
A Proof402

A.1 Proof of Proposition 3.1403

When q(x0) is a mixture of Dirac distribution which means that q(x0) =
∑M

i=1 wiδ(x −404

xi),
∑M

i=1 wi = 1, which has total M components, and when the forward process q(xt|x0) is a405

Gaussian distribution as Eq. (1), the backward process q(xs|xt) would be:406

q(xs|xt) =

∫
q(xs|xt, x0)q(x0|xt)dx0 =

∫
q(xs|xt, x0)q(x0)q(xt|x0)/q(xt)dx0

= 1/q(xt)

∫
q(xs|xt, x0)q(x0)q(xt|x0)dx0 = 1/q(xt)

M∑
i=1

wiq(xs|xt, x
i
0)q(xt|xi

0)

According to the definition of forward process, the distribution q(xt|xi
0) = N (xt|

√
ātx

i
0, (1− āt)I).407

Due to the Markov property of forward process, when t > s, we have q(xs, xt|x0)q(xs|x0)q(xt|xs).408

The term q(xs|xt, x0) would be viewed as a Bayesian posterior resulting from a prior q(xs|x0),409

updated with a likelihood term q(xt|xs). And therefore410

q(xs|xt, x
i
0) = N(xs|µq(xt, x0),Σq(xt, x0)I) = N (xs|

at|sσ
2
s

σ2
t

xt +
asσ

2
t|s

σ2
t

x0,
σ2
sσ

2
t|s

σ2
t

I)

It is easy to prove that, the distribution q(xs|xt) is a mixture of Gaussian distribution:411

q(xs|xt) ∝
M∑
i=1

wiq(xs|xt, x
i
0)q(xt|xi

0)

=

M∑
i=1

wiN (xt|
√
ātx

i
0, (1− āt)I) ∗ N (xs|µq(xt, x0),Σq(xt, x0))

When t is large, s is small, σ2
t|s would be large, meaning that the influence of xi

0 would be large.412

Secondly, when q(x0) is a mixture of Gaussian distribution which means that q(x0) =413 ∑M
i=1 wiN (xi

0|µi,Σi),
∑M

i=1 wi = 1. For simplicity of analysis, we assume that this distribu-414

tion is a one-dimensional distribution or that the covariance matrix is a high-dimensional Gaussian415

distribution with a diagonal matrix Σi = diagi(σ
2). Similar to the situation above, for each dimension416

in the backward process:417

q(xs|xt) = 1/q(xt)

∫
q(xs|xt, x0)q(x0)q(xt|x0)dx0

=

M∑
i=1

wi/q(xt)

∫
q(xs|xt, x0)N (x0|µi,Σi)q(xt|x0)dx0

=

M∑
i=1

wi/q(xt)

∫
1√
2πσq

e
− (xi

0−µq)2

σ2
q

1√
2πσi

e
− (xi

0−µi)
2

σ2
i

1√
2π
√
1− āt

e−
(xt−

√
ātx0)2

1−āt dx0

=

M∑
i=1

wi/q(xt)

∫
Zi

1√
2πσx

e
− (xi

0−µx)2

σ2
x e−

(xs−µ(xt))
2

σ(xt) dx0

And q(xs|xt) could be a Gaussian mixture which has M component.418

A.2 Proof of Proposition 3.2419

Recall that our objective function is to find optimal parameters:420

θ̂ = argmin
θ

[QNc
(θ)︸ ︷︷ ︸

1×1

] = argmin
θ

[gNc
(θ)T︸ ︷︷ ︸

1×N

WNc︸︷︷︸
N×N

gNc
(θ)︸ ︷︷ ︸

1×N

] (13)

13



where gM (θ) is the moment conditions talked about in Sec. 3.2, W is the weighted Matrix, Nc is the421

sample size. When solving such problems using optimizers, which are equivalent to the one we used422

when selecting θGMM such that ∂QT (θGMM )
∂θ = 0, and its first derivative:423

∂QNc(θ)

∂θ︸ ︷︷ ︸
d×1

=


∂QNc (θ)

∂θ1
∂QNc (θ)

∂θ2
∂QNc (θ)

∂θ3

 ,
∂QNc(θ)

∂θm
= 2 [

1

Nc

Nc∑
i=1

∂g(xi, θ)

∂θm
]T︸ ︷︷ ︸

1×N

WNc︸︷︷︸
N×N

[
1

Nc

M∑
i=1

g(xi, θ)]︸ ︷︷ ︸
N×1

(14)

its second derivative (the Hessian matrix):424

∂2QNc(θ)

∂θ2︸ ︷︷ ︸
d×d

=


∂2QNc (θ)

∂θ1θ1

∂2QNc (θ)
∂θ1θ2

...
∂2QNc (θ)

∂θ1θd
∂2QNc (θ)

∂θ2θ1
... ... ...

... ... ... ...

... ... ...
∂2QNc (θ)

∂θdθd

 (15)

,
∂2QNc(θ)

∂θiθj
= 2[

1

M

Nc∑
i=1

∂g(xi, θ)

∂θi
]TWNc [

1

Nc

Nc∑
i=1

∂g(xi, θ)

∂θj
]

+ 2[
1

Nc

Nc∑
i=1

∂2g(xi, θ)

∂θiθj
]WNc

[
1

Nc

Nc∑
i=1

g(xi, θ)].

