
Undirected Probabilistic Model for Tensor
Decomposition

Zerui Tao1,2 Toshihisa Tanaka1,2 Qibin Zhao2,1∗
zerui.tao@riken.jp tanakat@cc.tuat.ac.jp qibin.zhao@riken.jp

1Tokyo University of Agriculture and Technology 2RIKEN AIP

Abstract

Tensor decompositions (TDs) serve as a powerful tool for analyzing multiway data.
Traditional TDs incorporate prior knowledge about the data into the model, such
as a directed generative process from latent factors to observations. In practice,
selecting proper structural or distributional assumptions beforehand is crucial for
obtaining a promising TD representation. However, since such prior knowledge is
typically unavailable in real-world applications, choosing an appropriate TD model
can be challenging. This paper aims to address this issue by introducing a flexible
TD framework that discards the structural and distributional assumptions, in order
to learn as much information from the data. Specifically, we construct a TD model
that captures the joint probability of the data and latent tensor factors through a deep
energy-based model (EBM). Neural networks are then employed to parameterize
the joint energy function of tensor factors and tensor entries. The flexibility of EBM
and neural networks enables the learning of underlying structures and distributions.
In addition, by designing the energy function, our model unifies the learning
process of different types of tensors, such as static tensors and dynamic tensors
with time stamps. The resulting model presents a doubly intractable nature due to
the presence of latent tensor factors and the unnormalized probability function. To
efficiently train the model, we derive a variational upper bound of the conditional
noise-contrastive estimation objective that learns the unnormalized joint probability
by distinguishing data from conditional noises. We show advantages of our model
on both synthetic and several real-world datasets.

1 Introduction

Tensor decompositions (TDs) serve as powerful tools for analyzing high-order and high-dimensional
data, aiming to capture the inter-dependencies among different modes by utilizing multiple latent
factors. TDs have demonstrated remarkable success in various machine learning tasks, including
data imputation [53, 9], factor analysis [4], time-series forecasting [27], model compression [28, 41],
generative models [10, 20] among others.

Existing TDs typically incorporate predefined directed graphical models into the generative process.
These models specify the priors of latent factors and the conditional probabilities of observations,
following specific contraction rules associated with the latent factors. Traditional contraction rules
predominantly employ multi-linear products, like CP [15], Tucker [42], tensor train [29] and other
variants [19, 6]. However, selecting an appropriate contraction rule for specific datasets is often chal-
lenging in real-world applications. Recent research, known as tensor network structure search [TNSS,
22, 23], has demonstrated that selecting an appropriate TN contraction rule significantly enhances
the factorization performance. Another promising approach involves learning non-linear mappings
from the data, utilizing techniques like nonparametric models [5, 45, 53] and deep neural networks

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

[25, 9]. Empirical results demonstrate that non-linear TDs exhibit superior performance compared to
traditional multi-linear TDs in various applications, attributed to their enhanced expressive power.

Despite the success of non-linear TDs in reducing structural assumptions, they often rely on simplistic
distributional assumptions. Typically, a specific directed graphical model is adopted to model the
generative process from latent factors to tensor entries, represented as p(x) =

∫
p(x | z)p(z) dz,

where z denotes tensor factors and x represents observations. Additionally, the distributions are
usually selected from exponential families for tractability, such as Gaussian and Bernoulli distributions.
For instance, a Gaussian prior can be assigned to latent factors, and observed entries can be modeled
using Gaussian distribution [32, 49] or Gaussian process [45, 53]. However, these prior assumptions
regarding the probabilistic model can introduce model bias and reduce the effectiveness of TD models.
In real-world applications, the latent factors might originate from unknown distributions, and the
observations can exhibit complex multi-modal generative processes. Without knowing the underlying
generative process, these simplistic assumptions can lead to inaccurate estimations.

To address these issues, this paper proposes to construct an undirected graphical model of TD. More
specifically, a TD model that captures the joint probability of the data and latent tensor factors is con-
structed through a deep energy-based model (EBM), represented as p(x, z) ≈ exp(−f(x, z)). Neural
networks (NNs) are then employed to parameterize the joint energy function f(x, z). The flexibility
of EBM and NNs facilitates the learning of underlying structures and distributions. Furthermore, our
model unifies the learning process in the presence of side information, such as dynamic tensors with
time stamps, by designing the energy function. The resulting model presents a doubly intractable
nature due to the presence of latent tensor factors and the unnormalized probability density function
(pdf). For efficient model training, we derive a variant of conditional noise-contrastive estimation
[3] algorithm that learns the unnormalized joint probability by distinguishing data from conditional
noises. The proposed model offers several advantages: (1) it features a flexible structure that can
adapt to different distributions; (2) the undirected nature allows us to learn more general correlations
than traditional directed TDs; (3) it can handle diverse tasks and encode auxiliary information by
adjusting the energy function.

Experiments are conducted on synthetic and real-world datasets to showcase the advantages of our
model. Through simulation studies, we demonstrate the capability of our model to handle data
generated from diverse distributions, in contrast to traditional Gaussian-based models that yield
unfaithful and biased estimates. Subsequently, experiments are performed on multiple real-world
datasets to evaluate sparse and continuous-time tensor completion. Our model outperforms various
baselines across multiple metrics and settings, highlighting the generality of the proposed model.

2 Backgrounds

Notations We adopt similar notations with [19]. Throughout the paper, we use lowercase letters,
bold lowercase letters, bold capital letters and calligraphic bold capital letters to represent scalars,
vectors, matrices and tensors, e.g., x,x,X and X . Tensors refer to multi-way arrays which generalize
matrices. For a D-order tensor X ∈ RI1×···×ID , we denote its (i1, . . . , iD)-th entry as xi.

2.1 Tensor decomposition

Given a D-order tensor X ∈ RI1×···×ID , tensor decomposition (TD) aims to factorize X into D
smaller latent factors Zd=1,...,D ∈ RId×Rd by using some predefined tensor contraction rules. The
classical Tucker decomposition [42] assumes X = W×1Z

1×2· · ·×DZD, where W ∈ RR1×···×RD

is the coefficient and ×d denotes the matrix-tensor contraction [19]. Equivalently, each entry
can be written as xi =

∑R1

r1=1 · · ·
∑RD

rD=1 wr1...rDz
1
i1r1

· · · zDiDrD
, where the tuple (R1, . . . , RD)

is the Tucker rank of tensor X . The latent factors Zd can capture information of each tensor
mode and W represents the weight of each factors. CP decomposition [15] is a restricted form
of Tucker by assuming W is super-diagonal, i.e., xi =

∑R
r=1 wrz

1
i1r

· · · zDiDr, where we simplify
wr = wr...r. In this paper, we focus on probabilistic version of TDs, which serves as generalizations
of traditional ones. The standard approach is to formulate TDs as a directed graphical model,
p(X) =

∫
p(X | Z)p(Z) dZ, where Z denotes {Z1, . . . ,ZD} for simplicity. For continuous data,

the p(X | Z) is usually assumed to be Gaussian and TDs are used to parameterize the mean of
corresponding Gaussian distribution [32, 49, 50].

