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Abstract

Large-scale pre-trained models have achieved remarkable success in many applica-
tions, but how to leverage them to improve the prediction reliability of downstream
models is undesirably under-explored. Moreover, modern neural networks have
been found to be poorly calibrated and make overconfident predictions regardless
of inherent sample difficulty and data uncertainty. To address this issue, we pro-
pose to utilize large-scale pre-trained models to guide downstream model training
with sample difficulty-aware entropy regularization. Pre-trained models that have
been exposed to large-scale datasets and do not overfit the downstream training
classes enable us to measure each training sample’s difficulty via feature-space
Gaussian modeling and relative Mahalanobis distance computation. Importantly,
by adaptively penalizing overconfident prediction based on the sample difficulty,
we simultaneously improve accuracy and uncertainty calibration across challenging
benchmarks (e.g., +0.55% ACC and −3.7% ECE on ImageNet1k using ResNet34),
consistently surpassing competitive baselines for reliable prediction. The improved
uncertainty estimate further improves selective classification (abstaining from
erroneous predictions) and out-of-distribution detection.

1 Introduction

Large-scale pre-training has witnessed pragmatic success in diverse scenarios and pre-trained models
are becoming increasingly accessible [9, 4, 3, 14, 44]. The community has reached a consensus that by
exploiting big data, pre-trained models can learn to encode rich data semantics that is promised to be
generally beneficial for a broad spectrum of applications, e.g., warming up the learning on downstream
tasks with limited data [45], improving domain generalization [24] or model robustness [19], and
enabling zero-shot transfer [54, 43].

This paper investigates on a new application – leveraging pre-trained models to improve the calibration
and the quality of uncertainty quantification of downstream models, both of which are crucial for
reliable model deployment in the wild [20, 13, 28, 32]. Model training on the task dataset often
encounters ambiguous or even distorted samples. These samples are difficult to learn from – directly
enforcing the model to fit them (i.e., matching the label with 100% confidence) may cause undesirable
memorization and overconfidence. This issue comes from loss formulation and data annotation, thus
using pre-trained models for finetuning or knowledge distillation with the cross-entropy loss will not
solve the problem. That said, it is necessary to subtly adapt the training objective for each sample
according to its sample difficulty for better generalization and uncertainty quantification. We exploit
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(a) Training samples from ImageNet class Tusker and
ranked as hardest/easiest by CLIP-VIT-B.
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(b) The sample difficulty score (RMD) increases pro-
portionally with the corruption and label noise severity.

Figure 1: Visualization of training samples with low (high) sample difficulty that is scored by
CLIP-ViT-B [44] using the derived relative Mahalanobis distance (RMD).

pre-trained models to measure the difficulty of each sample in the downstream training set and use
this extra data annotation to modify the training loss. Although sample difficulty has been shown to
be beneficial to improve training efficiency [33] and neural scaling laws [49], its effectiveness for
ameliorating model reliability is largely under-explored.

Pre-trained models aid in scoring sample difficulty by shifting the problem from the raw data space
to a task- and model-agnostic feature space, where simple distance measures suffice to represent
similarities. Besides, large-scale multi-modal datasets and self-supervised learning principles enable
the pre-trained models (see those in Table 1) to generate features that sufficiently preserve high-
level concepts behind the data and avoid overfitting to specific data or classes. In light of this, we
perform sample difficulty estimation in the feature space of pre-trained models and cast it as a density
estimation problem since samples with typical discriminative features are easier to learn and typical
features shall reappear. We advocate using Gaussian models to represent the training data distribution
in the feature space of pre-trained models and derive the relative Mahalanobis distance (RMD) as
a sample difficulty score. As shown in Fig. 1, there is a high-level agreement on sample difficulty
between RMD and human cognition.

Equipped with the knowledge of sample difficulty, we further propose to use it for regularizing
the prediction confidence. The standard cross entropy loss with a single ground truth label would
encourage the model to predict all instances in Fig. 1-a) as the class Tusker with 100% confidence.
However, such high confidence is definitely unjustified for the hard samples. Thus, we modify the
training loss by adding an entropic regularizer with an instance-wise adaptive weighting in proportion
to the sample difficulty. Profiting from the high-quality sample difficulty measure and the effective
entropic regularizer, we develop a strong, scalable, and easy-to-implement approach to improving
both the predictive accuracy and calibration of the model.

Our method successfully improves the model’s performance and consistently outperforms competitive
baselines on various image classification benchmarks, ranging from the i.i.d. setting to corruption
robustness, selective classification, and out-of-distribution detection. Importantly, unlike previous
works that compromise accuracy [22, 31] or suffer from expensive computational overhead [26],
our method can improve predictive performance and uncertainty quantification concurrently in a
computationally efficient way. The consistent gains across architectures demonstrate that our sample
difficulty measure is a valuable characteristic of the dataset for training.