By Taylor’s expansion of the gradient around optimal parameters θ0, we have:425

∂QNc(θGMM )

∂θ
− ∂QNc(θ0)

∂θ
≈ ∂2QNc(θ0)

∂θ∂θT
(θGMM − θ) (16)

7−→ (θGMM − θ) ≈ −(∂
2QNc

(θ0)

∂θ∂θT
)−1 ∂QNc

(θ0)

∂θ
.

Consider one element of the gradient vector ∂QNc (θ0)
∂θm

426

∂QNc
(θ0)

∂θm
= 2[

1

M

Nc∑
i=1

∂g(xi, θ0)

∂θm︸ ︷︷ ︸
p→E( ∂g(xi,θ0)

∂θm
)=Γ0,m

]T WNc︸︷︷︸
p→W

[
1

Nc

Nc∑
i=1

g(xi, θ0)︸ ︷︷ ︸
p→E[g(xi,θ0)]=0

]. (17)

Consider one element of the Hessian matrix ∂2QNc (θ0)

∂θi∂θT
j

427

∂2QNc
(θ0)

∂θi∂θTj
= 2[

1

Nc

Nc∑
i=1

∂g(xi, θ0)

∂θi
]TWNc

[
1

Nc

Nc∑
i=1

∂g(xi, θ0)

∂θj
] (18)

+ 2[
1

Nc

Nc∑
i=1

∂2g(xi, θ0)

∂θiθj
]TWNc

[
1

Nc

Nc∑
i=1

g(xi, θ0)]
p→ 2ΓT

0,iWΓ0,j .

Therefore, it is easy to prove that θGMM − θ0
p→ 0, and uses law of large numbers we could obtain,428

√
T
∂QT (θ0)

∂θm
= 2[

1

M

M∑
i=1

∂g(xi, θ0)

∂θm︸ ︷︷ ︸
p→E( ∂g(X,θ0)

∂θm
)=Γ0,m

]T WM︸︷︷︸
p→W

[
1√
T

M∑
i=1

g(xi, θ0)︸ ︷︷ ︸
d→N (0,E(g(X,θ0)g(X,θ0)T ))

]
d→ 2ΓT

0,mWN (0,Φ0),

(19)

therefore, we have429

√
T (θGMM − θ0) ≈ −(

∂2QT (θ0)

∂θ∂θT
)−1
√
T
∂QT (θ0)

∂θ
(20)

d→ N (0, (ΓT
0 WΓ0)

−1ΓT
0 WΦ0WΓ0(Γ

T
0 WΓ0)

−1).

14



When the number of parameters d equals the number of moment conditions N , Γ0 becomes a430

(nonsingular) square matrix, and therefore,431

√
T (θGMM − θ0)

d→ N (0, (ΓT
0 WΓ0)

−1ΓT
0 WΦ0WΓ0(Γ

T
0 WΓ0)

−1) (21)

= N (0,Γ−1
0 W−1(ΓT

0 )
−1ΓT

0 WΦ0WΓ0Γ
−1
0 W−1(ΓT

0 )
−1)

= N (0,Γ−1
0 Φ0(Γ

T
0 )

−1),

which means that the foregoing observation suggests that the selection of WNc
has no bearing on the432

asymptotic variance of the GMM estimator. Consequently, it implies that regardless of the specific433

method employed to determine WNc
, provided the moment estimates are asymptotically consistent,434

WNc
serves as the optimal weight matrix, even when dealing with small samples.435

The moments utilized for fitting via the generalized method of moments in each step are computed436

based on the noise network’s first n-th order. To ensure adherence to the aforementioned proposition,437

it is necessary to assume that the n-th order of the noise network converges with probability to438

Eq(x0|xt)[diag(ϵ ⊗n−1 ϵ)], details in Appendix. B. Consequently, the n-th order moments derived439

from the noise networks converge with probability to the true moments. Therefore, any choice of440

weight matrix is optimal.441

B Calculation of the first order moment and higher order moments442

Suppose the forward process is a Gaussian distribution same with the Eq. (1) as q(xt|xs) =443

N(xt|a(t)xt−1, σ(t)I).444

And let 1 ≥ t > s ≥ 0 always satisfy, q(xt|xs) = N(xt|at|sxs, βt|sI), where at|s = at/as and445

βt|s = σ2
t − a2t|sσ

2
s , σs =

√
1− a(s),σt =

√
1− a(t). It’s easy to prove that the distribution446

q(xt|x0), q(xs|xt, x0) are also a Gaussian distribution [19]. Therefore, the mean of xs under the447

measure q(xs|xt) would be448

Eq(xs|xt)[xs] = Eq(x0|xt)Eq(xs|xt,x0)[xs] (22)

= Eq(x0|xt)[
1

at|s
(xt −

βt|s

σt
ϵt)]

=
1

at|s
(xt −

βt|s

σt
Eq(x0|xt)[ϵt]).