2

Despite the elegant form of these multi-linear contraction rules, they have limited flexibility that can
be mitigated by extending TDs to their non-linear counterparts. We can think of TD as a function that
maps the multiway latent factors to tensor entries. One extension is to add Gaussian process (GP)
priors on the function to obtain a nonparametric model, which resembles a GP latent variable model.
In particular, [53] proposed to stack the latent factors as mi = [z1

i1
, . . . ,zD

iD
] ∈ RDR and then assign

a GP prior on the functional mapping. In specific, for continuous data, it assumes xi ∼ N (µi, σ
2),

where the mean function is a GP µi = f(mi) ∼ GP(0, k(mi, ·)) associated with kernel k(·, ·).
Since GP has large computational complexity and designing the kernel requires ad-hoc expert domain
knowledge, [25] proposed to parameterize the function using neural networks (NNs), xi ∼ N (µi, σ

2)
where µi = fNN(mi). However, NNs easily overfit due to the high-dimensional and sparse nature of
tensor data. To address this issue, [9] proposed to use Bayesian NN with spike-and-slab prior for
sparse weights. All these models are based on directed graphical model, that assumes there exists a
direct mapping from the latent factors to tensor entries and use simplistic distributions.

2.2 Energy-based model

Energy-based model [EBM, 21] is a class of undirected probabilistic models, which uses an energy
function to characterize the data distribution. Given observed data x, the basic idea of EBM is
to approximate the data distribution by a Boltzmann distribution, pdata(x) ≈ exp(−f(x;θ))

Z(θ) , where
Z(θ) =

∫
exp(−f(x; θ)) dx is the normalization constant (a.k.a., the partition function) and f(x; θ)

is the energy function. One classical example of EBM is the restricted Boltzmann machine (RBM)
where the energy function has bi-linear form for tractability. In deep EBMs, the energy function is
typically parameterized by deep neural networks. The main difficulty for training EBMs is to deal
with the intractable normalization constant [36]. There are several ways to train EBMs, including
contrastive divergence [14], score matching [16], noise-contrastive estimation [NCE, 11] and so on.
In this paper, we focus on NCE, due to its efficiency and ability of tackling different data types.

We denote the unnormalized pdf as ϕ(x; θ) = exp(−f(x; θ)). NCE consider the normalization
constant Z(θ) as a trainable parameter. However, maximum likelihood estimation (MLE) does not
work for this case since Z(θ) can be arbitrarily small and the log-likelihood goes to infinity. Instead,
the NCE can be obtained by maximizing the following objective,

LNCE(θ) = Ex log h(x; θ) + νEy log(1− h(y; θ)),

where x denotes observed data and y denotes noises generated from some known distribution pn, ν is
the ratio between noise and sample sizes, i.e., ν = #y/#x. And h(·) can be regarded as a classifier
that distinguish data from noises, defined as follows, h(u; θ) = ϕ(u;θ)

ϕ(u;θ)+νpn(u)
. It has been shown that

NCE is consistent with MLE [11].

Although the noise distribution is essential for training efficiency, the selection of noises is currently
limited to heuristics. A common intuitive is that the noise should be similar with the data. Indeed, [3]
proposed to use conditional noises y ∼ pc(y | x) and minimizing the following loss function,

LCNCE(θ) = 2Exy log[1 + exp(−G(x, y))], (1)

where G(u1, u2; θ) = log ϕ(u1;θ)pc(u2|u1)
ϕ(u2;θ)pc(u1|u2)

with y drawn from pc(y | x).

3 Proposed model

3.1 Energy-based tensor decomposition

Even though many non-linear tensor decompositions (TD) have been proposed to enhance flexibility,
existing methods typically adopt simplistic distributions such as Gaussian. This can be problematic
for complex real-world data. To address the issue, we propose energy-based tensor decomposition
(EnergyTD), by integrating EBMs in TD framework. Given an order-D tensor X of shape I1 ×
· · · × ID, we aim to factorize it into D smaller latent factors Zd ∈ RId×R,∀d = 1, . . . , D. We
denote the latent factor associated with the (i1, . . . , iD)-th entry as mi = [z1

i1
, . . . ,zD

iD
] ∈ RDR,

where zd
id

∈ RR is the id-th row of Zd. Unlike traditional directed TDs trying to parameterize the
conditional expectation E[xi | mi] = f(mi), we model the joint distribution using an EBM,

p(xi,mi; θ) =
exp(−f(xi,mi; θ))

Z(θ)
, (2)

3

where f(·, ·; θ) is the energy function and Z(θ) =
∫
exp(−f(xi,mi; θ)) dxi dmi is the partition

function to make it a valid pdf. We further assume the joint probability of all entries are independent,
i.e., p(X ,m) =

∏
i∈Ω p(xi, z

1
i1
, . . . ,zD

iD
), where Ω denotes the set of observed entries. This is a

standard setting in TDs and the dependence of tensor entries can be captured by sharing latent factors.

The expressive nature of the energy function enables us to easily handle diverse data types. For
example, we can deal with discrete data by plugging one-hot codings into Eq. (2) to represent
categorical probabilities. Additionally, the flexibility of NNs allows us to model tensors with side
information, where each tensor entry incorporates additional features [34]. Specifically, in this
paper, we focus on a particular case of dynamic tensors with continuous time stamps [48]. In this
case, we consider an observed tensor as a time series X t, where the time stamp t is continuous,
and each entry i has its own specific time stamp ti. To model the tensor time series, we assume
that each entry follows the same distribution and construct the time-dependent energy function,
p(xi,mi; θ, ti) ∝ exp(−f(xi,mi, ti; θ)), where the time stamp ti is considered as an auxiliary
feature. The flexibility of NNs allows this function to learn general patterns across continuous time
stamps. Experimental results demonstrate that this simple treatment can achieve good performances.

Network architecture The network architecture plays a crucial role in learning accurate probabilis-
tic manifolds. Specifically, we define the energy function as f(xi,mi) = g1(g2(g3(xi), g4(mi))),
where g3 and g4 are MLP layers that encode information from xi and mi, respectively. g2 is a
summation or concatenation layer that induce coupling between tensor values and latent factors,
and g1 is the output layer. Although we currently utilize only MLPs, it is worth noting that con-
volutional architectures, as demonstrated by [39, 25], can also be employed, which is a topic for
future research. To handle dynamic tensors, we incorporate an extra sinusoidal positional encod-
ing layer [37] denoted as g5(t) to capture temporal information. This embedding utilizes random
Fourier features as proposed by [31]. Consequently, the energy function can be expressed as
f(xi,mi, ti) = g1(g2(g3(xi), g4(mi), g5(ti))). This architecture is commonly employed to capture
temporal information and has been demonstrated to effectively learn high-frequency information
when combined with MLPs [37].

Posterior sampling A significant application of TDs is to estimate the posterior of missing entries.
Unlike traditional TDs, direct predictions cannot be obtained even after learning the latent factors due
to the utilization of an undirected probabilistic model. Instead, we need to seek for sampling methods
of p(xi | mi). One choice is score-based samplers by utilizing the score function ▽xi

log p(xi |
mi) = ▽xi

log p(xi,mi)
p(mi)

= −▽xi
f(xi,mi), such as Langevin dynamics [44]. Score-based samplers

are not suitable for handling discrete data. However, in our case, we model the one-dimensional pdf
for each entry, enabling us to directly sample the discrete data. Consequently, for continuous data,
the use of grid search is a viable approach to obtain maximum a posteriori (MAP) estimations.

