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1 Speed of convergence against the size of training set:

We use the classical results of statistical learning theory to show that estimating the cost-to-go
converges more slowly with respect to the size of the training set than estimating the rank.

From Equation (1) in the main text it should be obvious that ranking is in its essence a classification
problem if one considers a pair of states (s, s′) as a single sample. For classification/ranking problems,
a following bound on true error rate [3] holds with probability 1− η

Rc ≤ R̂c +

√
1

np

[(
1 + κ ln

2np

κ

)
− ln η

]
,

where Rc denotes the true loss (Equation (1) in the main text) and R̂c, its estimate from np state pairs
(si, sj), and κ, the Vapnik-Chervonenkis dimension [3] of the hypothesis space.

Optimizing h(s, θ) with respect to cost-to-goal (Equation (5) in the main text) is a regression problem
for which a different generalization bound on prediction error [1] holds with probability 1− η

Rr ≤ R̂r

[
1−

√
1

ns

[
κ
(
1 + ln

ns

κ

)
− ln η

]]−1

+

where again Rr is the error of the estimator of cost-to-go and R̂r is its estimate from ns states
(Equation (5) in the main text),1 and [x]+ is a shorthand for max{0, x}.

From the above, we can see that excess error in the ranking case converges to zero at a rate
√

lnnp√
np

,

which is slightly faster than that of regression
√
lnns√

ns−
√
lnns

. But, the number of state pairs in the
training set grows quadratically with the number of states; therefore, the convergence rate of the
ranking problem for the number of states ns can be expressed as

√
2 lnns

ns
, which would be by at least

1√
ns

factor faster than that of regression. We note that bounds are illustrative, since the independency
of samples is in practice violated, since samples from the same problem-instance are not independent.
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Figure 1: Problem instance where perfect heuristic is not strictly optimally efficient with GBFS.
Numbers on the edges denote the cost of action and red numbers next to nodes denote the minimal
cost-to-go.

2 Suboptimality of perfect heuristic in GBFS

Example 1. While cost-to-goal h∗ is the best possible heuristic for algorithms like A* (up to
tie-breaking) in terms of nodes being expanded, for GBFS, h∗ does not necessarily yield optimal
solutions.

Proof. A* explores all the nodes with f(s) < f∗(s) = g(s)+h∗(s) and some with f(s) = f∗(s) =
g(s) + h∗(s), so nodes can only be saved with optimal f∗(s) = g(s) + h∗(s). In fact, when given
h∗as the heuristic, only nodes s with f(s) = f∗(s) are expanded. Depending on the strategy of
tie-breaking, the solution path can be found in the minimal number of node expansions or take
significantly longer (e.g., in lower g-value first exploration of the search frontier). Any heuristic other
than h∗ is either overestimating, and, therefore, may lead to either non-optimal solutions in A*, or
weaker than h∗, leading to more nodes being expanded.

Even if h∗ is given, GBFS is not guaranteed to be optimal. Consider the following graph with five
nodes A,B,C,D,E, and w(A,B) = 8, w(B,E) = 3, w(A,C) = 2, w(C,D) = 4, w(D,E) = 4,
and h∗(A) = 10, h∗(B) = 3, h∗(C) = 8, h∗(D) = 4, h∗(E) = 0 (see Figure 1), initial node
s0 = A, goal node E ∈ S∗. The numbers are the actual costs and the red numbers are the exact
heuristic function. For finding a path from node A to node E, GBFS would return (A,B,E) following
the heuristic function. However, the path (A,C,D,E) has cost 10 instead of 11.

3 Theory

Below, we prove the claim in made in Experimental section stating that if a heuristic h is strictly
optimally efficient for A* search, then it is also strictly optimally efficient for GBFS.

Theorem 1. Let a heuristic h is a perfect ranking for A* search on a problem instance Γ =
(⟨S, E , w⟩, s0,S∗) with a constant non-negative cost of actions ((∃c ≥ 0) (∀e ∈ E) (w(e) = c)).
Then h is a perfect ranking for GBFS on Γ.

Proof. Let π = ((s0, s1), (s1, s2), . . . , (sl−1, sl)) be an optimal plan such that ∀i ∈ {1, . . . , l} and
∀sj ∈ {sj | ∃(sk, sj) ∈ E ∧ sk ∈ Sπ:i−1 ∧ sj /∈ Sπ:i} we have g(sj) + h(sj) > g(si) + h(si),
where g(s) is the distance from s0 to s in a search-tree created by expanding only states on the
optimal path π. We want to proof that if all actions have the same positive costs, then h(sj) > h(si)
as well.

We carry the proof by induction with respect to the number of expanded states.

At the initialization (step 0) the claim trivially holds as the Open list contains just a root node and the
set of inequalities is empty.

Let’s now make the induction step and assume the theorem holds for the first i− 1 step. We divide
the proof to two parts. At first, we prove the claim for (O)i \ N (si−1) and then we proof the claim
for N (si−1), where N (s) denotes child states of the state s.

