.

For a full model without pruning it can be described as P1(θ) = {S1,S2,S3,S4}, where

mi = 1 if θi ∈ {S1 ∪ S2 ∪ S3 ∪ S4} otherwise mi = 0

.
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Similarly we have another 6 pruning polices as follows:

P2(θ) = {S1,S3,S4}

P3(θ) = {S1,S2,S4}
P4(θ) = {S1,S2,S3}

P5(θ) = {S2,S3}
P6(θ) = {S1,S3}
P7(θ) = {S1,S2}

And we further denote a local client with its pruning policy, as an example, the case optimized
medium model reduction uses 4 local clients with full models, 4 local clients with pruned models
using pruning policy P4, 1 local client with pruned models using pruning policy P2 and 1 local
client with pruned models using pruning policy P3, then we denote its code name as "1111234444"
for simpler notation. Note that we continue to use code name "FedAvg" as a baseline rather than
"1111111111". For the rest of the appendix we continue using such notations for denoting its model
reduction policy settings.

codename 1 0.75 0.5 PARAs FLOPs Γmin %PARA %FLOPS IID Non-IID

Accuracy Global Local

1111111111 10 159010 158800 10 1.00 1.00 98.045 93.59 93.82
1111114444 6 4 143330 143120 6 0.90 0.90 98.18 95.15 95.49
1111144447 5 4 1 135490 135280 5 0.85 0.85 97.51 89.13 89.29
1111223344 4 6 135490 135280 8 0.85 0.85 98.32 95.48 95.82
1111234444 4 6 135490 135280 6 0.85 0.85 98.39 95.45 95.96
1111113477 6 2 2 135490 135280 7 0.85 0.85 96.72 91.27 91.57
1111234567 4 3 3 123730 123520 7 0.77 0.77 96.73 88.99 88.90
1111444444 4 6 135490 135280 4 0.85 0.85 97.85 89.13 89.29
1111444477 4 4 2 127650 127440 4 0.80 0.80 96.9 93.02 93.12
1111556677 4 6 111970 111760 6 0.70 0.70 95.5 80.07 79.34
1114556677 3 1 6 108050 107840 5 0.67 0.67 95.80 79.30 79.75
1234556677 1 3 6 100210 100000 5 0.63 0.62 95.31 81.66 81.64
1455666777 1 1 8 92370 92160 3 0.58 0.58 94.79 79.15 79.08
2233445677 0 6 4 104130 103920 5 0.65 0.65 95.95 81.27 81.17
1444777777 1 3 6 92370 92160 6 0.65 0.65 95.10 72.19 71.64

Table 2: Results For Weights Pruning on MNIST

codename 100% 75% 50% PARAs FLOPs Γmin %PARA %FLOPS IID Non-IID

Accuracy Global Local

1111111111 10 159010 158800 10 1.00 1.00 97.67 94.12 94.45
1111114444 6 4 143110 142920 6 0.9 0.90 97.76 92.33 92.55
1111144447 5 4 1 135160 134980 6 0.85 0.85 97.34 93.79 93.92
1111444444 4 6 135160 134980 4 0.85 0.85 97.62 92.05 92.33
1111444477 4 4 2 127210 127040 4 0.80 0.80 97.32 92.67 92.95
1111444777 4 3 3 123235 123070 4 0.77 0.77 97.35 91.34 91.73
1111777777 4 6 111310 111160 4 0.70 0.70 97.18 93.6 93.48
1114777777 3 1 6 107335 107190 3 0.67 0.67 97.12 93.7 93.57
1444777777 1 3 6 99385 99250 1 0.62 0.62 97.01 90.74 90.57
1477777777 1 1 8 91435 91310 1 0.57 0.57 96.88 90.73 90.67

Table 3: Results For Fixed Sub-network on MNIST

C.2 More Results

C.2.1 Case for IID data

We present the full results of training for IID case in Fig 2 - 3
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(a) Global Loss (b) Accuracy

Figure 2: Results on Weights Pruning on MNIST IID

(a) Global Loss (b) Accuracy

Figure 3: Results on Fixed Sub-network on MNIST IID

C.2.2 Case for non-IID data

We present the full results of training for non-IID case in Fig 4 - 5

(a) Global Loss (b) Accuracy

Figure 4: Results on Weights Pruning on MNIST non-IID

12



(a) Global Loss (b) Accuracy

Figure 5: Results on Fixed Sub-network on MNIST non-IID
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