And for the second order central moment Covq(xs|xt)[xs], we use the total variance theorem, refer to449

[2], and similar with [2], we only consider the diagonal covariance.450

Covq(xs|xt)[xs] = Eq(x0|xt)Covq(xs|xt,x0)[xs] + Covq(x0|xt)Eq(xs|xt,x0)[xs] (23)

= λ2
t I + Covq(x0|xt)µ̃(xn,Eq(x0|xn)[x0])

= λ2
t I +

asβ
2
t|s

σ4
t

Covq(x0|xt)[x0]

= λ2
t I +

as|0β
2
t|s

σ4
t

σ2
t

at|0
Covq(x0|xt)[ϵt]

= λ2
t I +

β2
t|s

σ2
t at|s

(Eq(x0|xt)[ϵt ⊙ ϵt]− Eq(x0|xt)[ϵt]⊙ Eq(x0|xt)[ϵt]),

since the higher-order moments are diagonal matrix, we use diag(M) to represent the diagonal451

elements that have the same dimensions as the first-order moments, such as diag(xs ⊗ xs) =452

Covq(xs|xt)[xs] and diag(xs ⊗ xs ⊗ xs) = M̂3 have the same dimensions as xs453

Moreover, for the diagonal elements of the third-order moments, we have Eq(xs|xt)[diag(xs ⊗ xs ⊗454

xs)] = Eq(x0|xt)Eq(xs|xt,x0)[xs⊙xs⊙xs], we could use the fact that Eq(xs|xt,x0)[(xs−µ(xt, x0))⊙455

15



(xs − µ(xt, x0))⊙ (xs − µ(xt, x0))] = 0456

M̂3 = Eq(xs|xt)[diag(xs ⊗ xs ⊗ xs)] = Eq(x0|xt)Eq(xs|xt,x0)[diag(xs ⊗ xs ⊗ xs)] = (24)

[(
at|sσ

2
s

σ2
t

)3diag(xt ⊗ xt ⊗ xt) + 3λ2
t

at|sσ
2
s

σ2
t

xt]︸ ︷︷ ︸
Constant term

+ [
3a2t|sσ

4
sa

2
s|0β

2
t|s

σ8
t

(diag(xt ⊗ xt)) +
as|0βt|s

σ2
t

I]⊙ Eq(x0|xt)[x0]︸ ︷︷ ︸
Linear term in x0

+3
at|sσ

2
s

σ2
t

(
as|0βt|s

σ2
t

)2xt ⊙ Eq(x0|xt)[diag(x0 ⊗ x0)]︸ ︷︷ ︸
Quadratic term in x0

+(
as|0βt|s

σ2
t

)3Eq(x0|xt)[diag(x0 ⊗ x0 ⊗ x0)]︸ ︷︷ ︸
Cubic term in x0

,

What’s more, for the three-order moment and higher-order moment, we only consider the diagonal ele-457

ments, and therefore all outer products can be transformed into corresponding element multiplications458

and we have:459

Eq(x0|xt)[diag(x0 ⊗2 x0)] =
1

α
3
2 (t)

Eq(x0|xt)[diag((xt − σ(t)ϵ)⊗2 (xt − σ(t)ϵ))] (25)

=
1

α
3
2 (t)

Eq(x0|xt)[diag(xt ⊗2 xt − 3σ(t)(xt ⊗ xt)⊗ ϵ

+ 3σ2(t)xt ⊗ (ϵ⊗ ϵ)− σ3(t)(ϵ⊗2 ϵ))]

=
1

α
3
2 (t)

[Eq(x0|xt)[xt ⊙2 xt]− 3σ(t)(xt ⊙ xt)⊙ Eq(x0|xt)[ϵ]+

+ 3σ2(t)xtEq(x0|xt)[ϵ⊙ ϵ]− σ3(t)[ϵ⊙2 ϵ]],

Therefore, when we need to calculate the third-order moment, we only need to obtain460

Eq(x0|xt)[ϵt],Eq(x0|xt)[ϵt ⊙ ϵt] and Eq(x0|xt)[ϵt ⊙ ϵt ⊙ ϵt]. Similarly, when we need to calculate461

the n-order moment, we will use Eq(x0|xt)[ϵt], ...,Eq(x0|xt)[ϵt⊙n−1 ϵt]. Bao et al. [2] put forward us-462

ing a sharing network and using the MSE loss to estimate the network to obtain the above information463

about different orders of noise.464

C Modeling reverse transition kernel via exponential family465

Analysis in Sec. 3.1 figures out that modeling reverse transition kernel via Gaussian distribution is no466

longer sufficient in fast sampling scenarios. In addition to directly proposing the use of Gaussian467

Mixture for modeling, we also analyze in principle whether there are potentially more suitable468

distributions i.e., the feasibility of using them for modeling.469

We would turn back to analyzing the original objective function of DPMs to find a suitable distribution.470

The forward process q(xt|xs) = N(xt|at|sxs, βt|sI), consistent with the definition in Appendix. B.471

And DPMs’ goal is to optimize the modeled backward process parameters to maximize the variational472

bound L in Ho et al. [12]. And the ELBO in Ho et al. [12] can be re-written to the following formula:473

