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A Appendix1

In this appendix, we provide the following:2

1. Implementation details (Section A.1);3

2. A segmentation refinement strategy (Section A.2);4

3. The scribble to point strategy for the evaluation of NVOS (Section A.3);5

4. An analysis about vanilla NeRF [5] used in SA3D (Section A.4);6

5. More information about the object filtering of Replica [8] (Section A.5);7

6. A further illustration of the self-prompting strategy (Section A.6);8

7. More visualization results with different kinds of input prompts (Section A.7).9

A.1 Implementation Details10

We implement SA3D using PyTorch [6] with reference to the code provided by DVGOv2 [9]. The11

SA3D model is built and trained on a single Nvidia Geforce RTX3090 GPU. For our NeRF model,12

we primarily employ TensoRF [2], utilizing the VM-48 representation to store the radiance latent13

vectors. The radiance fields are pre-trained for most datasets with 40,000 iterations. For the LLFF14

dataset [4] and the 360 dataset [1], the radiance fields are trained with 20,000 iterations.15

A.2 Refinement with A Two-pass Segmentation Mechanism16

SAM may produce segmentation masks containing undesired parts. The IoU-aware view rejection is17

hard to handle this issue when the mis-classified region gradually expands.18

We propose a two-pass segmentation mechanism to further refine the segmentation result. After19

completing 3D segmentation introduced in the main manuscript, we get a 3D mask V. To detect20

the mis-classified region from V, we re-render the 2D segmentation mask Mu of the user-specific21

reference view and compare it with the original SAM segmentation result Mu
SAM.22

Subsequently, we reset the original 3D mask V to be a zero tensor and introduce another 3D mask23

V′ ∈ R3 that specifically indicates the mis-classified regions. The 3D segmentation process is24

then repeated, with the key difference being the incorporation of negative prompt points during the25

self-prompting phase. In other words, the prompts obtained from V′ serve as negative prompts for V,26

and vice versa. This incorporation of negative prompts enables SAM to gain a better understanding of27

the user’s requirements and refine the segmentation accordingly (shown in Figure A1). It is important28

to note that while this two-pass segmentation mechanism holds promise, it was not utilized in our29

main experiments due to considerations of efficiency.30
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Vanilla SA3D Two-pass Segmentation

Figure A1: The effect of the two-pass segmentation refinement.

Figure A2: Some scribbles on the reference views provided by NVOS and the corresponding
segmentation results of SA3D. Blue scribbles are positive and red scribbles are negative.

A.3 The Scribble to Points Strategy for The Evaluation of NVOS31

The NVOS [7] dataset provides a reference view and the corresponding scribbles for each scene32

(shown in Figure A2). In practice, since the scribbles usually contain tens of thousands of dense33

points, SAM [3] cannot directy take such scribbles as input. The abundance of points in the scribbles34

hinders SAM’s performance when directly utilizing them as prompts, which is an inherent limitation35

of SAM.36

For fair comparison, we extract positive and negative prompt points from the provided positive and37

negative scribbles, respectively. For input scribbles, we first skeletonize them and then select 2%38

points from the skeletonized positive scribbles as the positive prompts and 0.5% points from the39

skeletonized negative scribbles as the negative prompts.40

A.4 The Effect of Different NeRFs Used in SA3D41

We adapt SA3D to the vanilla NeRF [5] to showcase its generalizability. We present visualization42

results on the LLFF dataset. As illustrated in Figure A3, SA3D with the vanilla NeRF exhibits43

excellent performance without the need for additional modifications.44

A.5 Object Filtering for The Replica Dataset45

The Replica dataset contains many objects in each scene. However, it is important to note that46

many of these objects exhibit low quality, as depicted in Figure A4, making them unsuitable for47

evaluating 3D segmentation. Generally, these instances exhibit the following issues: some instances48

are not present in the training frames provided by Zhi et al. [10]; some instances are too small to49

be effectively segmented, such as thin slits in doors; and some instances consist of unrecognizable,50

low-resolution pixels, such as blurred tags, which are not suitable for accurate instance segmentation.51

