
A Expressing Popular Forms of Calibration as Distribution Matching

A.1 Calibration in Regression

Here, we show how the forms of calibration listed in Table 1 can be expressed in terms of conditional
distribution matching. Note that many of these forms of calibration are sensible in the classification
setting as well (e.g., marginal, group, and decision calibration).

Quantile Calibration Let Y be a continuous random variable. A forecaster is quantile calibrated if

P
�
QY |X(Y )  t

�
= t, 8t 2 [0, 1]. (6)

This is equivalent to stating that QY |X(Y ) is uniform on the interval [0, 1]. For continuous random
variables, the probability integral transform PY |X(Y ) is uniform on the interval [0, 1]. Thus, quantile
calibration can be written as QY |X(Y ) , PY |X(Y ), where , denotes equality in distribution.

Threshold Calibration Let Y be a continuous random variable. A forecaster satisfies threshold
calibration [39] if P(QY |X(Y )  t | QY |X(y)  c) = t for all t 2 [0, 1], c 2 [0, 1], and y 2 Y . This
states that QY |X(Y ) is uniform, conditioned on the event QY |X(y)  c. Noting that PY |X(Y ) is
uniform, the constraint is then equivalent to the following:

QY |X(Y ) , PY |X(Y ) | 1
�
QY |X(y)  c

 
, 8c 2 [0, 1], y 2 Y (7)

Marginal Calibration A forecaster is marginally calibrated [11] if E[QY |X(y)] = PY (y) for all
y 2 Y . Recall that the distribution of bY is defined by (bY | X = x) ⇠ QY |x. Thus, the marginal
distribution of bY is given by bY ⇠ E[QY |X ]. So marginal calibration states that bY and Y have the
same marginal cdf or, equivalently, bY , Y .

Decision Calibration Zhao et al. [52] introduce the concept of LK decision calibration for multi-
class classification, where Y = {0, 1}C is the set of onehot vectors over C classes.
Definition A.1 (LK-Decision Calibration, Zhao et al. [52]). Let LK be the set of all loss functions
with K actions LK = {` : Y ⇥A ! R, |A| = K}, we say that a prediction QY |X is LK-decision
calibrated (with respect to PY |X ) if 8` 2 L

K and � 2 �LK

EXEbY⇠QY |X
[`(bY , �(QY |X))] = EXEY⇠PY |X [`(Y, �(QY |X))] (8)

where �LK is the set of all Bayes decision rules over loss functions with K actions.

They show that LK decision calibration can equivalently be expressed as requiring that E[(bY �

Y )1{�(QY |X) = a}] = 0 for all � 2 �LK . We can rewrite this as

E[bY |�(QY |X) = a] = E[Y |�(QY |X) = a], 8� 2 �LK , a 2 A (9)

note that E[Y |�(QY |X) = a] gives the conditional distribution of (Y | �(QY |X) = a) due to the
onehot representation of Y . Thus, it is equivalent to require that

⇣
bY , Y

⌘
| �(QY |X), 8� 2 �LK (10)

where , denotes equality in distribution.

Group Calibration Group calibration [20] says that forecasts are marginally calibrated for each
subgroup (e.g., subgroups defined by gender or age). We can write this as bY , Y | Group(X),
where Group(X) is a variable indicating which subgroup includes the feature vector X .

Distribution Calibration A forecaster satisfies distribution calibration [42] if for all possible
forecasts Q0 and labels y 2 Y , we have P

�
Y  y | QY |X = Q0

�
= Q0(y). This is equivalent to

requiring PY |X(y) | QY |X = QY |X(y) for all y 2 Y . Since the cdfs take the same value at all
y 2 Y , the random variables Y and bY have the same distribution, giving us that bY , Y | QY |X .
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Individual Calibration Let Y be a real-valued continuous random variable. Individual calibration
[51] states that P

�
QY |x(Y )  t

�
= t, for all t 2 [0, 1] and x 2 X . Letting U ⇠ Unif(0, 1), we can

write this as

QY |X(Y ) , PY |X(Y ) | X (11)

Q
�1
Y |X(QY |X(Y )) , Q

�1
Y |X(PY |X(Y )) | X (12)