L = DKL(q(xT )||p(xT )) + Eq[
∑
t≥1

DKL(q(xs|xt)||p(xs|xt))] +H(x0), (26)

where qt
.
= q(xt) is the true distribution and pt

.
= p(xt) is the modeled distribution, and the minimum474

problem could be transformed into a sub-problem, proved in Bao et al. [3]:475

min
{θ}

L⇔ min
{θs|t}Tt=1

DKL(q(xs|xt)||pθs|t(xs|xt)). (27)

We have no additional information besides when the reverse transition kernel is not Gaussian.476

But Lemma. C.3 proves that when the reverse transition kernel pθs|t(xs|xt) is exponential family477

pθt(xs|xt) = p(xt, θs|t) = h(xt) exp
(
θTs|tt(xt)− α(θs|t)

)
, solving the sub-problem Eq. (27) equals478

16



to solve the following equations, which is to match moments between the modeled distribution and479

true distribution:480

Eq(xs|xt)[t(xs)] = Ep(xt,θs|t)[t(xs)]. (28)

When t(x) = (x, .., xn)T , solving Eq.(28) equals to match the moments of true distribution and481

modeled distribution.482

Meanwhile, Gaussian distribution belongs to the exponential family with t(x) = (x, x2)T and483

θt = ( µt

σ2
t
, −1
2σ2

t
)T , details in Lemma. C.2. Therefore, when modeling the reverse transition kernel as484

Gaussian distribution, the optimal parameters are that make its first two moments equal to the true485

first two moments of the real reverse transition kernel q(xs|xt), which is consistent with the results486

in Bao et al. [3] and Bao et al. [2].487

The aforementioned discussion serves as a motivation to acquire higher-order moments and identify a488

corresponding exponential family, which surpasses the Gaussian distribution in terms of complexity.489

However, proposition C.1 shows that finding such exponential family distribution with higher-order490

moments is impossible.491

Proposition C.1 (Infeasibility of exponential family with higher-order moments.). Given the first492

n-th order moments. It’s non-trivial to find an exponential family distribution for minDKL(q||p)493

when n is odd. And it’s hard to solve minDKL(q||p) when n is even.494

C.1 Proof of Proposition C.1495

Lemma C.2. (Gaussian Distribution belongs to Exponential Family). Gaussian distribution p(x) =496

1√
2πσ

exp
(
− (x−µ)2

2σ2

)
is exponential family with t(x) = (x, x2)T and θ = ( µ

σ2 ,− 1
2σ2 )

T497

Proof. For simplicity, we only prove one-dimensional Gaussian distribution. We could obtain:498

p(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(29)

=
1√
2πσ2

exp

(
− 1

2σ2
(x2 − 2µx+ µ2)

)
= exp

(
log

(
2πσ2

)−1/2
)
exp

(
− 1

2σ2
(x2 − 2µx)− µ2

σ2

)
= exp

(
log

(
2πσ2

)−1/2
)
exp

(
− 1

2σ2
(−2µ 1)(x x2)T − µ2

σ2

)
= exp

(
(
µ

σ2

−1
2σ2

)(x x2)T − (
µ2

2σ2
+

1

2
log

(
2πσ2

)
)

)
,

where θ = ( µ
σ2 ,

−1
2σ2 )

T and t(x) = (x, x2)T499

Lemma C.3. (The Solution for Exponential Family in Minimizing the KL Divergence). Suppose500

that p(x) belongs to exponential family p(x, θ) = h(x) exp
(
θT t(x)− α(θ)

)
, and the solution for501

minimizing the Eq[log p] is Eq[t(x)] = Ep(x,θ)[t(x)].502

Proof. An exponential family p(x, η) = h(x) exp
(
ηT t(x)− α(η)

)
∝ f(x, η) = h(x) exp

(
ηT t(x)

)
503

with log-partition α(η). And we could obtain its first order condition on Eq[log p] as:504

▽η log f(x, η) = ▽η(log h(x) + ηT t(x)) = t(x) (30)

▽ηα(η) = ▽η log

(∫
f(x, η)dx

)
=

∫
▽ηf(x, η)dx∫
f(x, η)dx

(31)

= e−α(η)

∫
t(x)f(x, η)dx =

∫
t(x)p(x, η)dx = Ep(x,η)[t(x)]

17



In order to minimize the DKL(q||p) =
∫
q log(q/p) = −Eq[log p], we have:505

Eq[log p] =

∫
dq log(h(x)) +

∫
dq(ηT t(x)− α(η)

=⇒ ∂

∂η
Eq[log p] =

∫
dq[

∂

∂η
(ηTx− α(η))] = 0

=⇒
∫

dq(x− Ep(x,η)[t(x)]) = Eq[t(x)]− Ep(x,η)[t(x)] = 0

=⇒ Eq[t(x)] = Ep(x,η)[t(x)]

And for the second-order condition, we have the:506

∂2

∂η2
α(η) =

∂

∂η

∫
dp(x, η)t(x) (32)

=

∫
∂

∂η
h(x) exp

(
ηT t(x)− α(η)

)
t(x)dx

=

∫
h(x)t(x)