2 Related Works

Uncertainty regularization. A surge of research has focused on uncertainty regularization to
alleviate the overfitting and overconfidence of deep neural networks. Lp Norm [22] and entropy
regularization (ER) [42] explicitly enforce a small norm of the logits or a high predictive entropy.
Label smoothing (LS) [36] interpolates the ground-truth one-hot label vector with an all-one vector,
thus penalizing 100% confident predictions. [35] showed that focal loss (FL) [30] is effectively an
upper bound to ER. Correctness ranking loss (CRL) [34] regularizes the confidence based on the
frequency of correct predictions during the training losses.
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LS, Lp Norm, FL and ER do not adjust prediction confidence based on the sample difficulty. The
frequency of correct predictions was interpreted as a sample difficulty measure [50]. However,
CRL only concerns pair-wise ranking in the same batch. Compared to the prior art, we weight the
overconfidence penalty according to the sample difficulty, which proves to be more effective at jointly
improving accuracy and uncertainty quantification. Importantly, the sample difficulty is derived from
a data distribution perspective, and remains constant over training.

Sample difficulty measurement. Prior works measure the sample difficulty by only considering
the task-specific data distribution and training model, e.g., [50, 21, 40, 2, 1, 41, 49, 11, 33]. As
deep neural networks are prone to overfitting, they often require careful selection of training epochs,
checkpoints, data splits and ensembling strategies. Leveraging the measurement for data pruning,
[49] showed existing work still underperforms on large datasets, e.g., ImageNet1k. The top solution
used a self-supervised model and scored the sample difficulty via K-means clustering.

We explore pre-trained models that have been exposed to large-scale datasets and do not overfit the
downstream training set. Their witness of diverse data serves as informative prior knowledge for
ranking downstream training samples. Furthermore, the attained sample difficulty can be readily used
for different downstream tasks and models. In this work, we focus on improving prediction reliability,
which is an under-explored application of large-scale pre-trained models. The derived relative
Mahalanobis distance (RMD) outperforms Mahalanobis distance (MD) and K-means clustering for
sample difficulty quantification.

3 Sample Difficulty Quantification

Due to the ubiquity of data uncertainty in the dataset collected from the open world [23, 6], the
sample difficulty quantification (i.e., characterizing the hardness and noisiness of samples) is pivotal
for reliable learning of the model. For measuring training sample difficulty, we propose to model
the data distribution in the feature space of a pre-trained model and derive a relative Mahalanobis
distance (RMD). A small RMD implies that 1) the sample is typical and carries class-discriminative
features (close to the class-specific mean mode but far away from the class-agnostic mean mode), and
2) there exist many similar samples (high-density area) in the training set. Such a sample represents
an easy case to learn, i.e., small RMD ↔ low sample difficulty, see Fig. 1.

3.1 Large-scale pre-trained models

Large-scale image and image-text data have led to high-quality pre-trained vision models for down-
stream tasks. Instead of using them as the backbone network for downstream tasks, we propose a
new use case, i.e., scoring the sample difficulty in the training set of the downstream task. There is no
rigorously defined notion of sample difficulty. Intuitively, easy-to-learn samples shall reappear in
the form of showing similar patterns. Repetitive patterns specific to each class are valuable cues for
classification. Moreover, they contain neither confusing nor conflicting information. Single-label
images containing multiple salient objects belonging to different classes or having wrong labels
would be hard samples.

To quantify the difficulty of each sample, we propose to model the training data distribution in the
feature space of large-scale pre-trained models. In the pixel space, data distribution modeling is
prone to overfitting low-level features, e.g., an outlier sample with smoother local correlation can
have a higher probability than an inlier sample [48]. On the other hand, pre-trained models are
generally trained to ignore low-level information, e.g., semantic supervision from natural language
or class labels. In the case of self-supervised learning, the proxy task and loss are also formulated
to learn a holistic understanding of the input images beyond low-level image statistics, e.g., the
masking strategy designed in MAE [14] prevents reconstruction via exploiting local correlation.
Furthermore, as modern pre-trained models are trained on large-scale datasets with high sample
diversities in many dimensions, they learn to preserve and structure richer semantic features of the
training samples than models only exposed to the training set that is commonly used at a smaller scale.
In the feature space of pre-trained models, we expect easy-to-learn samples will be closely crowded
together. Hard-to-learn ones are far away from the population and even sparsely spread due to missing
consistently repetitive patterns. From a data distribution perspective, the easy (hard)-to-learn samples
should have high (low) probability values.
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3.2 Measuring sample difficulty
While not limited to it, we choose the Gaussian distribution to model the training data distribution in
the feature space of pre-trained models, and find it simple and effective. We further derive a relative
Mahalanobis distance (RMD) from it as the sample difficulty score.
Class-conditional and agnostic Gaussian distributions. The downstream training set D =

{(xi, yi)}Ni=1 is a collection of image-label pairs, with xi ∈ Rd and yi ∈ {1, 2, ...,K} as the image
and its label, respectively. We model the feature distribution of {xi} with and without conditioning on
the class information. Let G(·) denote the penultimate layer output of the pre-trained model G. The
class-conditional distribution is modelled by fitting a Gaussian model to the feature vectors {G(xi)}
belonging to the same class yi = k

