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Abstract

Reinforcement learning (RL) is inspired by the way human infants and animals
learn from the environment. The setting is somewhat idealized because, in actual
tasks, other agents in the environment have their own goals and behave adaptively
to the ego agent. To thrive in those environments, the agent needs to influence
other agents so their actions become more helpful and less harmful. Research
in computational economics distills two ways to influence others directly: by
providing tangible goods (mechanism design) and by providing information (in-
formation design). This work investigates information design problems for a
group of RL agents. The main challenges are two-fold. One is the information
provided will immediately affect the transition of the agent trajectories, which
introduces additional non-stationarity. The other is the information can be ig-
nored, so the sender must provide information that the receiver is willing to re-
spect. We formulate the Markov signaling game, and develop the notions of
signaling gradient and the extended obedience constraints that address these chal-
lenges. Our algorithm is efficient on various mixed-motive tasks and provides
further insights into computational economics. Our code is publicly available at
https://github.com/YueLin301/InformationDesignMARL.

1 Introduction

Reinforcement learning (RL) studies how a world-agnostic agent makes sequential decisions to
maximize utility. It gains increasing popularity and achieves milestone progress in Atari [46, 22],
Go [48], Poker [8, 9, 39], video games [2, 6], and bioinformatics [26], economics [59], etc. The
canonical RL formulation requires the environment to be stationary, meaning that other agents could
not respond to the ego agent’s policy by adapting their own policies [50]. The assumption does not
hold in real applications. Instead, the ego agent, in general, cannot dictate other agents and needs to
influence others so their adaptation becomes more helpful and less harmful.

A substantial subarea of RL, multi-agent reinforcement learning (MARL), investigates the interaction
and influence among multiple RL agents when they are placed in a shared environment. It has
obtained promising results thanks to the generality and diversity of its settings. Examples are pure
cooperative games and pure competitive games. The pure cooperative setting studies agents that work
on a consentaneous goal. In this case, influencing other agents is relatively straightforward. The pure
competitive setting studies zero-sum games. In this case, influencing other agents is less likely to be
practical or even impossible for two-player games. In between these two extreme cases arises the
large, more realistic but less charted area of mixed-motive MARL, where influencing other learning
agents becomes a main challenge [31, 37, 30].
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Studies in computational economics have distilled different ways of directly influencing a rational,
self-interested agent into two types: by providing tangible goods (mechanism design) and by providing
information (information design) [52, 15]. For the former type, tangible goods align perfectly with
RL rewards because rewards are natural and utilitarian. Several works in RL design algorithms for
the ego agent to use the reward to incentivize other agents [57, 58, 59, 29]. For the latter type, the
ego agent must possess information that is helpful to the other agent while not observed by the other
agent. The ego agent then sends a message that partially reveals this information in the hope that the
other agents respect the message and act in a way that benefits the ego agent. The key observation in
information design is that the message needs to be respected, which indicates that the message, apart
from benefiting the ego agent, must also benefit the receiving agent.

Two difficulties persist in modeling and solving information design with reinforcement learning.
The first challenge is the issue of non-stationarity. The receiver’s environment changes as the
sender’s signaling scheme is updated. If the sender uses policy gradient, it does not consider how
modifications to its scheme affect the receiver’s learning [17]. On top of this, the signal impacts
not only the updating phase but also the sampling phase. In fact, the receiver uses the signals from
the sender as part of its input. The signaling scheme will, therefore, directly affect the trajectory
generation. This means that specific techniques in mechanism design, such as hyper-gradient, are
unsuitable, and new methods need to be formulated [57].

The second challenge lies in how the message can potentially be respected by the receiver. The most
general signal space is the set of all state subsets and is exponentially large. An analysis analogous to
the revelation principle proves that there is an optimal signaling scheme that uses a signal space of the
same size as the action space of the receiver, which leads to the classic obedience constraints and the
linear program formulation of information design [28, 40]. However, under the revelation principle, a
signal suggests an exact action, which means the receiver will be dictated by the sender if it respects
the message. When both parties are reinforcement learning agents, such want of dictatorship does not
build trust and respect between them and instead inevitably drives them to the equilibrium where
all signals are ignored. Counter-intuitively, we find that the revelation principle can be removed
under the learning context, and one will need to resort to more persuasive signaling schemes and the
corresponding update methods.

This paper investigates how an informative ego sender could learn to influence a self-interested
receiver with its informational advantage. We propose Markov signaling game for mixed-motive
communication, where in each timestep, the sender encodes and sends a message to the receiver.
After the signaling step, the receiver will act based on the message and its observation. We derive
the signaling gradient to learn the signaling scheme that addresses the non-stationarity problem.
This gradient considers the additional gradient chain from the receiver’s policy and is proved to be
an unbiased gradient estimation. It agrees with our intuition that the influence of the sender on the
behavior of the receiver should be reflected in the gradient term. Based on the signaling gradient,
we design the extended obedience constraints for incentive compatibility of the signaling scheme.2
We further provide an approximation of the gradient of such constraints, which solves the second
challenge because it is suitable for learning algorithms while preserving the optimum of the ego agent.
Information design in MARL is then end-to-end differentiable and learnable with our algorithm.

Numerical experiments on Recommendation Letter and Reaching Goals demonstrate the effi-
cacy of our approach. Extended discussions are provided for the method and the empirical results.

2 Preliminaries and Related Works

Information Design For information design, the core insight is to send messages to change the
posterior beliefs of the receiver, which persuades it to take actions that benefit the sender [52, 15].
The canonical formulation considers a task that a sender wants to persuade a myopic receiver for
one step [28]. The sender and the receiver share a prior distribution P (s) over the state s, which
affects both the payoffs of the sender ri(s, a) and the receiver rj(s, a) (some recent work lifts this
assumption [60]). The sender needs to honestly commit its signaling scheme, which is a policy that
determines the distribution of signals, to the receiver before the interaction. This is referred to as the
commitment assumption.

2A mechanism is said to be incentive compatible if every participant’s optimal strategy, given the strategies
of others and the mechanism’s rules, leads to an outcome that is desired by the mechanism designer.
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The flow of the persuasion process is as follows: (1) The sender commits a signaling scheme to the
receiver; (2) The environment generates a state s. The sender observes the state s and then samples
a message according to the distribution of the committed signaling scheme; and (3) The receiver
receives the message, and then calculates a posterior and chooses an optimal action for itself. Given
the current state and the receiver’s chosen action, the sender and the receiver get rewards from the
environment.

Based on an analysis similar to the revelation principle [28, 19], there is an optimal signaling scheme
that does not require more signals than the number of actions available to the receiver. Thus it is
without loss of generality for the sender to recommend an action directly to the receiver rather than
sending a message. From the self-interested receiver’s perspective, as long as it believes that the
recommended actions are optimal in its posterior belief, it will follow the sender’s advice. This kind
of constraints of the sender’s signaling scheme is called obedience constraints. When such constraints
are satisfied, the signaling scheme will be incentive compatible, meaning that the receiver will follow
the sender’s advice. In this way, the process of information design can be modeled as a constrained
optimization problem

max
φ

Eφ[ w
i(s, a) ], s.t.

∑
s

P (s) · φ(a | s) ·
[
wj(s, a)− wj(s, a′)

]
≥ 0,∀a, a′, (1)

where wi(s, a) and wj(s, a) are the utility functions of the sender and the receiver respectively,
φ(a | s) is the sender’s signaling scheme, and the problem is formulated as a linear program.

Information design is applicable to a vast array of real-world scenarios, including voter coalition
formation [1], law enforcement deployment [21], price discrimination [4], etc. See [27] for a
summary.

Learning to Communicate Communication learning is a significant subarea of MARL. Existing
research primarily focus on fully cooperative settings [16, 49, 42]. Among the proposed methods
in MARL with communication, DIAL [16] is the closest work to ours. It highlights the importance
of the receiver’s feedback to the sender, where the receiver updates its critic network and passes the
gradient back to the sender’s network. This also implies that the sender is assisting the receiver in
evaluating the environment. The altruistic design of the sender is appropriate in fully cooperative
scenarios, but might not extend to mixed-motive scenarios.

MARL communication under mixed-motive settings was attempted in [25]. The work uses social
influence, which is defined via the Kullback-Leibler divergence of the receiver’s policy update, to
measure how persuasive is the sender’s message. It is a pioneer attempt and demonstrates efficacy in
several contexts, but the authors observed that “The listener agent is not compelled to listen to any
given speaker. Listeners selectively listen to a speaker only when it is beneficial, and influence cannot
occur all the time.” This describes a lack of the obedience constraints, and motivates us to propose
algorithms that are more effective and more general.