∂

∂η
exp

(
ηT t(x)− α(η)

)
dx

=

∫
h(x)t(x) exp

(
ηT t(x)− α(η)

)
dx(t(x)− Ep[t(x)])

=

∫
p(x, η)dx(t2(x)− t(x)Ep[t(x)])

= Ep(x,η)[t
2(x)]− Ep(x,η)[t(x)]

2 = Covp(x,η)[t(x)] ≥ 0

Therefore, the second-order condition for the cross entropy would be:507

∂2

∂η2
Eq[log p] =

∂

∂η
(Eq[t(x)]− Ep(x,η)[t(x)]) (33)

= −
∫

∂

∂η
p(x, η)t(x)dx

= − ∂2

∂η2
α(η) = −Covp(x,η)[t(x)] ≤ 0

When we assume that the backward process is Gaussian, the solution to Eq. (27) equals to match the508

moment of true distribution and modeled distribution µ = Eq[x], Σ = Covq[x].509

Lemma C.4. (Infeasibility of the exponential family with higher-order moments). Suppose given the510

first N -th order moments Mi, i = 1, .., N and modeled p as an exponential family. It is nontrivial to511

solve the minimum problem Eq[log p] when N is odd and it’s difficult to solve when N is even.512

Proof. While given the mean, covariance, and skewness of the data distribution, assume that we513

could find an exponential family that minimizes the KL divergence, so that the distribution would514

satisfy the following form:515

L(p, λ̂) = DKL(q||p)− λ̂T (

∫
pt−m)⇒ ∂

∂p
L(p, λ̂) = log

p(x)

h(x)
+ 1− λ̂T t = 0 (34)

⇒ p(x) = h(x) exp
(
λ̂T t− 1

)
where, t(x) = (x, x2, x3), p = h(x) exp

(
λ0 + λ1x+ λ2x

2 + λ3x
3
)

and
∫
dpx3 = M3. However,516

when λ3 is not zero,
∫
p = ∞ and density can’t be normalized. The situation would be the same517

given an odd-order moment.518

Similarly, given a more fourth-order moment, we could derive that λ3 = 0 above, and we should solve519

an equation
∫
dpx4 = M4 and p = h(x) exp

(
λ0 + λ1x+ λ2x

2 + λ4x
4
)
. Consider such function:520

Z(λ) =

∫ ∞

−∞
dx exp

(
−x2 − λx4

)
, λ > 0 (35)

18



When λ −→ 0, we could obtain limλ→0 Z(λ) =
√
π For other cases, the lambda can be expanded521

and then integrated term by term, which gives Z(λ) ∼
∑∞

n=0
(−λ)n

n! Γ(2n+ 1/2), but this function522

However, the radius of convergence of this level is 0, so when the λ takes other values, we need to523

propose a reasonable expression for the expansion after the analytic extension. Therefore, for solving524

the equation
∫
dpx4 = M4, there is no analytical solution first, and the numerical solution also brings525

a large computational effort.526

D More information about Fig. 1 and Fig. 2527

D.1 Experiment in Toy-data528

To illustrate the effectiveness of our method, we first compare the results of different solvers on529

one-dimensional data.530

The distribution of our toy-data is q(x0) = 0.4N (−0.4, 0.122) + 0.6N (0.3, 0.052) and we define531

our solvers in each step as p(xs|xt) =
1
3N (µ

(1)
t , σ2

t ) +
2
3N (µ(1)t, σ2

t ) with vectors µ(1)
t , µ(2)

t and532

σ2
t , which can not overfit the ground truth.533

We then train second and third-order noise networks on the one dimension Gaussian mixture whose534

density is multi-modal. We use a simple MLP neural network with Swish activation [31].535

Moreover, we experiment with our solvers in 8-Gaussian. The result is shown in Table 2. GMS536

outperforms Extended AnalyticDPM (SN-DDPM) [2] as presented in Tab. 2, with a bandwidth of537

1.05σL−0.25, where σ is the standard deviation of data and L is the number of samples.538

Table 2: Comparison with Extended Analytic-DPMs w.r.t. Likelihood Eq[log pθ(x)] ↑ on 8-
Gaussian. GMDDPM outperforms Extended AnalyticDPMs.

8-GAUSSIAN

# K 5 10 20 40

SN-DDPM -0.7885 0.0661 0.0258 0.1083
GMDDPM -0.6304 0.0035 0.0624 0.1127

D.2 Experiment in Fig. 2539

In this section, we will provide a comprehensive explanation of the procedures involved in computing540

the discrepancy between two third-order moment calculation methods, as depicted in Fig. 2.541

The essence of the calculation lies in the assumption that the reverse transition kernel follows a542

Gaussian distribution. By employing the following equations (considering only the diagonal elements543

of higher-order moments), we can compute the third-order moment using the first two-order moments:544

Eq(xti−1
|xti

)[xti−1 ⊙ xti−1 ⊙ xti−1 ]G
.
= MG = µ⊙ µ⊙ µ+ 3µ⊙ Σ, (36)

where µ is the first-order moment and Σ is the diagonal elements of second order moment, which can545

be calculated by the Eq. (22) and Eq. (23). Meanwhile, we can calculate the estimated third-order546

moment M̂3 by Eq. (24).547

We use the pre-trained noise network from Ho et al. [12] and the second-order noise network form Bao548

et al. [2] and train the third-order noise network in CIFAR10 with the linear noise schedule.549