P (G(x) | y = k) = N (G(x) | µk,Σ) , (1)

µk =
1

Nk

∑
i:yi=k

G (xi) , Σ =
1

N

∑
k

∑
i:yi=k

(G(xi)− µk)(G(xi)− µk)
⊤, (2)

where the mean vector µk is class-specific, the covariance matrix Σ is averaged over all classes to
avoid under-fitting following [46, 27], and Nk is the number of training samples with the label yi = k.
The class-agnostic distribution is obtained by fitting to all feature vectors regardless of their classes

P (G(x)) = N (G(x) | µagn,Σagn) , (3)

µagn =
1

N

N∑
i

G (xi) , Σagn =
1

N

N∑
i

(G(xi)− µagn)(G(xi)− µagn)
⊤. (4)

Relative Mahalanobis distance (RMD). For scoring sample difficulty, we propose to use the
difference between the Mahalanobis distances respectively induced by the class-specific and class-
agnostic Gaussian distribution in (1) and (3), and boiling down to

RM(xi, yi) = M(xi, yi)−Magn(xi), (5)

M(xi, yi) = − (G(xi)− µyi
)
⊤
Σ−1 (G(xi)− µyi

) , (6)

Magn(xi) = − (G(xi)− µagn)
⊤
Σ−1

agn (G(xi)− µagn) . (7)

Previous work [46] utilized RMD for OOD detection at test time, yet we explore it to rank each
sample and measure the sample difficulty in the training set.

A small class-conditional MD M(xi, yi) indicates that the sample exhibits typical features of the
sub-population (training samples from the same class). However, some features may not be unique
to the sub-population, i.e., common features across classes, yielding a small class-agnostic MD
Magn(xi). Since discriminative features are more valuable for classification, an easier-to-learn
sample should have small class-conditional MD but large class-agnostic MD. The derived RMD is
thus an improvement over the class-conditional MD for measuring the sample difficulty, especially
when we use pre-trained models that have no direct supervision for downstream classification. We
refer to Appendix A for detailed comparisons.
How well RMD scores the sample difficulty. Qualitatively, Fig. 1a shows a high-level agreement
between human visual perception and RMD-based sample difficulty, and see Appendix C for more
visual examples. As shown, hard samples tend to be challenging to classify, as they miss the relevant
information or contain ambiguous information. Furthermore, prior works [5, 6] also show that data
uncertainty [8] should increase on poor-quality images. We manipulate the sample difficulty by
corrupting the input image or alternating the label. Fig. 1b showed that the RMD score increases
proportionally with the severity of corruption and label noise, which further shows the effectiveness
of RMD in characterizing the hardness and noisiness of samples.

As there is no ground-truth annotation of sample difficulty, we construct the following proxy test for
quantitative evaluation. Hard samples are more likely to be misclassified. We therefore use RMD to
sort each ImageNet1k validation sample in the descending order of the sample difficulty and group
them into subsets of equal size. Fig. 2 shows that an off-the-shelf ImageNet1k classifier (ResNet34
and standard training procedure) performed worst on the hardest data split, and its performance
gradually improves as the data split difficulty reduces. This observation indicates an agreement
between ResNet34 and RMD regarding what samples are hard and easy. Such an observation also
holds for different architectures, see Fig. 7 in Appendix B.
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Table 1: Pre-trained Models. We list two variants of CLIP [44] that use ResNet-50 [15] and ViT-
Base [10] as the image encoder respectively.

Model Pre-trained dataset

CLIP-ViT-B 400M image-caption data [44]CLIP-R50
ViT-B 14M ImageNet21k (w. labels) [47]

MAE-ViT-B 1.3M ImageNet1k (w./o. labels) [7]
DINOv2 142M image data [38]

Fig. 2 also compares four large-scale pre-trained models listed in Table 1 for computing RMD.
Interestingly, while MAE-ViT-B [14] is only trained on ImageNet1k (not seeing more data than
the downstream classification task), it performs better than ViT-B [10] trained on ImageNet21k.

Figure 2: Error rate achieved by ResNet34 (trained
on ImageNet1k) on the validation subsets, which
respectively contain 500 samples ranked from the
ath to bth hardest. Four different pre-trained models
are used for computing RMDs and ranking.

We hypothesize that self-supervised learning (MAE-
ViT-B) plays a positive role compared to supervised
learning (ViT-B), as it does not overfit the training
classes and instead learn a holistic understanding of
the input images beyond low-level image statistics
aided by a well-designed loss (e.g., the masking and
reconstructing strategy in MAE). [49] also reported
that a self-supervised model on ImageNet1k (i.e.,
SwAV) outperforms supervised models in selecting
easy samples to prune for improved training effi-
ciency. Nevertheless, the best-performing model in
Fig. 2 is CLIP. The error rate of ResNet34 on the
hardest data split rated by CLIP is close to 90%.
CLIP learned rich visual concepts from language
supervision (cross-modality) and a large amount of
data. Thus, it noticeably outperforms the others,
which have only seen ImageNet-like data.