1The formulation in [1] contains constants c and a, but authors argue they can be set to a = c = 1 and
hasubve been therefore omitted here.
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1) Assume sj ∈ (O)i \ N (si−1). Since h is strictly optimally efficient for A*, it holds that

g(sj) + h(sj) >g(si) + h(si)

h(sj) >(g(si)− g(sj)) + h(si)

h(sj) >h(si),

where the last inequality is true because g(si)− g(sj) ≥ 0.

Assume (sj ∈ N (si−1))(sj ̸= si). Since h is strictly optimall efficient for A*, it holds that

g(sj) + h(sj) > g(si) + h(si). (1)

Since g(sj) = w((si−1, sj)) = w((si−1, si)) = g(si), it holds

h(sj) > h(si), (2)

which finishes the proof of the theorem.

4 Optimally efficient heuristic might not exists for GBFS
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Figure 2: Problem instance where optimally efficient heuristic does not exists for GBFS.

Consider the following graph in Figure 2 with four nodes A,B,C,D,, and w(A,B) = 1, w(B,D) =
1, w(A,C) = 1, w(A,D) = 9, w(B,C) = 9, and h∗(A) = 0, h∗(B) = 1, h∗(C) = 1, h∗(D) = 2
where A is the goal state and D is the initial state.

We can see that for GBFS, the perfect heuristic does not exist for D. On expansion, the GBFS
algorithm will put A and B to the open list with heuristic values h(A) = 0 and h(B) = 1. GBFS takes
A from the open list and checks if it is a goal state. Since A is goal state, GBFS terminates returning
path (D,A) as a solution. However, this is not the optimal path as a better (optimal) solution exists (D,
B, A). Since the definition of optimal ranking requires the inequalities to hold for this optimal path,
in GBFS, the perfect heuristic does not exist for all initial states.

The problem can be fixed if the definition of optimal ranking is changed to consider two cases in the
merit function f(s) = αg(s) + βh(s): α > 0 and β > 0 and α = 0 and β > 0 . In the first case, the
optimal ranking should be defined with respect to the "optimal path" (this is the A*); in the latter
case, it should be the path with minimal number of expansions. With GBFS, the user simply wants to
find a solution but not care about its optimality. With this change, the heuristic function will exist for
Figure 2.

5 Training set with multiple solution paths with the same length of the plan

The behavior of the learned heuristic function depends on the composition of the training set, which
is illustrated below on a simple grid problem. The agent starts at position (4,4) and has to move to the
goal position (0,0). There are no obstacles and the agent can only move one tile down or one tile left
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(the effects on his positions are either (-1,0) or (0,-1)), the cost of the action is one. The number of
different solutions path grows exponentially with the size of the grid and all solution path has the
same cost (for problem of size 5x5, there are 70 solutions). This problem is interesting, since merit
function in A* with optimal heuristic function (cost to goal) is constant, equal to 8, for all states.

For the size of the grid (4,4), the heuristic is determined by a table with 25 values. Below, these values
are determined by minimizing the proposed loss for A* algorithm with logistic loss surrogate by
BFGS (with all zeros as initial solution). Since the loss function is convex, BFGS finds the solution
quickly.

In the first case, the training set contains one solution path ([4, 4], [3, 4], [2, 4], [1, 4], [0, 4], [0, 3],
[0, 2], [0, 1], [0, 0]), where the agent first goes left and then down. The learnt heuristic values h is
shown in Table 1.

y/x 0 1 2 3 4
4 -191.53 -131.99 -76.94 -31.25 0.0
3 0.0 31.25 76.94 131.99 191.53
2 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0
0 0.0 0.0 0.0 0.0 0.0

Table 1: Table showing one solution path.

An A* search using these heuristic values will first always take action moving the agent to left and
then down. When moving down, the agent does not have another choice. Notice that the heuristic
values of many states are not affected by the optimization, because they are not needed to effectively
solve the problem.

In the second case, the training set contains two solution paths: the first is in Table 1 and in the
second table 2, the agent goes first down and then left. The learnt heuristic values are shown in 2.

y/x 0 1 2 3 4
4 -95.76 -66.0 -38.47 80.14 0.0
3 0.0 15.62 38.47 131.99 80.14
2 0.0 0.0 0.0 38.47 -38.47
1 0.0 0.0 0.0 15.62 -66.0
0 0.0 0.0 0.0 0.0 -95.76

Table 2: Table showing two solution paths.

An A* search will now face tie at state (4,4), since states (3,4) and (4,3) have the same heuristic value.
But the presence of the tie does not affect the optimal efficiency of the search, as A* will always
expand states on one of the optimal path from the training set.

Finally let’s consider a case, where all 70 possible solutions are in the training set. The learned
heuristic values are shown in Table 3.

y/x 0 1 2 3 4
4 3.74 92.62 134.66 163.17 0.0
3 -46.61 2.35 91.93 134.38 163.17
2 -167.96 -47.7 1.94 91.93 134.66
1 -210.03 -168.66 -47.7 2.35 92.62
0 0.0 -210.03 -167.96 -46.61 3.74

Table 3: Table showing multiple solution paths.