Given that all higher-order moments possess the same dimension as the first-order moment µ, we can550

directly compare the disparity between different third-order moment calculation methods using the551

Mean Squared Error (MSE).552

Thus, to quantify the divergence between the reverse transition kernel q(xs|xt) and the Gaussian553

distribution, we can utilize the following equation:554

Ds|t = log
(
Eq(xs|xt)[xs ⊙ xs ⊙ xs]G − M̂3

)2

, (37)

where M̂3 is obtained via Eq. (24), and we can start at different time step t and choose a corresponding555

s to calculate the Ds|t and draw different time step and step size t− s and we can derive Fig. 2.556

19



E Experimental details557

E.1 More discussion on weight of Gaussian mixture558

From Proposition 3.2, we know that when the number of parameters in the Gaussian mixture equals559

the number of moment conditions, any choice of weight matrix is optimal. Therefore, we will discuss560

the choice of parameters to optimize in this section. As we have opted for a Gaussian mixture561

with two components q(xs|xt) = ω1N (µ
(1)
s|t ,Σ

(1)
s|t ) + ω2N (µ

(2)
s|t ,Σ

(2)
s|t ) as our foundational solvers,562

there exist five parameters (considered scalar, with the vector cases being analogous) available for563

optimization.564

Our primary focus is on optimizing the mean and variance of the two components, as optimizing565

the weight term would require solving the equation multiple times. Additionally, we have a specific566

requirement that our Gaussian mixture can converge to a Gaussian distribution at the conclusion of567

optimization, particularly when the ground truth corresponds to a Gaussian distribution. In Tab. 3, we568

show the result of different choices of parameters in the Gaussian mixture.569

Table 3: Results among different parameters in CIFAR10 (LS), the number of steps is 50. The weight
of Gaussian mixture is ω1 = 1

3 and ω2 = 2
3

µ
(1)

s|t ,µ(2)

s|t ,Σs|t µ
(1)

s|t ,Σ(1)

s|t ,Σ(2)

s|t µs|t ,Σ(1)

s|t ,Σ(2)

s|t

CIFAR10 (LS) 4.17 10.12 4.22

When a parameter is not accompanied by a superscript, it implies that both components share the570

same value for that parameter. On the other hand, if a parameter is associated with a superscript, and571

only one moment contains that superscript, it signifies that the other moment directly adopts the true572

value for that parameter.573

It is evident that the optimization of the mean value holds greater significance. Therefore, our574

subsequent choices for optimization are primarily based on the first set of parameters µ(1)
s|t ,µ(2)

s|t ,Σs|t.575

Another crucial parameter to consider is the selection of weights ωi. In Tab. 4, we show the result576

while changing the weight of the Gaussian mixture and the set of weight ω1 = 1
3 , ω2 = 1

2 performs577

best among different weight.578

Table 4: Results among different weight choices in CIFAR10 (LS), the number of steps is 50.

ω1 = 1
100

, ω2 = 99
100

ω1 = 1
5

, ω2 = 4
5

ω1 = 1
3

, ω2 = 2
3

ω1 = 1
2

, ω2 = 1
2

CIFAR10 (LS) 4.63 4.20 4.17 4.26

E.2 Details of pre-trained noise networks579

In Table 5, we list details of pre-trained noise prediction networks used in our experiments.580

Table 5: Details of noise prediction networks used in our experiments. LS means the linear schedule
of σ(t) [12] in the forward process of discrete time step (see Eq. (1)). CS means the cosine schedule
of σ(t) [28] in the forward process of discrete timesteps (see Eq. (1)).

# TIMESTEPS N NOISE SCHEDULE OPTIMIZER FOR GMM

CIFAR10 (LS) 1000 LS ADAN
CIFAR10 (CS) 1000 CS ADAN
IMAGENET 64X64 4000 CS ADAN

20



E.3 Details of the structure of the extra head581

In Table 6, we list structure details of NN1, NN2 and NN3 of prediction networks used in our582

experiments.583

Table 6: NN1 represents noise prediction networks and NN2, NN3 represent networks for estimating
the second- and the third-order of noise, which used in our experiments. Conv denotes the convolution
layer. Res denotes the residual block.

NN1 NN2 (NOISE) NN3 (NOISE)

CIFAR10 (LS) NONE CONV RES+CONV
CIFAR10 (CS) NONE CONV RES+CONV
IMAGENET 64X64 NONE RES+CONV RES+CONV

E.4 Training Details584

We use a similar training setting to the noise prediction network in [28] and [2]. On all datasets, we585

use the ADAN optimizer [39] with a learning rate of 10−4; we train 2M iterations in total for a higher586

order of noise network; we use an exponential moving average (EMA) with a rate of 0.9999. We587

use a batch size of 64 on ImageNet 64X64 and 128 on CIFAR10. We save a checkpoint every 50K588

iterations and select the models with the best FID on 50k generated samples. Training one noise589

network on CIFAR10 takes about 100 hours on one A100. Training on ImageNet 64x64 takes about590

150 hours on one A100.591

E.5 Details of Parameters of Optimizer in Sampling592

In Tab. 7, we list details of the learning rate, learning rate schedule, and warm-up steps for different593

experiments.594

Table 7: Details of Parameters of Optimizer used in our experiments. lr Schedule means the learning
rate schedule. min lr means the minimum learning rate while using the learning rate schedule, ιt is a
function with the second order growth function of sampling steps t.