4 Difficulty-aware Uncertainty Regularization

While we can clearly observe that a dataset often consists of samples with diverse difficulty levels
(e.g., Fig. 1a), the standard training loss formulation is sample difficulty agnostic. In this section, we
propose a sample difficulty-aware entropy regularization to improve the training loss, which will be
shown to yield more reliable predictions.

Let fθ denote the classifier parameterized by a deep neural network, which outputs a conditional
probability distribution pθ(y|x). Typically, we train fθ by minimizing the cross-entropy loss on the
training set

ℓ = E(xi,yi) {− log (fθ (xi) [yi])} , (8)

where fθ(xi)[yi] refers to the predictive probability of the ground-truth label yi.

It is well known that deep neural networks trained with cross-entropy loss tend to make overconfident
predictions. Besides the overfitting reason, it is also because the ground-truth label is typically a
one-hot vector which represents the highest confidence regardless of the sample difficulty. Although
different regularization-based methods [36, 22, 35] have been proposed to address the issue, they all
ignore the difference between easy and hard samples and may assign an inappropriate regularizer
for some samples. In view of this, we propose to regularize the cross-entropy loss with a sample
difficulty-aware entropic regularizer

ℓ =E {− log (fθ (xi) [yi])− αs(xi, yi)H[fθ (xi)]} , (9)

where α is a hyper-parameter used to control the global strength of entropy regularization and the
value range is generally in (0, 0.5). s(xi, yi) ∈ (0, 1) is a normalized sample-specific weighting
derived from the RMD-based sample difficulty score (5)

s(xi, yi) =
exp (RM(xi, yi)/T )

max
i

{exp(RM(xi, yi)/T}+ c
. (10)
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As the entropic regularizer encourages uncertain predictions, the sample-adaptive weighting s(xi, yi),
ranging from 0 to 1, is positively proportional to the sample difficulty score RM(xi, yi), where the
parameter c equals to a small constant (e.g., 1e-3) ensuring the value range (0, 1). The parameter T
is adjustable to control the relative importance among all training data, Fig. 10 in Appendix shows
the distribution of s(·) under different T .

Implementation details of sample difficulty score. Because the difficulty level of a sample may
vary depending on how data augmentation is applied, we conduct five random runs to fit Gaussian
distributions to eliminate the potential effect. Moreover, we check how the standard augmentation
affects the score in Eq. 10, where the numerator can be computed based on each sample with randomly
chosen data augmentation, and denominator can be obtained by taking the maximum from the dataset
we created to fit the Gaussians in the first step. We do not find data augmentation changes the score
too much. Therefore, we can calculate per-sample difficulty score once before training for the sake of
saving computing overhead and then incorporate it into the model training using Eq. 9.

5 Experiment

We thoroughly compare related uncertainty regularization techniques and sample difficulty measures
on various image classification benchmarks. We also verify if our sample difficulty measure conveys
important information about the dataset useful to different downstream models. Besides accuracy
and uncertainty calibration, the quality of uncertainty estimates is further evaluated on two proxy
tasks, i.e., selective classification and out-of-distribution detection.

Datasets. CIFAR-10/100 [25], and ImageNet1k [7] are used for multi-class classification training
and evaluation. ImageNet-C [17] is used for evaluating calibration under distribution shifts, including
blur, noise, and weather-related 16 types of corruptions, at five levels of severity for each type. For
OOD detection, in addition to CIFAR-100 vs. CIFAR-10, we use iNaturalist [51] as the near OOD
data of ImageNet1k.

Implementation details. We use standard data augmentation (i.e., random horizontal flipping
and cropping) and SGD with a weight decay of 1e-4 and a momentum of 0.9 for classification
training, and report averaged results from five random runs. The default image classifier architecture
is ResNet34 [15]. For the baselines, we use the same hyper-parameter setting as recommended in
[52]. For the hyper-parameters in our training loss (9), we set α as 0.3 and 0.2 for CIFARs and
ImageNet1k, respectively, where T equals 0.7 for all datasets. CLIP-ViT-B [44] is utilized as the
default pre-trained model for scoring the sample difficulty.

Evaluation metrics. To measure the prediction quality, we report accuracy and expected calibration
error (ECE) [37] (equal-mass binning and 15 bin intervals) of the Top-1 prediction. For selective
classification and OOD detection, we use three metrics: (1) False positive rate at 95% true positive
rate (FPR-95%); (2) Area under the receiver operating characteristic curve (AUROC); (3) Area under
the precision-recall curve (AUPR).

5.1 Classification accuracy and calibration

Reliable prediction concerns not only the correctness of each prediction but also if the prediction
confidence matches the ground-truth accuracy, i.e., calibration of Top-1 prediction.