Y , Q
�1
Y |X(U) | X (13)

Y , bY | X (14)

Local Calibration A forecaster is locally calibrated [27] if QY |X and PY |X are equal, on average,
in any neighborhood of the feature space. Similarity in feature space is defined by a kernel k(x, x0).
In regression, local calibration for quantiles says that

E[1
�
QY |X(Y )  t

 
k(X,x)]

E[k(X,x)]
= t, 8t 2 [0, 1], x 2 X . (15)

This can equivalently be stated as

E[1
�
QY |X(Y )  t

 
k(X,x)] = E[1

�
PY |X(Y )  t

 
k(X,x)], 8t 2 [0, 1], x 2 X (16)

or, in terms of the canonical feature mapping,

E[1
�
QY |X(Y )  t

 
h�(X),�(x)i] = E[1

�
PY |X(Y )  t

 
h�(X),�(x)i], 8t 2 [0, 1], x 2 X .

(17)
Thus, it is sufficient for E[QY |X ] and E[PY |X ] to have the same distribution conditioned on the
feature mapping �(X). This can be written succinctly as

Y , bY | �(X) (18)

A.2 Calibration in Classification

Here, we express three popular forms of calibration from the classification literature—namely,
canonical, top-label, and marginal calibration [44, Eq (1-3)]—in terms of distribution matching
constraints. For the entirety of this section, Y is a discrete random variable taking values in the
set Y = {1, 2, . . . ,m}, and qY |x is the probability mass function of the forecast given the features
X = x.

Canonical Calibration A forecaster satisfies canonical calibration if P
�
Y = y | qY |X

�
= qY |X(y)

for all y 2 Y . This says that the label follows the same distribution under the forecast and the true
distribution, conditioned on qY |X . In other words, Y , bY | qY |X .

Top-Label Calibration A forecaster satisfies top-label calibration if P
�
Y = Y

⇤
| qY |X(Y ⇤)

�
=

qY |X(Y ⇤), where Y
⇤ := argmaxy2Y qY |X(y) is the mode of the forecast. This equation can be

rewritten in terms of the indicators

E
⇥
1 {Y = Y

⇤
} | qY |X(Y ⇤)

⇤
= E

h
1{bY = Y

⇤
} | qY |X(Y ⇤)

i

and the indicator variables are equal in expectation if and only if they are equal in distribution. Thus,
top-label calibration is equivalent to 1 {Y = Y

⇤
} , 1{bY = Y

⇤
} | qY |X(Y ⇤).

Marginal Calibration A forecaster satisfies marginal calibration if P
�
Y = y | qY |X(y)

�
=

qY |X(y) for all y 2 Y . Similar to top-label calibration, this can be written as

E
⇥
1 {Y = y} | qY |X(y)

⇤
= E

h
1{bY = y} | qY |X(y)

i

and the indicator variables are equal in expectation if and only if they are equal in distribution. Thus,
marginal calibration can be written as 1 {Y = y} , 1{bY = y} | qY |X(y), for all y 2 Y .
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B Experimental Setup and Additional Results

B.1 Reproducibility

In order to reproduce the experiments and results obtained in this paper, we provide details about the
hyperparameter tuning and required computational resources.

Hyperparameter Search: We use TPES [3] to perform hyperparameter optimization. For all
experiments, we vary:

• Layer sizes between 32 and 512
• RBF kernel bandwidths between 0.001 and 200
• Batch sizes between 16 and 512, with and without batch normalization
• Learning rates between 10�7 and 10�1.
• The loss mixture weight � (as in NLL+� ·MMD and XE+� ·MMD) between 0.1 and 1000.

For each dataset, we test 100 hyperparameter settings for each training objective for regression
{NLL,NLL+MMD}, and classification setting {XE,XE+MMCE,XE+KDE,XE+MMD}.
For each run, we enable early-stopping if the validation loss does not improve for more than 50
epochs. In the regression setting, we pick the best performing run based on the validation NLL. For
classification, we select the best performing run based on the validation accuracy, with validation
ECE used for break ties. For each model and dataset, the best performing model is then re-run with
50 random seeds to gather information about standard errors and statistical significance. To capture
variability across different seeds, we report the standard error of the mean in Tables 3, 4, and 5.

