
Blocked Collaborative Bandits: Online Collaborative
Filtering with Per-Item Budget Constraints

Soumyabrata Pal
Google Research
Bangalore, India

soumyabratapal13@gmail.com

Arun Sai Suggala
Google Research
Bangalore, India

arunss@google.com

Karthikeyan Shanmugam
Google Research
Bangalore, India

karthikeyanvs@google.com

Prateek Jain
Google Research
Bangalore, India

prajain@google.com

Abstract

We consider the problem of blocked collaborative bandits where there are multiple
users, each with an associated multi-armed bandit problem. These users are grouped
into latent clusters such that the mean reward vectors of users within the same
cluster are identical. Our goal is to design algorithms that maximize the cumulative
reward accrued by all the users over time, under the constraint that no arm of a
user is pulled more than B times. This problem has been originally considered
by [4], and designing regret-optimal algorithms for it has since remained an open
problem. In this work, we propose an algorithm called B-LATTICE (Blocked
Latent bAndiTs via maTrIx ComplEtion) that collaborates across users, while
simultaneously satisfying the budget constraints, to maximize their cumulative
rewards. Theoretically, under certain reasonable assumptions on the latent structure,
with M users, N arms, T rounds per user, and C = O(1) latent clusters, B-LATTICE
achieves a per-user regret of Õ(

√
T(1 + NM−1) under a budget constraint of

B = Θ(log T). These are the first sub-linear regret bounds for this problem, and
match the minimax regret bounds when B = T. Empirically, we demonstrate
that our algorithm has superior performance over baselines even when B = 1.
B-LATTICE runs in phases where in each phase it clusters users into groups and
collaborates across users within a group to quickly learn their reward models.

1 Introduction

Modern recommendation systems cater to millions of users and items [1] on a daily basis, typically
in an online fashion. A critical feature of such systems is to quickly learn tastes of individual users
from sequential actions and feedback, and suggest personalized products for each user. Furthermore,
in practice, an item that has already been consumed by a user is recommended very few times to
the same user (or not recommended at all). This is because, in applications such as movie/book
recommendations, a typical user will find little interest in consuming the same item multiple times.

This problem – that we rename as Blocked Collaborative Bandits – was abstracted out by [4] with
a modeling assumption that users have a latent clustering structure. That is, each user can belong
to an unknown cluster and the expected reward for an item/movie is same for all users in a cluster.
Formally, consider M users, N items and T rounds with M,N� T (M,N ≈ 106 in recommendation
systems such as YouTube) and in each round, every user is recommended some item (potentially
different for each user). On consuming the item, a noisy reward is assigned. As mentioned above,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Paper Setting Metric Guarantees (Worst-Case)

Bresler et al., 2014 [4] B = 1,
user clusters

pseudo regret (maximize
likeable items) O(T)

Bresler et al., 2018 [5]
B = 1,

user, item clusters;
noiseless rewards

regret Õ(1)

Ariu et al., 2020 [2] B = 1,
user, item clusters regret Õ(T2/3(1 + NM−1)1/3)

sub-optimal in N,T

Pal et al., 2023 [25] B = T,
user clusters regret Õ(

√
T(1 + NM−1)

minimax optimal in N,M,T

This Work B = Θ(log T),
user clusters regret Õ(

√
T(1 + NM−1)

Table 1: Comparison of various approaches for blocked collaborative bandits. All the regret bounds stated here
are worst-case bounds and assume C = O(1). Moreover, the regret is averaged across users. The worst-case
pseudo-regret in [5] is linear when the items have rewards close to 0.5. In [2], the authors’ proposed a greedy
algorithm whose worst-case has T2/3 dependence.

it is assumed that the users can be clustered in C clusters, where C� M,N, and users in the same
cluster have identical reward distributions over items. Furthermore, any item can be recommended to
a particular user at most B times, after which the item is blocked for the user.

[4] considered this problem for B = 1 in the setting where a user in cluster c on being recommended
item j provides a like (+1) with probability pcj and a dislike (−1) with probability 1 − pcj . The
authors studied a notion of pseudo-regret corresponding to minimizing the number of un-likeable
items for a user, i.e., items for which the probability of user giving a like (+1) is less than 1/2. To
this end, the authors proposed the Collaborative-Greedy algorithm, an ε-greedy style algorithm
that performs random exploration in each round with certain probability. During exploitation it
provides recommendations based on a neighborhood of similar users. However, maximizing the
number of likeable items is limiting as it does not prioritize items with large rewards and completely
disregards the item ordering. Despite these theoretical limitations, variants of the collaborative
algorithm designed in [4] have found applications in predicting Bitcoin price, [29], information
retrieval [12] among others.

Recent works have studied this problem under a more practical notion of regret which involves
maximizing the cumulative rewards accrued over time [2, 5]. However, these works assume a cluster
structure among both users and items. This assumption entails that there are many copies of the
highest rewarding item for any user; this voids the blocking constraint and makes the problem
significantly easier. Moreover, the algorithms designed in [2] are greedy (they perform exploration
first to cluster users, items, and then perform exploitation) and achieve significantly sub-optimal
regret. These bounds, translated to the original blocked bandit problem where there are no item
clusters, have sub-optimal dependence on the number of items N. The algorithms designed in [5]
assumed a noiseless binary feedback model which allowed for constant regret. However, these
algorithms are not easily extendable to the more general noisy reward setting we consider in this
work.

Another line of work has studied this problem when B = T (i.e., no budget constraints on arms) [24,
11, 25]. While some of these works have designed regret optimal algorithms [25], the B = T budget
constraint is too lenient in many modern recommendation systems. To summarize, existing works
have either attempted to solve the much harder setting of B = 1 by imposing additional restrictions
on the problem or the simpler B = T setting which is not very relevant in practice.

This Work. In this work, we make progress on this problem by considering the intermediate setting of
B = Θ(log T). We do not impose any cluster structure among items (as in [4]), and consider a general
notion of regret which involves maximizing the cumulative rewards under the budget constraints.
We propose B-LATTICE(Alg. 1), a phased algorithm which carefully balances exploration and
exploitation. Our algorithm also performs on-the-fly clustering of users and collaborates across
users within a cluster to quickly learn their preferences, while simultaneously satisfying the budget
constraints. The key contribution of our work is that under certain standard incoherence assumptions
(also used recently in [25]) and a budget constraint of B = Θ(log T), we show that B-LATTICE
achieves a per-user regret of Õ(

√
T(1

∨
NM−1)) 1. Empirically, our algorithm can even handle a

budget constraint of B = 1 and perform better than baselines (Alg. 6). However, bounding its regret

1Õ(·), Ω̃(·) hides logarithmic factors in M,N,T

2

in this setting is much more challenging which we aim to address in a future work. That being said,
under an additional cluster structure on the items, we show that our theoretical guarantees hold even
for B = 1 (Appendix F).

We also provide a non-trivial regret lower bound of Ω̃(
√

NM−1
∨

TM−1/2). Our proof involves a
novel reduction to multi-hypothesis testing and relies on Fano’s inequality for approximate recovery
[28] (see Appendix E). Our techniques could be of independent interest even outside the context of
this work. Our lower bound is tight in two regimes - when the number of rounds T is very small
or very large. However, we conjecture that our upper bounds are actually tight since they recover
the same rates as in the B = T setting [25]; tightening the lower bound is left as a future work.
Finally, we verify our theoretical results by simulations on synthetic data (see Appendix C). Here,
we compare a more practical version of B-LATTICE(Algorithm 6) with Collaborative-Greedy
[4]. We demonstrate that B-LATTICE not only has good regret but also other practically desirable
properties such as a small cold-start period, and repeated high quality recommendations.

Techniques. Our algorithm is built on recent works that have studied this problem without the budget
constraint [17, 25]. [17] developed a regret optimal algorithm called LATTICE that runs in phases.
At any phase, the algorithm maintains a grouping of users which it refines over time (these groups
are nothing but our current estimate of user clusters). Within each group, the algorithm relies on
collaboration to quickly estimate the reward matrix. To be precise, the algorithm performs random
exploration followed by low-rank matrix completion [8] to get a good estimate of the user-item
reward matrix. Next, the algorithm uses the estimated reward matrix to eliminate sub-optimal arms
for each user. Finally, it refines the user clusters by placing users with similar reward structure in the
same group.

Extending the above algorithmic recipe to our setting poses a couple of challenges. First, observe
that the oracle optimal strategy in the budget constrained setting is to recommend each of the top
T/B items B times; we refer to these top times as golden items in the sequel. To compete against
such a policy, our algorithm needs to quickly identify the golden items for each user. The LATTICE
algorithm described above doesn’t perform this, as it aims to only identify the top item for every user.
So, one of the key novelties in our algorithm is to design a test to quickly identify the golden items
and recommend them to the users. The second challenge arises from the usage of low-rank matrix
completion oracles in LATTICE. To be precise, LATTICE requires more accurate estimates of the
user-item reward matrix in the later phases of the algorithm. To this end, it repeatedly recommends
an item to a user to reduce the noise in its estimates. However, this is infeasible in our setting due to
the budget constraints. So, the second novelty in our algorithm is to avoid repeated recommendations
and design an alternate exploration strategy that adheres to the budget constraints.

Other Related Work:

Item-Item Collaborative Filtering (CF). A complementary theoretical line of work proposes to exploit
a clustering structure across the items instead of users [7, 23, 27, 22]. Under a similar blocking
constraint, the authors have provided a sub-linear regret guarantee based on a certain measure of
complexity called the doubling dimension. Since then, there have been several works in the literature
that have attempted to exploit a cluster structure on both users and items [6, 2].

Variants of User-User CF. [15] has looked into the problem of non-stationary user-user collaborative
filtering where the preferences of users change over time. [13] studies a variant where the user only
provides positive ratings i.e when the user has liked an item. [9] and [3] studies probabilistic models
for user user CF in an online and offline model respectively.

Cluster Structure across users. In several problems related to multi-armed bandits, cluster structure
across users have been explored. In particular, in [11, 20, 10, 21, 26], the authors have imposed
a cluster-structure across users while each item has a d-dimensional context chosen uniformly at
random at each round. The preferences of each user is a linear function of the context vector and the
cluster id. Under these settings, the authors prove a strong regret bound. However, note that in our
setting, the item contexts are hidden; hence, these techniques are not applicable to our setting.

2 Problem Setting and Background

Notation. We write [m] to denote the set {1, 2, . . . ,m}. For a vector v ∈ Rm, vi denotes the ith
element; for any set U ⊆ [m], let vU denote the vector v restricted to the indices in U . Similarly,

3

for A ∈ Rm×n, Aij ,Ai denotes the (i, j)-th element and the ith row of A respectively. For any set
U ⊆ [m],V ⊆ [n], AU,V denotes A restricted to the rows in U and columns in V . Let ‖A‖∞ denote
absolute value of the largest entry in matrix A. N (0, σ2) denotes the Gaussian distribution with 0
mean and variance σ2. We write EX to denote the expectation of a random variable X . ||U||2,∞
corresponds to the maximum euclidean norm of a row of the matrix U. More precisely, for a matrix
U ∈ RM×r, the norm ||U||2,∞ = maxi∈[M] ||Ui||2. Thus, if ||U||2,∞ is small as in Lemma 1, then
all rows of U have a small `2 norm.

Problem Setting. Consider an online recommendation system with M users, N items and T rounds.
Let P ∈ RM×N be the reward matrix which is unknown. Here, we assume the set of M users
can be partitioned into C disjoint but unknown clusters C(1), C(2), . . . , C(C) such that any two users
u, v ∈ [M] belonging to the same cluster have identical reward vectors i.e. Pu = Pv . In each round
t ∈ [T], every user is recommended an item (can be different for each user) by the system. In turn,
the system receives feedback in the form of reward from each user. Let, R

(t)
uρu(t) be the observed

reward for recommending item ρu(t) ∈ [N] to user u at round t such that:

R
(t)
uρu(t) = Puρu(t) + E

(t)
uρu(t) (1)

where E
(t)
uρu(t) denotes the unbiased additive noise. 2 We assume that elements of {E(t)

uρu(t)}u∈[M]
t∈[T]

are

i.i.d. zero mean sub-gaussian random variables with variance proxy σ2 i.e. for all u, t ∈ [M]× [T],
we have EE

(t)
uρu(t) = 0 and for all s ∈ R, we have E exp(sE

(t)
uρu(t)) ≤ exp(σ2s2/2). As in

practical recommendation systems, we impose an additional constraint that the same item cannot
be recommended more than B times to a user, for some small B = Θ(log T). For simplicity of
presentation, we assume T is a multiple of B. However, we would like to note that our results hold for
general T. Without loss of generality, we assume N ≥ T/B, since otherwise the budget constraints
cannot be satisfied.

Our goal is to design a method that maximizes cumulative reward. Let πu : [N] → [N] denote the
function that sorts the rewards of user u ∈ [M] in descending order, i.e., for any i < j, Puπu(i) ≥
Puπu(j). The oracle optimal strategy for this problem is to recommend {πu(s)}s=1...T/B, the top
T/B items with the highest reward, B times each. This leads us to the following notion of regret

Reg(T) ,
∑

s∈[T/B],u∈[M]

BPuπu(s)

M
− E

∑
t∈[T],u∈[M]

Puρu(t)

M
, (2)

where the expectation is over the randomness in the policy and the rewards, and ρu(t) is any policy
that satisfies the budget constraints.

Importance of collaboration. Suppose we treat each user independently and try to minimize their
regret. In this case, when B is as small as O(log T), we will incur a regret that is almost linear in T.
This is because we will not have enough data for any item to know if it has a high or a low reward.
This shows the importance of collaboration across users to achieve optimal regret. The latent cluster
structure in our problem allows for collaboration and sharing information about items across users.