I.I.D. setting. Table 2 reports both accuracy and ECE on the dataset CIFAR-10/100 and ImageNet1k,
where the training and evaluation data follow the same distribution. Our method considerably
improves both accuracy and ECE over all baselines. It is worth noting that except ER and our method,
the others cannot simultaneously improve both ECE and accuracy, trading accuracy for calibration or
vice versa. Compared to conventional ER with a constant weighting, our sample difficulty-aware
instance-wise weighting leads to much more pronounced gains, e.g., reducing ECE more than 50% on
ImageNet1k with an accuracy increase of +0.43%. Furthermore, we also compare with PolyLoss [29],
a recent state-of-the-art classification loss. It reformulates the CE loss as a linear combination of
polynomial functions and additionally allows flexibly adjusting the polynomial coefficients. In order
to improve the accuracy, it has to encourage confident predictions, thus compromising ECE. After
introducing the sample difficulty awareness, we avoid facing such a trade-off.
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Table 2: The comparison of predictive Top-1 accuracy (%) and ECE (%) on CIFAR-10/-100 and
ImageNet1k using ResNet-34. The six baseline methods respectively use the standard cross entropy
(CE) loss, CE with label smoothing (LS) [36], focal loss (FL) [35], CE with L1 Norm-based
regualarization [22], CE with entropy regularization (ER) [42], and PolyLoss (Poly) [29]. In contrast
to our method, all these baseline losses are sample difficulty-agnostic.

CE LS FL L1 Norm ER Poly Proposed

CIFAR-10 ACC ↑ 93.79 94.47 93.82 94.51 94.34 94.66 95.67±0.16
ECE ↓ 3.980 3.816 3.520 3.542 3.198 5.283 1.212±0.11

CIFAR-100 ACC ↑ 76.79 76.48 76.74 74.32 77.32 77.39 78.58±0.12
ECE ↓ 7.251 6.363 4.110 6.232 4.092 8.554 3.410±0.23

ImageNet1k ACC ↑ 73.56 73.69 72.82 73.21 73.68 74.02 74.11±0.10
ECE ↓ 5.301 3.994 4.901 2.625 3.720 7.882 1.602±0.15
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Figure 3: Box plot: ECEs of different methods on
ImageNet-C under all types of corruptions with 5 levels
of shift intensity. Each box shows a summary of the
results of 16 types of shifts.

Figure 4: Accuracy vs. rejection rate, us-
ing the predictive entropy as the uncer-
tainty measure to reject predictions on Ima-
geNet1k.

Improvements across classification models. If our sample difficulty measure carries useful infor-
mation about the dataset, it should lead to consistent gains across different classifier architectures
(e.g., ResNet, Wide-ResNet and DenseNet). Table 9 in Appendix positively confirms that it benefits
the training of small and large models.

Under distributional shift. [39] has shown that the quality of predictive uncertainty degrades
under distribution shifts, which however are often inevitable in real-world applications. We further
evaluate the calibration performance achieved by the ImageNet1k classifier on ImageNet-C [17].
Specifically, Fig. 3 plots the ECE of each method across 16 different types of corruptions at five
severity levels, which ranges from the lowest level one to the highest level five. It is prominent that
the proposed method surpasses other methods for ECE at various levels of skew. In particular, the
gain becomes even larger as the shift intensity increases.

5.2 Selective classification

While we do not have the ground-truth predictive uncertainty annotation for each sample, it is natural
to expect that a more uncertain prediction should be more likely to be wrong. A critical real-world
application of calibrated predictions is to make the model aware of what it does not know. Next, we
validate such expectations via selective classification. Namely, the uncertainty measure is used to
detect misclassification via thresholding. Rejecting every prediction whose uncertainty measure is
above a threshold, we then evaluate the achieved accuracy on the remaining predictions. A high-
quality uncertainty measure should improve the accuracy by rejecting misclassifications but also
ensure coverage (not trivially rejecting every prediction).

Misclassification detection. Table 3 reports the threshold-free metrics, i.e., FPR, AUROC and
AUPR, that quantify the success rate of detecting misclassifications based on two uncertainty mea-
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sures, i.e., maximum softmax probability (MSP) [18] and entropy. The proposed regularizer is
obviously the top-performing one in all metrics on both CIFAR100 and ImageNet1k. The gains are
particularly pronounced in FPRs, indicating that the proposed method does not overly trade coverage
for accuracy. This is further confirmed in Fig. 4.

Interestingly, our method also reduces the performance gap between the two uncertainty measures,
i.e., entropy can deliver similar performance as MSP. Both are scalar measures derived from the
same predictive distribution over all classes but carry different statistical properties. While we cannot
directly assess the predictive distribution, the fact that different statistics derived from it are all useful
is a positive indication.
Accuracy vs. Coverage. Fig. 4 plots the accuracy vs. rejection rate on ImageNet1k. Compared
to the cross entropy loss (CE) and entropy regularization (ER) with a constant weighting (which
is the best baseline in Table 3), our proposal offers much higher selective classification accuracy
at the same rejection rate. Moreover, the gain (orange area) increases along with the rejection rate,
indicating the effectiveness of our method. Without sample difficulty-aware weighting, the accuracy
gain of ER over CE vanishes on ImageNet1k.