LEARNING RATE LR SCHEDULE MIN LR WARM-UP STEPS

CIFAR10 MAX(0.16-ιt*0.16,0.12) COS 0.1 18
IMAGENET 64×64 MAX(0.1-ιt*0.1,0.06) COS 0.04 18

where COS represents the cosine learning rate schedule [5]. We find that the cosine learning rate595

schedule works best. The cos learning rate could be formulated as follows:596

αi+1 =


i
Iw

αi if i ≤ Iw

max((0.5 cos
(

i−Iw
I−Iw

π
)
+ 1)αt, αmin) else

(38)

where, at is the learning rate after t steps, Iw is the warm-up steps, αmin is the minimum learning597

rate, I is the total steps.598

E.6 Details of memory and time cost599

In Table 8, we list the memory of models (with the corresponding methods) used in our experiments.600

The extra memory cost higher-order noise prediction network is negligible.601

21



Table 8: Model size (MB) for different models. The model of SNDDPM denotes the model that
would predict noise and the square of noise; The model of GMDDPM denotes the model that would
predict noise, the square of noise, and the third power of noise.

NOISE PREDICTION
NETWORK

(ALL BASELINES)

NOISE & SN PREDICTION
NETWORKS
SNDDPM

NOISE & SN PREDICTION
NETWORKS

(GMDDPM)

CIFAR10 (LS) 50.11 MB 50.11 MB 50.52 MB (+0.8%)
CIFAR10 (CS) 50.11 MB 50.11 MB 50.52 MB (+0.8%)
IMAGENET 64×64 115.46 115.87 MB 116.28 (+0.7%)

In Fig. 5, we report the time ratio on CIFAR10 and ImageNet, which is defined by the time GMS602

required for one iteration divided by the time Extended AnalyticDPM (SN-DDPM) for one step. The603

optimizer is ADAN, and ADAM would be faster than ADAN[39]. We could see that for CIFAR10 or604

ImageNet 64×64, 25 steps of ADAN to estimate the parameters of Gaussian Mixture requires 10%605

extra time to compute, 40 steps require about 20% extra time, therefore, we would make other solvers606

to run 10% more steps (sampling steps) than GMS to keep the same computation time.607

(a) time cost on CIFAR10(LS) (b) time cost on ImageNet 64X64

Figure 5: Generated samples on CIFAR10 (LS), using ADAN (40 steps) to solve the Gaussian
mixture.

Since many parts in the GMS introduce additional computational effort, Fig. 6 reports the distribution608

of the additional computational effort of the GMS and Extended AnalyticDPM (SN-DDPM) relative609

to the DDPM, assuming that the computational time of the network predicting the noise be unit one.610

It should be emphasized that the additional time required serves purely as a reference, as our611

observation indicates that the majority of pixels do not necessitate optimization, and employing a612

Gaussian distribution is satisfactory. Consequently, when we establish a threshold value and the613

disparity between the reverse transition kernel and Gaussian surpasses the threshold pixel prior to614

optimization, we can conserve approximately 4% of computational resources without compromising615

the quality of the results.

Figure 6: Time cost distribution for GMS.

616

22



E.7 Additional results with same calculation cost617

Since GMS will cost more computation in the process of fitting the Gaussian mixture, we use the618

maximum amount of computation required (i.e., an additional 10% of computation is needed) for619

comparison, and for a fair comparison, we let the other solvers take 10% more sampling steps.620

Table 9: Fair comparison with competitive SDE-based solvers w.r.t. FID score ↓ on CIFAR10 and
ImageNet 64×64 with the same computation cost. Our GMS still outperforms existing SDE-based
solvers with the same (maximum) computation cost. SN-DDPM denotes Extended AnalyticDPM
from Bao et al. [2]. The number of sampling steps for the GMS is indicated within parentheses, while
for other solvers, it is represented outside of parentheses.