For ease of exposition of our ideas, we introduce a couple of definitions.

Definition 1. A subset of users S ⊆ [M] is called “nice" if S ≡
⋃
j∈A C(j) for some A ⊆ [C]. In

other words, S can be represented as the union of some subset of clusters.

Definition 2. For any user u ∈ [M], we call the set of items {πu(t)}T/Bt=1 (i.e., the set of best T/B
items) to be the golden items for user u.

2This corresponds to the following analogue of multi-agent multi-armed bandits (MAB) - we have M users
each involved in a separate MAB problem with the same set of N arms (corresponding to the N items) and T
rounds. The mean reward of each arm is different for each user captured by the M × N reward matrix P. In
each round t, every agent u ∈ [M] simultaneously pulls an unblocked arm ρu(t) of their choice based on the
feedback history of all users (including u) from previous rounds. Subsequently the noisy feedback for all M
users and their corresponding arm pulls at round t is revealed to everyone.

4

2.1 Low-Rank Matrix Completion

Additional Notation. For an estimate P̂ of reward matrix P, we will use π̃u : [N]→ [N] to denote
the items ordered according to their estimated reward for the user u i.e., P̂uπ̃u(i) ≥ P̂uπ̃u(j) when
i < j. For any user u ∈ [M] and any subset of items A ⊆ [N], we will use πu | A : [|A|]→ [N] to
denote the permutation πu restricted to items inA ⊆ [N] i.e. for any user u ∈ [M] and any i, j ∈ [|A|]
satisfying i < j, we will have Puπu(i)|A ≥ Puπu(j)|A. Here, πu(i) | A corresponds to the ith item
among items in A sorted in descending order of expected reward for user u.

An important workhorse of our algorithm is low-rank matrix completion, which is a well studied
problem in the literature [16, 18, 8, 17]. Given a small set of entries that are randomly sampled
from a matrix, these algorithms infer the missing values of the matrix. More precisely, consider a
low-rank matrix Q ∈ RM×N. Let Ω ⊆ [M] × [N] be a random set of indices obtained by picking
each index in [M]× [N] independently with probability p > 0. Let {Zij}(i,j)∈Ω be the corresponding
noisy entries (sub-gaussian random variables with variance proxy σ2 > 0) that we observe which
satisfy EZij = Qij∀(i, j) ∈ Ω. In this work we rely on nuclear norm minimization to estimate
Q (see Algorithm 4). Recent works have provided tight element-wise recovery guarantees for this
algorithm [8, 17]. We state these guarantees in the following Lemma.

Lemma 1 (Lemma 2 in [17]). Consider matrix Q ∈ RM×N with rank r and SVD decomposition
ŪΣV̄T satisfying ‖Ū‖2,∞ ≤

√
µr/M, ‖V̄‖2,∞ ≤

√
µr/N and condition number κ = O(1). Let

d1 = max(M,N), d2 = min(M,N), noise variance σ2 > 0, and let sampling probability p be such

that p = Ω̃
(
µ2

d2
max

(
1, σ2µ
||P||2∞

))
(for some constant c > 0). Suppose we sample a subset of indices

Ω ⊆ [M]× [N] such that each tuple of indices (i, j) ∈ [M]× [N] is included in Ω independently with
probability p. Let {Zij}(i,j)∈Ω be the noisy observations corresponding to all indices in Ω. Then
Algorithm 4, when run with inputs (M,N, σ2, r,Ω, {Zij}(i,j)∈Ω), returns an estimate Q̃ of Q which
satisfies the following error bounds with probability at least 1−O(δ + d−12

2)

‖Q− Q̃‖∞ = O

(
σ
√
µ3 log d1√
pd2

)
. (3)

Lemma 1 provides guarantees on the estimate Q̃ of Q given the set of noisy observations corre-
sponding to the entries in Ω. Equation 3 says that the quality of the estimate becomes better with
the increase in sampling probability p that determines the number of entries in Ω. Note the detailed
Algorithm ESTIMATE (Alg. 4) designed in [17, 8] is provided in Appendix A.

Remark 1 (Warm-up (Greedy Algorithm)). Using Lemma 1, it is easy to design a greedy algorithm
(Alg. 5 in Appendix B) for B = 1; for a fixed number of rounds m, we recommend random
unblocked items to every user. Since the reward matrix P is a low-rank matrix, we use Algorithm 4
to estimate the entire matrix. Subsequently, we recommend the best estimated unblocked items for
each user for the remaining rounds. We can prove that the regret suffered by such an algorithm is
Õ(T2/3(1

∨
(N/M))1/3). The dependence on number of rounds T is sub-optimal, but Alg. 5 does

not require the knowledge of any gaps corresponding to the reward matrix P. See Appendix B for a
detailed proof. We would like to note that the result can be generalized easily to B = Θ(log T).

3 Main Results

Let X ∈ RC×N be the sub-matrix of the expected reward matrix P comprising C distinct rows of
P corresponding to each of the C true clusters. Also, let τ := maxi,j∈[r] |C(i)|/|C(j)| denote the
ratio of the maximum and minimum cluster size. To obtain regret bounds, we make the following
assumptions on the matrix X:

Assumption 1 (Assumptions on X). Let X = UΣVT be the SVD of X. Also, let X satisfy the
following: 1) Condition number: X is full-rank and has non zero singular values λ1 > · · · > λC
with condition number λ1/λC = O(1), 2) µ-incoherence: ||V||2,∞ ≤

√
µC/N, 3) Subset Strong

Convexity: For some α satisfying α log M = Ω(1), γ = Õ(1) for all subset of indices S ⊆ [M], |S| ≥
γC, the minimum non zero singular value of VS must be at least

√
α |S| /M.

5

Remark 2 (Discussion on Assumption 1). We need Assumption 1 only to bound the incoherence
factors and condition numbers of sub-matrices whose rows correspond to a nice subset of users and
the columns comprise of at least T1/3 golden items for each user in that nice subset. This implies that
information is well spread-out across the entries instead of being concentrated in a few. Thus, we
invoke Lemma 1 for those sub-matrices and utilize existing guarantees for low rank matrix completion.
Our theorem statement can hold under significantly weaker assumptions but for clarity, we used the
theoretically clean and simple to state Assumption 1. Note that the assumption is not required to
run our algorithm or any offline matrix completion oracle - the only purpose of the assumption is to
invoke existing theoretical guarantees of offline low rank matrix completion algorithms with `∞ error
guarantees.
Assumption 2. We will assume that µ, σ, τ, ||P||∞,C are positive constants and do not scale with
the number of users M, items N or the number of rounds T.

Assumption 2 is only for simplicity of exposition/analysis and is standard in the literature. As in [25],
we can easily generalize our guarantees if any of the parameters in Assumption 2 scale with In that
case, the regret has additional polynomial factors of µ, σ, τ, ||P||∞,C - moreover these quantities (or
a loose upper bound) are assumed to be known to the algorithm. Now, we present our main theorem:
Theorem 1. Consider the blocked collaborative bandits problem with M users, N items, C clusters,
T rounds with blocking constraint B = Θ(log T) 3 such that at every round t ∈ [T], we observe
reward R(t) as defined in eq. (1) with noise variance proxy σ2 > 0. Let P ∈ RM×N be the expected
reward matrix and X ∈ RC×M be the sub-matrix of P with distinct rows. Suppose Assumption
1 is satisfied by X and Assumption 2 is true. Then Alg. B-LATTICE initialized with phase index
` = 1,M(1) = [[M]],N (1) = [[N]],C,T, t0 = 1, texploit = 0, P̃ = 0 and ε1 = c(log M)−1 for some
constant c > 0 guarantees the regret Reg(T) defined under the blocking constraint (eq. 2) to be:

Reg(T) = Õ
(√

T max
(

1,
N

M

))
(4)

Note that the regret guarantee in Theorem 1 is small as long as N ≈ M (but M,N can be extremely
large). The dependence of the regret on number of rounds scales as

√
T. This result also matches

the
√

T dependence on the number of rounds without the blocking constraint [17, 25]. Furthermore,
Theorem 1 also highlights the importance of collaboration across users - compared with standard
multi-armed bandits, the effective number of arms is now the number of items per user.
Remark 3. Note that in our model, we have assumed that users in the same latent cluster have
identical true rewards across all items. Although we have made this assumption for simplicity as in
other works in the literature [25, 2, 3, 5], the assumption of each user having exactly 1 of C different
mean vectors can be relaxed significantly. In fact, in [25], a similar cluster relaxation was done in the
following way for a known value of ν > 0 - there are C clusters such that 1) users in the same cluster
have same best item and mean reward vectors that differ entry-wise by at most ν 2) any 2 users in
different clusters have mean reward vectors that differ entry-wise by at least 20ν. Our analysis can
be extended to the relaxed cluster setting with an addition cost in regret in terms of ν.

We now move on to a rigorous lower bound in this setting.
Theorem 2. Consider the blocked collaborative bandits problem with M users, N items, C = 1
cluster, reward matrix P ∈ [0, 1]M×N, T rounds with blocking constraint B such that at every round
t ∈ [T], we observe reward R(t) as defined in eq. (1) with noise random variables {E(t)

uρu(t)}u∈[M]
t∈[T]

generated i.i.d according to a zero mean Gaussian with variance 1. In that case, any algorithm must
suffer a regret of at least

Reg(T) = Ω
(

max
(√NB

M
,

T
√

log(N/T)

B
√

M

))
. (5)

Note that the main difficulty in proving tight lower bounds in the blocked collaborative bandits setting
is that, due to the blocking constraint of B, a single item having different rewards can only cause a

3It suffices for us if B = c logT for any constant c > c′ where c′ is a constant independent of all other model
parameters. This is because, we simply want B to be at least the number of phases. Since our phase lengths
increase exponentially, the number of phases is O(logT).

6

difference in regret of at most B in two separate instances constructed in standard measure change
arguments [19]. However, we prove two regret lower bounds on this problem, out of which the latter
is the technically more interesting one.

The first term in the lower bound in Thm. 2 follows from a simple reduction from standard multi-
armed bandits. Intuitively, if we have T/B known identical copies of each item, then the blocking
constraint is void - but with C = 1, this is (almost) equivalent to a standard multi-armed bandit
problem with MT rounds, NBT−1 distinct arms (up to normalization with M). The lower bound
follows from invoking standard results in MAB literature. For B = T, we recover the matching regret
lower bound in [25] without the blocking constraint. Furthermore, for B = Θ(log T), the first term is
tight up to log factors when number of rounds is small for example when T = O(1). (Appendix E)

The second term in the lower bound is quite non-trivial. Note that the second term is tight up to
log factors when the number of rounds T = Θ(N) is very large (close to the number of items) and
B = O(log T) is small. We obtain this bound via reduction of the regret problem to a multiple
hypothesis testing problem with exponentially many instances and applying Fano’s inequality [28]
(commonly used in proving statistical lower bounds in parameter estimation) for approximate recovery.
Our approach might be of independent interest in other online problems as well. (Appendix E)

Remark 4. We leave the problem of extending our guarantees for B = 1 as future work. However
we make progress by assuming a cluster structure over items as well. More precisely, suppose both
items and users can be grouped into a constant number of disjoint clusters as such that (user,item)
pairs in same cluster have same expected reward. Then, we can sidestep the statistical dependency
issues in analysis of Alg. 1 for B = 1 and provide similar guarantees as in Thm. 1 (see Appendix F).

4 B-LATTICE Algorithm

B-LATTICE is a recursive algorithm and runs in O(log T) phases of exponentially increasing length.
B-LATTICE assume the knowledge of the following quantities - users M, items N, clusters C, rounds
T, blocking constraint B, maximum true reward ||P||∞, incoherence factor µ, cluster size ratio τ ,
noise variance σ2 > 0 and other hyper-parameters in Assumption 1. At any phase, the algorithm
maintains a partitioning of users into crude clusters, and a set of active items for each such crude
cluster. LetM(`) be the partitioning of users in the `th phase, and N (`) be the list containing the set
of active items for each group of users inM(`). In the first phase, we place all users into a single
group and keep all items active for every user; that is,M(1) = [[M]], N (1) = [[N]]. There are three
key components in each phase: (a) exploration, (b) exploitation, and (c) user clustering. In what
follows, we explain these components in detail. For simplicity of exposition, suppose Assumption 2
is true namely the parameters µ, σ, τ, ||P||∞,C are constants.

Exploration (Alg. 2). The goal of the Explore sub-routine is to gather enough data to obtain a
better estimate of the reward matrix. To be precise, letM(`,i) be the users in the ith group at phase
`, and N (`,i) be the set of active items for this group. Let PM(`,i),N (`,i) be the sub-matrix of P

corresponding to rowsM(`,i) and columns N (`,i) (recall, this sub-matrix has rank at most C). Our
goal is to get an estimate P̃M(`,i),N (`,i) of this matrix that is entry-wiseO(2−`) close to the true matrix.
To do this, for each user inM(`,i), we randomly recommend items from N (`,i) with probability
p = O

(
22` log d1

d2

)
(Line 6). Here, d1 = max(|M(`,i)|, |N (`,i)|), d2 = min(|M(`,i)|, |N (`,i)|). We

then rely on low-rank matrix completion algorithm (Algorithm 4) to estimate the low rank sub-matrix.
By relying on Lemma 1, we show that our estimate is entry-wise O(2−`) accurate. This also shows
that our algorithm gets more accurate estimate of PM(`,i),N (`,i) as we go to the later phases.