3.2 Learning objective

Despite the flexibility of the proposed model in Eq. (2), obtaining maximum likelihood estimation
(MLE) becomes doubly intractable, as both the partition function Z(θ) and the marginal distribution
p(xi) are intractable. Therefore, the CNCE loss Eq. (1) cannot be directly applied. In this section, we
extend the variational approach [33] to construct a upper bound that addresses the challenge posed by
intractable marginal distributions.

Denote the unnormalized pdf as ϕ(xi,mi; θ) = exp(−f(xi,mi; θ)) and the unnormalized marginal
pdf as ϕ(xi; θ) =

∫
ϕ(xi,mi; θ) dmi. For clarity, we omit the index i in the subsequent context

of this subsection. We follow the idea of CNCE [3] to distinguish data x from conditional noises
y ∼ pc(y | x). Firstly, Eq. (1) can be rewritten as

LCNCE(θ) = 2Exy log[1 + 1/r(x, y; θ)], (3)

where

r(x, y; θ) =
ϕ(x; θ)pc(y | x)
ϕ(y; θ)pc(x | y)

. (4)

However, for our problem, the unnormalized marginal probability ϕ(x; θ) is unknown. An additional
variational distribution q(m;φ) is used to approximate the true posterior p(m | X ; θ). Note that
in TDs where the data size is static, there is no need for amortized inference, which is different

4

from previous ones like [2]. Equipped with the variational distribution, the unnormalized marginal
distribution can be computed using importance sampling,

ϕ(x; θ) =

∫
ϕ(x,m; θ)q(m;φ)

q(m;φ)
dm = Eq(m;φ)

[
ϕ(x,m; θ)

q(m;φ)

]
. (5)

Plugging Eq. (5) into Eq. (4), we have

r(x, y; θ) =
Eq(m;φ)[ϕ(x,m; θ)/q(m;φ)]pc(y | x)

ϕ(y; θ)pc(x | y)
. (6)

Since Eq. (3) is a convex function w.r.t. r(x, y; θ), plugging Eq. (6) into Eq. (3) and applying the
Jensen’s inequality, we have the upper bound,

LCNCE(θ) = 2Exy log[1 + 1/r(x, y; θ)]

≤ 2ExyEq(m;φ) log

[
1 +

ϕ(y; θ)pc(x | y)q(m;φ)

ϕ(x,m; θ)pc(y | x)

]
≜ LVCNCE(θ,φ). (7)

Following [33], we have the theorem about the tightness of the bound.

Theorem 1 The difference between the VCNCE loss Eq. (7) and CNCE loss Eq. (1) is the expectation
of the f -divergence,

LVCNCE(θ, φ)− LCNCE(θ) = Exy[Dfxy
(p(m | x; θ)∥q(m;φ))],

where fxy(u) = log(
κxy+u−1

κxy+1) with κxy = ϕ(x;θ)pc(y|x)
ϕ(y;θ)pc(x|y) .

The proof can be found in appendix. Based on the theorem, we have the following corollaries to
justify the optimization process.

Corollary 1 When q(m;φ) equals to the true posterior, the CVNCE bound is tight, i.e.,

LVCNCE = LCNCE ⇐⇒ q(m;φ) = p(m | x; θ).

Corollary 2 The following two optimization problems are equivalent,

min
θ

LCNCE(θ) = min
θ

min
q(m;φ)

LVCNCE(θ, φ).

In practice, we need to seek for the sampled version of Eq. (7). Supposing we have N observed
samples {xi}Ni=1, ν noises {yi,j}νj=1 for each sample xi and using importance sampling for ϕ(y; θ),
the sampled objective function is,

LVCNCE(θ, φ) =
2

νN

N∑
i=1

ν∑
j=1

Eq(mi;φ) log

1 + Eq(mi;φ)

[
ϕ(yi,j ,mi;θ)

q(mi;φ)

]
pc(xi | yi,j)q(mi;φ)

ϕ(xi,mi; θ)pc(yi,j | xi)

 .

Specifically, we formulate q(m;φ) as a diagonal Gaussian and use reparameterization trick [18]
to compute the expectation. When dealing with continuous data, we typically select conditional
Gaussian noises, represented as pc(y | x) = N (y | x, σ2). This choice entails only one hyper-
parameter σ that needs to be tuned. Another benefit is the symmetry of the conditional distribution
for Gaussian noise, expressed as pc(y | x) = pc(x | y). Hence, the objective function can be further
reduced. For binary or categorical data, such symmetric noises can also be derived [3].

The time complexity of the proposed objective is O(νB(DRH + LH2)), where B is the batch size,
ν is the number of conditional noises, H is the number of hidden units per layer, L is the number of
layers and D is the tensor order. The time complexity of our model is ν times greater than traditional
TDs, since we need to compute forward passes for ν particles. However, as we only use small
networks, the computational speed is still very fast (See Appendix C.3 for an illustration).

5

4 Related work

Traditional tensor decompositions (TDs) are based on multi-linear contraction rules, such as CP [15],
Tucker [42], tensor networks [29, 51] and their variations [19, 6]. In this paper, we mainly focus on
probabilistic TDs, which extend traditional methods by providing uncertainty estimates about both
observations and latent factors [32, 49, 50, 26, 38]. These models build directed mapping from latent
factors to tensor entries using multi-linear contraction rules, resulting in limited flexibility when
dealing with complex datasets. An alternative approach involves replacing the multi-linear relations
with non-linear ones. [5, 45, 52] introduced the use of tensor-variate Gaussian processes (GPs) for
achieving nonparametric factorization. [53] further expanded on this concept by incorporating a
GP prior on the function that maps latent factors to tensor entries, resulting in a nonparametric TD
for sparse tensors. GP-based TDs are further extended using hierarchical priors [40], stochastic
processes [43, 8]. Despite the success of GP-based TDs, nonparametric approaches can encounter
computational challenges and may still lack sufficient flexibility. Recently, neural networks (NNs)
are also applied to TDs. [25] suggested the utilization of convolutional NNs to map latent factors to
tensor entries. Besides, [7] built a hierarchical version of the Tucker model and introduced non-linear
mappings within each hierarchy of latent factors. To mitigate overfitting, [39] suggested the adoption
of deep kernels in GP-based TD rather than using NNs directly. On the other hand, [9] proposed
to use Bayesian NN with spike-and-slab prior to prevent from overfitting and obtain probabilistic
estimates. More recently, [24] adopt neural ODEs to capture dynamic tensor trajectories. Other
works regarding more flexible exponential families [13] or mixture of Gaussians [12] employ linear
structures. While all these methods using directed mapping from latent factors to tensor entries, our
model is fundamentally different from them, in that we construct much more flexible undirected
probabilistic model of TD that can deal with diverse distributions and structures.

Another related direction is the energy-based model (EBM). To address the intractable pdf of EBMs,
various training methods have been proposed, including contrastive divergence [CD, 14], score
matching [SM, 16], noise-contrastive estimation [NCE, 11]. CD requires large steps of Monte
Carlo samples, which can be computationally expensive for high-dimensional tensors. SM cannot
handle discrete data, and learning latent variables with SM requires complex bi-level optimization
[2]. Therefore, we focus on NCE in this paper. Learning energy-based TD is even more challenging
because it involves multiple coupled latent factors that cannot be analytically marginalized. [33]
proposed VNCE to handle unnormalized models with latent factors. We enhance their algorithm
by using conditional noises [3] to improve the learning efficiency. One fundamental distinction
between our model and traditional EBMs is that, through TD construction, we only need to learn
one-dimensional distributions for each scalar entry, instead of the original high-dimensional tensor.
Hence, our model avoids performance degradation when learning high-dimensional data using NCE.