Kernel Bandwidth We select the RBF kernel bandwidth for training on each dataset using the
aforementioned hyperparameter optimization. For each dataset in Tables 4 and 5, the KDE metric
we report is for the bandwidth selected through a held-out validation set, scaled so that the error is
of a comparable order of magnitude across datasets (since multiplying a kernel by a positive scalar
preserves the kernel properties).

Baselines In the classification setting, we compare our approach to two state-of-the-art trainable
calibration methods, MMCE [26] and KDE [37]. For MMCE, we follow the same experimental
setup as the official author implementation, where the loss mixture weight � and the Laplacian kernel
bandwidth are chosen via a held-out validation set. For KDE, we use the L1 canonical calibration
using the ECE

KDE estimator, calculated according to Equation (9) from Popordanoska et al. [37].
We follow the same experimental setup as the official author implementation, where the kernel
bandwidth is chosen using leave-one-out-likelihood (LOO MLE), and the loss mixture weight � is
chosen via a held-out validation set.

Computational Requirements: All experiments were conducted on a single CPU machine (Intel(R)
Xeon(R) Gold 6342 CPU @ 2.80GHz), utilizing 8 cores per experiment. When run on a CPU, the
training time for a single model ranges from 5 to 15 minutes, depending on the dataset size. It is
possible to perform a full hyperparameter sweep using this setup in ⇠24 hours.

To accelerate training, we have also run some experiments using an 11GB NVIDIA GeForce GTX
1080 Ti. When run on a GPU, the training time for a single model ranges from 2 to 5 minutes,
depending on the dataset size, and a hyperparameter sweep takes ⇠10 hours.

US Agriculture Dataset: We introduce a new CROP-YIELD dataset for predicting yearly wheat
crop yield from geospatial weather data for different counties across the US. We use NOAA database
which contains weather data from thousands of stations across the United States. For each county,
we track the weather sequence of each year into a few summary statistics for each month (aver-
age/maximum/minimum temperatures, precipitation, cooling/heating degree days). To study how
climate change and location affect crop yield, we match crop yield data from the NASS dataset to
weather stations in the NOAA database, and learn a function to predict crop yield from weather
data. We specifically considered the crop yield of wheat across different counties in the US between
1990-2007. Since crop yield data for 1995 is the least sparse, we hold out data from 1995 for
visualization, and train our forecasters on the remaining data.
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B.2 Additional Experimental Results

Table 5: Performance on classification tasks, comparing MMCE regularization [26], KDE regulariza-
tion [37], and MMD regularization (Ours), alongside a standard cross-entropy (XE) loss. Temperature
scaling is used for post-hoc recalibration of all methods. n is the number of examples in the dataset,
d is the number of features, and m is the number of classes.

Dataset Training Objective
with Temp. Scaling Accuracy " ECE # Entropy # KCE #

BREAST-CANCER
n = 569
d = 30
m = 2

XE 95.372 ± 0.160 0.105 ± 0.031 0.056 ± 0.007 0.028 ± 0.005
XE + MMCE 94.770 ± 0.147 0.052 ± 0.001 0.011 ± 0.001 0.019 ± 0.000
XE + ECE KDE 94.351 ± 0.163 0.074 ± 0.018 0.010 ± 0.001 0.022 ± 0.003
XE + MMD (Ours) 95.789 ± 0.060 0.052 ± 0.000 0.004 ± 0.000 0.019 ± 0.000

HEART-DISEASE
n = 921
d = 23
m = 5

XE 55.904 ± 0.196 0.325 ± 0.003 1.116 ± 0.008 0.077 ± 0.000
XE + MMCE 60.787 ± 0.208 0.262 ± 0.002 0.927 ± 0.004 0.067 ± 0.000
XE + ECE KDE 50.036 ± 2.801 0.276 ± 0.011 1.192 ± 0.033 0.082 ± 0.002
XE + MMD (Ours) 61.516 ± 0.255 0.252 ± 0.003 0.860 ± 0.003 0.066 ± 0.000