Related works on mechanism design, sequential information design, and emergent communication
are deferred to Appendix A.

3 Markov Signaling Games

Consider a signaling game involving a sender and a receiver. The sender i is assumed to have access
to the global state s ∈ S, while the receiver j makes decisions based only on its local observation
o ∈ O and received message σ ∈ Σ from i. At each timestep t, the observation ot ∈ O is sampled by
the emission function q : S → O, where the information in ot is a proper subset of the information
in st. We overload the notation and write ot ⊂ st. The receiver’s observation at each timestep is
common knowledge between the sender and receiver. The sender’s informational advantage over
the receiver at each timestep t is reflected by st − ot. By the sender’s informational advantage of
the problem setting, assume that {st − ot}t≥0 affects j’s payoff. This ensures that the sender has
information that the receiver wants to know but does not know.

The sender maintains a stochastic signaling scheme φη : S ×O → ∆(Σ), where φ is parameterized
by η and ∆(X) denotes the set of all random variables on X . The receiver’s stochastic action policy
is denoted as πθ : O × Σ→ ∆(A), where A is the receiver’s action space and θ ∈ Θ is the policy
parameter. Without loss of generality, assume that the sender takes no environmental action. The state
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transition function p : S ×A→ ∆(S) and the reward functions Ri : S ×A→ R (Rj : S ×A→ R)
are dependent on j’s chosen action and are not dependent on i’s message. In this way, i needs to
influence j through its signaling scheme, which indirectly affects its long-term payoff expectation.

Then, a Markov signaling game (MSG, Figure 1) is defined as a tuple

G =
(
i, j, S,O,Σ, A,Ri, Rj , p, q

)
.

At each timestep t in G, i observes a state st ∈ S and j’s observation ot ∈ O is sampled by q, and
then i sends a message σt based on φη. Then j takes action at ∈ A based on its policy πθ and the
environment transits to the next state s′ ∈ S according to the transition function p. Meanwhile, player
i (respectively, j) receives the reward rit (rjt ) via the reward function Ri (Rj). The agents and the
environment repeat this process until the environment terminates the episode.

Figure 1: Illustration of the Markov signaling game. The arrows symbolize probability distributions,
whereas the nodes denote the sampled variables.

The value functions in MSGs are similar to the value functions in Markov decision processes
(MDPs). The sender’s state value function V i

φ,π(s) = Eφ,π

[
Gi

t | st = s
]

defines the expected return
of the sender at a state, where Gi

t =
∑∞

k=t γ
k−trik+1. The signal value function Q for player i

denotes the same expectation but under an additional condition of sending signal σ at the state s, as
Qi

φ,π(s, σ) = Eφ,π

[
Gi

t | st = s, σt = σ
]
. The action value function U is the same expectation that

conditions on all variables st, σt, at, as U i
φ,π(s, σ, a) = Eφ,π

[
Gi

t | st = s, σt = σ, at = a
]
. Notice

the transition function and the reward functions are not dependent on σ. We then define the marginal
action value function W i

φ,π(s, a) = Eφ,π

[
Gi

t | st = s, at = a
]
= U i

φ,π(s, σ, a). The receiver’s value
functions are similarly defined, by replacing Gi

t with Gj
t .

Assume that the agents involved are self-interested, i.e., they are focusing solely on optimizing their
own payoffs. However, their payoffs are general and are not necessarily the environmental rewards.
For instance, the sender may replace its reward function Ri with (Ri +Rj) as its optimization goal,
which would result in it “selfishly” optimizing for the social welfare.

MSG is new to the community and the features of MSG are quite distinctive: (1) The sender and
receiver are heterogeneous, with the sender having an informational advantage; (2) Their interests
may differ and thus they are in a mixed-motive scenario; (3) The sender ’signal does not influence
anyone’s reward. Thus the sender can only influence the receiver’s belief to improve its own expected
payoffs; (4) The receiver can take actions to directly determine the payoffs for both parties, but lacks
sufficient information to estimate the current state and needs to obtain information from the sender.

There are several extensions of the MSGs. For example, (1) One may allow the sender to take
environmental actions; (2) The sender may only have a partial observation of the state; (3) There
could be multiple senders and receivers. Discussions on these extensions are deferred to Appendix B.

4 Method

The fundamental concept of information design is the sender optimizing its payoffs while adhering
to the obedience constraints, as referenced in Equation (1). However, persuasion becomes more
challenging in sequential and learning scenarios, due to the non-stationarity and the existence of the
trivial equilibrium where all messages are arbitrary and are ignored.

The first obstacle is non-stationarity, a recognized issue in MARL, that is especially problematic in
communication since it requires bi-level optimization. During the early stages of training, the sender’s
signaling scheme is mostly random and provides little information, which can quickly break the trust
between mixed-motive agents and lead to the trivial equilibrium. The second difficulty is the want
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of dictatorship. In the original obedience constraints, the receiver’s policy is set to be deterministic
by the revelation principle. It means that recommending a wrong action is non-forgiving, and thus
suitable for a trial-and-error algorithm. This will also lead to the trivial equilibrium. In this section,
we present how these challenges are addressed and how information design is learned.

4.1 Signaling Gradient

The proposed signaling gradient is utilized to compute the gradient of the sender’s long-term expected
payoff w.r.t. its signaling scheme parameters. When calculating this gradient, it explicitly takes into
account the chain of the receiver’s policy. This helps alleviate the non-stationarity between agents.

In MSGs, the signaling scheme affects the distribution of signals, indirectly impacting the receiver’s
action, which then determines the payoffs for all agents. Specifically, the sender’s expected payoff
is expanded as Eφ,π

[
V i
φ,π(s)

]
=

∑
s,o,σ,a

dφ,π(s) · q(o | s) · φη(σ | s, o) · πθ(a | o, σ) · U i
φ,π(s, σ, a),

where dφ,π is the state visitation frequency given φη and πθ. Similar to the case of the policy gradient
(PG), the relationship between state visitation frequency and π cannot be explicitly written. The
introduction of communication φ further complicates this process as it involves deriving∇ηdφ,π(s).

We utilized a method similar to the policy gradient to derive the gradient ∇ηEφ,π

[
V i
φ,π(s)

]
and

obtain an unbiased gradient estimation. We call this estimation the signaling gradient. The proof of
the lemma is deferred to Appendix D.
Lemma 4.1. Given a signaling scheme φη of the sender and an action policy πθ of the receiver in an
MSG G, the gradient of the sender’s value function V i

φ,π(s) w.r.t. the signaling parameter η is

∇ηV
i
φ,π(s) ∝ Eφ,π

[
W i

φ,π(s, a) · [∇η log πθ(a | o, σ) +∇η logφη(σ | s, o)]
]
. (2)

It is worth noting that E
[
W i

φ,π(s, a)∇η log πθ(a | o, σ)
]
̸= 0 and W i

φ,π(s, a) takes an action as an
input. As a consequence of this derivation, the sender’s updated term includes the receiver’s policy
and action. This result aligns with intuition, as this additional term reflects the sender’s consideration
of its impact on the receiver.

One may naturally regard the signal as an action and directly apply the policy gradient. If so, one will
obtain Eφ,π

[
Qi

φ,π(s, σ) · ∇η logφη(σ | s)
]
. This gradient will then be independent of the receiver’s

action and is therefore biased.

Connections to Other MARL Methods There are three perspectives to gain insights from the
derivation of the signaling gradient. The first perspective is that the signaling gradient can be regarded
as policy-based feedback from the receiver instead of value-based feedback in DIAL [16]. The second
perspective is that the signaling gradient and LOLA [17] are similar in alleviating the non-stationarity
in MARL communication. (More discussions are deferred to Appendix H.4.) Since MSGs consider
the coupling decision-making processes of both parties, the signaling gradient involves the sender
taking the initiative to consider how to influence the receiver. In contrast, LOLA involves an agent
proactively adapting to other people’s updates. The third perspective is that the signaling gradient can
be seen as a first-order gradient that is absent in LIO [57]. This new gradient chain can be explicitly
derived because the signaling scheme directly affects the receiver’s sampling phase.