User Clustering (lines 7-8 of Alg. 1). After the exploration phase, we refine the user partition to
make it more fine-grained. An important property we always want to ensure in our algorithm is that
M(`,i), the ith group/crude cluster in phase `, is a nice subset for all (`, i) (see Definition 1 for a
definition of nice subset). To this end, we build a user-similarity graph whose nodes are users in
M(`,i), and draw an edge between two users if they have similar rewards for all the arms in N (`,i)

(Line 8 in Alg. 1). Next, we partitionM(`,i) based on the connected components of the graph. That
is, we group all the users in a connected component into a single cluster. In our analysis, we show
that each connected component of the graph is a nice subset.

7

Algorithm 1 B-LATTICE (Blocked Latent bAndiTs via maTrIx ComplEtion)

Require: Phase index `, List of disjoint nice subsets of users M(`), list of corresponding subsets of
active items N (`), clusters C, rounds T, round index t0, exploit rounds texploit, estimate P̃ of P,
entry-wise error guarantee ε` of P̃ restricted to users in M(`) and all items in N (`), count matrices
K,L ∈ NM×N. // 1) K,L are global variables 2) M(`) is a list of disjoint subset
of users, each of which are proved to be nice w.h.p.

1: for ith nice subset of usersM(`,i) ∈M(`) with active itemsN (`,i) (ith set in listN (`)) do
2: Set t = t0. Set ε`+1 = ε`/2, ∆` = ε`/88C if ` > 1 and ∆` = ||P||∞ otherwise. Set ∆`+1 = ε`+1/88C.

// Beginning of a phase
3: Run exploit component for users in M(`,i) with active items N (`,i). Obtain up-

dated active set of items, round index and exploit rounds N (`,i), t, texploit ←
Exploit(M(`,i),N (`,i), t, texploit, P̃M(`,i),N (`,i) ,∆`).
//Recommend common set of identified golden items

4: Set d1 = max(|M(`,i)|, |N (`,i)|), d2 = min(|M(`,i)|, |N (`,i)|) and p = c
(

log d1
∆2

`+1
d2

)
for some appro-

priate fixed constant c > 0.
5: if |N (`,i)| ≥ T1/3 and p < 1 then
6: Run explore component for users inM(`,i) with active itemsN (`,i). Update estimate and round index

P̃, t← Explore(M(`,i),N (`,i), t, p) such that
∣∣∣∣∣∣P̃M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 w.h.p.

//Random Exploration and estimation of relevant reward sub-matrix
7: For every user u ∈M(`,i), compute T (`)

u ≡ {j ∈ N (`,i) | P̃uπu(TB−1−texploitB−1) − P̃uj ≤ 2∆`+1}.
8: Construct graph G(`,i) whose nodes are users inM(`,i) and an edge exists between two users u, v ∈

M(`,i) if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 for all items x ∈ N (`,i).
// Construct graph encoding user similarity

9: Intitialize listsM(`+1)
i = [] andN (`+1)

i = [].
10: For each connected component M(`,i,j) (∪jM(`,i,j) ≡ M(`,i)), compute N (`,i,j) ≡

∪u∈M(`,i,j)T (`)
u . AppendM(`,i,j) intoM(`+1)

i andN (`,i,j) intoN (`+1)
i .

//Construct finer clusters and identify joint good items
11: Invoke B-LATTICE(`+ 1,M(`+1)

i ,N (`+1)
i ,C,T, σ2, ||P||∞, µ, t, texploit, P̃, ε`+1,K,L).

// Recurse for new list of user groups and corresponding surviving items
12: else
13: For each user u ∈M(`,i), recommend unblocked items inN (`,i) until end of rounds.
14: end if
15: end for

Exploitation (Alg. 3). The main goal in the Exploit sub-routine of our algorithm is to identify
common golden items for a group of users jointly. Consider a group of usersM with active items
N at the beginning of exploit sub-routine invoked in the `th phase of Algorithm 1. We perform
the following test in Line 1 of the Exploit sub-routine: for every user u ∈ M, we check if
P̃uπ̃u(1)|N − P̃uπ̃u(|N |)|N ≥ c′2−` for some constant c′ > 0 - that is if the estimated highest
rewarding and lowest rewarding items of the user u have a significant gap. For all the users that
satisfy the above property, we take a union of the items close to the estimated highest rewarding item
for each of them (Line 3). We can show that these identified items are actually golden items for all
users in the nice subsetM. Hence, we immediately recommend these identified golden items to
every user in the nice subset B times. In case a golden item is blocked for a user, we recommend
an unblocked active item (Line 5). Subsequently we remove the golden items from the active set of
items (Line 8) and prune it. We go on repeating the process with the pruned set of items until we
can find no user that satisfy the above gap property between highest and lowest estimated rewarding
items in the active set.

To summarize, in each phase of Algorithm 1, we perform the exploration, exploitation and user
clustering steps described above. As the algorithm proceeds, we get more fine grained clustering
of users, and more accurate estimates of the rewards of active items. Using this information, the
algorithm tries to identify golden items and recommends the identified golden items to users.

Implementation Details: The actual implementation of the algorithm described above is a bit more
involved due to the fact that every user has to be recommended an item at every time step (see

8

Algorithm 2 Explore (Explore Component of a phase)
Require: Phase index `, nice subset of users M, active items N , round index t0, sam-

pling probability p. //Takes a particular set of users (nice w.h.p.), their
corresponding set of active items and returns an estimate of corresponding
reward sub-matrix. Unblocked items are (almost) randomly recommended to obtain
data - recommendations are kept track of in global variables K,L. Data from
previous phases are not used to maintain independence.

1: For each (i, j) ∈M×N , independently set δij = 1 with probability p and δij = 0 with probability 1− p.
2: Denote Ω = {(i, j) ∈ M×N | δij = 1} and m = maxi∈M |j ∈ N | (i, j) ∈ Ω| to be the maximum

number of index tuples in a particular row. Initialize observations corresponding to indices in Ω to beA = φ.
Set mu = |j ∈ N | (u, j) ∈ Ω|
// Create Bernoulli Mask Ω with the idea of recommending all items in Ω

3: for each user u ∈M do
4: for rounds t = t0 + 1, t0 + 2, . . . , t0 +mu do
5: Find an item z in {j ∈ N | (u, j) ∈ Ω, δuj = 1}. Set δuj = 0.

// Find item in Ω for the user that has not been recommended yet in this
function instantiation

6: If Kuz + Luz < B (z is unblocked), set ρu(t) = z and recommend z to user u. Observe R(t)

uρu(t) and

update A = A ∪ {R(t)

uρu(t)}, Kuz ← Kuz + 1. // Recommend unblocked item in Ω

7: If Kuz + Luz = B (z is blocked), recommend any unblocked item ρu(t) in N s.t. (u, ρu(t)) 6∈ Ω.
Update Luρu(t) ← Luρu(t) + 1. Set A = A ∪ {R(t′)

uρu(t′)} where t′ < t is the last round when

ρu(t′) = z was recommended to user u but the observation R
(t′)
uz has not been used in an invocation

of the function Estimate. Update Kuz ← Kuz + 1 and Luz ← Luz − 1.
//Found item is blocked but some observation can be re-used

8: end for
9: for rounds t = t0 +mu + 1, . . . , t0 +m do

10: Recommend any unblocked item ρu(t) inN s.t. (u, ρu(t)) 6∈ Ω. Update Luρu(t) ← Luρu(t) + 1.
// No available items in Ω to recommend. Recommend some other item

11: end for
12: end for
13: Compute the estimate P̃ = Estimate(M,N , σ2,C,Ω,A) and return P̃, t0 +m.

// Low Rank Matrix Completion of Reward Sub-matrix PM,N using observations in Ω

problem setting in Section 2). To see this, consider the following scenario. Suppose, we identified
item j as a golden item for users in the nice subsetM (crude cluster) in the Exploit sub-routine
invoked in some phase of Alg. 1. Moreover, suppose there are two users u1, u2 in the cluster for
whom the item has been recommended n1, n2 times respectively, for some n1 < n2. So, for the final
n2 − n1 iterations during which the algorithm recommends item j to u1, it has to recommend some
other item to u2. In our algorithm, we randomly recommend an item from the remaining active set
of items for u2 during those n2 − n1 rounds. We store the rewards from these recommendations
and use them in the exploration component of future phases. A similar phenomenon also occurs in
the Explore sub-routine where we sometimes need to recommend items outside the sub-sampled set
of entries in Ω (Line 7 and 10 in Alg. 2) To this end, we introduce matrices K,L ∈ RM×N which
perform the necessary book-keeping for us.

K tracks number of times an item has been recommended to a user and the corresponding observation
has been already used in computing an estimate of some reward sub-matrix (Line 2 of Alg. 2). Since
these estimates are used to cluster users and eliminate items (Lines 7-10 in Alg. 1), these observations
are not reused in subsequent phases to avoid statistical dependencies. L tracks the number of times
an item has been recommended to a user and the corresponding observation has not been used in
computing an estimate of reward sub-matrix so far. These observations can still be used once in
Line 2 of Alg. 2. Observe that Kij + Lij is the total times user i has been recommended item j. In
practice, eliminating observations is unnecessary and we can reuse observations whenever required.
Hence Alg. 1 can work even when B = 1 (see Alg. 6 for a simplified and practical version).

Handling very few active items (Line 5 in Alg. 1). Recall, in the exploration step of phase `, we
randomly recommend active items with probability p = O

(
22` log d1

d2

)
. If p > 1, then we simply

recommend all the remaining unblocked items for each user until the end. In our analysis, we can

9

Algorithm 3 Exploit (Exploit Component of a phase)
Require: Phase index `, nice subset of usersM, active itemsN , round index t0, exploit rounds texploit, estimate

P̃ of P and error guarantee ∆` such that
∣∣∣∣∣∣P̃M,N −PM,N

∣∣∣∣∣∣
∞
≤ 88C∆` with high probability. //Takes

a particular set of users (nice w.h.p.), their corresponding set of active items
and an estimate of corresponding reward sub-matrix as input. Identifies common
golden items for all aforementioned users in this module and recommends them
jointly until exhausted - recommendations are kept track of in global variables
K,L and active items are pruned.

1: while there exists u ∈M such that P̃uπ̃u(1)|N − P̃uπ̃u(|N|)|N ≥ 64C∆`} do
2: Compute Ru = {j ∈ N | P̃uj ≥ P̃uπ̃u(1)|N − 2∆`+1} for every user u ∈ M. Compute S =

∪u∈MRu. // Find common set of golden items for all users in M
3: for rounds t = t0 + 1, t0 + 2, . . . , t0 + |S|B do
4: for each user u ∈M do
5: Denote by x the d(t− t0/B)e item in S . If Kux +Lux < B (x is unblocked), then recommend x to

user u and update Lux ← Lux + 1. If Kux + Lux = B (x is blocked), recommend any unblocked
item y inN (i.e Kuy + Luy < B) for the user u and update Luy ← Luy + 1.
// Recommend all identified golden items

6: end for
7: end for
8: UpdateN ← N \ S . // Remove golden items and prune active items N
9: Update t0 ← t0 + |S|B and texploit ← texploit + |S|B.

10: end while
11: ReturnN , t0, texploit.

show that this happens only if the size of surviving items is too small, and when the number of
remaining rounds is very small. Hence the regret is small if we follow this approach (Lemma 5).
Similarly, when remaining rounds become smaller than T1/3, we follow the same approach.

Running Time: Computationally speaking, the main bottleneck of our algorithm is the matrix
completion function Estimate invoked in Line 13 of the Explore Component (Algorithm 2). All
the remaining steps have lower order run-times. Note that the Estimate function is invoked at most
O(C log T) times since there are can be at most C disjoint nice subsets of users at a time and the
number of phases is log T. Moreover, note that the Estimate function (Algorithm 4) solves a convex
objective in Line 3 - this has a time complexity of O(M2N + N2M) which is slightly limiting because
of the quadratic dependence. However, a number of highly efficient techniques have been proposed
for optimizing the aforementioned objective even when M, N are in the order of millions (see [14]).

Proof Sketch of Theorem 1 We condition on the high probability event that the low rank matrix
completion estimation step is always successful (Lemma 17). Note that for a fixed user, the items
chosen for recommendation in the exploit component of any phase are golden items and costs zero
regret if they are unblocked and recommended. Even if it is blocked, we show a swapping argument
to a similar effect. That is, with an appropriate permutation of the recommended items, we can ignore
the regret incurred from golden-items altogether. Moreover, in the explore component of the `th
phase, we can bound the sub-optimality gap of the surviving active items by some pre-determined ε`.
We prove that this holds even with the (chosen) permutation of the recommended items (Lemma 18).
We choose ε` to be exponentially decreasing in ` and the number of rounds in the explore component
of phase ` is roughly 1/ε2` . Putting these together, we obtain the regret guarantee in Theorem 1.

5 Conclusion and Future Work

We study the problem of Collaborative Bandits in the setting where each item can be recommended
to a user a small number of times. Under some standard assumptions and a blocking constraint of
Θ(log T), we show a phased algorithm B-LATTICE with regret guarantees that match the tight results
with no blocking constraint [25]. To the best of our knowledge, this is the first regret guarantee
for such a general problem with no assumption of item clusters. We also provide novel regret
lower bounds that match the upper bound in several regimes. Relaxing the assumptions, extending
guarantees to a blocking constraint of B = 1 and tightening the gap between the regret upper and
lower bounds are very interesting directions for future work.

10

Acknowledgements

We would like to thank Sandeep Juneja for helpful discussions on understanding the information
theoretic limits of the problem.

References
[1] Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016.

[2] Kaito Ariu, Narae Ryu, Se-Young Yun, and Alexandre Proutière. Regret in online recom-
mendation systems. Advances in Neural Information Processing Systems, 33:21141–21150,
2020.

