
A Training and hyperparameters

Models were trained on NVIDIA A100 40 GB and NVIDIA RTX A6000 48 GB GPUs, except
GemNet-OC-small which were trained on NVIDIA A100 80 GB and NVIDIA RTX A6000 48 GB.
All models were trained on single GPUs, except for SchNet when trained on OC20-2M, which
required 3 GPUs. Inference throughput was profiled on A100 40 GB GPUs, with reported values
representing approximate numbers averaged across three evaluations. We provide detailed information
about the hyperparameters we used for each model in Tables 5, 6, and 7.

Moreover, we summarize the KD weighting factors λ we used for each model configuration in
Table 8.

Table 5: SchNet hyperparameters.

Hyperparameter OC20 COLL
Hidden channels 1024 128
Filters 256 128
Interaction blocks 5 6
Gaussians 200 50
Cutoff 6.0 12.0

Batch size 192 32
Initial learning rate 10−4 10−3

Optimizer AdamW AdamW
Scheduler LambdaLR LinearWarmupExponentialDecay
Learning rate decay factor 0.1 0.01

Learning rate milestones 52083, 83333,
104166 -

Warmup steps 31250 3750
Warmup factor 0.1 -
Force Coefficient 100 100
Energy Coefficient 1 1
Number of epochs 30 500
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Table 6: PaiNN hyperparameters. Slash-separated values indicate PaiNN versus PaiNN-small
hyperparameters.

Hyperparameter OC20 COLL
Hidden channels 512/256 256/128
Number of layers 6/4 6/4
Number of RBFs 128 128
Cutoff 12.0 12.0
Max. num. neighbors 50 50
Direct Forces True True

Batch size 32 32
Optimizer AdamW AdamW
AMSGrad True True
Initial learning rate 10−4 10−3

Scheduler LambdaLR LinearWarmupExponentialDecay
Warmup steps None 3750
Learning rate decay factor 0.45 0.01

Learning rate milestones (steps) 160000, 320000,
480000, 640000 -

Force coefficient 100 100
Energy coefficient 1 1
EMA decay 0.999 0.999
Gradient clip norm threshold 10 10
Epochs 16 375

16



Table 7: GemNet-OC hyperparameters. Slash-separated values indicate GemNet-OC versus GemNet-
OC-small hyperparameters.

Hyperparameter OC20 COLL
No. spherical basis 7 7
No. radial basis 128 128
No. blocks 4/3 4
Atom embedding size 256/128 128
Edge embedding size 512/256 256

Triplet edge embedding input size 64 64
Triplet edge embedding output size 64 64
Quadruplet edge embedding input size 32 32
Quadruplet edge embedding output size 32 32
Atom interaction embedding input size 64 64
Atom interaction embedding output size 64 64
Radial basis embedding size 16 16
Circular basis embedding size 16 16
Spherical basis embedding size 32 32

No. residual blocks before skip connection 2 2
No. residual blocks after skip connection 2 2
No. residual blocks after concatenation 1 1
No. residual blocks in atom embedding blocks 3 3
No. atom embedding output layers 3 3

Cutoff 12.0 12.0
Quadruplet cutoff 12.0 12.0
Atom edge interaction cutoff 12.0 12.0
Atom interaction cutoff 12.0 12.0
Max interaction neighbors 30 30
Max quadruplet interaction neighbors 8 8
Max atom edge interaction neighbors 20 20
Max atom interaction neighbors 1000 1000

Radial basis function Gaussian Gaussian
Circular basis function Spherical harmonics Spherical Harmonics
Spherical basis function Legendre Outer Legendre Outer
Quadruplet interaction True True
Atom edge interaction True True
Edge atom interaction True True
Atom interaction True True
Direct forces True True

Activation Silu Silu
Optimizer AdamW AdamW

Scheduler ReduceLROnPlateau LinearWarmup
ExponentialDecay

Force coefficient 100 100
Energy coefficient 1 1
EMA decay 0.999 0.999
Gradient clip norm threshold 10 10
Initial learning rate 5× 10−4 10−3

Epochs 80/9 165
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Table 8: Choice of the weighting factor λ of the KD loss for the different teacher-student configura-
tions and KD strategies.