4.2 Policy Gradient for the Receiver

From the receiver’s perspective, the decision process can be modeled as a partially observ-
able MDP (POMDP), in which its observation is O × Σ in the corresponding MSG. There-
fore, the receiver can optimize its payoff expectation V j

φ,π(o, σ) by calculating the gradient
Eφ,π

[
Aj

φ,π(o, σ, a) · ∇θ log πθ(a | o, σ)
]
, where A(o, σ, a) = Q(o, σ, a) − V (o, σ) is the advan-

tage function [51]. Compared to the receiver in Bayesian persuasion ([28], see Section 4.5.1 for more
details), the policy of the receiver in MSGs is now stochastic rather than deterministic, which allows a
larger capacity in taking different actions and a larger capacity in decoding the received information.

4.3 Extended Obedience Constraints

In the learning algorithm context, we consider the sender’s informational advantage on the current
state s and investigate the incentive compatibility of the receiver. As an analogous of (1), the prior
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of such information is then the occupancy measure dφ,π(s) of the state condition on the current
signaling scheme and action policy. The payoff function wj(s, a) corresponds to the action value
function W j

φ,π(s, a) in Markov signaling games.

It amounts to deciding the signal space Σ. The revelation principle states that there is an optimal
signaling scheme that does not require more signals than the number of actions available to the
receiver. If one follows the revelation principle, one would reasonably use Σ = A, resulting in the
following obedience constraints.∑

s

dφ,π(s) · φη(a | s) ·
[
W j

φ,π(s, a)−W j
φ,π(s, a

′)
]
≥ 0, ∀a, a′ ∈ A. (3)

These constraints are technically correct. However, in the learning context, having only |A| possible
signals means that the receiver either completely follows the suggested action or completely ignores
the message. The former happens only if the obedience constraints are satisfied. In sequential
interactions, the constraints will, of course, be violated occasionally. However, the dictatorship nature
of the signaling scheme fails to sway the receiver without consistent satisfaction with the constraints.

Moreover, consider the trivial equilibrium between the sender and the receiver: The sender does
not reveal useful information, and the receiver ignores the message. At this point, neither side
could escape from the equilibrium alone. This means it is likely to fail once the learning algorithm
converges to the trivial equilibrium. One natural choice is to send the information to the receiver
instead of dictating actions. In this way, the receiver, as a learning agent, is more likely to be able to
utilize the information and is more likely to respect the message.

Therefore, we extend the obedience constraints to general, continuous signal space Σ that describes
the state. A common choice is Σ = S. The following lemma asserts that the extended obedience
constraints impose the same optimum as with the obedience constraints.
Lemma 4.2. Given a receiver’s observation o, the extended obedience constraints (4) in MSGs yield
the same optimum as the obedience constraints (3).∑

s

dφ,π(s) · φη(σ | s, o) ·
∑
a

[
πθ(a | o, σ)− πθ(a | o, σ′)

]
·W j

φ,π(s, a) ≥ 0, (4)

for all σ, σ′ ∈ Σ.

The lemma assumes the sender can access the receiver’s policy and observation. Otherwise, the
sender may use inferring methods to maintain an estimation of that (an example is [35]). This lemma
is proved using the same argument in [3]. For convenience, in later sections, the left-hand side of (4)
is denoted as Cφ(σ, σ

′).

4.4 Learning Markov Signaling Games

Given a joint policy π, the self-interested sender attempts to optimize its payoff expectation in an
MSG while satisfying the extended obedience constraints. This optimization problem is

max
η

Eφ,π

[
V i
φ,π(s)

]
, s.t. Cφ(σ, σ

′) ≥ 0, ∀σ, σ′. (5)

Since we are employing a learning-based approach, it is necessary to calculate the gradient
∇ηCφ(σ, σ

′). In this way, our method is model-free and does not require the prior knowledge
of P (s) (the occupancy measure dφ,π(s)). Unfortunately, when calculating the gradient of the
extended obedience constraints, the technique used in the signaling gradient cannot be applied to
reveal the dependency of dφ,π on φ. Instead, the gradient is estimated using the biased sampling
method as below.

∇ηĈφ(σ, σ
′) =

1

T

∑
st∈τ

[∑
a

(πθ(a | ot, σ)− πθ(a | ot, σ′)) ·W j
φ,π(st, a) · ∇ηφη(σ | st, ot)

]
,

(6)
where τ is a sampled trajectory with T timesteps, and σ′ is randomly sampled, instead of being
sampled from the signaling scheme. Despite that σ is from the data that is generated from φ, the
purpose of having these σ, σ′ is to find the violation of the ∀σ, σ′ constraints. Therefore in extended
obedience constraints∇ηπθ(a | o, σ) = 0, which is different from the signaling gradient.
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There are various methods available to solve the constrained optimization problem (5) iteratively, e.g.,
the Lagrangian method, the dual gradient descent method (DGD) [7]. We tested both methods in the
experiments and we found that the Lagrangian method has better performance. See Appendix H.5
for the details. Taking the Lagrangian method as an example, The update of the signaling scheme
parameters η(k) for the k-th iteration is

η(k+1) ← η(k) +∇ηEφ,π

[
V i
φ,π(s)

]
+
∑
σ,σ′

λσ,σ′ · ∇η

(
Ĉφ(σ, σ

′)
)−

, (7)

where λσ,σ′ denotes the non-negative Lagrangian multipliers (predefined as hyperparameters), and
(·)− = min{0, ·}.

4.5 Discussions on Method

4.5.1 Lift to the Commitment Assumption

The most controversial but reasonable assumption in information design is the commitment assump-
tion. In Bayesian persuasion (one-to-one persuasion) [28], the sender will commit to a signaling
scheme first. The sender determines its signaling scheme before the games start and honestly tells it
to the receiver. A justification of the commitment assumption is that, in a repeated game where a
long-term sender interacts with a sequence of short-term receivers, the commitment will naturally
emerge in equilibria. This is due to the sender’s need to establish its reputation for credibility, which
is essential for optimizing its long-term payoff expectations [45].

However, the reputation system between the receivers still needs to be well-defined, so the receivers
that have previously interacted cannot convey information about the sender to the receivers that
will interact later. Without a reputation system, the sender can optimize its payoff by claiming a
respectful signaling scheme while taking an exploitable one. Instead, RL allows for organic and
repeated interactions between senders and receivers in a given environment, more closely resembling
real-world scenarios. This unique feature enables the learning framework to capture policy evolution
and better replicate phenomena in human society.

4.5.2 Lift to the Revelation Principle

The extended obedience constraints remove the revelation principle analysis from the obedience
constraints, thereby reverting the sender’s behavior from “action recommending” to “signal sending”.
In this way, the sender’s set of signals becomes redundant. The redundancy renders the signaling
scheme more general and amenable to learning-based approaches. Previously, the signaling scheme
required a one-to-one mapping to recommend a particular action, where recommending an undesired
action can be non-forgiving. With the introduction of redundancy, the sender can now learn many-
to-one mappings to refer to the wanted action distribution, which is a more lenient way for a
trial-and-error method. This redundancy is similar to other areas of learning algorithms. For example,
one could increase the size of the neural network beyond the information theory necessity to better
encode and represent the mapping.

4.5.3 Far-sighted Receiver

The nature of RL determines that the receiver in MSGs is considering the cumulative reward. This lifts
the commitment assumption and evolves the trustworthiness of the sender’s signaling scheme. But
meanwhile, the cumulative reward formulates that the receiver must be far-sighted, which is different
from the common assumption of a myopic receiver in information design. In fact, a far-sighted
receiver is inevitable once we lift the commitment assumption.

A far-sighted receiver is, in general, regarded hard in the literature. Gan et al. [18] prove that
information design with a far-sighted receiver is NP-hard. One could intuitively see this from the
Recommendation Letter example (See Appendix F). The HR can deliberately choose not to hire
any students, even when the signaling scheme satisfies the obedience constraints, hoping to force
the professor to be more honest (i.e., reveal more information) in the future. The optimality of the
receiver’s policy is undefined in this setting.
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One way to empirically prevent this is to set an additional constraint
∫
σ,σ′ Cφ(σ, σ

′)dσdσ′ ≥ ϵ apart
from the obedience constraints Cφ(σ, σ

′) ≥ 0 in Equation (5), where ϵ > 0. A more substantial
improvement in reward will incentivize the receiver to establish trust in the long run.