[3] Kishor Barman and Onkar Dabeer. Analysis of a collaborative filter based on popularity amongst
neighbors. IEEE Transactions on Information Theory, 58(12):7110–7134, 2012.

[4] Guy Bresler, George H. Chen, and Devavrat Shah. A latent source model for online collaborative
filtering. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, pages 3347–3355, 2014.

[5] Guy Bresler and Mina Karzand. Regret bounds and regimes of optimality for user-user and
item-item collaborative filtering. In 2018 Information Theory and Applications Workshop (ITA),
pages 1–37. IEEE, 2018.

[6] Guy Bresler and Mina Karzand. Regret bounds and regimes of optimality for user-user and
item-item collaborative filtering. IEEE Transactions on Information Theory, 67(6):4197–4222,
2021.

[7] Guy Bresler, Devavrat Shah, and Luis Filipe Voloch. Collaborative filtering with low regret. In
Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Science, SIGMETRICS ’16, pages 207–220, New York, NY, USA, 2016.
ACM.

[8] Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy matrix completion:
Understanding statistical guarantees for convex relaxation via nonconvex optimization. arXiv
preprint arXiv:1902.07698, 2019.

[9] Onkar Dabeer. Adaptive collaborating filtering: The low noise regime. In 2013 IEEE Interna-
tional Symposium on Information Theory, pages 1197–1201. IEEE, 2013.

[10] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni Zappella, and
Evans Etrue. On context-dependent clustering of bandits. In International Conference on
Machine Learning, pages 1253–1262. PMLR, 2017.

[11] Claudio Gentile, Shuai Li, and Giovanni Zappella. Online clustering of bandits. In International
Conference on Machine Learning, pages 757–765. PMLR, 2014.

[12] Dorota Glowacka et al. Bandit algorithms in information retrieval. Foundations and Trends R©
in Information Retrieval, 13(4):299–424, 2019.

[13] Reinhard Heckel and Kannan Ramchandran. The sample complexity of online one-class
collaborative filtering. In International Conference on Machine Learning, pages 1452–1460.
PMLR, 2017.

[14] Cho-Jui Hsieh and Peder Olsen. Nuclear norm minimization via active subspace selection. In
International Conference on Machine Learning, pages 575–583. PMLR, 2014.

[15] Wasim Huleihel, Soumyabrata Pal, and Ofer Shayevitz. Learning user preferences in non-
stationary environments. In International Conference on Artificial Intelligence and Statistics,
pages 1432–1440. PMLR, 2021.

[16] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 665–674, 2013.

11

[17] Prateek Jain and Soumyabrata Pal. Online low rank matrix completion. arXiv preprint
arXiv:2209.03997, 2022.

[18] Vladimir Koltchinskii, Karim Lounici, and Alexandre B Tsybakov. Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. 2011.

[19] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[20] Shuai Li, Wei Chen, and Kwong-Sak Leung. Improved algorithm on online clustering of bandits.
arXiv preprint arXiv:1902.09162, 2019.

[21] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. Collaborative filtering bandits. In
Proceedings of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 539–548, 2016.

[22] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-to-item
collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[23] Gregory D Linden, Jennifer A Jacobi, and Eric A Benson. Collaborative recommendations
using item-to-item similarity mappings, July 24 2001. US Patent 6,266,649.

[24] Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In International Conference on
Machine Learning, pages 136–144. PMLR, 2014.

[25] Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, and Prateek Jain. Optimal
algorithms for latent bandits with cluster structure. arXiv preprint arXiv:2301.07040, 2023.

[26] Yunzhe Qi, Tianxin Wei, Jingrui He, et al. Neural collaborative filtering bandits via meta
learning. arXiv preprint arXiv:2201.13395, 2022.

[27] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international conference on
World Wide Web, pages 285–295, 2001.

[28] Jonathan Scarlett and Volkan Cevher. An introductory guide to fano’s inequality with applica-
tions in statistical estimation. arXiv preprint arXiv:1901.00555, 2019.

[29] Devavrat Shah and Kang Zhang. Bayesian regression and bitcoin. In 2014 52nd annual Allerton
conference on communication, control, and computing (Allerton), pages 409–414. IEEE, 2014.

12

Limitations: The main contributions of our works are theoretical. From a theoretical point of view,
the limitations of our paper are discussed in Sections 3 and 5. In particular, we believe that tightening
the gap between the upper and lower bounds in regret will require novel and non-trivial algorithmic
ideas - we leave this as an important direction of future work.

Broader Impact: Due to the theoretical nature of the work, we do not foresee any adverse societal
impact.

A Low rank matrix completion

Below, we describe the Estimate sub-routine to estimate a M×N low rank matrix Q of rank r given
a partially observed set of noisy entries {Zij}(i,j)∈Ω corresponding to a subset Ω ⊆ [M]× [N]. Here
EZij = Qij for all (i, j) ∈ Ω and furthermore, {Zij}(i,j)∈Ω are independent sub-gaussian random
variables with variance proxy at most σ2.

Algorithm 4 Estimate (Low-rank matrix completion) [17]

Require: Matrix dimensions (M,N), noise variance σ2, rank r, subset of indices that are observed Ω ⊆
[M]× [N] and noisy observations {Zij}(i,j)∈Ω.

1: Partition the rectangular matrix into square matrices. Without loss of generality, assume M ≤ N. For each
i ∈ [N], randomly set ζi to be a value in the set [dN/Me] uniformly at random. Partition indices in [N]

into [N](1), [N](2), . . . , [N](k) where k = dN/Me and [N](q) = {i ∈ [N] | ζi = q} for each q ∈ [k]. Set
Ω(q) ← Ω ∩ ([M]× [N](q)) for all q ∈ [k]. {If M ≥ N, we partition the indices in [M].}

2: for q ∈ [k] do
3: Solve the following convex program with λ = Cλσ

√
|Ω| /max(M,N), for some constant Cλ > 0

min
Q̃(q)∈RM×|[N](q)|

∑
(i,j)∈Ω(q)

(Q̃
(q)

iγu(j) − Zij
)2

2
+ λ‖Q̃(q)‖?

where ‖Q̃(q)‖? denotes nuclear norm of matrix Q̃(q) and γu(j) is index of j in set [N](q).
4: end for
5: Return Q̃ ∈ RM×N such that Q̃[M],[N](q) = Q̃(q) for all q ∈ [k].

B Explore-Then-Commit (ETC)

We first present a greedy algorithm in the blocked setting with B = 1 (no repetition) that uses the
Explore-Then-Commit (ETC) framework. Such an algorithm has two disjoint phases - exploration
and exploitation. We will first jointly explore the set of items (without repeating same item for any
user) for all users for a certain number of rounds and compute an estimate P̃ of the reward matrix P.
Subsequently, in the exploitation phase, for each user, we recommend the best estimated distinct items
(that have not been recommended in the exploration phase to that user) inferred from the estimated
reward matrix P̃. Note that if we explore too less, then our estimate will be poor and hence we will
suffer large regret once we commit in the exploitation phase. On the other hand, if we explore too
much, then the exploration cost will be high. Our goal is to balance both the exploration length and
the exploitation cost under the blocked setting. Thus, we obtain the following result:
Theorem 3. Consider the GBB setting with M users, C = O(1) clusters, N items, T recommendation
rounds and blocking constraint B = 1. Set d2 = min(M,N). Let R

(t)
uρu(t) be the reward in each

round, defined as in (1). Suppose d2 = Ω(µr log(rd2)). Let P ∈ RM×N be the expected reward
matrix that satisfies the conditions stated in Lemma 1 , and let σ2 be the noise variance in rewards.
Then, Algorithm 5, applied to the online rank-r matrix completion problem under the blocked setting
guarantees the regret defined as in eq. 2 to be:

Reg(T) = Õ
(
µT2/3||P||1/3∞ max

(
1,

N

M

)1/3

+ µ2||P||∞max
(

1,
N

M

)
+ ||P||∞T−2

)
. (6)

In order to understand the result, note that the second term in the regret bound stems from the fact
that in our algorithmic framework, the low rank matrix completion module needs a certain number of

13

Algorithm 5 ETC (Explore-Then-Commit Algorithm with Blocking constraint B = 1)

Require: users M, items N, rounds T, noise σ2, rank r of P.

1: Set p = Õ
(

(N‖P‖∞)−2/3
(

Tσr√
d2

√
µ3
)2/3∨ µ2

d2

)
. Set d2 = min(M,N) and λ = Cσ

√
d2p for

constant C.
2: For each tuple of indices (i, j) ∈ [M] × [N], independently set δij = 1 with probability p and
δij = 0 with probability 1− p.

3: Denote Ω = {(i, j) ∈ [M]× [N] | δij = 1} and m = maxi∈[M] | |j ∈ [N] | (i, j) ∈ Ω| to be the
maximum number of index tuples in a particular row. For all (i, j) ∈ Ω, set Maskij = 0.

4: for rounds t = 1, 2, . . . ,m do
5: For each user u ∈ U , recommend an item ρu(t) in {j ∈ [N] | (u, j) ∈ Ω,Maskuj = 0} and

set Maskuρu(t) = 1. If not possible then recommend any item ρu(t) in [N] s.t. (u, ρu(t)) 6∈ Ω

and has not been recommended yet to user u. Observe R
(t)
uρu(t).

6: end for
7: Compute the estimate P̃ ∈ RM×N as output of P̃ ←

Estimate([M], [N], σ2, r,Ω, {R(t)
uρu(t))}t∈[m]).

8: for each of remaining rounds do
9: Set j′u = argmaxj∈[N]P̃uπ̃u(j) for each user u, s.t. π̃u(j′u) has not been recommended before

to u.
10: For each user u ∈ [M], recommend the item π̃u(j′u) to user u.
11: end for

observed indices and therefore a certain number of exploration rounds (note that p ≥ Cµ2d−1
2 log3 d2

for some constant C > 0 in Lemma 1). Similarly, the third term stems from the failure of the
estimation module; again, the term T−2 can be replaced by T−c for any constant c > 0. The first
term in the regret bound captures the dependence on the number of rounds T - the scaling of T2/3 is
sub-optimal and our subsequent goal is to improve this dependence to the rate of

√
T.

Proof of Theorem 3. Suppose we explore for a period of S rounds such that the exploration period
succeeds with a probability of 1− ν. Conditioned on the event that the exploration period succeeds,
we obtain an estimate P̃ of the reward matrix P satisfying ‖P− P̃‖∞ ≤ ρ. Recall πu : [N]→ [N]
to be the permutation on [N] such that for any i, j ∈ [N]; i < j, we have Puπu(i) ≥ Puπu(j).
Similarly, denote π̃u : [N]→ [N] such that for for any i, j ∈ [N]; i < j, we have P̃uπ̃u(i) ≥ P̃uπ̃u(j).
Now consider any index i ∈ [T] for which we will analyze Puπ̃u(i) − Puπu(i) which is the error
if we choose the ith item according to the estimated matrix P̃ (instead of P). There are several
cases that we need to consider. First, suppose π̃u(i) = πu(j) where j ≤ i. In that case, we have
Puπ̃u(i) −Puπu(i) ≥ 0. Now, consider the other case where j > i implying that the element in the
jth position in the permutation πu has shifted to the left in π̃u. In order for this to happen, there
must exist an element i1 ≤ i ≤ i2 for which π̃u(i2) = πu(i1) implying that an element i1 in the
permutation πu has shifted to the right in π̃u. Therefore,

Puπ̃u(i) −Puπu(i) = Puπ̃u(i) − P̃uπ̃u(i) + P̃uπ̃u(i) − P̃uπ̃u(i2)

+ P̃uπ̃u(i2) −Puπ̃u(i2) + Puπ̃u(i2) −Puπu(i) ≥ −2ρ

where we used the fact that ‖P − P̃‖∞ ≤ ρ, P̃uπ̃u(i) − P̃uπ̃u(i2) ≥ 0 (since i ≤ i2), Puπ̃u(i2) −
Puπu(i) = Puπu(i1) −Puπu(i) ≥ 0 (since i1 ≤ i). Therefore, at each step of the exploitation stage,
for each user u, we recommend one of the top T− S items (as inferred from P̃) with the highest
reward that have not been recommended until that round to the user u; in each such step, we will suffer
a regret of at most 2ρ if we compare with the item at the same index in πu. As before, conditioned on
the event that the exploration fails (and in the exploration stage as well), the regret at each step can be

14

bounded from above by 2‖P‖∞. In that case, we have

RegΠ(T) =
1

M

∑
u∈[M]

∑
t∈[T]

Puπu(t) −
∑
t∈[T]

Puρu(t) ≤ max
u∈[M]

(∑
t∈[T]

Puπu(t) −
∑
t∈[T]

Puπ̃u(t)

)
≤ 2S‖P‖∞ + 2(T− S)ρPr(Exploration succeeds) + 2(T− S)‖P‖∞ Pr(Exploration fails)
≤ 2S‖P‖∞ + 2Tρ+ 2Tδ‖P‖∞.

We use Lemma 1 to set S = O
(

Np +
√

Np log Mδ−1
)

such that ρ = O
(
σr√
d2

√
µ3 log d2

p

)
and

ν = 1− δ −O(d−3
2). We have

Reg(T) ≤ O
(

Np+
√

Np log Mδ−1
)
‖P‖∞ + TO

(σr√
d2

√
µ3 log d2

p

)
+ T(δ + d−3

2)‖P‖∞.