Teacher Student KD OC20 COLL
GemNet-OC PaiNN Vanilla (1) 1.0 0.2
GemNet-OC PaiNN Vanilla (2) 500 100
GemNet-OC PaiNN n2n 10000 1000
GemNet-OC PaiNN e2n 1000 10
GemNet-OC PaiNN v2v 50000 100

GemNet-OC GemNet-OC-small Vanilla (1) 0.2 -
GemNet-OC GemNet-OC-small Vanilla (2) 10.0 -
GemNet-OC GemNet-OC-small n2n 1000.0 -
GemNet-OC GemNet-OC-small e2e 100000 -

PaiNN PaiNN-small Vanilla (1) 1 1
PaiNN PaiNN-small Vanilla (2) 200 100
PaiNN PaiNN-small n2n 100 100
PaiNN PaiNN-small v2v 1000 10000

PaiNN SchNet Vanilla (1) 0.1 1
PaiNN SchNet Vanilla (2) 0.1 100
PaiNN SchNet n2n 1000 100
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B Full validation results on OC20

Tables 9-12 present the extended results on OC20 across the 4 separate S2EF validation sets.

Table 9: Evaluation results on the OC20 S2EF in-distribution validation set.

OC20 S2EF Validation (in-distribution)

Energy MAE Force MAE Force cos EFwT
Model meV ↓ meV/Å ↓ ↑ % ↑

sa
m

e

S: PaiNN-small 409 41.6 0.357 0.16
T: PaiNN 358 38.5 0.390 0.25

Vanilla (1) 426(-33.7%) 42.6(-32.3%) 0.35(-21.9%) 0.12(-44.4%)
Vanilla (2) 396(25.7%) 45.7(-132.3%) 0.316(-126.9%) 0.11(-55.6%)
n2n 393 (31.2%) 41.7(-2.5%) 0.359 (4.7%) 0.15(-7.8%)
v2v 406(5.6%) 42.1(-16.9%) 0.357(-2.6%) 0.13(-32.6%)

S: GemNet-OC-small 292 27.7 0.534 0.90
T: GemNet-OC 226 22.5 0.610 1.09

Vanilla (1) 292(0.1%) 27.7(0.0%) 0.535(1.1%) 0.92(1.8%)
Vanilla (2) 283(13.5%) 27.7(-0.4%) 0.535(0.1%) 1.01(18.8%)
n2n 252 (61.1%) 27.5(3.8%) 0.536(1.6%) 1.09 (19.2%)
e2e 285(10.1%) 26.4 (25.3%) 0.551 (22.5%) 1.01(10.9%)

si
m

ila
r

S: SchNet 1237 62.2 0.214 0
T: PaiNN 358 38.5 0.390 0.25

Vanilla (1) 1139 (10.6%) 52.9 (13.1%) 0.2422 (16%) 0(0%)
Vanilla (2) 1140(10.5%) 59.2(12.7%) 0.241(15.1%) 0(0%)
n2n 1170(7%) 60(9.3%) 0.235(11.9%) 0(0%)

di
ffe

re
nt

S: PaiNN 358 38.5 0.390 0.25
T: GemNet-OC 226 22.5 0.61 1.89

Vanilla (1) 356(1.7%) 38.3(1.1%) 0.392(1.2%) 0.258(0.5%)
Vanilla (2) 357(0.7%) 43.5(-31.4%) 0.334(-25.4%) 0.210(-2.4%)
n2n 271 (66.0%) 37.3(7.5%) 0.408(8.2%) 0.477 (13.9%)
e2n 330(21.8%) 36.3(14.0%) 0.419 (13.4%) 0.371(7.4%)
v2v 369(-8.2%) 37.2(8.0%) 0.409(8.9%) 0.217(-2.0%)
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Table 10: Evaluation results on the OC20 S2EF out-of-distribution (adsorbates) validation set.