In Appendix D, we also compare the predictive entropy and confidence of different methods for
wrong predictions, see Fig 11. The proposed method achieves the lowest predictive confidence and
highest entropy among all methods for misclassified samples, which further verifies the reliable
uncertainty estimation of the proposed regularizer.

Table 3: The comparison of misclassification de-
tection performance (%).

Dataset Method FPR-95%↓ AUROC ↑ AUPR ↑

C100

MSP / Entropy
CE 45.21/47.44 86.29/86.58 94.70/95.47
LS 49.19/49.71 86.00/85.82 94.31/94.19
FL 47.30/48.84 85.90/84.72 94.90/94.50
L1 48.11/48.40 85.52/85.31 94.05/93.90
ER 45.40/46.88 86.32/85.69 95.26/95.20

CRL 44.80/46.08 86.67/85.98 95.55/95.49
Ours 42.71/43.22 87.50/87.03 96.10/96.02

ImageNet1k

CE 46.93/48.94 86.03/85.02 94.22/93.75
LS 52.12/61.52 85.28/81.03 93.86/91.98
FL 48.54/51.10 85.67/83.05 94.08/93.03
L1 47.19/48.58 86.19/84.58 94.39/93.82
ER 46.98/48.85 86.15/84.19 94.38/93.82

CRL 46.03/48.01 86.11/84.33 94.41/93.89
Ours 45.69/46.72 86.53/85.23 94.76/94.31

Table 4: The comparison of near OOD detection
performance (%).

Din/Dout Method FPR-95%↓ AUROC ↑ AUPR ↑

C100/C10

MaxLogit / Entropy
CE 60.19/60.10 78.42/78.91 79.02/80.19
LS 69.51/70.08 77.14/77.31 75.92/75.89
FL 61.02/61.33 78.79/79.36 80.22/80.22
L1 61.58/61.60 76.52/76.58 79.19/79.21
ER 59.52/59.92 79.22/79.46 81.01/81.22

CRL 58.13/58.54 79.91/80.13 81.75/81.89
Ours 55.48/55.60 80.20/80.72 82.51/82.84

ImageNet1k /
iNaturalist

CE 36.06/40.33 89.82/89.02 97.61/97.40
LS 37.56/41.22 89.10/89.35 97.12/97.30
FL 36.50/36.32 90.03/90.25 97.76/97.80
L1 38.32/46.03 88.90/88.29 97.53/97.27
ER 36.00/35.11 89.86/90.04 97.75/97.43

CRL 35.07/34.65 90.11/90.32 97.96/97.81
Ours 32.17/34.19 91.03/90.65 98.03/97.99

5.3 Out-of-distribution detection (OOD)
In an open-world context, test samples can be drawn from any distribution. A reliable uncertainty
estimate should be high on test samples when they deviate from the training distribution. In light of
this, we verify the performance of the proposed method on near OOD detection (i.e., CIFAR-100 vs
CIFAR-10 and ImageNet1k vs iNaturalist), which is a more difficult setting than far OOD tasks (e.g.,
CIFAR100 vs SVHN and CIFAR10 vs MNIST) [12].

As our goal is to evaluate the quality of uncertainty rather than specifically solving the OOD detection
task, we leverage MaxLogit and predictive entropy as the OOD score. [16] showed MaxLogit to be
more effective than MSP for OOD detection when dealing with a large number of training classes,
e.g., ImageNet1k. Table 4 shows that the uncertainty measures improved by our method lead to
improvements in OOD detection, indicating its effectiveness for reliable predictions.

5.4 The robustness of hyperparameter α

We analyze the effects of hyper-parameters: α in ER and the proposed method on the predictive
performance, and Table 5 reports the comparison results of different α on ImageNet1k. Compared
to ER, the proposed method is less sensitive to the choice of owing to sample adaptive weighting,
whereas ER penalizes confident predictions regardless of easy or hard samples. Oftentimes, a large
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Table 5: The comparison for ACC and ECE under different α on ImageNet1k. Bold indicates the
results from the chosen hyperparameter.

α 0 0.05 0.10 0.15 0.20 0.25 0.30

ER ACC 73.56 73.59 73.68 73.76 73.78 73.81 73.88
ECE 5.301 3.308 3.720 10.19 15.24 25.22 33.26

Proposed ACC 73.56 73.89 73.91 74.08 74.11 74.13 73.98
ECE 5.301 1.855 1.851 1.596 1.602 1.612 1.667

portion of data is not difficult to classify, but the equal penalty on every sample results in the model
becoming underconfident, resulting to poor ECEs.

5.5 Comparison of different sample difficulty measures

Finally, we compare different sample difficulty measures for reliable prediction, showing the superi-
ority of using large-scale pre-trained models and the derived RMD score.