5 Experiments

We demonstrate the proposed energy-based TD (EnergyTD) on synthetic data and several real-world
applications. All the experiments are conducted on a Linux workstation with Intel Xeon Silver 4316
CPU, 256GB RAM and NVIDIA RTX A5000 GPUs (24GB memory each). The code is implemented
based on PyTorch 1.12.1 [30]. More experimental details can be found in the appendix. The code is
available at https://github.com/taozerui/energy_td

5.1 Simulation study

Tensors with non-Gaussian distributions Traditional TDs commonly assume that tensor entries
follow a Gaussian distribution. However, in real-world applications, we often encounter highly
complex distributions. In this experiment, we evaluate the capability of our model to learn distributions
that deviate from the Gaussian assumption.

We consider a two-mode tensor of shape I × I , where we set I = 8. Firstly, two latent factors of
shape I ×R are generated, where the rank R is set to 5. Then, conditioned on the latent factors, we
generated tensor observations from particular distributions. For each entry, we generate N = 200
samples. Three types of distributions are considered: (1) Beta distribution; (2) Mixture of Gaussians
(MoG) and (3) Exponential distribution. For Beta distribution, we generate latent factors from
uniform distribution Zi=1,2 iid∼ Uni(0.0, 1.1). Then, we sample the observed tensor from Beta

6

https://github.com/taozerui/energy_td

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

De
ns

ity

(a) Beta distribution

-1.0 0.0 1.0 2.0
0.0

1.0

2.0

3.0

De
ns

ity

(b) Mixture of Gaussians

-1.0 0.0 1.0 2.0 3.0
0.0

0.5

1.0

1.5

2.0

De
ns

ity

Truth
Obs.
GPTF
EnegyTD

(c) Exponential distribution

Figure 1: Simulation results for different distributions. The blue line is the ground truth pdf. The
yellow line is the kernel density estimation (KDE) plot of observed samples. The red line is the
GPTF estimation, which is a Gaussian pdf. The green line is our method, computed by evaluating the
unnormalized pdf on grids and calculating the partition function using Gaussian quadrature.

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.5

1.0

1.5

2.0

(a) MR = 0.3

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.5

1.0

1.5

2.0

(b) MR = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.5

1.0

1.5

2.0 Train
Test
Truth
BCTT
NONFAT
EnergyTD

(c) Fully observed

Figure 2: Simulation results for continuous-time tensor decomposition. The blue regions are observed
and the red regions are missing. The trajectories of ground truth, BCTT, NONFAT and our model are
drawn in black, blue, red and green lines, respectively.

distribution xij
iid∼ Beta((Z1Z2,⊺)ij , 1.2). For MoG distribution, we draw latent factors from

uniform distribution Zi=1,2 iid∼ Uni(0.0, 1.0). The tensor entries are then drawn from MoG xij
iid∼

0.6 · N (cos((Z1Z2,⊺)ij), 0.1
2) + 0.4 · N (sin((Z1Z2,⊺)ij), 0.25

2). For Exponential distribution,

we generate latent factors from uniform distribution Zi=1,2 iid∼ Uni(0.0, 1.0). The tensor entries are
then sampled from Exponential distribution xij

iid∼ Exp((Z1Z2,⊺)ij). We compare with GP tensor
factorization [GPFT, 53], which assumes the entries follow Gaussian distribution.

The results of probability density function (pdf) estimation are presented in Fig. 1. We display the
learned pdf of one single tensor entry. This reveals that GPTF is limited to capturing only the 1st
moments (mean values) and overlooks higher-order information of more complex distributions. Our
model exhibits greater flexibility in handling non-Gaussian distributions.

Continuous-time tensors We then consider a dynamic tensor, where each entry is a time series.
We follow similar setting with [9] and use the same data size with the previous simulation, i.e., a
two-mode tensor of shape 8× 8 with each entry being a time series of length 200. We firstly generate
latent factors of shape 8×2, with each rows drawn from z1

i ∼ N ([0, 2], 2·I) and z2
i ∼ N ([1, 1], 2·I).

Then we generate N = 200 observed entries from time t ∈ [0, 1]. The tensor entries are computed by
xi(t) =

∑2
r1=1

∑2
r2=1 z

1
i1r1

z2i2r2ωr1r2(t), where ω11(t) = sin(2πt), ω12(t) = cos(2πt), ω21(t) =

sin2(2πt) and ω22(t) = cos(5πt) sin2(5πt). Finally, the data are normalized to range [0, 2]. The
synthetic data consist of low-frequency trends and high-frequency fluctuations. Apart from fully
observed case, we also test with missing rates (MR) 10% and 30%. In specific, for each entry, we
randomly select a starting time and set the following consecutive 10% or 30% time stamps as missing.

We compare with two methods that are designed for dynamic tensors, the Bayesian continuous-time
Tucker decomposition [BCTT, 8] and the nonparametric factor trajectory learning [NONFAT, 43].

7

Table 1: Sparse tensor completion
RMSE MAE

Alog Rank 3 Rank 5 Rank 8 Rank 10 Rank 3 Rank 5 Rank 8 Rank 10

CP-WOPT 1.486 ± 0.282 1.386 ± 0.043 1.228 ± 0.063 1.355 ± 0.079 0.694 ± 0.098 0.664 ± 0.018 0.610 ± 0.027 0.658 ± 0.026
GPTF 0.911 ± 0.008 0.867 ± 0.008 0.878 ± 0.009 0.884 ± 0.009 0.511 ± 0.005 0.494 ± 0.004 0.530 ± 0.004 0.554 ± 0.006
HGP-GPTF 0.896 ± 0.011 0.867 ± 0.009 0.850 ± 0.011 0.844 ± 0.006 0.479 ± 0.007 0.473 ± 0.003 0.474 ± 0.004 0.480 ± 0.004
POND 0.885 ± 0.010 0.871 ± 0.013 0.858 ± 0.009 0.857 ± 0.011 0.463 ± 0.004 0.454 ± 0.005 0.444 ± 0.005 0.443 ± 0.006
CoSTCo 0.999 ± 0.007 0.936 ± 0.017 0.930 ± 0.024 0.909 ± 0.014 0.523 ± 0.006 0.481 ± 0.007 0.514 ± 0.031 0.481 ± 0.008
EnergyTD 0.864 ± 0.011 0.835 ± 0.011 0.840 ± 0.013 0.833 ± 0.016 0.450 ± 0.006 0.433 ± 0.006 0.424 ± 0.005 0.409 ± 0.004

ACC

CP-WOPT 0.533 ± 0.039 0.592 ± 0.037 0.603 ± 0.028 0.589 ± 0.022 0.138 ± 0.004 0.147 ± 0.005 0.148 ± 0.003 0.147 ± 0.004
GPTF 0.367 ± 0.001 0.357 ± 0.001 0.359 ± 0.001 0.368 ± 0.001 0.152 ± 0.002 0.150 ± 0.001 0.167 ± 0.002 0.182 ± 0.001
HGP-GPTF 0.355 ± 0.001 0.344 ± 0.001 0.341 ± 0.001 0.338 ± 0.001 0.125 ± 0.003 0.129 ± 0.001 0.139 ± 0.000 0.145 ± 0.002
CoSTCo 0.385 ± 0.003 0.376 ± 0.018 0.363 ± 0.004 0.348 ± 0.002 0.117 ± 0.004 0.137 ± 0.020 0.107 ± 0.004 0.101 ± 0.004
EnergyTD 0.348 ± 0.005 0.336 ± 0.004 0.328 ± 0.003 0.328 ± 0.003 0.110 ± 0.008 0.101 ± 0.006 0.094 ± 0.006 0.101 ± 0.009

BCTT treats Tucker core tensors as functions of time and NONFAT treats all GPTF factors as time
series. Unlike BCTT with GP prior on the time domain, NONFAT uses GP prior on the frequency
domain through inverse Fourier transform of original time series.