OC20 S2EF Validation (out-of-distribution (adsorbates))
Energy MAE Force MAE Force cos EFwT

Model meV ↓ meV/Å ↓ ↑ % ↑
sa

m
e

S: PaiNN-small 469 47.9 0.334 0.03
T: PaiNN 437 44.5 0.369 0.043

Vanilla (1) 519(-156.2%) 47.4(14.7%) 0.334(-1.2%) 0.003(0%)
Vanilla (2) 477(-23.6%) 54.5(-106.2%) 0.297(-109.9%) 0.002(-76.9%)
n2n 443(80.9%) 47.2 (19.8%) 0.337 (9.3%) 0.003(-10%)
v2v 441 (87.5%) 47.9(-1%) 0.337(8.68%) 0.04 (81.6%)
S: GemNet-OC-small 325 31.0 0.521 0.190
T: GemNet-OC 258 25.2 0.600 0.45

Vanilla (1) 312(19.5%) 31.0(-0.7%) 0.522(2.1%) 0.19(-0.9%)
Vanilla (2) 309(24.2%) 30.9(1.4%) 0.523(2.6%) 0.20(2.7%)
n2n 282 (63.7%) 30.9(1.7%) 0.523(5.8%) 0.22(11.5%)
e2e 315(14.8%) 29.3 (28.8%) 0.542 (26.3%) 0.23 (16.5%)

si
m

ila
r

S: SchNet 1344 58 0.196 0
T: PaiNN 437 44.5 0.369 0.043

Vanilla (1) 1247(10.7%) 64.5(-49.7%) 0.221 (14.7%) 0(0%)
Vanilla (2) 1245 (10.9%) 64.5(-48.2) 0.22(14%) 0(0%)
n2n 1286(6.3%) 65(-51.9%) 0.213(9.9%) 0(0%)

di
ffe

re
nt

S: PaiNN 437 44.5 0.369 0.043
T: GemNet-OC 258 25.2 0.6 0.45

Vanilla (1) 424(7.2%) 44.5(-0.2%) 0.370(0.5%) 0.052(2.3%)
Vanilla (2) 408(15.9%) 49.2(-24.3%) 0.315(-23.1%) 0.036(-1.7%)
n2n 321 (64.9%) 43.2(6.9%) 0.387(7.8%) 0.084 (10.0%)
e2n 407(16.9%) 41.6 (15.3%) 0.498 (12.9%) 0.081(9.3%)
v2v 418(10.5%) 42.0(13%) 0.391(9.9%) 0.058(3.7%)
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Table 11: Evaluation results on the OC20 S2EF out-of-distribution (catalysts) validation set.

OC20 S2EF Validation (out-of-distribution (catalysts))
Energy MAE Force MAE Force cos EFwT

Model meV ↓ meV/Å ↓ ↑ % ↑
sa

m
e

S: PaiNN-small 467 42 0.341 0.13
T: PaiNN 412 39.2 0.369 0.23

Vanilla (1) 466(4.9%) 42.8(-28.4%) 0.336(-16.9%) 0.11(-20%)
Vanilla (2) 439(52.4%) 45.4(-120.6%) 0.306(-120.8%) 0.12(-10%)
n2n 437 (56.3%) 42.0 (1%) 0.343 (8.2%) 0.14 (11.2%)
v2v 444(43.4%) 42.4(-12.8%) 0.342(3.6%) 0.12(-12%)

S: GemNet-OC-small 335 28.9 0.506 0.85
T: GemNet-OC 288 24.0 0.576 1.68

Vanilla (1) 339(-9.3%) 29.0(-1.1%) 0.507(0.9%) 0.85(-0.4%)
Vanilla (2) 318(35.4%) 28.9(-0.1%) 0.507(1.0%) 1.05 (24.1%)
n2n 309 (54.4%) 28.8(2.0%) 0.508(2.6%) 1.02(20.5%)
e2e 324(21.6%) 27.6 (26.5%) 0.524 (25.1%) 0.95(12.5%)

si
m

ila
r

S: SchNet 1205 61.6 0.205 0
T: PaiNN 412 39.2 0.369 0.23

Vanilla (1) 1122 (10.6%) 58.7 (12.9%) 0.234 (15.9%) 0.01 (4.3%)
Vanilla (2) 1122(10.5%) 58.8(12.5%) 0.23(15.2%) 0(0%)
n2n 1150(6.9%) 59.4(9.8%) 0.225(12.3%) 0(0%)