For simplicity, we ignore the logarithmic and lower order terms and attempt to minimize Np‖P‖∞ +

T
(
σr√
d2

√
µ3 log d2

p

)
(Simplified Expression) by choosing p = (N‖P‖∞)−2/3

(
Tσr√
d2

√
µ3 log d1

)2/3

,

δ = T−4. If p ≥ Cµ2d−1
2 log3 d2, then notice that Np ≥ 1 and therefore Np +

√
Np log Mδ−1 =

O(Np
√

log Mδ−1). Subsequently, we have

Reg(T) = O
(

T2/3(σ2r2‖P‖∞)1/3
(µ3N log d2

d2

)1/3

log
√

MT + ‖P‖∞T−2
)
.

There exists an edge case when the value of p that minimizes the simplified expression satisfies
p ≤ Cµ2d−1

2 log3 d2. Then we can substitute p = Cµ2d−1
2 log3 d2. In that case, the second term

in the simplified expression will still be bounded as before. On the other hand the first term in the
simplified expression will now be bounded by O(Nµ2

d2
log3 d2 log2(MNT)||P||∞). Hence, our regret

will be bounded by

Reg(T) = O
(

T2/3(σ2r2‖P‖∞)1/3
(µ3N log d2

d2

)1/3

log
√

MT +
Nµ2

d2
log5(MNT)||P||∞ + ‖P‖∞T−2

)
= Õ

(
µT2/3||P||1/3∞ max

(
1,

N

M

)1/3

+ µ2||P||∞max
(

1,
N

M

)
+ ||P||∞T−2

)
.

C Experiments

We conduct detailed synthetic experiments in order to validate the theoretical guarantees/properties
of our algorithm. For this purpose we use a simplified version of B-LATTICE described in Alg. 6 (all
experiments have been performed on a Google Colab instance with 12GB RAM) :

In PB-LATTICE(Alg. 6), we do not use the exploit component for simplicity. Intuitively, if the
user is recommended a golden item during the explore component, it is a good event in any case.
Furthermore, in Step 14, we use k-means to cluster the users. Since we obtain a significantly large
embedding vector for each user in Step 13, k−means is quite practical.

We run PB-LATTICEon several synthetic datasets. There are two main baselines for us to consider 1)
Greedy Algorithm namely Alg. 5 2) In the setting where the user u, on being recommended item
j provides a like (+1) with probablity Puj and a dislike (−1) with probability 1 − Puj , we also
compare with Collaborative-Greedy in [4]. However, recall that [4], even in the restricted setting,
only provides theoretical guarantees on the number of likeable items (items with probability of liking
> 0.5) recommended during the course of T rounds.

We generate three synthetic datasets to validate our algorithms. For each of them, we take M = 150
users, N = 150 items and T = 60 rounds (hence the total items recommended will be 9000). The
reward matrix P = UVT (U ∈ RM×C and V ∈ RN×C) is generated as in [25] - in the ith row of
U, the (i%C)th entry is set to be 1 while the other entries are 0; the entries of V are sampled in the
following way for the three datasets.

15

(a) V has entries distributed according toN (0, 25). We
observe R

(t)

uρu(t) = N (Puρu(t)), 0.25)

(b) V has entries generated according toN (0, 25). We
observe R

(t)

uρu(t) = N (Puρu(t)), 0.25)

(c) V has entries distributed according to U(0, 5). We
observe R

(t)

uρu(t) = N (Puρu(t)), 0.25)

(d) V has entries distributed according to U(0, 5). We
observe R

(t)

uρu(t) = N (Puρu(t)), 0.25)

(e) V has entries distributed in [0.05, 0.95] with equal
probability. We observe R(t)

uρu(t) = 2Ber(Puρu(t))− 1

(f) V has entries distributed in [0.05, 0.95] with equal
probability. We observe R(t)

uρu(t) = 2Ber(Puρu(t))− 1

Figure 1: Cumulative Regret of the greedy algorithm (Alg. 5) and the Blocked LATTICE algorithm
(simplified version in Alg. 6). In the setting where our observations are in {+1,−1} i.e. the user
likes (+1) an item with probability p and dislikes with probability 1− p, we also compare with the
algorithm provided in [4] named Collaborative-Greedy. In all our settings, we have M = 150 users,
N = 150 items, C = 4 clusters and T = 60 rounds. The ground truth reward matrix P = UVT is
generated in the following way: each row of U is a standard basis vector while each entry of V is
sampled independently fromN (0, 25) in (a) , each entry of V is sampled independently from U(0, 5)
in (b) and each entry of U is sampled independently from U(0, 1) in (c). In (a) and (b), gaussian
noise with variance 0.25 is added to the expected observation and in (c), we observe +1 (probability
is expected reward) or -1. Notice that PB-LATTICE has 1) a small cold-start period 2) always makes
good recommendations 3) better empirical rewards than other baselines.

16

Algorithm 6 PB-LATTICE (Practical Blocked Latent bAndiTs via maTrIx ComplEtion with blocking
constraint B = 1)

Require: Phase index `, phase length m`, List of disjoint nice subsets of usersM(`), list of corre-
sponding subsets of active items N (`), clusters C, rounds T, noise σ2 > 0, round index t0, gap
factor ν`.

1: Set λ = 10σ
√

(m`/M).
2: for rounds t0 + 1, t0 + 2, . . . ,min(t0 +m,T) do
3: for ith nice subset of usersM(`,i) ∈M(`) with active items N (`,i) (ith set in list N (`)) do
4: Initialize Ω(i) = Φ
5: for user u inM(`,i) do
6: Choose a random item j ∈ N (`,i) for recommendation to user u. If j is not blocked,

recommend j to user u and observe Zuj to be the feedback from user u for item j. If
j is blocked, then recommend any j′ ∈ N (`,i) that is unblocked for user u ∈ M(`,i).
Observe Zuj′ to be the feedback from user u for item j′.

7: Update Ω(i) = Ω(i) ∪ {(u, j)}
8: end for
9: end for

10: end for
11: for ith nice subset of usersM(`,i) ∈M(`) with active items N (`,i) (ith set in list N (`)) do
12: InitializeM(`+1) = [] and N (`+1) = [].
13: Compute T ∈ RM×N by solving the convex program

min
T∈RN×M

1

2

∑
(i,j)∈Ω(i)

(
Zij −Tij

)2

+ λ‖TM(`,i),N (`,i)‖?, (7)

14: Solve k-means for users in M(`,i) using the vector embedding formed by the rows in
TM(`,i),N (`,i) . Choose best k ≤ C by using ELBOW method. Denote the cluster of users by
{M(`,i,j)}j .

15: for each cluster of usersM(`,i,j) do
16: Compute set of active arms N (`,i,j) as {s ∈ N (`,i) | Tus ≥ Tuπ̃u(T) − ν` for some u ∈

M(`,i,j)}. Here π̃u is the permutation of the surviving items in N (`,i) in descending order
of estimated reward for user u.

17: AppendM(`,i,j) toM(`+1) and N (`,i,j) to N (`+1).
18: end for
19: Compute m`+1, ν`+1 as a function of `. Set t = min(t0 +m,T).
20: If t < T, invoke Algorithm PB-LATTICE(phase `+1, phase lengthm`+1, list of usersM(`+1),

list of items N (`+1), clusters C, rounds T, noise σ2, round index t0 +m, gap factor ν`+1).
21: end for

1. (D1:) Each entry of V is sampled from a gaussian distributionN (0, 25) with mean zero and
variance 25. User u on being recommended item j provides a random feedback distributed
according to N (Puj , 0.25).

2. (D2:) Each entry of V is sampled from a uniform distribution U(0, 5) with range in [0, 5].
User u on being recommended item j provides a random feedback distributed according to
N (Puj , 0.25).

3. (D3:) Each entry of V is sampled from a uniform distribution [0.05, 0.95] with equal
probability. User u on being recommended item j provides a like (+1) with probability
Puj and a dislike (−1) with probability 1−Puj .

For the PB-LATTICEalgorithm (Alg. 6), we choose the hyper-parameters on the phase lengths and gap
parameters as m` = 10 + 2` and ν` = ||P||∞/(8 · 2`). Since PB-LATTICEis a recursive algorithm,
we initialize PB-LATTICEwith phase index 1, phase length 12, list of users [[M]], list of items [[N]],
clusters C, rounds T, noise σ2, round index 1, gap factor ||P||∞/16. For the greedy algorithm
(Alg. 5), we experiment with two exploration periods (m = 10 and m = 30). Finally, for the
Collaborative-Greedy algorithm in [4], we choose θ = 0.5 and α = 0.5.

17

Results and Insights: The cumulative reward until round t (defined as M−1
∑t
j=1

∑M
u=1 Puρu(j))

and the round wise reward at round t (defined as M−1
∑M
u=1 Puρu(t)) is plotted for all the three

datasets D1, D2, D3. in Figures 1a, 1b, 1c, 1d, 1e and 1f. Apart from obtaining good empirical
rewards, PB-LATTICEhas several practically relevant properties which are demonstrated through our
experiments:

1. Note from Figures 1b and 1d that the greedy algorithm has a large cold-start period for good
exploitation properties. If the exploration is too small, then the estimation becomes poor.
On the other hand, PB-LATTICEimproves in phases - therefore, it has a small cold-start
period i.e. it starts recommending relevant items very quickly and also has good estimation
guarantees

2. Collaborative-greedy in [4] proposes exploration rounds throughout the entire course of T
rounds. This is often impractical as users will demand good recommendations throughout.
This is demonstrated in Fig. 1f where the red curve (round-wise reward of Collaborative-
Greedy) has several dips but the round-wise regret of PB-LATTICEstays high.

D Detailed Proof of Theorem 1

Next, we characterize some properties namely the condition number and incoherence of sub-matrices
of P restricted to a nice subset of users. The following Lemmas 2 and 3 can be found in [25]

Lemma 2. Suppose Assumption 1 is true. Consider a sub-matrix Psub of P having non-zero singular
values λ′1 > · · · > λ′C′ (for C′ ≤ C). Then, if the rows of Psub correspond to a nice subset of users,
we have λ′1

λ′
C′
≤ λ1

λC

√
τ .

Lemma 3. Suppose Assumption 1 is true. Consider a sub-matrix Psub ∈ RB′×A′ (with SVD
decomposition Psub = ŨΣ̃Ṽ) of P whose rows correspond to a nice subset of users. Then,∣∣∣∣∣∣Ũ∣∣∣∣∣∣

2,∞
≤
√

Cτ
N′ and

∣∣∣∣∣∣Ṽ∣∣∣∣∣∣
2,∞
≤
√

µC
αM′ .

Lemmas 2 and 3 allow us to apply low rank matrix completion (Lemma 1) to relevant sub-matrices
of the reward matrix P.

D.1 Main Analysis

Blocked LATTICE is run in phases consisting of exploit component and explore component indexed
by ` = 1, 2, Note that the exploit component of a phase is followed by the explore component.
However, for the first phase, the exploit component has a length of zero rounds. Importantly note
that any phase (say `) for distinct nice subsets of usersM(`,i),M(`,j) will be run asynchronously as
reward observations corresponding to one subset is not used to determine the policy for any other
subset of users. At the beginning of the explore component of each phase `, we have the following
set of desirable properties:

(A) We will run the explore component of phase ` asynchronously and separately for a list of
disjoint nice subsets of usersM(`) ≡ {M(`,i), . . . ,M(`,a`)} and respective sets of arms
N (`) ≡ {N (`,1), . . . ,N (`,a`)} where a` ≤ C such that ∪i∈[a`]M(`,i) ⊆ [M], M(`,i) ∩
M(`,j) = ∅ for any i, j ∈ [a`] (i.e. the groups of users are nice subsets of [M] with no
overlap) and N (`,i) ⊆ [N] (i.e. the active set of items N (`,i) for users inM(`,i) are a subset
of [N] but the active sets can overlap). The sets {(M(`,i),N (`,i)}i∈[a`] remain unchanged
during the explore component of phase `. As mentioned before, the round at which the
explore component of the phase ` starts is different for each subset of nice usersM(`,i).

(B) At any round t ∈ [T] in a particular phase `, let us denote by O(`,t)

M(`,i) to be the set of
items chosen for recommendation (see Step 5 in Alg. 3) in exploit components so far (from
round t = 1) for users inM(`,i). In other words, the items in O(`,t)

M(`,i) have already been
recommended to all users inM(`,i) up to `th phase. In that case, we also maintain that

O(`,t)

M(`,i) ⊆ {πu(t)}T/Bt=1 .

18

the best T/B items (golden items) not chosen for recommendation so far in the exploit phases
for users inM(`,i) are contained in the set of surviving items i.e. if Z = [N] \O(`,t)

M(`,i) , then
it must happen that

N (`,i) ⊇
⋃

u∈M(`,i)

{πu(t′) | Z}
T/B−

∣∣∣O(`,t)

M(`,i)

∣∣∣
t′=1 for all i ∈ [a`] (8)

Note that eq. 8 implies that for every user u ∈ M(`,i), there are sufficient golden items
in N (`,i) to be recommended for the remaining rounds. To see this, note that there are
T/B golden items at the beginning and no golden items which are unblocked are eliminated.
Hence the number of remaining rounds at any point must be smaller than the number of
possible allowed recommendations of golden items belonging to the surviving set of items.

(C) Furthermore, for all i ∈ [a`], the set N (`,i) must also satisfy the following:∣∣∣∣Puπu(1)|N (`,i) − min
j∈N (`,i)

Puj

∣∣∣∣ ≤ ε` for all u ∈M(`,i) (9)

where ε` is a fixed exponentially decreasing sequence in ` (in particular, we choose ε1 =

||P||∞ and ε` = C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for ` > 1 for some constant C ′ > 0).