4.5.4 Hyper Gradient

Our approach shares similarities with LIO (discussed in Appendix A), as both methods allow agents
to alter their parameters to indirectly enhance their payoff expectations by influencing others. In their
cases, agents achieve influence by offering rewards to others. The main difference between rewarding
and signaling is that the former solely impacts others’ policy updates (as the gained rewards are used
exclusively for updating). In contrast, the latter additionally affects the sample generation.

In methods to incentivize others, the gradients of the receiver’s one-step policy update w.r.t. the
sender’s rewarding network parameters are required to capture the sender’s influence on the receiver.
This kind of gradient is second-order and can be viewed as a hyper-gradient.

Unlike incentive-based interventions, in communication methods, the sender’s outputs are the inputs
of the receiver’s actor. The sender can achieve influence while generating trajectories. Hence, our
primary focus is on studying the first-order gradient of the receiver’s policy w.r.t. the sender’s
signaling parameters, i.e., ∇ηπθ(a | o, σ). The second-order gradients can also be computed, as
shown in Equation (21) in the appendix. The effect of the hyper gradient is left for future work.

4.5.5 Sender’s Access to Receiver

In signaling gradient, the updating of the sender’s signaling scheme needs to backpropagate through
the receiver’s policy during training. Accessing the opponent in mixed-motive settings might sound
counterintuitive at a glance, but this setting is actually reasonable and technically feasible.

In MARL algorithms, the Centralized Training with Decentralized Execution (CTDE) framework is
commonly used [35]. This means that in the simulated environment, data is centralized and accessible
during training, which allows us to use all the required quantities. Once the training is completed, the
agent no longer has access to other agents.

From the information design perspective, we may consider the receiver as a “dummy” learning agent
that is auxiliary in centralized training. Once a sender agent is trained, it finds the (coarse correlated)
equilibrium that is no longer connected to specific receivers. The sender is supposed to persuade any
rational, self-interested agents in subsequent interactions with them.

Technically, in communication methods, it is common for gradients to pass through other agents
during training. We adopted the commonly used Gumbel-Softmax technique in the field of emergent
communication research to allow for end-to-end differentiation, which is used to retain the gradients
of sampled signals [24, 20].

5 Experiments

The method proposed in this paper is validated in Recommendation Letter and Reaching Goals.
The receiver’s action policy is implemented by the advantage actor-critic (A2C) [38]. Each curve in
the experimental result graphs is drawn with at least 15 random seeds. All the seeds are included in
the results (including those failed ones). Running 4 seeds with 2 NVIDIA GeForce RTX 3090, the
longest time is Reaching Goals with 5× 5 map, which takes up to a day.

Our designed algorithm takes the perspective of a self-interested sender. Therefore, the measure of
success for our algorithm primarily depends on the sender’s reward ri. However, we also present
the curve of ri + rj (social welfare) in an attempt to demonstrate that even when the sender is
self-interested and the signaling scheme is somewhat deceptive, it does not harm social welfare, and
it might even enhance social welfare in some scenarios.

5.1 Recommendation Letter

Recommendation Letter is a classic example in information design [15, 28]. In this task, a
professor will write recommendation letters for a number of graduating students, and a company’s
human resources department (HR) will receive the letters and decide whether to hire the students.
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The professor and the HR share a prior distribution of the candidates’ quality, with a probability of
1/3 that the candidate is strong and a probability of 2/3 that the candidate is weak. The HR does not
know exactly what each student’s quality is but wants to hire strong students, while the letters are the
only source of information. The HR will get a reward of 1 for hiring a strong candidate, a penalty of
−1 for hiring a weak candidate, and a reward of 0 for not hiring. The professor gets a 1 reward for
each hire. In this section, we focus on analyzing the experimental results, while a classic analysis of
the three situations is presented in Appendix F.

In the experiments, we primarily compared the performance of policy gradient class algorithms (PG),
PG class algorithms with obedience constraints (PGOC), DIAL [16], signaling gradient (SG, our
ablation), and signaling gradient with obedience constraints (SGOC, our proposed method) in learning
a signaling scheme. More specifically, the PG class algorithm utilized in experiments refers to A2C.
Furthermore, SG also employed A2C techniques, including the use of the actor-critic framework,
target critic, and advantage function (adapted to W i(s, a)− V i(s) in MSGs). The algorithms with
obedience constraints are also required to maintain an extra critic for estimating W j(s, a). We let
φη(σ | s, o) = φη(σ | s) and Σ = {0, 1}. The performance comparisons are shown in Figure 2 (a-c).

SGOC SG PG PGOC DIAL

(a) ri (b) rj (c) ri + rj (d) ri in 5× 5 map

(e) ri in 3× 3 map (f) rj in 3× 3 map (g) ri + rj in 3× 3 map (h) ri + rj in 5× 5 map

Figure 2: Comparisons of the performance. (a-c) The results of Recommendation Letter. (d-h)
The results of Reaching Goals. The rewards and penalties are amplified by 20 and 5 (12 and 3.5)
respectively in 3× 3 (5× 5) map.

The experiment results show that the three examples (two equilibria plus the honest signaling scheme)
introduced in Section 1 have emerged. The algorithms with obedience constraints (PGOC and SGOC)
reach the third equilibrium (the best for the sender), DIAL reaches the second example (the best for
the receiver), and PG and SG reach the first equilibrium (the worst for both parties). Given that the
Recommendation Letter task is not a problem with interdependent states, it is justifiable to expect
that the performance of PGOC and SGOC (PG and SG) would be similar.

5.2 Reaching Goals

To reflect the inconsistency of the interests and the information asymmetry, we evaluate the methods
in the Reaching Goals task. In this challenging task, the sender and receiver have different goals:
the sender wants the red apple, while the receiver wants the green apple. At any given time, there is
one of each type of apple on the map. Only the receiver is able to move around to reach apples in the
grid-world map. The conflict of interest arises because these two types of apples are independently
generated at random, and their locations are typically not the same. The receiver will not get a reward
for reaching the red apple, but it does not know where the green apple is. The sender, on the other
hand, knows the location of both types of apples, but can only get a reward when the receiver reaches
the red apple. The sender can only indirectly optimize its payoff by sending messages to influence
the receiver’s actions. Moreover, this conflict can be exacerbated by designing distance penalties.
After each timestep, both agents will get a penalty based on the distance between the receiver and its
desired goal. And we set a fixed horizon of 50 for each episode in this scenario. Example maps of
Reaching Goals are shown in Figure 6.
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To evaluate the efficacy of SGOC, we conducted experiments on maps of 3× 3 and 5× 5, and the
results are presented in Figure 2. Let the signal space Σ = S1, where S1 is one channel out of three
channels (the locations of two apples and the receiver’s position) of the image. The receiver can only
see its position. The experiments of having a larger oj are included in Appendix H.7. The smaller the
oj , the greater the sender’s persuasion ability. From the empirical results, the signaling gradient is
shown to be an essential factor in sequential communication scenarios.

5.3 Discussions on Experiments

5.3.1 Symmetricity of the Signaling Schemes

An interesting phenomenon is observed in the Recommendation Letter experiments: training with
different random seeds may result in different pairs of encoders and decoders. In other words, the
professor may signal 1 to indicate a strong student (or recommend this student) in some seeds, while
in others, this is signaled by 0. However, regardless of which case it is, the paired HR can always
understand the semantics of the signals (reflected in the evolution of the receiver’s policy). Based on
the outcomes, the seeds are divided into two parts (A seeds and B seeds).

This phenomenon is reasonable since we do not make any prior assumption about signaling semantics.
The symmetric results of Recommendation Letter experiments are shown in Figure 3.

A Seeds B Seeds

(a) φ(1 | “W”) (b) φ(1 | “S”) (c) π(“H” | 0) (d) π(“H” | 1)

Figure 3: The signaling schemes and the action policy by SGOC. (a) The prob. of signaling 1 for
Weak students. (b) The prob. of signaling 1 for Strong students. (c) The prob. of choosing to Hire
when signaled 0. (d) The prob. of choosing to Hire when signaled 1.

5.3.2 Honesty of the Sender

As discussed in Section 4.5.3, the obedience constraints can be associated with an additional constraint∫
σ,σ′ C

j
φ(σ, σ

′)dσdσ′ ≥ ϵ. The hyperparameter ϵ > 0 is set to improve the credibility of signaling
schemes in practical situations and to cope with the RL capacity of the receiver. Define the honesty
metric as |φ(1 | “S”)− φ(1 | “W”)|. The experiments show that the larger the ϵ and the Lagrangian
λ, the more honest the signaling scheme will be, as shown in Figure 8 in the appendix.