ONLINE-SHOPPERS
n = 12330
d = 28
m = 2

XE 89.816 ± 0.037 0.130 ± 0.000 0.227 ± 0.001 0.050 ± 0.000
XE + MMCE 89.933 ± 0.036 0.128 ± 0.000 0.220 ± 0.000 0.051 ± 0.000
XE + ECE KDE 90.019 ± 0.034 0.125 ± 0.000 0.216 ± 0.001 0.050 ± 0.000
XE + MMD (Ours) 89.976 ± 0.031 0.126 ± 0.000 0.214 ± 0.001 0.050 ± 0.000

DRY-BEAN
n = 13612
d = 16
m = 7

XE 92.071 ± 0.025 0.102 ± 0.000 0.206 ± 0.001 0.011 ± 0.000
XE + MMCE 92.772 ± 0.035 0.092 ± 0.000 0.188 ± 0.001 0.011 ± 0.000
XE + ECE KDE 92.760 ± 0.037 0.091 ± 0.000 0.190 ± 0.000 0.011 ± 0.000
XE + MMD (Ours) 92.894 ± 0.035 0.086 ± 0.000 0.187 ± 0.001 0.011 ± 0.000

ADULT
n = 32561
d = 104
m = 2

XE 84.528 ± 0.040 0.188 ± 0.000 0.330 ± 0.000 0.022 ± 0.000
XE + MMCE 84.203 ± 0.042 0.190 ± 0.000 0.335 ± 0.000 0.022 ± 0.000
XE + ECE KDE 84.187 ± 0.045 0.177 ± 0.001 0.338 ± 0.001 0.023 ± 0.000
XE + MMD (Ours) 84.565 ± 0.035 0.174 ± 0.000 0.334 ± 0.000 0.020 ± 0.000

Table 6: Performance versus the number of simulated samples per forecast used for the plug-in MMD
estimate in regression tasks. All other hyperparameters are held constant, including the number
of training steps. Increasing the number of samples gives a better estimate of the MMD objective,
generally leading to better performance at the cost of additional compute.

CRIME BLOG MEDICAL-EXPENDITURE

# Samples NLL QCE DCE NLL QCE DCE NLL QCE DCE

1 -0.703 0.198 0.088 0.952 0.379 4.171 1.546 0.071 0.448
2 -0.755 0.188 0.133 0.959 0.444 4.228 1.535 0.07 0.427
5 -0.72 0.154 0.043 0.96 0.395 4.09 1.539 0.071 0.419
10 -0.777 0.154 0.06 0.85 0.416 4.077 1.54 0.072 0.459
20 -0.772 0.157 0.054 0.835 0.415 4.031 1.538 0.063 0.431
50 -0.779 0.150 0.041 0.847 0.432 4.016 1.531 0.065 0.447
100 -0.781 0.153 0.043 0.829 0.386 3.978 1.536 0.064 0.449
200 -0.782 0.151 0.043 0.829 0.373 3.978 1.535 0.064 0.442

SUPERCONDUCTIVITY FB-COMMENT

# Samples NLL QCE DCE NLL QCE DCE

1 3.369 0.053 0.182 0.637 0.268 3.15
2 3.35 0.062 0.197 0.477 0.294 3.14
5 3.311 0.038 0.216 0.409 0.276 3.146
10 3.333 0.036 0.208 0.59 0.278 3.102
20 3.298 0.055 0.262 0.569 0.258 3.119
50 3.345 0.041 0.208 0.479 0.223 3.14
100 3.318 0.036 0.181 0.469 0.23 3.149
200 3.291 0.034 0.182 0.458 0.231 3.137
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B.3 Experiment: Decision Calibration

As an illustrative example of how trainable calibration metrics can improve calibration for a specific
decision-making problem, we consider a common real-world decision problem, requiring us to
make an action whose utility depends only on whether the label y is greater or less than a particular
threshold c. Concretely, the decision loss ` : A⇥ Y ! R, for an action a 2 {�1,+1} and a label
y 2 Y , is defined as `(a, y) = 1 {a 6= sign(y � c)}.