Fig. 2 displays the completion results. The learned trajectory of a single tensor entry is plotted.
Higher missing rates result in the inability of BCTT to capture accurate trajectories, particularly in
missing regions. NONFAT achieves more stable predictions, yet it tends to favor over-smoothed
trajectories while disregarding high-frequency fluctuations. This behavior may be attributed to its
unique construction, which introduces a GP prior in the frequency domain. Our utilization of flexible
neural networks allows us to adapt to complex situations encompassing both low-frequency and
high-frequency information.

5.2 Tensor completion

We evaluate our model on two sparse tensor and two dynamic tensor completion applications. For real
datasets, the energy function can be difficult to learn, when the pdf has a very sharp curve. Motivated
by the idea of noise-perturbed score estimation [35], we add small i.i.d. Gaussian noises on the data
during the training of EnergyTD as a form of smoothing technique. The results are reported on clean
test data. For EnergyTD, we use MAP estimates as described in Section 3.1.

5.2.1 Sparse tensor completion

We test our model on two sparsely observed tensors: (1) Alog, a file access log dataset [52] of shape
200 users × 100 actions × 200 resources with about 0.33% nonzero entries; (2) ACC, a three-way
tensor generated from a code repository management system [52] of shape 3k users × 150 actions ×
30k resources with about 0.009% nonzero entries. We use the same dataset split as in [52] and report
the 5-fold cross validation results.

Competing methods We compare with five baselines: (1) CP-WOPT [1], CP decomposition with
stochastic optimization; (2) GPTF [53], a GP-based tensor factorization using stochastic variational
inference; (3) HGP-GPTF [40], a GPTF equipped with hierarchical Gamma process prior; (4) POND
[39], a probabilistic non-linear TD using deep kernels with convolutional NNs (CNNs); (5) CoSTCo
[25], a non-linear TD that uses CNNs to map latent factors to tensor entries. CP-WOPT is provided
in Matlab Tensor Toolbox [1]. We implement GPTF based on PyTorch by ourselves and use official
implementations for HGP-GPTF2, POND3 and CoSTCo4.

Experimental settings and results We set batch size 1000 and run 1000 epochs for Alog, 100
epochs for ACC. For our model, we use Adam [17] optimizer. Learning rates of all models are chosen
from {1e−2, 1e−3, 1e−4}. For all methods, we evaluate with rank R ∈ {3, 5, 8, 10}. All methods
are evaluated by 5 runs with different random seeds.

2https://github.com/ctilling/SparseTensorHGP
3https://github.com/ctilling/POND
4https://github.com/USC-Melady/KDD19-CoSTCo

8

https://github.com/ctilling/SparseTensorHGP
https://github.com/ctilling/POND
https://github.com/USC-Melady/KDD19-CoSTCo

Table 2: Continuous-time tensor completion
RMSE MAE

Air Rank 3 Rank 5 Rank 8 Rank 10 Rank 3 Rank 5 Rank 8 Rank 10

CTCP 1.020 ± 0.002 1.022 ± 0.002 1.022 ± 0.002 1.022 ± 0.002 0.784 ± 0.002 0.785 ± 0.002 0.787 ± 0.002 0.787 ± 0.002
CTGP 0.475 ± 0.000 0.463 ± 0.000 0.459 ± 0.000 0.458 ± 0.000 0.318 ± 0.000 0.304 ± 0.000 0.301 ± 0.000 0.299 ± 0.000
CTNN 1.013 ± 0.001 1.005 ± 0.005 0.999 ± 0.009 1.013 ± 0.002 0.780 ± 0.001 0.777 ± 0.003 0.776 ± 0.003 0.780 ± 0.001
NNDTN 0.377 ± 0.004 0.364 ± 0.002 0.334 ± 0.004 0.328 ± 0.004 0.247 ± 0.003 0.239 ± 0.002 0.217 ± 0.003 0.212 ± 0.004
NONFAT 0.339 ± 0.002 0.335 ± 0.002 0.351 ± 0.005 0.342 ± 0.002 0.224 ± 0.002 0.219 ± 0.001 0.228 ± 0.003 0.223 ± 0.001
THIS-ODE 0.569 ± 0.001 0.566 ± 0.004 0.542 ± 0.005 0.541 ± 0.002 0.415 ± 0.002 0.409 ± 0.004 0.395 ± 0.004 0.391 ± 0.001
EnergyTD 0.302 ± 0.008 0.291 ± 0.006 0.300 ± 0.012 0.283 ± 0.004 0.184 ± 0.006 0.177 ± 0.003 0.172 ± 0.006 0.184 ± 0.003

Click

CTCP 2.063 ± 0.009 2.020 ± 0.025 2.068 ± 0.012 2.009 ± 0.023 1.000 ± 0.009 0.977 ± 0.021 1.005 ± 0.010 0.969 ± 0.012
CTGP 1.424 ± 0.002 1.423 ± 0.004 1.404 ± 0.004 1.392 ± 0.002 0.880 ± 0.003 0.877 ± 0.003 0.856 ± 0.002 0.849 ± 0.001
CTNN 1.820 ± 0.005 1.820 ± 0.005 1.820 ± 0.005 1.820 ± 0.005 1.077 ± 0.027 1.053 ± 0.012 1.083 ± 0.016 1.071 ± 0.024
NNDTN 1.418 ± 0.005 1.409 ± 0.004 1.407 ± 0.002 1.410 ± 0.004 0.858 ± 0.002 0.856 ± 0.002 0.859 ± 0.003 0.863 ± 0.006
NONFAT 1.400 ± 0.008 1.411 ± 0.006 1.365 ± 0.004 1.351 ± 0.002 0.853 ± 0.004 0.873 ± 0.004 0.832 ± 0.004 0.812 ± 0.002
THIS-ODE 1.421 ± 0.004 1.413 ± 0.002 1.408 ± 0.002 1.395 ± 0.003 0.836 ± 0.004 0.836 ± 0.003 0.832 ± 0.002 0.829 ± 0.003
EnergyTD 1.396 ± 0.003 1.385 ± 0.003 1.356 ± 0.001 1.357 ± 0.001 0.777 ± 0.003 0.775 ± 0.003 0.772 ± 0.002 0.773 ± 0.001

The completion results are shown in Table 1. The mean and standard deviation of the root mean
square error (RMSE) and mean absolute error (MAE) are reported. Results from POND are not
included for ACC due to the slow code execution and the substantial memory requirements for this
dataset. Our model outperforms the baselines in nearly all cases on both RMSE and MAE. Moreover,
the improvement is significant (p < 0.05) for most cases. All non-linear methods exhibit substantial
superiority over CP-WOPT, thereby highlighting the advantage of employing more flexible structures.
Furthermore, the enhanced performance of our model may be attributed to the utilization of more
flexible undirected probabilistic distributions. It is worth noting that our model, despite employing
MLP layers, outperforms POND and CoSTCo, which utilize convolutional layers. We believe that
our model can be further improved by designing more suitable network architectures.