6 Conclusion

We investigate information design, a substantial and open area, for MARL that discusses mixed-
motive communication. Technically, we propose the Markov signaling games to describe the problem
and provide its characterizations. We then prove the signaling gradient lemma, which gives an
unbiased way to estimate the gradient and update the sender’s signaling network. To learn the
incentive compatibility of the signaling scheme, we propose extended obedience constraints. The
new constraints are more suitable for learning algorithms and practically promote mutually beneficial
signaling schemes. The commitment assumption and the revelation principle are lifted by investigating
information design with MARL. Experiments and extended discussions are presented to demonstrate
the efficacy of our framework and algorithm.
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A Other Related Works

Mechanism Design In parallel to the setting at hand, mechanism design3 addresses situations
in which agents possess distinct and private preferences [41, 13, 47]. The crux of this approach
entails devising regulations that incentivize agents to candidly disclose their preferences in their
own self-interest, culminating in a collectively optimal outcome. The community has extensively
investigated the analytical paradigm of mechanism design. However, this paradigm is constrained
by several factors such as linear agent cost and planner incentive functions [44], finite single-stage
games [34], and state-based potential games [33]. Consequently, these simplifications restrict its
applicability in nonlinear, temporally-extended environments [58].

To overcome these limitations, recent works adopt the agent-based simulation [53] and utilize SOTA
agent learning methods such as MARL for mechanism design. While this approach sacrifices
analytical tractability, it offers greater flexibility and applicability in complex environments [58].
As a method of mechanism design, providing rewards has been applied to MARL. For example,
LIO allows the RL agents to send rewards directly to others, which can be used to solve first-order
social dilemmas (e.g. iterated prisoner’s dilemma and tragedy of the commons) and improve social
welfare [57, 58]. The other perspective of influencing by rewards is taxation. By adopting RL, the AI
economist improves utilitarian social welfare in one-step co-adaptive learning scenarios [59].

Besides, to elicit the desired social choice (the aggregation of the preferences of all the agents),
the method of mechanism design is not necessarily to be providing rewards, but also more general
mechanisms, such as distribution rules of public goods. For applications, [29] proposed a method that
designs mechanisms by RL for voting. Their designed mechanisms successfully won the majority
vote at the human level in a public goods social dilemma.

Sequential Information Design Information design has recently been extended to sequential
scenarios [19]. To model the coupling decision processes of the sender and the receiver, Markov
persuasion processes (MPPs) are proposed in [18], and [56]4. [18] proved that persuading a far-
sighted receiver in MPPs is NP-hard, and [56] proposed a learning method for persuading a bunch of
one-shot myopic receivers in MPPs. On the other hand, [5] proposed a learning method for a sender
to persuade a far-sighted receiver without knowing the prior belief. Besides, [11] proposed a variant
of obedience constraints for persuading multiple receivers in sequential interactions. The studies
above have provided a solid theoretical foundation. However, all current discussions on this topic
still rely on the commitment assumption and the revelation principle and need more algorithms that
work in practical scenarios.

Compared to applying mechanism design to reinforcement learning, applying information design
approaches to reinforcement learning presents a more challenging task. This is because the signals
directly influence the agents’ interactions, not only in their update phase but also in the generation of
trajectory data. In contrast, the reward in mechanism design only affects the agent’s update phase
since it is solely used during updates. Therefore, the existing mechanism design in MARL methods
cannot be directly applied to the case of information design, and alternative analyses are required.

Reference Games Reference games are usually cooperative tasks (e.g. Lewis signaling games [32]).
The core of these tasks is how the sender efficiently conveys its information to the receiver, enabling
the receiver to take a specific action desired by both the sender and receiver. The crucial aspect lies
in how the sender conveys information to enable the receiver to understand the intended semantics.
Therefore, the sender aims to transmit as much of its available information as possible. While
information design focuses on mixed-motive communication tasks. The receiver’s action will
determine the payoffs for both parties, but there may not be a specific action that is desired by both.
In fact, the self-interested sender’s goal is not to maximize the transmission of its known information,
but to leverage its informational advantage to confuse the self-interested receiver, so as to maximize

3In the literature, the term mechanism design sometimes refers to a border definition that includes direct
influence methods (e.g. providing tangible goods and information), and indirect methods (e.g. building
reputations systems and infrastructure systems).

4Although both works name their models as MPPs, they are different models. In [18], the sender’s informa-
tional advantage is separated from the states and has no impact on the state transitions. In [56], a new myopic
receiver interacts with the sender every timestep. Both are different from our model.
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its own payoffs. The sender aims to persuade the receiver to take actions that are advantageous to the
sender. In fact, senders typically learn deceptive strategies.

Emergent Communication Another domain closely related to our work is emergent communica-
tion [12, 10, 20, 55]. A close connection is found in [10], as they mention a negotiation environment
which is indeed a mixed-motive task. The communication protocol we study employs the linguistic
channel they mentioned, satisfying two primary characteristics: (1) Non-bindingness: Messages
conveyed through this channel don’t bind the sender to any action or state, given the sender’s empty
action space, rendering the communication as purely cheap talk; (2) Unverifiability: The absence
of an intrinsic connection between the linguistic expression and the actual state of affairs implies
a potential for deceit by the sender. Contrary to their methodology where self-interested agents
fall short in achieving favorable outcomes via a linguistic channel, our approach facilitates good
performance in Markov signaling games.

B Extensions of Markov Signaling Games

The MSG defined above can be extended to more general settings. Some of these extended models
are compatible with our methods, requiring only minor modifications. Some extensions, though,
require further investigation and are left for future work.

The Sender’s Actions It is immediate to allow the sender to take action at the same time as sending
signals. In cases where the sender is permitted to take environmental actions beyond signaling, the
sender i chooses actions ai ∈ Ai according to its policy πi

θi : S×Σ→ ∆(Ai). Notably, the sender’s
action policy considers the signals it sends to the receiver in the same round. This is necessary to
enable the adaptation to a variety of receiver responses induced by the dispatched signals.

Partial Observability of the Sender In some scenarios, the sender may only have access to a
partial observation oi. Under an informational advantage (oi − oj ̸= ∅, and {oit − ojt}t≥0 affects
j’s payoff) condition, there are 4 possible cases for oit and ojt , as shown in Figure 4. Case 2 can be

(a) Case 1 (standard MSG) (b) Case 2 (c) Case 3 (d) Case 4

Figure 4: Sender i has informational advantage over receiver j. The informational advantage is
reflected by oit − ojt . The receiver’s observation in standard MSGs is turned to oit ∩ ojt in every case.

handled well in practice. The sender could estimate the current state from its observation sequence,
similar to methods in partially observable Markov decision processes (POMDPs) [14]. In Cases 3
and 4, the sender needs to estimate ojt − oit ̸= ∅ (information that the receiver know but the sender
does not) and consider the effect of it. We leave Cases 3 and 4 for future work.

Multiple Senders One possible approach to model multiple senders is by modeling a separate
MSG for each sender. However, it treats each sender independently and overlooks the interplay
among them. The general setting should model this as a game among senders and further specify the
receiver’s decision based on multiple signals received from different senders. This is an important
topic for future works because, more generally, more than one agent possesses such information.

Multiple Receivers Markov signaling games with multiple receivers are an immediate extension.
The conclusions of the signaling gradient Lemma 4.1 can also be applied. However, if the sender
wants to persuade a group of receivers simultaneously, additional considerations need to be taken into
account for extended obedience constraints. Since the reward is determined by all receivers’ actions,
the sender must simultaneously consider the effects of signaling to all receivers, the dependencies of
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which are not yet clear. This issue is left for future work. In this section, we redefine the model for
clarity. Subsequent discussions in the appendix are based on this extension.

Consider a signaling game involving 1 sender and N receivers, where J = {0, 1, . . . , N −1} denotes
the set of receivers. The signaling channel between the sender and each receiver is private, so the
messages sent through each channel are only observable to the sender and the corresponding receiver.
Σj denotes the message set of receiver j ∈ J , and the joint message set is defined as Σ =

∏
j Σ

j .
Each receiver j ∈ J makes decisions based only on received messages and its observation oj ∈ Oj .
At each timestep, the environment generates a joint observation ot ∈

∏
j O

j according to the
emission function q : S →

∏
j O

j , where each signal ojt ⊂ st is a proper subset of st. The sender’s
informational advantage over receiver j is reflected by st− ojt , where {st− ojt}t≥0 affects j’s payoff.