CIFAR10 (LS)

# TIMESTEPS K 11(10) 22(20) 28(25) 44(40) 55(50) 110(100) 220(200) 1000(1000)

SN-DDPM∗ 17.56 7.74 6.76 4.81 4.23 3.60 3.20 3.65
GMS (OURS) 17.43 7.18 5.96 4.52 4.16 3.26 3.01 2.76

CIFAR10 (CS)

# TIMESTEPS K 11(10) 28(25) 55(50) 110(100) 220(200) 1000(1000)

SN-DDPM∗ 13.26 5.61 4.13 3.69 3.83 4.07
GMS (OURS) 13.80 5.48 4.00 3.46 3.34 4.23

IMAGENET 64 × 64

# TIMESTEPS K 28(25) 55(50) 110(100) 220(200) 440(400) 4000(4000)

SN-DDPM∗ 25.49 20.80 17.88 16.97 16.18 16.22
GMS (OURS) 26.50 20.13 17.29 16.60 15.98 15.79

For completeness, we compare the sampling speed of GMS and non-improved reverse transition621

kernel in Tab. 10, and it can be seen that within 100 steps, our method greatly outperforms Gotta622

Go Fast [15]. It is worth noting that the results of Gotta Go Fast are based on Song et al. [35]’s623

pre-trained model, while ours is based on Ho et al. [12]’s pre-trained model.624

Table 10: Comparison with GOTTA GO FAST [15] w.r.t. FID score ↓ on CIFAR10 and
ImageNet. The number of sampling steps inside the parentheses is our sampling step, while the
number outside the parentheses is GOTTA GO FAST’s sampling step, in order to ensure that the total
time consumption is the same for both methods.

CIFAR10 (VP SDE)

# TIMESTEPS K 11(10) 29(27) 49(45) 145(135) 179 (163) 274 (250) 329 (300)

GOTTA GO FAST 325.33 247.79 72.29 3.03 2.59 2.74 2.70
GMS (OURS) 17.43 5.45 4.22 3.00 3.06 3.08 2.98

E.8 Codes and License625

In Tab.11, we list the code we used and the license.626

Table 11: codes and license.

URL CITATION LICENSE

HTTPS://GITHUB.COM/W86763777/PYTORCH-DDPM HO ET AL. [12] WTFPL
HTTPS://GITHUB.COM/OPENAI/IMPROVED-DIFFUSION NICHOL AND DHARIWAL [28] MIT

23



F SDEdit627

Fig. 7 illustrates one of the comprehensive procedures of SDEdit. Given a guided image, SDEdit628

initially introduces noise to t0. Subsequently, using this noisy image and then discretizes the inverse629

SDE to generate the final image. Fig. 7 shows that the choice of t0 will can greatly will greatly affect630

the realism of sample images. With the increase of t0, the similarity between sample images and the631

real image is decreasing. Hence, apart from conducting quantitative evaluations to assess the fidelity632

of the generated images, it is also crucial to undertake qualitative evaluations to examine the outcomes633

associated with different levels of fidelity. Taking all factors into comprehensive consideration, we634

have selected the range of t0 from 0.3T to 0.5T in our experiments.635

Figure 7: t0 denotes the timestep to noise the stroke

Besides experiments on LSUN 256×256, we also carry out the SDEdit on Imagenet 64×64. In636

Table 12, we show the FID score for different methods in different t0 and different sample steps. And637

our method outperforms other SDE-based solvers as well.638

Table 12: Comparison with competitive methods in SDEdit w.r.t. FID score ↓ on ImageNet64×64.
ODE-based solver is worse than all SDE-based solvers. With nearly the same computation cost, our
GMS outperforms existing methods in most cases.

IMAGENET 64X64, t0 = 1200

# K 26(28) 51(55) 101(111) 201(221)

DDPM,β̃n 21.37 19.15 18.85 18.15
DDIM 21.87 21.81 21.95 21.90
SN-DDPM 20.76 18.67 17.50 16.88
GMS 20.50 18.37 17.18 16.83

G Samples639

From Fig. 8 to Fig. 10, we show generated samples of GMS under a different number of steps in640

CIFAR10 and Imagenet 64×64. Here we use K to denote the number of steps for sampling.641

24



(a) GMS (K = 10) (b) GMS (K = 20) (c) GMS (K = 25) (d) GMS (K = 40)

(e) GMS (K = 50) (f) GMS (K = 100) (g) GMS (K = 200) (h) GMS (K = 1000)

Figure 8: Generated samples on CIFAR10 (LS)

(a) GMS (K = 25) (b) GMS (K = 50) (c) GMS (K = 100)

Figure 9: Generated samples on Imagenet 64×64.

(a) GMS (K = 200) (b) GMS (K = 400) (c) GMS (K = 4000)

Figure 10: Generated samples on Imagenet 64×64.

25


	Introduction
	Background
	Diffusion models
	SDE-based solvers for diffusion models
	Applications of SDE-based solvers for stroke-based synthesis

	Gaussian mixture solvers for diffusion models
	Suboptimality of Gaussian distributions for reverse transition kernels
	Sampling with Gaussian mixture transition kernel
	Estimating high-order moments for non-Gaussian reverse process

	Experiment
	Sample quality on image data
	Stroke-based image synthesis based on SDEdit meng2021sdedit

	Related work
	Conclusion
	Proof
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Calculation of the first order moment and higher order moments
	Modeling reverse transition kernel via exponential family
	Proof of Proposition C.1

	More information about Fig. 1 and Fig. 2
	Experiment in Toy-data
	Experiment in Fig. 2

	Experimental details
	More discussion on weight of Gaussian mixture
	Details of pre-trained noise networks
	Details of the structure of the extra head
	Training Details
	Details of Parameters of Optimizer in Sampling
	Details of memory and time cost
	Additional results with same calculation cost
	Codes and License

	SDEdit
	Samples