CLIP is the top-performing model for sample difficulty quantification. In addition to Fig. 2,
Table 6 compares the pre-trained models listed in Table 1 in terms of accuracy and ECE. All
pre-trained models improve the baseline (using the standard CE loss), especially in ECE. CLIP
outperforms ViT-B/MAE-ViT-B, thanks to a large amount of diverse multi-modal pre-trained data
(i.e., learning the visual concept from language supervision). Additionally, the performance of
using recent DINOv2 [38] as a pre-trained model to quantify sample difficulty also surpasses ViT-
B/MAE-ViT-B. While ImageNet21k is larger than ImageNet1k, self-supervised learning adopted by
MAE-ViT-B reduces overfitting the training classes, thus resulting in better performance than ViT-B
(which is trained supervisedly).

Table 6: The comparison of different pre-trained models for accuracy and ECE on ImageNet1k.

ViT-B MAE-ViT-B DINOv2 CLIP-R50 CLIP-ViT-B

ACC ↑ 73.59 73.81 74.01 74.05 74.11
ECE ↓ 2.701 1.925 1.773 1.882 1.602

CLIP outperforms supervised models on the task dataset. To further confirm the benefits from
large-scale pre-training models, we compare them with supervised models on the task dataset (i.e.,
ImageNet1k). We use three models (i.e., ResNet34/50/101) trained with 90 epochs on ImageNet1k to
measure the sample difficulty. We did not find it beneficial to use earlier-terminated models. The
classifier model is always ResNet34-based. Besides RMD, we also exploit the training loss of each
sample for sample difficulty quantification. Table 10 in Appendix shows that they all lead to better
ECEs than ER with constant weighting (see Table 2). Compared to the pre-trained models in Table 6,
they are slightly worse than ViT-B in ECE. Without exposure to the 1k classes, MAE-ViT-B achieves
a noticeably better ECE. The pronounced improvements in both accuracy and ECE shown in the last
column of Table 10 are enabled by CLIP.

Effectiveness of RMD. We resorted to density estimation for quantifying sample difficulty and
derived the RMD score. Alternatively, [50] proposed to use the frequency of correct predictions
during training epochs. Based on that, [34] proposed a new loss termed correctness ranking loss
(CRL). It aims to ensure that the confidence-based ranking between the two samples should be
consistent with their frequency-based ranking. Table 7 shows our method scales better with larger
datasets. Our RMD score is derived from the whole data distribution, thus considering all samples at
once rather than a random pair at each iteration. The ranking between the two samples also changes
over training, while RMD is constant, thus ensuring a stable training objective.

Next, we compare different distance measures in the feature space of CLIP-ViT-B, i.e., K-means, MD
and RMD. Table 8 confirms the superiority of RMD in measuring the sample difficulty and ranking
the training samples.
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Table 7: The comparison of RMD and correctness
ranking loss (CRL) [34] in regularizing the pre-
diction confidence.

Method C10 C100 ImageNet1k

CRL ACC ↑ 94.06 76.71 73.60
ECE ↓ 0.957 3.877 2.272

Proposed ACC ↑ 95.67 78.58 74.11
ECE ↓ 1.212 3.410 1.602

Table 8: The comparison of different sample diffi-
culty measures for predictive Top-1 accuracy (%)
and ECE (%) on ImageNet1k.

K-means MD RMD

ACC ↑ 73.78 73.71 74.11
ECE ↓ 2.241 2.125 1.613

6 Conclusions

This work introduced a new application of pre-trained models, exploiting them to improve the
calibration and quality of uncertainty quantification of the downstream model. Profiting from rich
large-scale (or even multi-modal) datasets and self-supervised learning for pre-training, pre-trained
models do not overfit the downstream training data. Hence, we derive a relative Mahalanobis distance
(RMD) via the Gaussian modeling in the feature space of pre-trained models to measure the sample
difficulty and leverage such information to penalize overconfident predictions adaptively. We perform
extensive experiments to verify our method’s effectiveness, showing that the proposed method can
improve prediction performance and uncertainty quantification simultaneously.

In the future, the proposed method may promote more approaches to explore the potential of large-
scale pre-trained models and exploit them to enhance the reliability and robustness of the downstream
model. For example, for the medical domain, MedCLIP [53] can be an interesting alternative to
CLIP/DINOv2 for practicing our method. Besides, conjoining accuracy and calibration is vital for
the practical deployment of the model, so we hope our method could bridge this gap. Furthermore,
many new large-scale models (including CLIP already) have text-language alignment. In our method,
we do not explore the language part yet, however, it would be interesting to use the text encoder
to “explain” the hard/easy samples in human language. One step further, if the pre-trained models
can also synthesize (here CLIPs cannot), we can augment the training with additional easy or hard
samples to further boost the performance.