The sender maintains a stochastic signaling scheme φη : S → ∆(Σ). The stochastic action policy
of receiver j is denoted as πj

θj : Oj × Σj → ∆(Aj). Specifically, πj
θj (a

j | oj , σj) represents the
probability of receiver j choosing an action aj given the message σj and the observation oj received.
The joint action space is then defined as A =

∏
j A

j , where Aj is the action space of receiver j
and θj ∈ Θj is the corresponding policy parameter. And the joint policy of all agents is defined as
πθ(a | o,σ) =

∏
j π

j
θj (a

j | oj , σj), where a ∈ A, and θ ∈
∏

j Θ
j . When the context is clear, we

will drop the subscripts for the parameters and let πj
θ denote πj

θj .

Figure 5: An illustration of the Markov signaling game with multiple receivers. The arrows symbolize
probability distributions, whereas the nodes denote the sampled variables.

Then, a Markov signaling game with multiple receivers(Figure 5) is defined as a tuple

G′ =
(
i, J, S, {Oj}j∈J , {Σj}j∈J , {Aj}j∈J , R

i, {Rj}j∈J , p, q
)
.

In G′, the sender i observes a state s ∈ S and sends messages σ based on φη, and the environment
generates joint observations o according to the emission function q. Then all agents take actions
a based on the joint policy πθ and the environment transits to the next state s′ according to the
transition function p : S ×A→ ∆(S). Meanwhile, the sender i (respectively, a receiver j) receives
the reward ri (rj) via the reward function Ri : S ×A→ R (Rj : S ×A→ R). The agents and the
environment repeat this process until the environment terminates the episode.

The definition of value functions for the sender’s signaling process in MSGs with multiple receivers
can be immediately obtained from the definition in MSGs. The sender’s state value function is defined
as V i

φ,π(s) = Eφ,π

[
Gi

t | st = s
]
. The signal value function Q for the sender of taking signal σ at

the state s is Qi
φ,π(s,σ) = Eφ,π

[
Gi

t | st = s,σt = σ
]
. The action value function U is defined as

U i
φ,π(s,σ,a) = Eφ,π

[
Gi

t | st = s,σt = σ,at = a
]
. And still, W i

φ,π(s,a) = U i
φ,π(s,σ,a).

C Bellman Equations in Markov Signaling Games

According to the definitions of the value functions in MSGs (defined in Section 3) and the law of
total expectation, it can immediately derive a variant of Bellman equations as

V i
φ,π(s) =

∑
o

Pr(o | s)
∑
σ

Pr(σ | s,o)
∑
a

Pr(a | s,o,σ) · U i
φ,π(s,σ,a)

=
∑
o

q(o | s)
∑
σ

φη(σ | s)
∑
a

πθ(a | o,σ) · U i
φ,π(s,σ,a).

(8)
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In particular, in our current model, we set the environment to not give any reward to the signaling
processes. And there is no cost for sending a message. Thus,

U i
φ,π(s,σ,a) = Eφ,π

[
Gi

t | st = s,σt = σ,at = a
]

= Eφ,π

[
Gi

t | st = s,at = a
]
= W i

φ,π(s,a),
(9)

V i
φ,π(s) = Eφ,π

[
Gi

t | st = s
]
= Eφ,π

[
rit+1 + γ ·Gi

t+1 | st = s
]

= Eφ,π

[
rit+1 + γ · V i

φ,π(st+1) | st = s
]
,

(10)

and

U i
φ,π(s,σ,a) = Eφ,π

[
Gi

t | st = s,σt = σ,at = a
]

= Eφ,π

[
rit+1 + γ ·Gi

t+1 | st = s,σt = σ,at = a
]

= Eφ,π

[
rit+1 + γ · V i

φ,π(st+1) | st = s,σt = σ,at = a
]

= Ri(s,a) + γ
∑
s′

p(s′ | s,a) · V i
φ,π(s

′).

(11)

D Proof of the Signaling Gradient Lemma

Firstly, let Prφ,π(s→ x, k) denote the probability of transferring from state s to state x in k steps,
given the signaling scheme φ and the joint policy π. Its recursive relationship is similar to the
situation in MDPs:

Prφ,π(s→ s, 0) = 1,Prφ,π(s→ s′, 1) =
∑
σ,o,a

q(o | s) · φη(σ | s) · πθ(a | o,σ) · p(s′ | s,a),

Prφ,π(s→ x, k + 1) =
∑
s′

Prφ,π(s→ s′, k) · Prφ,π(s
′ → x, 1). (12)

Then according to 8,

∇ηV
i
φ,π(s) =∇η

∑
o

q(o | s)
∑
σ,a

φη(σ | s) · πθ(a | o,σ) · U i
φ,π(s,σ,a) (13)

=
∑
o

q(o | s)
∑
σ,a

∇η [φη(σ | s) · πθ(a | o,σ)] · U i
φ,π(s,σ,a) (14)

+
∑
o

q(o | s)
∑
σ,a

φη(σ | s) · πθ(a | o,σ) · ∇ηU
i
φ,π(s,σ,a). (15)

In the following many steps of derivation, we will expand 15, leaving 14 unchanged. Since 14 is a
function of the state s, for brevity, we will let fφ,π(s) denote it:

∇ηV
i
φ,π(s) = fφ,π(s) +

∑
o

q(o | s)
∑
σ,a

φη(σ | s) · πθ(a | o,σ) · ∇ηU
i
φ,π(s,σ,a)

= fφ,π(s) +
∑
o

q(o | s)
∑
σ,a

φη(σ | s) · πθ(a | o,σ) · ∇η

[
Ri(s,a) + γ

∑
s′

p(s′ | s,a) · V i
φ,π(s

′)

]
= fφ,π(s) + γ

∑
o

q(o | s)
∑
σ,a

φη(σ | s) · πθ(a | o,σ) ·
∑
s′

p(s′ | s,a) · ∇ηV
i
φ,π(s

′)

= fφ,π(s) + γ
∑
s′

Prφ,π(s→ s′, 1) · ∇ηV
i
φ,π(s

′).

(16)
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Keep unrolling recursively,

∇ηV
i
φ,π(s) = fφ,π(s) + γ

∑
s′

Prφ,π(s→ s′, 1) · ∇ηV
i
φ,π(s

′)

=fφ,π(s) + γ
∑
s′

Prφ,π(s→ s′, 1) ·

[
fφ,π(s

′) + γ
∑
s′′

Prφ,π(s
′ → s′′, 1) · ∇ηV

i
φ,π(s

′′)

]
=fφ,π(s) + γ

∑
s′

Prφ,π(s→ s′, 1) · fφ,π(s
′) + γ2

∑
s′′

Prφ,π(s→ s′′, 2) · ∇ηV
i
φ,π(s

′′)

. . .

=
∑
x∈S

∞∑
k=0

γk · Prφ,π(s→ x, k) · fφ,π(x).

(17)

Let hφ,π(x) denote
∞∑
k=0

γk · Prφ,π(s→ x, k). Then the stationary distribution dφ,π(s) is defined as

dφ,π(s) =
hφ,π(s)∑

x∈S

hφ,π(x)
. (18)

Considering the objective of signaling gradient is to optimize V i
φ,π(s0), then we have

∇ηV
i
φ,π(s0) =

∑
s

hφ,π(s) · fφ,π(s) =

(∑
s

hφ,π(s)

)∑
s

hφ,π(s)∑
s
hφ,π(s)

· fφ,π(s)

∝
∑
s

hφ,π(s)∑
s
hφ,π(s)

· fφ,π(s) =
∑
s

dφ,π(s) · fφ,π(s)

=
∑
s

dφ,π(s) ·
∑
o

q(o | s)
∑
σ,a

U i
φ,π(s,σ,a) · ∇η [φη(σ | s) · πθ(a | o,σ)]

=
∑

s,o,σ,a

dφ,π(s) · q(o | s) · U i
φ,π(s,σ,a) · φη(σ | s) · πθ(a | o,σ) ·

∇ηφη(σ | s)
φη(σ | s)

+
∑

s,o,σ,a

dφ,π(s) · q(o | s) · U i
φ,π(s,σ,a) · φη(σ | s) · πθ(a | o,σ) ·

∇ηπθ(a | o,σ)
πθ(a | o,σ)

= Eφ,π

[
U i
φ,π(s,σ,a) · [∇η logφη(σ | s) +∇η logπθ(a | o,σ)]

]
.