Next, at the beginning of the exploit component of phase ` + 1, we will have the following set of
desirable properties:

(a) At every round t in the exploit component of phase `+ 1, we maintain a list of disjoint nice
subsets of users M(`+1) ≡ {M(`+1,1), . . . ,M(`+1,a`+1)} (where ∪i∈[a`+1]M(`+1,i) ⊆
[M]) and corresponding sets of items N (`+1,t) ≡ {N (`+1,t,1), . . . ,N (`+1,t,a`+1)} where
a`+1 ≤ C and ∪i∈[a`+1]N (`+1,t,i) ⊆ [N]. Note that in the exploit component, we also use
the round index in the superscript for item subsets as they can change during the exploit
component (unlike the explore component).

(b) We ensure that for any user u ∈M(`+1,i), the set of items chosen for recommendation in
the exploit component of phase `+ 1 belongs to the set of best T items i.e. {πu(t)}Tt=1.

Since LATTICE is random, we will say that our algorithm is (ε`, `)−good if at the beginning of the
explore component of the `th phase the algorithm can maintain a list of users and items satisfying
properties A-C. Let us also define the event E(`)

2 to be true if properties (A-C) are satisfied at the
beginning of the explore component of phase ` by the phased elimination algorithm. We can show that
if our algorithm is (ε`, `)−good then the low rank matrix completion step (denoted by the event E(`)

3)
in the explore component of phase ` is successful (i.e. the event E(`)

3 is true) with high probability.

Conditioned on the aforementioned two events E(`)
2 , E(`)

3 , with probability 1, during all rounds t of
the exploit component in phase `+ 1, properties a− b are satisfied and the event E(`+1)

2 is going to
be true. We are going to prove inductively that our algorithm is (ε`, `)-good for all phases indexed by
` for our choice of {ε`}` with high probability.

Base Case: For ` = 1 (the first phase), the number of rounds in the exploit component is zero and
we start with the explore component. We initializeM(1,1) = [N], N (1,1) = [M] and therefore, we
have ∣∣∣∣ max

j∈N (`,1)
Puj − min

j∈N (`,1)
Puj

∣∣∣∣ ≤ ||P||∞ for all u ∈ [M].

Clearly, [M] is a nice subset of users and finally for every user u ∈ [M], the best T/B items (golden
items) {πu(t)}T/Bt=1 belong to the entire set of items. Thus for ` = 1, conditions A-C are satisfied at
the beginning of the explore component and therefore the event E(1)

2 is true. Hence, our initialization
makes the algorithm (||P||∞, 1)-good.

Inductive Argument: Suppose, at the beginning of the phase `, we condition on the events⋂`
j=1 E

(j)
2 that Algorithm is (εj , j)−good for all j ≤ `. This means that conditions (A-C) are

satisfied at the beginning of the explore component of all phases up to and including that of ` for each

19

reward sub-matrix (indexed by i ∈ [a`]) corresponding to the users inM(`,i) and items in N (`,i).
Next, our goal is to run low rank matrix completion in order to estimate each of the sub-matrices
corresponding to {(M(`,i),N (`,i))}i∈[a`].

Exploration Strategy: Consider a particular nice subset of usersM(`,i) and corresponding active
items N (`,i) (s.t. |N (`,i)| ≥ T1/3) at the beginning of the explore component of phase ` forM(`,i).
For each user u ∈ M(`,i), we are going to sample each item j ∈ N (`,i) with probability p (to be
determined based on the desired error guarantee). Suppose the set of indices sampled in the explore
component of phase ` is denoted by Ω(`) ⊆ M(`,i) × N (`,i). Now, for each user u ∈ M(`,i) we
recommend all the unblocked items in the set A(`)

u ≡ {j ∈ N (`,i) | (u, j) | Ω(`)} and obtain the
corresponding noisy reward (note that for blocked items in the aforementioned set, we have already
obtained the corresponding noisy rewards).

For simplicity, we intend to complete the explore component at the same round for all users inM(`,i).
If, for two users u, v ∈ M(`,i), it happens that recommendation of all items in A(`)

u is complete
for user u but recommendation of all items in A(`)

v is incomplete for user v, then for the remaining
rounds we recommend to user u arbitrary unblocked items from N (`,i). Note that this is always
possible since the set N (`,i) has sufficiently many unblocked items allowing recommendations in the
remaining rounds at beginning of explore component of phase `. We start with the following lemma
to characterize the round complexity of estimating the sub-matrix PM(`,i),N (`,i) up to entry-wise
error ∆`+1 with high probability using the noisy observations corresponding to the subset of indices
Ω(`):
Lemma 4. Consider a particular subset of nice users M(`,i) and corresponding active items
N (`,i) (such that min

(
M/(τC),

∣∣N (`,i)
∣∣) ≥ T1/3) at the beginning of the explore component

of phase `. Suppose d1 = max(|M(`,i)|, |N (`,i)|) and d2 = min(|M(`,i)|, |N (`,i)|). Let us fix
∆`+1 = Ω(σ

√
µ3 log d1/

√
d2) and condition on the event E(`)

2 . Suppose Assumptions 1 and 2 are

satisfied. In that case, in explore component of phase `, by choosing 1 ≥ p = c
(
σ2µ̃3 log d1

∆2
`+1d2

)
(for

some constant c > 0) and using

m` = O
(σ2µ̃3 log(M

∨
N)

∆2
`+1

max
(

1,
Nτ

M

)
log T)

))
rounds under the blocked constraint, we can compute an estimate P̃(`) ∈ RM×N such that with
probability 1−O(T−3), we have∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1. (10)

where σ2 is the noise variance, µ is the incoherence of reward matrix P and µ̃ is the incoherence
factor of reward sub-matrix PM(`,i),N (`,i) .

Proof of Lemma 4. We are going to use Lemma 1 in order to compute an estimate P̃
(`)

M(`,i),N (`,i) of

the sub-matrix PM(`,i),N (`,i) satisfying
∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1. SinceM(`,i)

is a nice subset of users, the cardinality of
∣∣M(`,i)

∣∣ must be larger than M/(τC). Recall that τ is
the ratio of the maximum cluster size and the minimum cluster size; M/C being the average cluster
size implies that the minimum cluster size is bounded from above by M/(τC). From Lemma 1, we

know that by using m` = O
(
p
∣∣N (`,i)

∣∣ +
√∣∣N (`,i)

∣∣ p log(
∣∣M(`,i)

∣∣ δ−1)
)

rounds (see Lemma 1)

restricted to users inM(`,i) such that with probability at least 1− (δ + d−12
2) (see Remark 5),∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞

= O

(
σ
√
µ̃3 log d1√
pd2

)
.

where d1 = max(|M(`,i)|, |N (`,i)|), d2 = min(|M(`,i)|, |N (`,i)|) and µ̃ is the incoherence factor
of the matrix PM(`,i),N (`,i) . In order for the right hand side to be less than ∆`+1, we can set

20

p = c
(
σ2µ̃3 log d1

∆2
`+1d2

)
for some appropriate constant c > 0. Since the event E(`)

2 is true, we must have

that
∣∣M(`,i)

∣∣ ≥ M/(τC); hence d2 ≥ min
(

M/(τC),
∣∣N (`,i)

∣∣). Therefore, we must have that

m` = O
(σ2µ̃3 log(M

∨
N)

∆2
`+1

max
(

1,
Nτ

M

)
log T)

))
where we substitute δ−1 = 1/poly(T) and furthermore, the condition of the Lemma statement
implies that d−12

2 = O(T−3). Hence, we complete the proof of the lemma.

Remark 5 (Remark 1 in [8]). The error probability can be reduced from O(δ + d−3
2) to O(δ + d−c2)

for any constant c > 0 with only constant factor changes in the round complexitym and the estimation
guarantees ‖P− P̃‖∞. We will use c = 12 in rest of the paper.

Note that although µ̃, the incoherence factor of the sub-matrix PM(`,i),N (`,i) is unknown, from
Lemma 3, we know that µ̃ is bounded from above by O(µ) (recall that C,α, τ = O(1)).

Exploration Strategy continued: In particular, we choose ∆`+1 = ε`/176C at the beginning of
the explore component of phase ` for the set of usersM(`,i) with active items N (`,i). One edge
case scenario is when for a particular set of nice users M(`,i), at the beginning of the explore
component of phase `, we have

∣∣N (`,i)
∣∣ ≤ T1/3. In this case, this set of nice usersM(`,i) do not

progress to the next phase and in the explore component, we simply recommend arbitrary items
in N (`,i) to users in M(`,i) for the remaining rounds. Another interesting edge case scenario is
when d2 = min(

∣∣M(`,i)
∣∣ , ∣∣N (`,i)

∣∣ ,) is so small that the requisite error guarantee ∆`+1 (eq. 10)
cannot be achieved even by setting p = 1 i.e. we recommend all the items in the active set. Recall
that by our induction assumption, N (`,i) is sufficiently large so that it is possible to recommend
unblocked items for the number of remaining rounds (say T− t` with t` being the round at which the
explore component of phase ` starts). In that case, the set of usersM(`,i) do not progress to the
subsequent phase; we simply recommend arbitrary unblocked items in the set N (`,i) to the users in
M(`,i) for the remaining rounds. In both the above edge case scenarios, the explore component of
phase ` for users inM(`,i) would last for the remaining rounds from where it starts. We can now
show the following lemma:

Lemma 5. Consider a particular subset of nice usersM(`,i) and corresponding surviving items
N (`,i) at the beginning of the explore component of phase `. Suppose d1 = max(|M(`,i)|, |N (`,i)|)
and d2 = min(|M(`,i)|, |N (`,i)|). Now ∆`+1 = ε`/176C is such that there does not exist any
p ∈ [0, 1] for which RHS in eq. 3 can be ∆`+1 for estimation of matrix P restricted to the rows in
M(`,i) and columns in N (`,i). In that case, we must have for all users u ∈M(`,i),

(T− t`) max
y∈N (`,i)

(
Puπu(1)|N (`,i) −Puy

)
= Õ

(
σC
√
µ3 log d1 max

(√
T,T

√
C

Mτ

))
where t` is the round at which the explore component of phase ` starts.

Proof. Note that by our induction hypothesis, we must have B
∣∣N (`,i)

∣∣ ≥ T − t` because the set
of surviving items must contain sufficient unblocked items (for recommendation in the remaining
rounds) for every user u ∈M(`,i). Hence, by setting p = 1 in eq. 3, with a certain number of rounds,
we can obtain an estimate Q of P satisfying∣∣∣∣QM(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣
∞ = O

(σ√µ3 log d1√
d2

)
.

Hence, this implies that our choice of ∆`+1 satisfies ∆`+1 = O
(
σ
√
µ3 log d1√
d2

)
implying that ε` =

O
(
σC
√
µ3 log d1√
d2

)
. Now, there are two possibilities: 1) either d2 =

∣∣M(`,i)
∣∣ implying that M/(τC) ≤

21

∣∣M(`,i)
∣∣ ≤ ∣∣N (`,i)

∣∣. In that case, we have that ε` = O
(
σC1.5
√
µ3 log d1√
Mτ

)
. Now, because of our

induction assumption, we will have

max
y∈N (`,i)

(
Puπu(1)|N (`,i) −Puy

)
≤ ε` = O

(σC1.5
√
µ3 log d1√
Mτ

)
.

Therefore, for any user u ∈ M(`,i), if we recommend arbitrary unblocked items in N (`,i) for the
remaining rounds then we can bound the following quantity

(T− t`) max
y∈N (`,i)

(
Puπu(1)|N (`,i) −Puy

)
= O

(σTC1.5
√
µ3 log d1√

Mτ

)
.

2) The second possibility is the following: d2 =
∣∣N (`,i)

∣∣ ≥ B−1(T − t`). In that case, from our
induction assumption, we have that (B = Θ(log T))

max
y∈N (`,i)

(
Puπu(1)|N (`,i) −Puy

)
≤ ε` = Õ

(σC
√
µ3 log d1√
T− t`

)
.

and therefore

(T− t`) max
y∈N (`,i)

(
Puπu(1)|N (`,i) −Puy

)
≤ ε`(T− t`) = Õ

(σC
√
µ3 log d1√
T− t`

· (T− t`)
)

= Õ
(
σC
√
µ3T log d1

)
.

ConsiderM′(`) ⊆ M(`) to be the family of nice subsets of users which do not fall into the edge
case scenarios i.e. 1) there exists 0 ≤ p ≤ 1 for which the theoretical bound in RHS in eq. 3 can be
smaller than ∆`+1 2) we have

∣∣N (`,i)
∣∣ ≥ T1/3. More preciselyM′(`) corresponds to the set

{
M(`,i) ∈M(`) with active items N (`,i) | ∆`+1 = Ω

(σ√µ3 log max(
∣∣M(`,i)

∣∣ , ∣∣N (`,i)
∣∣)√

min(
∣∣M(`,i)

∣∣ , ∣∣N (`,i)
∣∣)

)
and

∣∣∣N (`,i)
∣∣∣ ≥ T1/3

}
Suppose M/(τC) = Ω(T1/3). As mentioned before, the event E(`)

3 is true if the algorithm has
successfully computed an estimate P̃(`) ∈ RM×N such that for allM(`,i) ∈M′(`)∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 for allM(`,i) ∈M′` (11)

implying that for each of the distinct nice subsets M(`,i) ∈ M′(`), after the explore component
of phase `, the algorithm finds a good entry-wise estimate of the sub-matrix PM(`,i),N (`,i) . In the

following part of the analysis, we will repeatedly condition on the events E(`)
2 (conditions A-C are

satisfied at the beginning of the explore component of phase `) and the event E(`)
3 (eq. 10 is true for

all nice subsetsM(`,i) ∈ M′(`) in the explore component of phase `). Note that the event E(`)
2 is

true due to the induction hypothesis and conditioned on the event E(`)
2 , the event E(`)

3 is true with
probability at least 1−O(T−3C) (after taking a union bound over C clusters).