Accordingly, we carefully select approximately 20 representative instances from each scene for the52

evaluation. The list of instance IDs for each scene can be found in Table A2. We have also included53
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Figure A3: 3D Segmentation results based on vanilla NeRF on the LLFF dataset.
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Figure A4: Some ground-truth masks (shown in green) and their corresponding instances from the
Replica dataset. These unreasonable segmentation targets are filtered out in evaluation.

the quantitative results without object filtering in Table A1. Even without object filtering, SA3D54

demonstrates improvements compared to the single-view baseline.55

Table A1: Quantitative results on Replica (mIoU) without object filtering.

Scenes office0 office1 office2 office3 office4 room0 room1 room2 mean

Single view 58.8 53.1 61.2 54.2 56.7 51.0 58.6 58.3 56.49
SA3D (ours) 65.1 59.8 69.7 61.4 63.8 56.8 68.4 72.2 64.65

Table A2: The selected id lists of Replica.

Scenes ID list

office0 3,4,7,8,9,10,12,14,17,19,21,23,26,28,29,30,36,37,40,42,44,46,54,55,57,58,61

office1 3,7,9,11,13,14,15,17,23,24,29,32,33,36,37,39,42,44,45,46

office2 0,2,8,9,13,14,17,19,23,27,40,41,47,49,51,54,58,60,65,67,70,71,72,73,78,85,90,92,93

office3 3,8,11,14,15,18,19,25,29,30,32,33,38,39,43,51,54,55,61,65,72, 76,78,82,87,91,95,96,
101,111

office4 1,2,6,7,9,11,17,22,23,26,33,34,39,47,49,51,52,53,55,56

room0 5,6,7,10,13,14,16,25,32,33,35,46,51,53,55,60,64,67,68,83,86,87,92

room1 1,2,4,6,7,9,10,11,16,18,24,28,32,36,37,44,48,52,54,56

room2 3,5,6,7,8,9,11,12,16,18,22,26,27,37,38,39,40,43,49,55,56

A.6 An Illustration for The Proposed Self-prompting Strategy56

We offer an illustration (Figure A5) to assist readers in gaining a clearer understanding of the57

self-prompting strategy.58

In the self-prompting strategy, prompt points Ps are derived from an incomplete 2D rendered mask59

M(n), which is represented as a confidence score map. Initially, the selected prompt points set Ps60

is empty, and the first prompt point p0 is selected as the one with the highest confidence score in61

the mask M(n). For subsequent points, square regions centered around existing prompt points are62

masked out on M(n). The depth z(p), estimated by the pre-trained NeRF, helps convert 2D pixel63

p into a 3D point G(p). The new prompt point is expected to have a high confidence score while64

being close to existing prompt points. Hence, a distance-aware decay term is introduced to compute65

the confidence score. The remaining point with the highest decayed score is added to the prompt66

set. This selection process is repeated until either the number of prompts |Ps| reaches a predefined67

threshold np or the maximum value of the remaining points is less than 0. Please refer to Section 3.468

of the main manuscript for more details.69
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2, 3D distance-based 
confidence decay

3, Select  a new point with the highest confidence

1, Mask out a square region

Mask out square regions

Equation (6),(7),(8)

Figure A5: An illustration of the self-prompting strategy.

A.7 More Visualization Results70

We present additional visualization results in Figure A6 and Figure A7, showcasing the effec-71

tiveness of SA3D across various input prompts. Additionally, we provide rendered videos (see72

“SA3D_visualization.mp4”) that showcase the segmented 3D objects.73

“The sheep”

“The paper”

“The apple” “The cup”

“The bag” “The dish”

Figure A6: Text prompt based visualization results on the LERF figurines dataset.
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Figure A7: More visualization results on the LLFF dataset and the 360 dataset (based on point and
box prompts).
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