di
ffe

re
nt

S: PaiNN 412 39.2 0.369 0.23
T: GemNet-OC 288 24 0.576 1.68

Vanilla (1) 423(-8.8%) 39.1(0.8%) 0.371(1.1%) 0.230(0.0%)
Vanilla (2) 400(9.5%) 43.6(-29%) 0.320(-23.5%) 0.23(0.2%)
n2n 345 (54.0%) 38.5(4.7%) 0.383(6.8%) 0.433 (14%)
e2n 401(8.9%) 37.4 (11.9%) 0.395 (12.3%) 0.317(6.0%)
v2v 424(-10.7%) 38.2(6.5%) 0.386(8.2%) 0.187(-3%)
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Table 12: Evaluation results on the OC20 S2EF out-of-distribution (both) validation set.

OC20 S2EF Validation (out-of-distribution (both))
Energy MAE Force MAE Force cos EFwT

Model meV ↓ meV/Å ↓ ↑ % ↑
sa

m
e

S: PaiNN-small 610 56.8 0.346 0.02
T: PaiNN 554 59.2 0.379 0.03

Vanilla (1) 648(-67.6%) 61.1(-179.2%) 0.056(-900.3%) 0.02(0%)
Vanilla (2) 592(32.2%) 60.6(-158.3%) 0.310(-112.4%) 0.02(0%)
n2n 557(94.2%) 56.0 (33%) 0.351(14.8%) 0.018(-15.8%)
v2v 547 (112.6%) 56.5(12.3%) 0.352 (17.3%) 0.025 (43.3)
S: GemNet-OC-small 424 37.4 0.533 0.11
T: GemNet-OC 370 31.0 0.606 0.23

Vanilla (1) 412(23.1%) 37.5(-1.8%) 0.534(1.2%) 0.11(-2.3%)
Vanilla (2) 401(43.2%) 37.4(0.2%) 0.535(2.0%) 0.12(8.5%)
n2n 395 (53.7%) 37.3(1.6%) 0.537(4.4%) 0.12(8.5%)
e2e 412(22.2%) 35.5 (29.5%) 0.554 (29.0%) 0.13 (19.9%)

si
m

ila
r

S: SchNet 1450 78.4 0.202 0
T: PaiNN 554 59.2 0.379 0.03

Vanilla (1) 1350 (11.2%) 75.9(13%) 0.227 (14.3%) 0.0025 (1.8%)
Vanilla (2) 1358(10.2%) 75.7 (14.1%) 0.226(13.8%) 0(0%)
n2n 1396(6.1%) 76.2(11.5%) 0.220(10.4%) 0(0%)

di
ffe

re
nt

S: PaiNN 554 59.2 0.379 0.03
T: GemNet-OC 370 31 0.606 0.23

Vanilla (1) 558(-2.3%) 53.8(19.0%) 0.380(0.6%) 0.031(-0.5%)
Vanilla (2) 511(23.3%) 323.1(-935.7%) 0.326(-23.2%) 0.027(-2.6%)
n2n 448 (57.4%) 52.4(24.1%) 0.394(2.4%) 0.056(12.1%)
e2n 536(9.6%) 50.1 (32.4%) 0.407 (12.5%) 0.057 (12.6%)
v2v 538(8.5%) 50.5(31.0%) 0.402(10.4%) 0.035(1.7%)
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C Baseline results on COLL

In Table 13, we present the performance and inference throughput of the baseline models on COLL.
As the systems are much smaller than those in OC20, the throughput is a lot larger than the one
observed in Table 2. Qualitatively, however, we observe the same, clear trade-off between accuracy
and throughput.

Table 13: Evaluation of the performance of the four baseline models on the COLL dataset.

Inference COLL test setThroughput

Samples / Energy MAE Force MAE Force cos EFwT
Model GPU sec. ↑ meV ↓ meV/Å ↓ ↑ % ↑
SchNet 44000 146.5 121.2 0.970 2.75
PaiNN-small 29000 104.0 80.9 0.984 5.4
PaiNN 13000 85.8 64.1 0.988 10.1
GemNet-OC 3520 44.8 38.2 0.994 20.2
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D Data augmentation

We investigated data augmentation as a way of distilling knowledge from GemNet-OC into PaiNN
on the OC20 dataset.