Fix anyM(`,i) ⊆M′(`) and condition on the events E(`)
2 , E(`)

3 . For each user u ∈M(`,i), once the
algorithm has computed the estimate P̃

(`)

M(`,i),N (`,i) in eq. 11, let us denote a set of good items for
the user u by

T (`)
u ≡ {j ∈ N (`,i) | P̃uj ≥ P̃

uπ̃u(TB−1−
∣∣∣O(`,t)

M(`,i)

∣∣∣)|N (`,i)
− 2∆`+1} (12)

R(`)
u ≡ {j ∈ N (`,i) | P̃uj ≥ P̃uπ̃u(1)|N (`,i) − 2∆`+1} (13)

22

where t is the round index at the end of the explore component of phase ` and |O(`,t)

M(`,i) | is the number
of rounds in exploit components of phases that the user u ∈M(`,i) has encountered so far. Note from
our algorithm, that users in the same nice subsetM(`,i) have encountered exactly the same number of
rounds in exploit components of phases until the end of phase `. Recall that users inM(`,i) have been
recommended the same set of items until blocked (unless blocked already for some user in which case
the item in question has already been recommended B times) in the exploit components of phases
until the end of phase ` (this set of items chosen for recommendation in the exploit components up
to end of phase ` is denoted by O(`,t)

M(`,i)). If we condition on the event E(`)
3 , then we can show the

following statement to be true (in the following lemma, we remove the superscript t in O(`,t)

M(`,i) for
simplicity - the round index t corresponds to the end of phase ` for users inM(`,i)):

Lemma 6. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Let
O(`)

M(`,i) be the set of items that have been chosen for recommendation to users inM(`,i) in exploit

components of the first ` phases. Denote Z = [N] \ O(`)

M(`,i) . In that case, for every user u ∈M(`,i),

the items πu(s) | Z for all s ∈ [TB−1 −
∣∣∣O(`)

M(`,i)

∣∣∣] must belong to the set T (`)
u .

Proof. Let us fix a user u ∈M(`,i) with active set of armsN (`,i). Let us also fix an item a ≡ πu(t) |
Z for t ∈ [TB−1 −

∣∣∣O(`)

M(`,i)

∣∣∣]. Recall that π̃ | Z is the permutation of the items sorted in descending

order according to their estimated reward in P̃
(`)

M(`,i),N (`,i) . Now there are two possibilities regarding
the position of the arm a in the permutation π̃ | Z - 1) πu(t) | Z ≡ π̃u(t1) | Z for some t1 ≤ t
which implies that in the permutation π̃ | Z , the position of the arm a is t1. In that case, the arm
a survives in the set T (`)

u by definition (see eq. 12) 2) Now, suppose that πu(t) | Z ≡ π̃u(t1) | Z
for some t1 ≤ t which implies that in the permutation π̃ | Z , the arm a has been shifted to the
right (from π | Z). In that case, there must exist another item b ≡ πu(t2) | Z for t2 > t such that
πu(t2) | Z ≡ π̃u(t3) | Z for t3 ≤ t. Now, we will have

P̃
(`)
ub − P̃(`)

ua = P̃
(`)
ub −Pub + Pub −Pua + Pua − P̃(`)

ua ≤ 2∆`+1

where we used the following facts a) conditioned on the event E(`)
3 , we have P̃

(`)
us −Pus ≤ ∆`+1 for

all u ∈M(`,i), s ∈ N (`,i) b) Pub −Pua ≤ 0 by definition. Hence, this implies that a ∈ T (`)
u .

Corollary 1. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Suppose t` is the final round of the explore component of phase ` for users inM(`,i). In that case,
for user u, the set T (`)

u contains sufficient items that are unblocked and can be recommended for the
remaining T− t` rounds.

Proof. From Lemma 11, we showed that T (`)
u comprises the set of items πu(s) | Z for all s ∈

[TB−1 −
∣∣∣O(`)

M(`,i)

∣∣∣] where Z = [N] \ O(`)

M(`,i) . Now, suppose the kth item in the setHu ≡ {πu(t′) |

Z}
T−
∣∣∣O(`)

M(`,i)

∣∣∣
t′=1 has been recommended to user u bk < B times in previous phases. In that case, the

number of allowed recommendations of items in T (`)
u is at least TB−1 − B

∣∣∣O(`)

M(`,i)

∣∣∣−∑k∈Hu
bk

which is more than the remaining rounds that is at most TB−1−B
∣∣∣O(`)

M(`,i)

∣∣∣−∑k∈Hu
bk (B

∣∣∣O(`)

M(`,i)

∣∣∣
rounds have already been used up when the golden items were identified and recommended).

Consider a nice subset of usersM(`,i) ∈M′(`) and its corresponding active set of items N (`,i) for
which eq. 11 holds true. At the end of the explore component of phase `, based on the estimate
P̃

(`)

M(`,i),N (`,i) , we construct a graph G(`,i) whose nodes are given by the users inM(`,i). Now, we

23

draw an edge between two users u, v ∈ M(`,i) if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 for all considered items

x ∈ N (`,i).
Lemma 7. Condition on the events E(`)

2 , E(`)
3 being true. Consider a nice subset of usersM(`,i) ∈

M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider the graph G(`,i) formed by the users inM(`,i) such that an edge exists between two users
u, v ∈ M(`,i) if

∣∣∣P̃(`)
ux − P̃

(`)
vx

∣∣∣ ≤ 2∆`+1 for all considered items x ∈ N (`,i). Nodes in G(`,i)

corresponding to users in the same cluster form a clique. Also, users in each connected component of
the graph G(`,i) form a nice subset of users.

Proof. For any two users u, v ∈M(`,i) belonging to the same cluster, consider an arm x ∈ N (`,i).
We must have

P̃(`)
ux − P̃(`)

vx = P̃(`)
ux −Pux + Pux −Pvx + Pvx − P̃(`)

vx ≤ 2∆`+1.

Now, consider two users u, v ∈M(`,i) that belongs to different clusters P,Q respectively. Note that
since the event E(`) is true,M(`,i) is a union of clusters comprising P,Q. Furthermore, we have
already established that nodes in G(`,i) (users inM(`,i)) restricted to the same cluster form a clique.
There every connected component of the graph G(`,i) can be represented as a union of a subset of
clusters.

Lemma 8. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. In
that case, for any subset Y ⊆ N (`,i) and any s ∈ [|Y|], for every user u ∈M(`,i), we must have

P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y − 6∆`+1 ≤ Puπu(1)|Y −Puπu(s)|Y ≤ P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y + 6∆`+1.

Proof. Since, we condition on the event E(`)
3 , we must have computed an estimate P̃(`), an estimate

of P restricted to users inM(`,i) and items in N (`,i) such that∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1.

We can decompose the term being studied in the following manner:

P̃
(`)
uπu(1)|Y − P̃

(`)
uπu(s)|Y

= P̃
(`)
uπu(1)|Y − P̃

(`)
uπ̃u(1)|Y + P̃

(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃u(s)|Y + P̃

(`)
uπ̃u(s)|Y − P̃

(`)
uπu(s)|Y .

Let us bound the quantity P̃
(`)
uπ̃u(s)|Y − P̃

(`)
uπu(s)|Y . In order to analyze this quantity, we will consider

a few cases. In the first case, suppose that πu(s) | Y = π̃u(t1) | Y for t1 ≥ s. In that case, we
will have that P̃

(`)
uπ̃u(s)|Y − P̃

(`)
uπu(s)|Y ≥ 0. In the second case, suppose πu(s) | Y = π̃u(t2) | Y for

t2 < s and πu(t3) | Y = π̃u(s) | Y for t3 < s. In that case, we have

P̃
(`)
uπ̃u(s)|Y − P̃

(`)
uπu(s)|Y

= P̃
(`)
uπ̃u(s)|Y −Puπ̃u(s)|Y + Puπ̃u(s)|Y −Puπu(s)|Y + Puπu(s)|Y − P̃

(`)
uπu(s)|Y

= P̃
(`)
uπ̃u(s)|Y −Puπ̃u(s)|Y + Puπu(t3)|Y −Puπu(s)|Y + Puπu(s)|Y − P̃

(`)
uπu(s)|Y ≥ −2∆`+1

where we used the fact Puπu(t3)|Y −Puπu(s)|Y ≥ 0. In the final case, we assume that πu(s) | Y =
π̃u(t2) | Y for s > t2 and πu(t3) | Y = π̃u(s) | Y for t3 > s. This means that both the items
πu(s) | Y, πu(t3) | Y have been shifted to the left in the permutation π̃u | Y . Hence,

P̃
(`)
uπ̃u(s)|Y − P̃

(`)
uπu(s)|Y

= P̃
(`)
uπ̃u(s)|Y −Puπ̃u(s)|Y + Puπ̃u(s)|Y −Puπu(s)|Y

+ Puπu(s)|Y − P̃
(`)
uπu(s)|Y ≥ −2∆`+1 + Puπ̃u(s)|Y −Puπu(s)|Y = −2∆`+1 + Puπu(t3)|Y −Puπu(s)|Y .

24

Hence there must exist an element πu(t4) | Y such that t4 < s and π̃u(t5) | Y = πu(t4) | Y for
t5 > s. In that case, we must have

Puπu(t3)|Y −Puπu(s)|Y ≥ Puπu(t3)|Y −Puπu(t4)|Y

= Puπu(t3)|Y − P̃
(`)
uπu(t3)|Y + P̃

(`)
uπu(t3)|Y − P̃

(`)
uπu(t4)|Y + P̃

(`)
uπu(t4)|Y −Puπu(t4)|Y

≥ −2∆`+1 + P̃
(`)
uπu(t3)|Y − P̃

(`)
uπu(t4)|Y = −2∆`+1 + P̃

(`)
uπ̃u(s)|Y − P̃

(`)
uπ̃u(t5)|Y ≥ −2∆`+1.

Therefore, in this case, we get that P̃
(`)
uπ̃u(s) − P̃

(`)
uπu(s) ≥ −4∆`+1. Again, we will have that

P̃
(`)
uπu(1)|Y − P̃

(`)
uπ̃u(1)|Y = P̃

(`)
uπu(1)|Y −P

(`)
uπu(1)|Y

+ P
(`)
uπu(1)|Y −P

(`)
uπ̃u(1)|Y + P

(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃u(1)|Y ≥ −2∆`+1.

By combining the above arguments, we have that

P̃
(`)
uπu(1)|Y − P̃

(`)
uπu(s)|Y ≥ P̃

(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃u(s)|Y − 6∆`+1.

By a similar set of arguments involving triangle inequalities, we will also have

P̃
(`)
uπu(1)|Y − P̃

(`)
uπu(s)|Y ≤ P̃

(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃u(s)|Y + 6∆`+1.

This completes the proof of the lemma.

We now show the following lemma characterizing the union of good items for a connected component
of the graph G(`,i). Recall that T−

∣∣∣O(`)

M(`,i)

∣∣∣ counts the number of rounds excluding the ones used

up in exploit component so far up to the `th phase.

Lemma 9. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider a subset of users G ∈ M(`,i) forming a connected component. Fix any set Y =

⋃
u∈G T

(`)
g \

J for some J such that for every user u ∈ G, we have π̃u(s′) | N (`,i) ≡ π̃u(s) | Y for s′ =

TB−1 −
∣∣∣O(`)

M(`,i)

∣∣∣ and some common index s. In that case, we must have

max
v∈G

(
max
x,y∈Y

P̃vx − P̃vy

)
≤ max

u∈G

(
P̃uπ̃u(1)|Y − P̃uπ̃u(s′)|N (`,i)

)
+ 24C∆`+1

Proof. Let us fix a user v ∈ G. We have maxx,y∈Y P̃vx − P̃vy = P̃vπ̃v(1)|Y −miny∈Y P̃vy. Now,
there are two possibilities for any y ∈ Y: first, suppose that y ∈ T (`)

v . In that case, we have

P̃vπ̃v(1)|Y − P̃vy = P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y + P̃vπ̃v(s)|Y − P̃
vπ̃v(s′)|T (`)

v
+ P̃

vπ̃v(s′)|T (`)
v
− P̃vy

Recall that the set T (`)
v was constructed as

T (`)
v ≡ {j ∈ N (`,i) | P̃vj ≥ P̃vπ̃v(s′)|N (`,i) − 2∆`+1} where s′ = TB−1 −

∣∣∣O(`)

M(`,i)

∣∣∣ (14)

Since y ∈ T (`)
v , we can bound P̃

vπ̃v(s′)|T (`)
v
− P̃vy ≤ 2∆`+1. Also, from the construction of T (`)

v ,

{π̃v(r) | N (`,i)}sr=1 is present in the set T (`)
v . Also, since T (`)

u is just a subset ofN (`,i), the positions
of the items {π̃v(r) | N (`,i)}sr=1 do not change in the permutation corresponding to the items in
T (`)
v sorted by estimated reward for v in decreasing order i.e. π̃v(r) | N (`,i) = π̃v(r) | T (`)

v for any
r ∈ [s]. Hence P̃vπ̃v(s)|Y − P̃

vπ̃v(s′)|T (`)
v

= 0. Hence, by combining the above, we have

P̃vπ̃v(1)|Y − P̃vy ≤ P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y + 2∆`+1.