5.2.2 Continuous-time tensor completion

In this subsection, we evaluate our model on two continuous-time tensor datasets: (1) Air, the Beijing
air quality dataset [47] of shape 12 sites × 6 pollutants with about 1× 104 observations at different
time stamps; (2) Click, an ads click dataset [43] of shape 7 banner positions × 2842 site domains ×
4127 mobile APPs with about 5× 104 entries at different time stamps. We use the same dataset split
as in [43] and report the 5-fold cross validation results.

Competing methods We compare with (1) Nonparametric factor trajectory learning [NONFAT,
43], which is the SOTA method for continuous-time tensor completion, and other baselines including:
(2) Continuous-time CP [CTCP, 48], which uses polynomial splines to model dynamics of CP
coefficients; (3) Continuous-time GP (CTGP), which extends GPTF [53] by injecting time stamps
into GP kernels; (5) Continuous-time NN decomposition (CTNN), which directly uses time stamps
as inputs in CoSTCo [25] to learn continuous dynamics; (5) Discrete-time NN decomposition with
non-linear dynamics [NNDTN, 43], which employs RNN dynamics for time steps; (6) Tensor high-
order interaction learning via ODEs [THIS-ODE, 24], where continuous-time trajectories of tensor
entries are captured by neural ODEs. For baseline models (1-5), we use the official implementation5

provided by [43]. For (6) THIS-ODE, its official implementation6 is used.

Experimental settings and results We set batch size 128 and run 400 epochs for Air, 200 epochs
for Click. Notably, in the case of THIS-ODE, we only run 200 epochs for Air and 75 epochs for Click
due to the slow speed of ODE solvers (See Appendix C.3 for an illustration). For our model, we
use Adam [17] optimizer with learning rate chosen from {1e−2, 1e−3}. The network architecture is
described in Section 3.1. For baseline models, provided settings in their codebases are used. For all
methods, we evaluate with rank R ∈ {3, 5, 8, 10}. All methods are evaluated by 5 runs with different
random seeds.

5https://github.com/wzhut/NONFAT
6https://github.com/shib0li/THIS-ODE

9

https://github.com/wzhut/NONFAT
https://github.com/shib0li/THIS-ODE

Table 2 presents the completion results. It should be noted that the results presented here differ from
those reported in [43] as we adhere to the standard definition of RMSE and MAE (see appendix
for detail). Our model surpasses the baseline methods in almost all cases for both RMSE and
MAE, with statistically significant improvements (p < 0.05) observed in most cases. Particularly,
we observe that the improvements in MAE are notably more significant. One possible reason is
that NONFAT is trained implicitly by minimizing the square loss (with regularization) as it adopts
Gaussian assumption about the data. However, our model does not make such assumptions about
the data distribution and the loss function. Hence, it can adapt to the data distribution more flexibly.
Additionally, we observe that directly injecting time stamps into neural networks, as done in CTNN,
is ineffective, thus highlighting the advantage of our model in learning more informative structures.

6 Conclusion

We introduce an innovative approach to undirected probabilistic tensor decomposition (TD), character-
ized by its exceptional flexibility in accommodating various structures and distributions. Specifically,
our model integrates deep EBMs in TD to relax both structural and distributional assumptions,
enabling it to handle complex real-world applications. To efficiently learn the doubly intractable
pdf, we derive a VCNCE objective that is the upper bound of the CNCE loss. Experimental results
demonstrate that our model can handle diverse distributions and outperforms baseline methods in
multiple real-world applications. One limitation is that our final loss function is not a fully variational
upper bound of CNCE, since we have to use importance samples to approximate the pdf of noise
samples in Eq. (7). In the future, we aim to derive a fully variational bound as in [46]. Finally,
we did not delve into the interpretability of learned factors in this work. However, exploring the
interpretability of these factors represents a promising avenue for future research in the realm of
tensor decompositions.

Acknowledgments

Zerui Tao was supported by the RIKEN Junior Research Associate Program. This work was supported
by the JSPS KAKENHI Grant Numbers JP20H04249, JP23H03419.

References
[1] Brett W Bader and Tamara G Kolda. Efficient matlab computations with sparse and factored

tensors. SIAM Journal on Scientific Computing, 30(1):205–231, 2008.

[2] Fan Bao, Chongxuan Li, Kun Xu, Hang Su, Jun Zhu, and Bo Zhang. Bi-level score matching
for learning energy-based latent variable models. Advances in Neural Information Processing
Systems, 33:18110–18122, 2020.

[3] Ciwan Ceylan and Michael U Gutmann. Conditional noise-contrastive estimation of unnor-
malised models. In International Conference on Machine Learning, pages 726–734. PMLR,
2018.

[4] Rong Chen, Dan Yang, and Cun-Hui Zhang. Factor models for high-dimensional tensor time
series. Journal of the American Statistical Association, 117(537):94–116, 2022.

[5] Wei Chu and Zoubin Ghahramani. Probabilistic models for incomplete multi-dimensional
arrays. In Artificial Intelligence and Statistics, pages 89–96. PMLR, 2009.

[6] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P Mandic,
et al. Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank
tensor decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

[7] Jicong Fan. Multi-mode deep matrix and tensor factorization. In international conference on
learning representations, 2021.

[8] Shikai Fang, Akil Narayan, Robert Kirby, and Shandian Zhe. Bayesian continuous-time tucker
decomposition. In International Conference on Machine Learning, pages 6235–6245. PMLR,
2022.

10

[9] Shikai Fang, Zheng Wang, Zhimeng Pan, Ji Liu, and Shandian Zhe. Streaming bayesian deep
tensor factorization. In International Conference on Machine Learning, pages 3133–3142.
PMLR, 2021.

[10] Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and Ignacio Cirac. Expressive power
of tensor-network factorizations for probabilistic modeling. Advances in neural information
processing systems, 32, 2019.

[11] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 297–304. JMLR Workshop and Conference
Proceedings, 2010.

[12] Zhi Han, Yao Wang, Qian Zhao, Deyu Meng, Lin Lin, Yandong Tang, et al. A generalized model
for robust tensor factorization with noise modeling by mixture of gaussians. IEEE transactions
on neural networks and learning systems, 29(11):5380–5393, 2018.

[13] Kohei Hayashi, Takashi Takenouchi, Tomohiro Shibata, Yuki Kamiya, Daishi Kato, Kazuo
Kunieda, Keiji Yamada, and Kazushi Ikeda. Exponential family tensor factorization for missing-
values prediction and anomaly detection. In 2010 IEEE International Conference on Data
Mining, pages 216–225. IEEE, 2010.

[14] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[15] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6(1-4):164–189, 1927.

[16] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[20] Maxim Kuznetsov, Daniil Polykovskiy, Dmitry P Vetrov, and Alex Zhebrak. A prior of a googol
gaussians: a tensor ring induced prior for generative models. Advances in Neural Information
Processing Systems, 32, 2019.