Setup In order to achieve decision calibration, we tailor our kernels kX , kY to closely follow the
decision problem. More concretely, we choose a kernel function that penalizes predicted labels
which are on the wrong side of c, namely kY (y, y0) = tanh(y � c) · tanh(y0 � c). Notice that
kY (y, y0) ⇡ +1 when sign(y � c) = sign(y � c), and �1 otherwise. Thus, the calibration metric
gives the model training feedback that is well aligned with the decision problem. To encourage
decision calibration across all features, we set kX to be the universal RBF kernel.

As part of this experiment, we investigate whether tailoring an MMD kernel to the decision problem
will improve decision calibration over using a universal RBF kernel for both kX , kY .

Metric To evaluate the effectiveness of methods, we compute the standard Decision Calibration
Error (DCE) across all regression datasets, defined as

DCE2 =
X

a2A

���
���EP [`(Y, a)]� EXEbY⇠QY |X

[`(bY , a)]
���
���
2

2
, (19)

where P is the true distribution over X ⇥ Y , and QY |X is a forecaster.

Additional Results: Choice of kernel We present two sets of results. The first set of results is
shown in Table 7, comparing models trained using our objective (NLL + MMD), where one uses a
kernel kY that is tailored to the decision problem (tanh), while the other uses a universal RBF kernel.
As described in Section 6.3, we observe that using the tanh kernel clearly achieves better decision
calibration across all dataset, with minimal degradation in sharpness, i.e. NLL. This demonstrates
that we can improve decision calibration using our trainable calibration metrics by tailoring our
kernels to closely follow the decision problem.

The second set of results, shown in Figure 2, further demonstrates the relationship between our
trainable calibration metrics and decision calibration throughout model training. By tailoring our
kernels to closely follow the decision problem, we observe that decision calibration is optimized
throughout training. In contrast, using objectives that are agnostic to the decision problem (i.e. NLL,
or MMD with RBF kernels) will lead to noticeably worse decision calibration, with little to no
improvement throughout training. The same trend is observed on a held-out validation set, as shown
in Figure 3.

Dataset Kernel (kY ) NLL # Decision Cal. #

CRIME
(n = 1992, d = 102)

RBF -0.778 ± 0.008 0.042 ± 0.011
tanh -0.657 ± 0.010 0.027 ± 0.006

BLOG
(n = 52397, d = 280)

RBF 0.957 ± 0.008 4.051 ± 0.002
tanh 0.934 ± 0.007 3.052 ± 0.001

MEDICAL-EXPENDITURE
(n = 33005, d = 107)

RBF 1.530 ± 0.000 0.447 ± 0.002
tanh 1.532 ± 0.000 0.438 ± 0.002

SUPERCONDUCTIVITY
(n = 21264, d = 81)

RBF 3.269 ± 0.012 0.182 ± 0.003
tanh 3.311 ± 0.009 0.127 ± 0.003

FB-COMMENT
(n = 40949, d = 53)

RBF 0.605 ± 0.004 3.131 ± 0.003
tanh 0.598 ± 0.003 2.342 ± 0.003

Table 7: Comparison of model performance trained with our training objective (NLL + MMD), using
different kernels for kY in the MMD kernel. The RBF kernel is a commonly-used universal kernel,
while the tanh kernel is specifically designed to match the decision task for decision calibration. All
metrics are reported on the test set.
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(a) CRIME (b) MEDICAL-EXPENDITURE

(c) BLOG (d) SUPERCONDUCTIVITY (e) FB-COMMENT

Figure 2: We visualize the Decision Calibration Error (DCE) evaluated throughout training on the
training data, for a Gaussian forecaster trained using different objectives. Our method, by tailoring
the kernels to a specific decision problem, achieves the best DCE among baselines across all datasets.
Using our method, we observe continuous improvement in DCE throughout training. Error bars
denote the standard deviation computed over 50 random trials.

(a) CRIME (b) MEDICAL-EXPENDITURE

(c) BLOG (d) SUPERCONDUCTIVITY (e) FB-COMMENT

Figure 3: We visualize the Decision Calibration Error (DCE) evaluated throughout training on
held-out validation data. Our method, by tailoring the kernels to a specific decision problem, achieves
the best DCE among baselines across all datasets. Error bars denote the standard deviation computed
over 50 random trials.
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