(19)

Finally, by substituting U i
φ,π(s,σ,a) by W i

φ,π(s,a) (as analyzed in 9), the deriving result of the
signaling gradient is

∇ηV
i
φ,π(s0) = Eφ,π

[
W i

φ,π(s,a) · [∇η logφη(σ | s) +∇η logπθ(a | o,σ)]
]
. (20)

E Hyper Gradient in the Signaling Gradient

Note that in every∇η log π
j
θ(a

j | oj , σj), it can be decomposed to two parts:

∇η log π
j
θ(a

j | oj , σj) =
∂ log πj

θ(a
j | oj , σj)

∂πj
θ(a

j | oj , σj)
·
∂πj

θ(a
j | oj , σj)

∂η

=
1

πj
θ(a

j | oj , σj)

[
∂πj

θ(a
j | oj , σj)

∂σj
· ∂σ

j

∂η
+

∂πj
θ(a

j | oj , σj)

∂θj
· ∂θ

j

∂η

]
.

(21)

Similar to LIO, it can be considered that η affects the update process of θj . In this way,
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∂θj

∂η
≈ ∂∆θj

∂η
, (22)

where ∆θj is the difference for one-step update θj ← θj +∆θj .

F Details and Analysis of Recommendation Letter

To better understand the information design problem, we illustrate it with an example of
Recommendation Letter and its Bayesian persuasion solution [15, 28]. In the example, a professor
will write recommendation letters for a number of graduating students, and a company’s human
resources department (HR) will receive the letters and decide whether to hire the students. The
professor and the HR share a prior distribution of the candidates’ quality, with a probability of 1/3
that the candidate is strong and a probability of 2/3 that the candidate is weak. The HR does not
know exactly what each student’s quality is but wants to hire strong students, while the letters are the
only source of information. The HR will get a reward of 1 for hiring a strong candidate, a penalty of
−1 for hiring a weak candidate, and a reward of 0 for not hiring. The professor gets a 1 reward for
each hire. There are three types of outcomes between the professor and the HR:

• Since there are more weak students than strong students, the HR tends not to hire anyone if
the professor does not write letters.

• If the professor honestly reports the qualities of the students, then the HR will accurately
hire those strong candidates. Then their payoff expectations are both 1/3;

• The professor reports the qualities of the strong students honestly and lying with a probability
of (1/2− ϵ) for weak students, for some arbitrarily small ϵ. The optimal policy of HR is to
respect the professor’s recommendations. In this way, the professor’s and the HR’s payoff
expectations are (2/3− 2ϵ/3) and 2ϵ/3, respectively.

The critical insight from the example is that the information provider (the professor) needs to “lie”
about its information to get the best interest. This lie, meanwhile, must still reveal part of the truth
so that the information receiver (the HR) respects the information because it will benefit from the
posterior belief in its best interest. The condition that the receiver benefits from the message is known
as the obedience constraints in information design, which implies the incentive compatibility of
the receiver. The sender must subtly balance the benefits of both parties under this condition and
carefully design the information to be sent.

It is easy to analyze that HR can only make decisions based on the prior probability distribution if the
professor does not write a recommendation letter, and its best policy is to refuse to hire any student.
In this way, the professor and the HR payoffs are both 0, which is obviously a bad situation for both
parties. If the professor tells the HR the student’s quality honestly (i.e., the professor gives up its
informational advantage), then the best strategy for the HR is to hire strong students and not weak
students. In the case of the honest signaling scheme, the payoff expectations of the professor and the
HR are 1/3.

The professor can change its signaling scheme to make its payoff expectation higher, which is exactly
the primary concern of information design. If the current student is strong, the professor will report it
honestly; otherwise, the professor tells the HR that it is strong with a probability of (1/2− ϵ), where
ϵ ∈ (0, 1/2]. When HR heard the professor say this was a weak student, it knew the student must be
weak, so it would refuse to hire her. And the HR can calculate that 1/3 of the students are strong, and
the professor will call them strong, and (1/3 − 2ϵ/3) of students are weak, but the professor will
call them strong still. So when the professor says that the current student is strong, the probability of
being a strong student is 1/(2− 2ϵ), and the probability of being a weak student is (1− 2ϵ)/(2− 2ϵ).
Then, when the professor recommends the student, the payoff expectation of the HR of choosing to
hire is ϵ/(1− ϵ), and the payoff expectation of choosing not to hire is 0. A rational HR will select
the action that can maximize its payoff expectation. That is to say, when the professor says that
the current student is strong, the HR will choose to hire. In this case, the payoff expectation of the
professor is (2/3− 2ϵ/3), and the payoff expectation of the HR is 2ϵ/3. It can be found that when
epsilon takes 1/2, the signaling scheme degenerates into the honest one.
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G Details of Reaching Goals

The basics of Reaching Goals are introduced in Section 5.2. This section aims to offer more
specific details. Example maps of Reaching Goals are shown in Figure 6.

At any given time in the map, there is only one target goal for the sender and one for the receiver,
both uniformly distributed and randomly generated. Once the receiver reaches a goal, it will be
regenerated. And the regenerated goal and the receiver will not be in the same position. An episode
will only end when the specified step limit is reached. The receiver’s actions consist of moving up,
down, left, or right by one square. When the receiver’s position coincides with a particular goal, the
apple will be automatically harvested.

When the receiver’s decision to pursue the green apple would mean moving away from the red goal.
And in a fixed-length episode, this will reduce the receiver’s goal harvesting efficiency. Since the
respawn locations of goals are randomly and uniformly distributed, the positions of goals are highly
likely to be non-coincident. As the map size increases, the conflict of interest between the sender and
the receiver increases.

(a) Reaching Goals (b) The aligned goals

Figure 6: Maps 5× 5 of Reaching Goals. The blue, red, and green squares represent the receiver,
the sender’s goal, and the receiver’s goal, respectively. If the red square and the green square overlap,
it will turn yellow, meaning that the goals of agents are aligned. The pink dots represent the messages
sent by the sender. The sender is out of the map.

H More Discussions and Results

H.1 Incentive Compatibility of the Obedience Constraints

The obedience constraints are the core of information design and it significantly improves the per-
formance in experiments. Assuming that the sender’s signal set is equal to the receiver’s action
set, the sender’s signals can be interpreted as recommending the receiver to take a specific action
(This common assumption is without loss of generality according to the revelation principle). Un-
der this premise, obedience constraints ensure that the receiver will definitely follow the sender’s
recommendations.

To explain why is it that as long as the sender’s signaling scheme satisfies obedience constraints, the
receiver will definitely follow the sender’s recommendations. We provide a simple derivation adapted
from [3] as follows:

∑
s

µ0(s) · φ(a | s) ·
(
rj(s, a)− rj(s, a′)

)
≥ 0

⇔
∑
s

µ0(s) · φ(a | s)∑
s′

µ0(s′) · φ(a | s′)
·
(
rj(s, a)− rj(s, a′)

)
≥ 0, ∀a′ ∈ A

⇔
∑
s

µ(s | a) ·
(
rj(s, a)− rj(s, a′)

)
≥ 0, ∀a′ ∈ A

⇔
∑
s

µ(s | a) · rj(s, a) ≥
∑
s

µ(s | a) · rj(s, a′), ∀a′ ∈ A
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where µ0 represents the prior probability, and µ represents the posterior probability. Therefore, a
self-interested and rational receiver will definitely follow the sender’s recommendations, because the
posterior expected payoff of the action recommended by the sender is greater than or equal to the
posterior expected payoffs of all other actions.

H.2 The Non-Stationarity is Alleviated by the Signaling Gradient

This issue is a very important one and involves the insight behind signaling gradient. Non-stationarity
is a common problem in the field of MARL. Each RL agent only focuses on its own learning, which
means that every agent treats all quantities except itself as part of the environment, treating other
agents as part of the environment. As a result, for an agent with policy, when other agents update, its
environment changes, and even with the same policy, its value function will change as a result of the
updates to other agents’ states. We believe this phenomenon arises due to the independence of agents.
However, our signaling gradient does not update its network independently; instead, it considers the
impact of the receiver’s policy. This is precisely the core insight behind signaling gradient.

H.3 Discussions about DIAL

For the same experiment, if we add a constant to all sender rewards, the sender can still persuade the
receiver using the same signaling scheme (as the receiver’s reward remains unchanged), and thus the
receiver’s utility remains unaffected.