Rank of heuristic values "roughly" corresponds to cost to goal. The reason, why some states are
preferred over the others despite their true cost-to-goal being the same is that they appear in more
solution paths. As shown in Table 3, the A* search with learnt heuristic values is strictly optimally
efficient.

4



5.1 Baseline Comparison to breadth-first search

The fraction of solved problems for breadth-first search (5s time limit as used by solvers in the paper)
is shown in Table 4.

domain fraction
blocks 0.35
ferry 0.31

npuzzle 0.14
spanner 0.63
elevators 0.32

Table 4: Fraction of solved mazes by breadth-first search.

6 Training Details

For the grid domains, ADAM [2] training algorithm was run for 100 × 20000 steps for the grid
domains.The experiments were conducted in the Keras-2.4.3 framework with Tensorflow-2.3.1 as
the backend. While all solvers were always executed on the CPU, the training used an NVIDIA
Tesla GPU model V100-SXM2-32GB. Forward search algorithms were given 10 mins to solve each
problem instance.

For the PDDL domains, the training consumed approximately 100 GPU hours and evaluation
consumed 1000 CPU hours.All training and evaluation were done on single-core Intel Xeon Silver
4110 CPU 2.10GHz with a memory limit of 128GB. The training algorithm AdaBelief [4] was
allowed to do 10000 steps on the CPU. We emphasize though, that the training time does not include
the cost of creating the training set.

A* GBFS
problem complx. L∗ Lgbfs Lrt L2 Lbe L∗ Lgbfs Lrt L2 Lbe Lle

blocks 37 54 27 137 54 33 28 29 32 32 127
ferry 53 43 36 339 20 48 34 31 33 20 51

npuzzle 294 660 843 1936 641 297 311 333 591 272 418
spanner 55 546 53 807 416 61 56 53 117 65 148

elevators 33 35 52 657 310 33 33 43 115 198 73

Sokoban 3 boxes 14 14 14 17 14 14 14 14 17 14 14
4 boxes 32 35 37 44 35 34 32 36 43 35 33
5 boxes 61 67 68 72 63 65 62 66 77 64 61
6 boxes 171 179 180 210 177 175 179 181 214 180 174
7 boxes 643 651 653 755 654 645 641 640 754 655 643

Maze w. t. 50× 50 34 37 34 41 40 34 33 35 43 40 35
55× 55 51 59 52 63 60 54 52 55 65 61 58
60× 60 72 78 75 83 78 73 71 77 89 79 84

Sliding puzzle 5× 5 1521 1558 1534 1559 1545 1524 1539 1533 1556 1544 1531
6× 6 2322 2353 2334 2439 2388 2321 2326 2329 2334 2329 2329
7× 7 3343 3375 3347 3431 3411 3421 3356 3449 3512 3448 3379

Table 5: Average number of expanded states.
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A* GBFS
problem complx. L∗ Lgbfs Lrt L2 Lbe L∗ Lgbfs Lrt L2 Lbe Lle

blocks 21.6 22.7 21.4 22.5 22.9 21.8 22.7 22.1 22.5 23.1 34.1
ferry 16.8 16.9 16.7 16.8 16.8 16.8 16.9 16.8 16.8 16.8 16.9

npuzzle 19.2 23.5 18.2 17.5 17.3 37.6 36.4 39.6 35.1 34.1 124.6
spanner 49.1 49.2 49.2 49.2 49.1 49.0 49.2 49.1 49.2 49.3 49.1

elevators 16.1 16.4 14.7 17.9 15.8 19.4 16.6 15.9 18.0 16.1 21.4

Sokoban 3 boxes 13.1 13.3 13.8 13.2 13.4 13.1 13.2 13.2 13.5 13.2 13.2
4 boxes 15.4 15.2 16.1 15.7 16.8 16.7 15.1 16.1 15.6 16.3 15.8
5 boxes 20.1 19.2 21.3 22.1 20.9 19.8 20.4 21.3 22.1 19.9 20.1
6 boxes 29.6 29.3 27.7 28.2 26.8 28.3 28.1 29.6 29.4 29.9 30.1
7 boxes 31.9 31.4 35.4 33.1 34.1 30.1 33.3 35.2 32.7 34.0 35.5

Maze w. t. 50× 50 24.1 25.3 25.1 24.3 24.3 24.3 24.5 25.4 24.3 25.4 24.7
55× 55 34.1 33.2 35.0 34.2 33.9 33.2 33.1 34.6 34.6 36.5 36.3
60× 60 41.2 42.9 41.4 43.2 42.8 42.1 43.6 44.2 45.2 45.3 45.1

Sliding puzzle 5× 5 150.1 153.7 155.2 154.6 154.5 154.5 153.5 153.9 155.0 151.1 152.1
6× 6 252.3 254.2 253.8 254.8 254.0 255.9 256.4 255.3 256.2 254.9 256.3
7× 7 321.1 324.1 322.2 324.3 320.4 322.9 324.1 323.4 327.1 324.6 323.7

Table 7: Average number of length of the solution. The average is computed only over problem
instances solved by all 11 variants of forward search.
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