D.1 Data jittering

To create additional data, we added noise to the atomic positions of the training samples and then used
the teacher to label the newly derived samples. We tried two different approaches: Random noise,
and optimizing the positions using gradient ascent such that the difference between the predictions
of the student and teacher was maximized as done in [45]. Denoting the noise as δ, we obtain the
noise atomic positions as Xδ = X + δ. Let the student and teacher models be denoted as fs and ft
respectively, we then obtained the noise δ′ by initializing this as 0 and

LKD = L0(fs(Xδ, z), ft(Xδ, z))

δ′ = δ + α∇δLKD.

However, this becomes computationally expensive, as it requires additional gradients for ∇δLKD.
Hence, we settled on using a single step, where we fixed the norm of δ to avoid going too far away
from the real structure. We experimented with different norms, with the smallest being 0.1 Å. We
compared this to using random directions with a fixed norm, and we did not see any improvements
when using the more computationally expensive gradient ascent approach. In both cases, the noise
was added to all the samples in the batch.

D.2 Synthetic data

Combined dataset 2M+d1M. We generated 1M synthetic samples by first drawing 100k random
adsorbate and catalyst combinations (systems) and then running relaxations with a pre-trained
GemNet-OC model. Out of these relaxations with 100 steps on average (200 max), we randomly
draw approx. 10% to obtain 1M samples.

In the next step, we combine the 1M samples with the 2M OCP dataset, which is based on DFT
relaxations. Directly working with this combined dataset means iterating over a 1-to-2 ratio of
samples from each subset in an epoch of 3M samples. To control this ratio, we define the target ratio
of samples from the synthetic dataset during training αtarget ∈ [0, 1]. Setting αtarget = 0.5 means
that per epoch we iterate over the 1M dataset 1.5 times and over the 2M dataset 0.75 times.

Different weighting in loss depending on origin. Next to specifying a sampling ratio of samples
from the synthetic dataset, we can also specify how to weight the contribution of samples to the loss
based on their origin (DFT or synthetic). To achieve this, we specify the weighting ratio of synthetic
to DFT samples rs/dft = ws/wdft ∈ R+. In each batch, we compute a weighting factor in front of the
synthetic ws and DFT wdft samples satisfying the conditions

ws · αbatch + wdft · (1− αbatch) = 1, (9)

where αbatch is the ratio of synthetic to DFT samples in a batch. Hence, when we combine DFT and
synthetic data - αbatch ∈ (0, 1), we derive the following weights:

wdft = (1− αbatch + αbatch · rs/dft)
−1, (10)

ws = rs/dft · wdft. (11)

Likewise, when αbatch = {0, 1} - i.e., we either train on DFT or synthetic data exclusively, the
corresponding weighting coefficient (ws or wdft) is naturally equal to 1.
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E Hyperparameter studies

We additionally investigated different aspects of our KD protocols, which we present below. We have
performed these experiments when distilling GemNet-OC into PaiNN on the OC20-2M dataset.

E.1 Effect of losses

In our experiments, we have used MSE as the loss Lfeat. However, in the general framework in
Equation (3), there are other choices that are possible, e.g., more advanced losses like Local Structure
Preservation [34] and Global Structure Preservation (GSP) [35]. We therefore initially experimented
with using these alternative losses when distilling GemNet-OC into PaiNN on OC20. However,
the initial experiments showed that MSE worked well, and in particular, a lot better than the more
advanced GSP and LSP losses. We therefore settled on using MSE as our Lfeat. In Table 14, we
present the average performance over all four validation splits when using these different losses in
the n2n and e2n settings.

We also experimented with trying to optimize the CKA directly (as we saw that the CKA similarity
improved when using distillation), but it did not work and we did not pursue it any further.

Table 14: Comparing different loss functions Lfeat with GemNet-OC as teacher and PaiNN as student
on OC20, using the n2n and e2n KD protocols. In the case of LSP + e2n, the model completely failed
when predicting forces on the ood (both) validation set, leading to a force MAE of 464 meV/Å,
which is almost a factor 10 larger than the other models on the same split. We have therefore written
this value as "-". When evaluating a checkpoint for a model which was trained half as long, the error
on this split was 53.7 meV/Å, and the average over all four validation splits was 44.8 meV/Å.