In this case, the difference between fully cooperative communication methods (e.g., DIAL) and our
method becomes evident. Because DIAL only considers the receiver’s reward and does not utilize the
sender’s reward (according to their concept, their method does not even use ri and does not reflect
the self-interested sender). If we add a constant to all sender rewards, their method’s social welfare
remains unchanged, while our method’s social welfare improves.

H.4 Discussions about LOLA

When multiple learning agents are involved in a training process, each agent’s environment becomes
non-stationary. Modeling each agent as a POMDP means treating other people as part of the
environment, so when other agents’ policies are updated, each agent’s environment changes. It can
result in unstable training or undesired final results. To alleviate the non-stationarity, LOLA [17]
was proposed. This method lets each agent notice the update process of others to adapt itself to this
ever-changing environment. This awareness is implemented by accounting for others’ gradient when
an agent updates its policy. The signaling gradient we proposed is also to solve the non-stationarity
problem. From the perspective of conclusion, the sender’s signaling gradient also considers the
receiver’s policy. However, our goal is to improve the sender’s ability to influence the receiver, and
using LOLA would encourage the agent to adapt to updates from other agents.

Another potential question is whether LOLA can be used as a replacement for obedience constraints.
LOLA is not a direct replacement for obedience constraints but rather a technique that can be used
to enhance the receiver’s algorithm. LOLA emphasizes an agent’s consideration of others’ updates
during its updates to adapt to non-stationarity in multi-agent scenarios. When applied to a receiver’s
algorithm, LOLA allows the receiver to consider changes in the signaling scheme, which can improve
its performance. On the other hand, obedience constraints restrict the sender to ensure that the signals
it emits give the impression to the receiver that its rewards are not significantly reduced. Adapting
the receiver to changes in signaling may not necessarily make the receiver follow the sender’s
recommendations. In contrast, obedience constraints provide a more muscular incentive-compatible
condition regarding rewards, which can more effectively align the sender’s influence.

H.5 Discussions about the Dual Gradient Descent Method

One reasonable consideration is whether the dual gradient descent method (DGD) can be used to
learn Markov signaling games as discussed in Equation (5), as this approach does not require tuning
the Lagrangian multipliers. Other works, such as [43] and [23], have also utilized the DGD method.

By applying the dual gradient descent, η and λ are updated as

η ← η − α · ∇ηL(η,λ), λ← (λ+ α · ∇λL(η,λ))
+
, (23)
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where α is the learning rate, (·)+ = max{0, ·}, and L(η,λ) = −Eφ,π

[
V i(s)

]
−

∑
j,σj ,σj′

λj,σ,σ′ ·

Cj
φ(σ,σ

′) is the Lagrangian function of Equation (5). All the gradients required have been dis-
cussed. The comparisons of performance in the Recommendation Letter and the Reaching
Goals experiments are shown in Figure 7.

SGOC (Lagrangian) SGOC (DGD)

(a) The sender’s reward (b) The receiver’s reward (c) Social welfare (ri + rj)

(d) The sender’s reward (e) The receiver’s reward (f) Social welfare (ri + rj)

Figure 7: Performance comparisons of SGOC and DGD. (a-c) The results of Recommendation
Letter. (d-f) The results of Reaching Goals with 3 × 3 map. The rewards and penalties are
amplified by 20 and 5 respectively. The receiver can only see its position.

H.6 Results with Different Hyperparameters

We plot the heatmap of the honesty metric against ϵ, λ, as shown in Figure 8. We observe that the
honesty metric increases with ϵ and λ, which agrees with our intuition. Specifically, when lambda
reaches over 3.75 (respectively, ϵ, 0.15), the honesty stops increasing, which means the sender is
being very honest in this region. The best value for λ is then somewhere between 0 to 5 (respectively,
ϵ, 0 to 0.3).

Figure 8: Honesty heatmap of the sender’s signaling scheme in Recommendation Letter.
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H.7 Results with Different Observation of the Receiver

The algorithm proposed in this paper is suitable for scenarios where the sender has an informational
advantage (discussed in Section 3). We conducted various experiments to investigate the impact of
the receiver’s observation in the SGOC algorithm in the Reaching Goals scenarios. The results,
shown in Figure 9, compare the situations where the receiver “cannot see anything” (No-obs), “can
only see its location” (Pos-obs), and “can see both its location and the location of its preferred apple”
(Full-obs). The results indicate that the sender’s payoff decreases as the receiver knows more (the
sender’s informational advantage decreases).

No-obs Pos-obs Full-obs

(a) The sender’s reward (b) The receiver’s reward (c) Social welfare (ri + rj)

Figure 9: Performance comparisons in Reaching Goals with 3× 3 map. The rewards and penalties
are amplified by 20 and 5 respectively.

I Broader Impacts

In practical economic scenarios, persuasion is ubiquitous and plays a crucial role. As stated in the
title and conclusion of McCloskey and Klamer’s paper, “one quarter of the GDP is persuasion” [36].
This kind of persuasion demonstrates that communication is conceivable in mixed-motive scenarios.
In this paper, we build upon the classic model of Bayesian persuasion to discuss how RL agents in
sequential settings can communicate under mixed motives (most of the related research focused on
fully cooperative situations).

In such a setting, the sender optimizes its own expectation while considering the incentive compati-
bility of the receiver, and this constraint is relatively weak. The rationality of the receiver assumes it
follows the sender’s instructions even if it leads to just a slightly better posterior payoff. Therefore,
the receiver is in a relatively disadvantaged position in equilibrium. We discussed the potential
of a far-sighted receiver to protect itself from excessive information exploitation in Section 4.5.3.
Furthermore, the receiver’s capability can be enhanced through the reputation mechanism in social
science. Multiple receivers can evaluate the sender and refuse to cooperate with those who have a
poor reputation. This compels the sender to reveal more information based on variants of obedience
constraints. The insight behind this process is similar to the ultimatum game [54].

Additionally, since the optimization objective of persuasion is the sender’s benefit, its equilibrium
may not necessarily be advantageous for social welfare. We discussed situations where the sender
can “selfishly” optimize social welfare in Section 3. Practice use of information design should take
social welfare into some serious consideration.

J Limitations and Future Works

Our current model only considers the scenario where one sender persuades one receiver. For
more complex situations, additional factors need to be taken into account, which are discussed in
Appendix B. The setting of multiple senders is not addressed in this manuscript. The setting of
multiple receivers is formulated in the appendix, but φη : S → ∆(Σ) has a very large signal space.
If one uses ∆(Σ) = ∆(Σ1)× · · · ×∆(ΣJ), it reduces to the one-receiver formulation. More subtle
factorization of the signaling scheme is yet to be discussed. The setting of multiple receivers is yet to
be empirically tested.
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Our work invokes many future directions. One problem is to consider multiple senders, where
the game between the sender and the receiver and between the sender and other senders co-exist.
Extending the results to multiple senders will cover a wider range of real applications. Another
direction is to consider the hyper gradient of the receiver’s action policy concerning the sender’s
signaling scheme on the equilibria. This hopefully will provide a more accurate description of the
learning process. Additionally, one may also use our framework to investigate a far-sighted receiver.
By arming the receiver with the awareness of the sender updates, they could learn not to respect the
sender, even if it is more rewarding immediately, for a better equilibrium in the long run.

25


	Introduction
	Preliminaries and Related Works
	Markov Signaling Games
	Method
	Signaling Gradient
	Policy Gradient for the Receiver
	Extended Obedience Constraints
	Learning Markov Signaling Games
	Discussions on Method
	Lift to the Commitment Assumption
	Lift to the Revelation Principle
	Far-sighted Receiver
	Hyper Gradient
	Sender's Access to Receiver


	Experiments
	Recommendation Letter
	Reaching Goals
	Discussions on Experiments
	Symmetricity of the Signaling Schemes
	Honesty of the Sender


	Conclusion
	Other Related Works
	Extensions of Markov Signaling Games
	Bellman Equations in Markov Signaling Games
	Proof of the Signaling Gradient Lemma
	Hyper Gradient in the Signaling Gradient
	Details and Analysis of Recommendation Letter
	Details of Reaching Goals
	More Discussions and Results
	Incentive Compatibility of the Obedience Constraints
	The Non-Stationarity is Alleviated by the Signaling Gradient
	Discussions about DIAL
	Discussions about LOLA
	Discussions about the Dual Gradient Descent Method
	Results with Different Hyperparameters
	Results with Different Observation of the Receiver

	Broader Impacts
	Limitations and Future Works