[21] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

[22] Chao Li and Zhun Sun. Evolutionary topology search for tensor network decomposition. In
International Conference on Machine Learning, pages 5947–5957. PMLR, 2020.

[23] Chao Li, Junhua Zeng, Zerui Tao, and Qibin Zhao. Permutation search of tensor network
structures via local sampling. In International Conference on Machine Learning, pages 13106–
13124. PMLR, 2022.

[24] Shibo Li, Robert Kirby, and Shandian Zhe. Decomposing temporal high-order interactions
via latent ODEs. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 12797–12812. PMLR, 2022.

[25] Hanpeng Liu, Yaguang Li, Michael Tsang, and Yan Liu. Costco: A neural tensor completion
model for sparse tensors. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 324–334, 2019.

[26] Zhen Long, Ce Zhu, Jiani Liu, and Yipeng Liu. Bayesian low rank tensor ring for image
recovery. IEEE Transactions on Image Processing, 30:3568–3580, 2021.

11

[27] Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor networks for probabilistic sequence
modeling. In International Conference on Artificial Intelligence and Statistics, pages 3079–3087.
PMLR, 2021.

[28] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. Advances in neural information processing systems, 28, 2015.

[29] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[31] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[32] Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and Lawrence Carin.
Scalable bayesian low-rank decomposition of incomplete multiway tensors. In International
Conference on Machine Learning, pages 1800–1808. PMLR, 2014.

[33] Benjamin Rhodes and Michael U Gutmann. Variational noise-contrastive estimation. In
The 22nd International Conference on Artificial Intelligence and Statistics, pages 2741–2750.
PMLR, 2019.

[34] Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor completion algorithms in
big data analytics. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(1):1–48,
2019.

[35] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[36] Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

[37] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Advances in Neural
Information Processing Systems, 33:7537–7547, 2020.

[38] Zerui Tao, Xuyang Zhao, Toshihisa Tanaka, and Qibin Zhao. Bayesian latent factor model for
higher-order data. In Asian Conference on Machine Learning, pages 1285–1300. PMLR, 2021.

[39] Conor Tillinghast, Shikai Fang, Kai Zhang, and Shandian Zhe. Probabilistic neural-kernel
tensor decomposition. In 2020 IEEE International Conference on Data Mining (ICDM), pages
531–540. IEEE, 2020.

[40] Conor Tillinghast, Zheng Wang, and Shandian Zhe. Nonparametric sparse tensor factorization
with hierarchical gamma processes. In International Conference on Machine Learning, pages
21432–21448. PMLR, 2022.

[41] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Compressing recurrent neural network
with tensor train. In 2017 International Joint Conference on Neural Networks (IJCNN), pages
4451–4458. IEEE, 2017.

[42] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

[43] Zheng Wang and Shandian Zhe. Nonparametric factor trajectory learning for dynamic tensor
decomposition. In International Conference on Machine Learning, pages 23459–23469. PMLR,
2022.

12

[44] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[45] Zenglin Xu, Feng Yan, and Yuan Qi. Infinite tucker decomposition: nonparametric bayesian
models for multiway data analysis. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, pages 1675–1682, 2012.

[46] Christopher Zach. Fully variational noise-contrastive estimation. In Image Analysis: 23rd
Scandinavian Conference, SCIA 2023, Sirkka, Finland, April 18–21, 2023, Proceedings, Part II,
pages 175–190. Springer, 2023.

[47] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary
tales on air-quality improvement in beijing. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2205):20170457, 2017.

[48] Yanqing Zhang, Xuan Bi, Niansheng Tang, and Annie Qu. Dynamic tensor recommender
systems. The Journal of Machine Learning Research, 22(1):3032–3066, 2021.

[49] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian cp factorization of incomplete
tensors with automatic rank determination. IEEE transactions on pattern analysis and machine
intelligence, 37(9):1751–1763, 2015.

[50] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian sparse tucker models for dimension
reduction and tensor completion. arXiv preprint arXiv:1505.02343, 2015.

[51] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, 2016.

[52] Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan Qi, and Youngja Park. Scalable nonparametric
multiway data analysis. In Artificial Intelligence and Statistics, pages 1125–1134. PMLR, 2015.

[53] Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Yuan Qi, and Zoubin
Ghahramani. Distributed flexible nonlinear tensor factorization. Advances in neural information
processing systems, 29, 2016.

13

A Proof of Theorem 1

Firstly, we give the definition of f -divergence.

Definition 1 (f -divergence) The f -divergence between two probability density functions (pdf) p and
q is defined as,

Df (p∥q) = Eq

[
f

(
p

q

)]
,

where f : [0,∞) → R is a convex function and f(1) = 0.

As shown in [33], since partition functions for ϕ(x,m; θ) and ϕ(x; θ) are the same, we have the
following factorization,

ϕ(x,m; θ) = ϕ(x; θ)p(m | x; θ).
The difference between the two objective becomes,

LVCNCE(θ, φ)− LCNCE(θ)

=2ExyEq(m;φ)

{
log

[
1 +

ϕ(y; θ)pc(x | y)q(m;φ)

ϕ(x,m; θ)pc(y | x)

]
− log

[
1 +

ϕ(y; θ)pc(x | y)
ϕ(x; θ)pc(y | x)

]}
=2ExyEq(m;φ) log

ϕ(x,m; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)ϕ(x; θ)q(m;φ)

ϕ(x,m; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)ϕ(x,m; θ)

=2ExyEq(m;φ) log
p(m | x; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)q(m;φ)

p(m | x; θ)ϕ(x; θ)pc(y | x) + ϕ(y; θ)pc(x | y)p(m | x; θ)
=2Exy[Dfxy

(p(m | x; θ)∥q(m))],

where

fxy(u) = log

(
κxy + u−1

κxy + 1

)
,

with κxy = ϕ(x;θ)pc(y|x)
ϕ(y;θ)pc(x|y) . It is straightforward to verify that f(1) = 0. The derivatives of f is

f ′(u) = − 1

u2κ+ u
, f ′′(u) =

2uκ+ 1

(u2κ+ u)2
.

Since κ and u are positive, f is a convex function. Therefore, f satisfy the requirements of f -
divergence.

B Proof of Corollaries 1 and 2

Corollary 1 is a straightforward consequence of Theorem 1. Since the f -divergence becomes zero if
and only if the two distributions are identical, we have,

LVCNCE(θ, φ) = LCNCE(θ) ⇐⇒ q(m;φ) = p(m | x; θ).

Moreover, since the f -divergence is positive and Theorem 1, we have

p(m | x; θ) = argmin
q(m;φ)

LVCNCE(θ, q(m;φ)).

Then, plugging the optimal distribution gives the tight bound, we have,

min
θ

LCNCE(θ) = min
θ

min
q(m;φ)

LVCNCE(θ, φ).