OC20 validation set

Energy MAE Force MAE Force cos EFwT
Loss meV ↓ meV/Å ↓ ↑ % ↑

n2
n

MSE 346 42.8 0.393 0.262
GSP 427 46.1 0.356 0.124
LSP 398 44.8 0.367 0.159

e2
n

MSE 430 41.3 0.405 0.195
GSP 463 45.2 0.363 0.119
LSP 441 - 0.380 0.134

E.2 Effect of transformations

We have evaluated using different transformations Ms, i.e., transformations of the student features
before applying the loss Lfeat. We tried either using the identity function, (i.e., not using a transforma-
tion at all), a linear transformation (i.e., multiplication with matrix and adding a bias vector), or using
a multilayer perceptron (MLP) with one hidden layer. We conducted our experiments when distilling
G We found that using an MLP worsened the results, and for e2n, there was not a big difference
between using a linear layer and no transformation at all. For n2n, the node features in PaiNN and
GemNet-OC are of different dimensions, and we can therefore not use the identity transformation
when using the MSE loss.

The results from the experiments are presented in Table 15.

E.3 Effect of feature selection

GemNet-OC consists of an initial embedding layer, followed by a series of interaction layers. The
result of each embedding/interaction layer is used as input into the next layer, while a copy is also
processed by an “output layer”. To make the final prediction, the results of the different output layers
are concatenated and processed by a final MLP. This means that, for each embedding/interaction
layer, we have two features that could potentially be distilled: the feature used as input for the next
layer, or the result of the output layer. Additionally, we could use features from inside the final MLP
which make the prediction by processing the concatenated output features.
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Table 15: Comparing different transformation functions Ms (Identity, a linear layer and an MLP
with one hidden layer) with GemNet-OC as teacher and PaiNN as student, using the n2n and e2n KD
protocols. As the node features in GemNet-OC and PaiNN are of different dimensions, we cannot
use the identity transformation when using n2n.

OC20 validation set

Energy MAE Force MAE Force cos EFwT
Loss meV ↓ meV/Å ↓ ↑ % ↑

n2
n

Identity - - - -
Linear 346 42.8 0.393 0.262
MLP 363 45.1 0.367 0.147

e2
n

Identity 430 41.3 0.405 0.195
Linear 418 41.3 0.405 0.207
MLP 427 43.2 0.387 0.161

Initially, we used the feature after the final interaction layer when distilling knowledge from GemNet-
OC. However, we found that using the feature just before the final linear layer in the final MLP gave
a drastic improvement in performance. We, therefore, set out to investigate how the choice of features
impacted the results in more detail.

We performed these experiments when distilling GemNet-OC into PaiNN on OC20 using our n2n
strategy, and the results presented here are on a set of 30 thousand samples sampled from the in-
distribution validation set. We did not perform any extensive hyperparameter tuning, but chose λ
such that λLKD (the distillation loss term) was initially roughly the same for all choices.

Choice of GemNet-OC layer. In Figure 4, we present the training curves when fixing the choice of
feature in PaiNN and varying the choice of features in GemNet-OC. The overall trend is that closer to
the output is better: even using the features from the early output layers is better than using features
from later interaction layers. Our results suggest that for forces, it is better to use features from
earlier output layers. However, we think this could be due to the choice of λ, as we have empirically
found that the weighting of the loss term in n2n could offer a trade-off between energy and force
performance.

Figure 4: Evaluation error as we vary the features to distill from in the teacher model - energy MAE
(left), and force MAE (right). n2n KD from GemNet-OC to PaiNN. Performance is evaluated on
a validation subset comprising 30k samples. The numbers 0 to 4 indicate at what stage the feature
has been extracted, with 0 meaning after the embedding layer, and 1 to 4 after the corresponding
interaction layer. Solid and dashed lines indicate if the feature is the result of an embedding/interaction
layer, or an output layer, respectively. “Final” refers to the feature extracted right before the final
linear prediction layer.
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Choice of PaiNN layer. PaiNN consists of a sequence of blocks, where each block consists of a
message layer and an update layer. In Figure 5, we present training curves when fixing the choice
of features in GemNet-OC (the feature just before the final linear layer), and varying the choice of
features in PaiNN (choice of block, and either the feature after the corresponding message or update
layer). The results here indicate that using deeper features leads to better results.