Potential Limitations. Pre-trained models may have their own limitations. For example, CLIP
is not straightforwardly suitable for medical domain data, as medical images can be OOD (out-of-
distribution) to CLIP. If targeting chest x-rays, we need to switch from CLIP to MedCLIP [53] as
a pre-trained model to compute the sample difficulty. In this work, CLIP is the chosen pre-trained
model, as it is well-suited for handling natural images, which are the basis of the targeted benchmarks.
Besides, the calculation of sample difficulty introduces an additional computational overhead although
we find it very affordable.
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A The comparison of MD and RMD for measuring the sample difficulty

hardest
easiest

(a) Visualization of the Top-8 hardest samples (top row) and Top-8 easiest samples (bottom row) in ImageNet
(class Tusker) which are ranked by means of the CLIP-VIT-B-based RMD score.

hardest
easiest

(b) Visualization of the Top-8 hardest samples (top row) and Top-8 easiest samples (bottom row) in ImageNet
(class Tusker) which are ranked by means of the CLIP-VIT-B-based MD score.

Figure 5: Visualization of the Top-k hardest and easiest samples in ImageNet (class Tusker) which
are ranked by RMD and MD scores. In contrast to the MD score, the easy and hard samples measured
by RMD are more accurate than those by MD.
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(a) Error rate achieved by ResNet18 (trained on Ima-
geNet) on the validation subsets, which respectively
contain 500 samples ranked from the ath to bth hard-
est.
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(b) Error rate achieved by ResNet34 (trained on Ima-
geNet) on the validation subsets, which respectively
contain 500 samples ranked from the ath to bth hard-
est.

Figure 6: The performance comparison of RMD and MD for characterizing Top-K hardest samples.

In Fig. 5, we further compare Top-k hardest and easiest samples that are ranked by RMD (Fig. 5a)
and MD (Fig. 5b) scores respectively. We can see that hard and easy samples characterized by RMD
are more accurate than those characterized by MD, and there is a high-level agreement between
human visual perception and RMD-based sample difficulty. Moreover, we quantitatively compare the
performance of RMD and MD for characterizing Top-K hardest samples in Fig 6. We can observe
that the error rate of ResNet18 and ResNet34 on the hardest data split rated by RMD is close to 90%,
which significantly suppresses the performance of MD. Therefore, the derived RMD in this paper is
an improvement over the class-conditional MD for measuring the sample difficulty.
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B Additional comparisons for different pre-trained models
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Figure 7: Error rate achieved by DenseNet121 (trained on ImageNet) on the validation subsets, which
respectively contain 500 samples ranked from the ath to bth hardest. Four different pre-trained models
are used for computing RMDs and ranking. They all show the same trend, i.e., the error rate reduces
along with the sample difficulty. However, ViT-B supervisedly trained on ImageNet21k performed
much worse than the others.

C More hard and easy samples ranked by RMD
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Figure 8: Visualization of the Top-8 hardest samples (top row) and Top-8 easiest samples (bottom
row) in ImageNet (class indigo bird) which are ranked by means of the CLIP-VIT-B-based RMD
score.
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Figure 9: Visualization of the Top-8 hardest samples (top row) and Top-8 easiest samples (bottom
row) in ImageNet (class echidna) which are ranked by means of the CLIP-VIT-B-based RMD score.
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(a) ImageNet1k. (b) CIFAR100.

Figure 10: Histograms of s(xi, yi) at different T .

D More experimental results

(a) Predictive entropy of misclassified samples on CI-
FAR and ImageNet datasets.

(b) Predictive confidence of misclassified samples on
CIFAR and ImageNet datasets.

Figure 11: Predictive entropy and confidence of misclassified samples for different methods on
CIFAR and ImageNet datasets.
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Figure 12: Test samples with predictions corresponding to the Top-100 relative Mahalanobis distance.
The text box (“x-x”) with green shade represents a misclassification. The first number indicates the
label class, and the second number indicates the predictive class.

Table 9: The comparison of various architectures for predictive Top-1 accuracy (%) and ECE (%) on
ImageNet1k.

Arch. CE ER Proposed

ResNet18 ACC ↑ 70.46 70.59 70.82
ECE ↓ 4.354 2.773 1.554

ResNet34 ACC ↑ 73.56 73.68 74.11
ECE ↓ 5.301 3.720 1.602

ResNet50 ACC ↑ 76.08 76.11 76.59
ECE ↓ 3.661 3.212 1.671

DenseNet121 ACC ↑ 75.60 75.73 75.99
ECE ↓ 3.963 3.010 1.613

WRN50x2 ACC ↑ 76.79 76.81 77.23
ECE ↓ 4.754 2.957 1.855
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Table 10: The comparison of different model-based measures for predictive Top-1 accuracy (%) and
ECE (%) on ImageNet1k. Compared to the three ResNets, “∆” denotes the averaged gain achieved
by CLIP-ViT-B in Table 6.

Measures ResNet34 ResNet50 ResNet101 ∆

RMD ACC ↑ 73.73 73.78 73.88 +0.31

ECE ↓ 3.298 2.996 2.882 −1.44

Loss ACC ↑ 73.58 73.61 73.75 +0.46

ECE ↓ 3.624 2.997 2.783 −1.52
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