C Experimental details

C.1 Simulation study

Tensors with non-Gaussian distributions For both GPTF and our model, we set batch size to 1000
and run 500 epochs with Adam optimizer. The initial learning rate is 1e−3 and subsequently reduced

14

by 0.3 at 60%, 75% and 90% of the maximum epochs. Moreover, the rank is set to 3 for both models.
For GPTF, radial basis function (RBF) kernel with band width 1.0 is used, where 100 inducing points
is adopted for approximation. For the conditional distribution p(xi | mi) = N (xi | f(mi), σ

2)
in GPTF, σ is fixed and chosen as the sample standard variance. For our model, we use 5 hidden
layers of width 64 for both g1, g3 and g4 defined in Section 3. g2 is a summation layer. We use
ELU activation for non-linearity. For the VCNCE loss, the conditional noise distribution is set as
pc(y | x) = N (y | x, 0.32) and ν = 10 noise samples are used for each data point.

Continuous-time tensors The data sizes and optimization parameters are the same with the
previous simulation. The rank of all models are set to 3. For NONFAT, 100 inducing points are
used to approximate the kernel function. We run the NONFAT model for 5000 epochs because we
find that the algorithm converges very slowly. Other hyper-parameters are chosen by their default
settings. For BCTT, we do not modify their code and settings. For our model, we use 3 hidden layers
of length 64 with ELU activation. The conditional noise distribution in the VCNCE loss is set to
pc(y | x) = N (y | x, 1) and ν = 20 noise samples are used for each datum.

C.2 Tensor completion

For all datasets, when training our model, we scale the data to [0, 1] based on the training data. For
testing, we multiply the scale statistic computed by the training data and evaluate the performance on
the original domain. We do not employ such data normalization for baselines models, because that
will influence their default settings.

C.2.1 Sparse tensor completion

For both Alog and ACC, the batch size is set to 1000. We run 1000 epochs for Alog and 100 epochs
for ACC due to their different sample numbers. For Alog dataset, we add i.i.d. Gaussian noises
from N (0, 0.052) during training, while for ACC, the standard variance is set to 0.02. The Adam
optimizer is used with learning rate chosen from {1e−2, 1e−3, 1e−4}. We also use gradient clip
with maximum infinity norm of 2.0 for training stability. Moreover, we use learning rate scheduler by
reducing the initial learning rate by 0.3 at 40%, 60%, and 80% of the total iterations. For both datasets,
we use 2 hidden layers of length 50 with ELU activation for g1, g3 and g4 for our model. For the
VCNCE loss, we set ν = 20 noise samples with noise variance tuned from {0.32, 0.52, 0.82, 1.02}.
In practice, we find that the noise variance is influential to the final performance, even we are
using conditional noises. However, with VCNCE, there is only one hyper-parameter for the noise
distribution. While for CNCE, one may need to tune both mean and variance of the noise.

C.2.2 Continuous-time tensor completion

For Air and Click datasets, we set batch size to 128. We run 400 epochs for Air and 200 epochs
for Click due to their different data sizes. For Alog dataset, we add i.i.d. Gaussian noises from
N (0, 0.052) during training, while for ACC, the variance is set as 0.152. To encode the temporal
information into the energy function, we use the sinusoidal positional encoding, as described in
Section 3. Other settings are the same with Appendix C.2.1.

It should be noted that we use the standard definition of root mean square error (RMSE) and mean
absolute error (MAE), namely,

RMSE =

√∑N
i=1(xi − x̂i)2

N
, MAE =

∑N
i=1|xi − x̂i|

N
,

where xi is the ground truth and x̂i is the estimate. Therefore, the results are different from those
presented in [43], where the authors used relative versions of RMSE and MAE,

RMSE =

√√√√ N∑
i=1

(xi − x̂i)2

x2
i

, MAE =

N∑
i=1

|xi − x̂i|
|xi|

.

We modify the evaluation part of their code7 and report the results.
7https://github.com/wzhut/NONFAT

15

https://github.com/wzhut/NONFAT

C.3 Computational time

The time complexity of our model is ν times greater than traditional TDs, since we need to compute
forward passes for ν particles. However, as we only use small networks, the computational speed
is still very fast. To illustrate, we compare the runtime performance of several baselines and our
model on a single RTX A5000 GPU. We conduct tests on the Air dataset, with a batch size of 128
and tensor rank of 5. The reported running time is the average of the first 10 epochs. For our model,
we set ν = 20. The default settings are used for other baselines. Table 3 lists the computational
time of CTGP, NNDTN, NONFAT and THIS-ODE, all of which perform better than other baselines.
The results show that our model achieves better performances within a reasonable time, especially
compared to THIS-ODE.

Table 3: Computing time
CTGP NNDTN NONFAT THIS-ODE EnergyTD

Time/Epoch (in seconds) 1.17±0.30 2.18±0.04 2.51±0.13 464.±131. 5.30±0.37

C.4 Ablation study on the objective function

We conduct an additional ablation study to show the advantage of VCNCE over the variational noise-
contrastive estimation [VNCE, 33] objective. The main difference between the VNCE and VCNCE
is that VNCE uses noises from a fixed Gaussian distribution, e.g., y ∼ pn(y) = N (y | µ, σ2), while
VCNCE uses conditional noises, e.g., y ∼ pc(y | x) = N (y | x, σ2). Hence, these two strategies
yield different objective functions. The objective function of VNCE is defined as

LVNCE = ExEq(m|x;φ) log

(
ϕ(x,m; θ)

ϕ(x,m; θ) + νq(m | x;φ)pn(x)

)

+ νEy log

 νpn(y)

νpn(y) + Eq(m|y)

[
ϕ(y,m;θ)
q(m|y)

]
 ,

where pn(·) is the fixed noise distribution. For VNCE, choosing inappropriate noise distributions
may result in bad performances.

We test the proposed model on the Air dataset, training on the VCNCE loss and VNCE loss,
respectively. We set the batch size to 128 and run 400 epochs. Adam optimizer with initial learning
rate 1e−2 is adopted. The initial learning rate is subsequently reduce by 0.3 at 20%, 50% and 80%
of the total epochs. For VNCE, we set µ = 0, which is a common practice in relevant literature.
To show how the noise variance affects the learning process, we test different noise variances, e.g.,
σ ∈ {0.3, 0.5, 0.7} for both VNCE and VCNCE. Other settings are the same with Appendix C.2.2.

Fig. 3 depicts the RMSE and MAE on the test data when optimizing VNCE and VCNCE objective
functions. We test five runs, plot mean values in lines and standard deviations in shadowed areas. It
is shown that VCNCE gets better and more stable results on both RMSE and MAE.

16

0 100 200 300 400
Epoch

0.3

0.5

0.7

RM
SE

0 100 200 300 400
Epoch

0.3

0.5

0.7

RM
SE

0 100 200 300 400
Epoch

0.3

0.5

0.7

RM
SE

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5

M
AE

VNCE
VCNCE

(a) Noise σ = 0.3

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5

M
AE

(b) Noise σ = 0.5

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5
M

AE

(c) Noise σ = 0.7

Figure 3: Learning process of optimizing the VNCE and VCNCE loss. The first row is RMSE and
the second row is MAE.

17

	Introduction
	Backgrounds
	Tensor decomposition
	Energy-based model

	Proposed model
	Energy-based tensor decomposition
	Learning objective

	Related work
	Experiments
	Simulation study
	Tensor completion
	Sparse tensor completion
	Continuous-time tensor completion

	Conclusion
	Proof of thm:main
	Proof of thm:col1,thm:col2
	Experimental details
	Simulation study
	Tensor completion
	Sparse tensor completion
	Continuous-time tensor completion

	Computational time
	Ablation study on the objective function