Figure 5: Evaluation error as we vary the features to distill into in the student model - energy MAE
(left), and force MAE (right). n2n KD from GemNet-OC to PaiNN. Performance is evaluated on a
validation subset comprising 30k samples. The different colors indicate after which block the features
have been extracted, and dashed and solid lines indicate if features were extracted after the message
or update layers, respectively.

Conclusion. The conclusion we draw from this study is that using features as close to the output as
possible improves KD performance in our setup. However, these results are only empirical, and more
investigation could be done. For example, if it is possible to beforehand determine which pairs of
features should be used (and not having to rely on trial-and-error).
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F Error bars

To get an idea of the stability of our KD protocols, we perform additional experiments distilling
GemNet-OC into PaiNN using three different seeds and compute standard deviations. We present
these results in Table 16.

Table 16: Performance of KD from GemNet-OC into PaiNN across 3 different seeds, averaged over
all validation splits. The numbers are presented as mean ± one standard deviation. The missing force
error for the baseline model is due to one of the seeds completely failing on the out-of-distribution
(both) split, drastically increasing the error. The other two seeds had force MAEs of 43.8 and 45.3
meV/Å, respectively.

OC20 validation set

Energy MAE Force MAE Force cos EFwT
Loss meV ↓ meV/Å ↓ ↑ % ↑

None (baseline) 440± 8 - 0.376± 0.0018 0.143± 0.0051
n2n 346± 0.7 43.2± 0.6 0.392± 0.0017 0.256± 0.011
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G Explainability

We utilize CKA similarity scores to monitor the effect of KD throughout our studies. Here, we
present a selection of the analyses we have performed, summarizing how KD influences the similarity
between teacher and student models across teacher-student configurations (Figure 6); across KD
protocols (Figure 7); and feature selections (Figure 8). We found out that such similarity metrics
can be effectively used to examine and profile different KD approaches, as well as as a potential
debugging tool. We also explored the utility of CKA (in conjunction with measures of the predictive
ability of individual features) as a means to inform the design of (optimal) KD strategies and feature
selection protocols a priori, but the results were not conclusive to include here.

Figure 6: We explore the effect of n2n KD on the feature similarity between different student-teacher
configurations: (a) GemNet-OC -> PaiNN; (b) PaiNN -> PaiNN-small; (c) PaiNN -> SchNet. The
layer pair that was used in each experiment is indicated with a ↙. Note the scale difference in the
Similarity gain plots.
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Figure 7: We explore the effect of different KD strategies - n2n and e2n KD on the feature similarity
between the student and the teacher models. This is computed for GemNet-OC -> PaiNN: (a) n2n; (b)
e2n. The layer pair that was used in each experiment is indicated with a ↙. Note the scale difference
in the Similarity gain plots.
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Figure 8: We explore the effect of feature selection in KD on feature similarity between the student
and the teacher models: (a) H4->U6; (b) CONCAT+MLP->U6; (c) CONCAT+MLP->M6+U6; (d)
H4->U5; (e) X2->M2. The layer pair that was used in each experiment is indicated with a ↙. Note
the scale difference in the Similarity gain plots.
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H Training times

One caveat of knowledge distillation is that it inherently increases the training time of the student
model. In our offline KD setup, we need to perform additional forward passes through the teacher to
extract representations to distill to the student. However, it is important to note that, despite increasing
the computational time per training step, we observed that models trained with KD can outperform
their baseline counterparts even when compared at the same training time point (Figure 9), despite
the latter having been trained for more steps/epoch in total. This means that, all in all, we can use KD
to enhance the predictive accuracy in models without necessarily impacting training times.

However, we make the following remark. In this experiment, we utilized publicly available pre-trained
Gemnet-OC model weights, and therefore did not have to train the teacher model ourselves. However,
when access to a pre-trained teacher model is not available, one should also account for the time
required to train the teacher.

Figure 9: Energy validation error of PaiNN without (blue) and with (orange) knowledge distillation
from GemNet-OC, trained for the same number of steps (1 million). Validation on a random sample
of size 30k samples from the in-distribution OC20 validation set.
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