Next, consider the case when y 6∈ T (`)
v . Hence, there must exist an user u such that y ∈ T (`)

u \ T (`)
v

and u is connected to v via a path of length L ≤ 2C− 1 (since there are C clusters and users in the
same cluster form a clique as proved in Lemma 7). In that case, we have the following decomposition:

P̃vπ̃v(1)|Y − P̃vy = P̃vπ̃v(1)|Y − P̃vπ̃u(1)|Y + P̃vπ̃u(1)|Y − P̃vπ̃u(s)|Y + P̃vπ̃u(s)|Y − P̃uπ̃u(s)|Y

+ P̃uπ̃u(s)|Y − P̃
uπ̃u(s′)|T (`)

u
+ P̃

uπ̃u(s′)|T (`)
u
− P̃uy + P̃uy − P̃vy

25

Now, let us consider the terms pairwise. Due to our construction of the graph G(`,i), for two users
u, v connected via a path of length L, we must have

∣∣∣P̃(`)
ux − P̃

(`)
vx

∣∣∣ ≤ 2L∆`+1. Note that

P̃
(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃u(1)|Y = P̃

(`)
vπ̃v(1)|Y −P

(`)
uπ̃v(1)|Y + P̃

(`)
uπ̃v(1)|Y

− P̃
(`)
uπ̃u(1)|Y + P

(`)
uπ̃u(1)|Y − P̃

(`)
vπ̃u(1)|Y ≤ 4L∆`+1

where we used that P̃
(`)
uπ̃v(1)|Y−P̃

(`)
uπ̃u(1)|Y ≤ 0. Next, we have P̃vπ̃u(1)|Y−P̃vπ̃u(s)|Y ≤ P̃uπ̃u(1)|Y−

P̃uπ̃u(s)|Y + 4L∆`+1. Furthermore, again we have π̃u(r) | N (`,i) = π̃u(r) | T (`)
u for any r ∈ [s]

and therefore P̃uπ̃u(s)|Y − P̃
uπ̃u(s′)|T (`)

v
= 0. Finally, P̃

uπ̃u(s′)|T (`)
u
− P̃uy + P̃uy − P̃vy ≤ 4L∆`+1

(since P̃
uπ̃u(s′)|T (`)

u
− P̃uy ≤ 2∆`+1). Hence by combining, we have that

P̃vπ̃v(1)|Y − P̃vy ≤ P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y + 12L∆`+1.

Hence, we complete the proof of the lemma (by substituting L ≤ 2C).

Lemma 10. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider two users u, v ∈M(`,i) having an edge i.e.

∣∣∣P̃(`)
ux − P̃

(`)
vx

∣∣∣ ≤ 2∆`+1 for all x ∈ N (`,i). In

that case, for any subset Y ⊆ N (`,i) and any s ∈ [|Y|], for every user u ∈M(`,i), we must have

P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y − 12∆`+1 ≤ P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y ≤ P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y + 12∆`+1

Proof. We can decompose the term being studied in the following manner:

P̃
(`)
vπ̃u(1)|Y − P̃

(`)
vπ̃u(s)|Y

= P̃
(`)
vπ̃u(1)|Y − P̃

(`)
vπ̃v(1)|Y + P̃

(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃v(s)|Y + P̃

(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃u(s)|Y .

Let us bound the quantity P̃
(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃u(s)|Y . In order to analyze this quantity, we will consider

a few cases. In the first case, suppose that π̃u(s) | Y = π̃v(t1) | Y for t1 ≥ s. In that case, we
will have that P̃

(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃u(s)|Y ≥ 0. In the second case, suppose π̃u(s) | Y = π̃v(t2) | Y for

t2 < s and π̃u(t3) | Y = π̃v(s) | Y for t3 < s. In that case, we have

P̃
(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃u(s)|Y

= P̃
(`)
vπ̃v(s)|Y − P̃

(`)
uπ̃v(s)|Y + P̃

(`)
uπ̃v(s)|Y − P̃

(`)
uπ̃u(s)|Y + P̃

(`)
uπ̃u(s)|Y − P̃

(`)
vπ̃u(s)|Y ≥ −4∆`+1

where we used the fact P̃
(`)
uπ̃v(s)|Y − P̃

(`)
uπ̃u(s)|Y = P̃

(`)
uπ̃u(t3)|Y − P̃

(`)
uπ̃u(s)|Y ≥ 0. In the final case, we

assume that π̃u(s) | Y = π̃v(t2) | Y for s > t2 and π̃u(t3) | Y = π̃v(s) | Y for t3 > s. This means
that both the items π̃u(s) | Y, π̃u(t3) | Y have been shifted to the left in the permutation π̃v | Y .
Hence,

P̃
(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃u(s)|Y

= P̃
(`)
vπ̃v(s)|Y − P̃uπ̃v(s)|Y + P̃uπ̃v(s)|Y − P̃uπ̃u(s)|Y

+ P̃uπ̃u(s)|Y − P̃
(`)
vπ̃u(s)|Y ≥ −4∆`+1 + P̃uπ̃v(s)|Y − P̃uπ̃u(s)|Y

= −4∆`+1 + P̃uπ̃u(t3)|Y − P̃uπ̃u(s)|Y .

Hence there must exist an element π̃u(t4) | Y such that t4 < s and π̃v(t5) | Y = π̃u(t4) | Y for
t5 > s. In that case, we must have

P̃uπ̃u(t3)|Y − P̃uπ̃u(s)|Y ≥ P̃uπ̃u(t3)|Y − P̃uπ̃u(t4)|Y

= P̃uπ̃u(t3)|Y − P̃
(`)
vπ̃u(t3)|Y + P̃

(`)
vπ̃u(t3)|Y − P̃

(`)
vπ̃v(t4)|Y + P̃

(`)
vπ̃v(t4)|Y − P̃uπ̃u(t4)|Y

≥ −4∆`+1 + P̃
(`)
vπ̃u(t3)|Y − P̃

(`)
vπ̃v(t4)|Y = −4∆`+1 + P̃

(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃v(t5)|Y ≥ −4∆`+1.

26

Therefore, in this case, we get that P̃
(`)
vπ̃v(s) − P̃

(`)
vπu(s) ≥ −8∆`+1. Hence we get

P̃
(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃u(s)|Y = P̃

(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃v(s)|Y

+ P̃
(`)
vπ̃v(s)|Y − P̃

(`)
vπ̃u(s)|Y ≥ P̃

(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃v(s)|Y − 8∆`+1.

Also, we will have that

P̃
(`)
vπ̃u(1)|Y − P̃

(`)
vπ̃v(1)|Y = P̃

(`)
vπ̃u(1)|Y −P

(`)
uπ̃u(1)|Y

+ P̃
(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃v(1)|Y + P

(`)
uπ̃v(1)|Y − P̃

(`)
vπ̃v(1)|Y ≥ −4∆`+1.

By combining the above arguments, we have that

P̃
(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃u(s)|Y ≥ P̃

(`)
vπ̃u(1)|Y − P̃

(`)
vπ̃u(s)|Y − 4∆`+1 ≥ P̃

(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃v(s)|Y − 12∆`+1.

By a similar set of arguments involving triangle inequalities, we will also have

P̃
(`)
uπ̃u(1)|Y − P̃

(`)
uπ̃u(s)|Y ≤ P̃

(`)
vπ̃v(1)|Y − P̃

(`)
vπ̃v(s)|Y + 12∆`+1.

This completes the proof of the lemma.

Now, for any fixed subset Y ⊆ N (`,i), let us define the setR(`)
u | Y for user u below:

R(`)
u | Y = {j ∈ Y | P̃uj ≥ P̃uπ̃u(1)|Y − 2∆`+1}

Hence,R(`)
u | Y corresponds to the set of items for user u that is close to the item with the highest

estimated reward for user u restricted to the set Y at the end of the explore component of phase `.

Lemma 11. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active itemsN (`,i) for which guarantees in eq. 11 holds. Fix any
subset Y ⊆ N (`,i). In that case, for every user u ∈M(`,i), the item with the highest reward πu(1) | Y
in the set Y must belong to the setR(`)

u | Y . Moreover, max
s,s′∈R(`)

u |Y
|Pus −Pus′ | ≤ 4∆`+1.

Proof. Let us fix a user u ∈M(`,i) with active set of arms N (`,i). Now, we will have

P̃uπ̃u(1)|Y − P̃
(`)
uπu(1)|Y = P̃

(`)
uπ̃u(1)|Y

−Puπ̃u(1)|Y + Puπ̃u(1)|Y −Puπu(1)|Y + Puπu(1)|Y − P̃
(`)
uπu(1)|Y ≤ 2∆`+1

which implies that πu(1) | Y ∈ R(`)
u | Y . Here we used the fact that P̃

(`)
uπ̃u(1)|Y−Puπ̃u(1)|Y ≤ ∆`+1,

Pu|Y−P̃
(`)
uπu(1)|Y ≤ ∆`+1 and Puπ̃u(1)|Y−Puπu(1)|Y ≤ 0. Next, notice that for any s, s′ ∈ R(`)

u | Y

Pus −Pus′ = Pus − P̃(`)
us + P̃(`)

us − P̃
(`)
ut1 + P̃

(`)
ut1 − P̃

(`)
us′ + P̃

(`)
us′ −Pus′ ≤ 4∆`+1.

Lemma 12. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Fix any subset Y ⊆ N (`,i). Consider two users u, v ∈ M(`,i) having an edge in the graph G(`,i).
Conditioned on the events E(`)

2 , E(`)
3 , we must have

max
x∈R(`)

u |Y,y∈R(`)
v |Y
|Pux −Puy| ≤ 16∆`+1 and max

x∈R(`)
u |Y,y∈R(`)

v |Y
|Pvx −Pvy| ≤ 16∆`+1

Proof. From the construction of G(`,i), we know that users u, v ∈ M(`,i) have an edge
if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 (and therefore |Pux −Pvx| ≤
∣∣∣P̃(`)

ux −Pux

∣∣∣ +
∣∣∣Pvx − P̃

(`)
vx

∣∣∣ +∣∣∣P̃(`)
ux − P̃

(`)
vx

∣∣∣ ≤ 4∆`+1) for all x ∈ N (`,i). For simplicity of notation, let us denote Ru to

27

be the set R(`)
u | Y . Suppose Puπu(1)|Y = a and Pvπv(1)|Y = b. Consider any pair of items

x ∈ Ru, y ∈ Rv respectively. Therefore, for x ∈ Ru this must mean that Pux ≥ a− 4∆`+1 (note
that πu(1) | Y ∈ Ru). For y ∈ Rv, we must similarly have Pvy ≥ b − 4∆`+1. Since u, v are
connected by an edge, we must have Pvx ≥ a − 8∆`+1 and Puy ≥ b − 8∆`+1. Now, we have
Pvπv(1)|Y ≥ Pvx implying that b ≥ a− 8∆`+1; hence

Pux −Puy ≤ Puπu(1)|Ru
−Puy ≤ a− (b− 8∆`+1) ≤ 16∆`+1.

A similar analysis for v shows that Pvy−Pvx ≤ 16∆`+1. This completes the proof of the lemma.

Lemma 13. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds. Fix
any subset Y ⊆ N (`,i). Consider two users u, v ∈ M(`,i) having a path of length L in the graph
G(`,i). Conditioned on the events E(`)

2 , E(`)
3 , we must have

max
x∈R(`)

u |Y,y∈R(`)
v |Y
|Pux −Puy| ≤ 8(L + 1)∆`+1

and max
x∈R(`)

u |Y,y∈R(`)
v |Y
|Pvx −Pvy| ≤ 8(L + 1)∆`+1

Proof. Recall from the construction of G(`,i) that conditioned on E(`)
3 users u, v ∈ M(`,i) have an

edge if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 (and therefore |Pux −Pvx| ≤ 4∆`+1) for all x ∈ N (`,i). Again,

for simplicity of notation, let us denote Ru to be the set R(`)
u | Y . Suppose Puπu(1)|Y = a and

Pvπv(1)|Y = b. Consider any pair of items x ∈ Ru, y ∈ Rv respectively. Therefore, for x ∈ Ru
this must mean that Pux ≥ a − 4∆`+1. For y ∈ Rv, we must similarly have Pvy ≥ b − 4∆`+1.
Since u, v are connected by an path of length L (say a1, a2, . . . , a(L−1)), we must have Pa1x ≥
a − 8∆`+1, Pa2x ≥ a − 12∆`+1 and finally Pvx ≥ a − 4(L + 1)∆`+1. By a similar analysis
Puy ≥ b− 4(L + 1)∆`+1. Now, we have Pvπv(1)|Y ≥ Pvx implying that b ≥ a− 4(L + 1)∆`+1;
hence

Pux −Puy ≤ Puπu(1)|Ru
−Puy ≤ a− (b− 4(L + 1)∆`+1) ≤ 8(L + 1)∆`+1.

Again, a similar analysis for v shows that Pvy −Pvx ≤ 8(L + 1)∆`+1. This completes the proof of
the lemma.

Corollary 2. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active itemsN (`,i) for which guarantees in eq. 11 holds. Fix any
subset Y ⊆ N (`,i). Consider two users u, v ∈M(`,i) having a path in the graph G(`,i). Conditioned
on the events E(`)

2 , E(`)
3 , we must have

max
x∈R(`)

u |Y,y∈R(`)
v |Y
|Pux −Puy| ≤ 16C∆`+1 and max

x∈R(`)
u |Y,y∈R(`)

v |Y
|Pvx −Pvy| ≤ 16C∆`+1

Proof. The proof follows from the fact that any two users u, v ∈M(`,i) connected via a path must
have a shortest path of length at most 2C − 1 conditioned on the events E`2, E

(`)
3 . This is because,

from Lemma 13, we know that users in the same cluster form a clique and since there are at most C
clusters, the shortest path must be of length at most 2C− 1.

Hence, for a particular set of usersM(`,i) ∈M′(`), consider the jth connected component of G(`,i)

comprising of usersM(`,i,j). If we consider the union of items S ≡ ∪u∈M(`,i,j)R(`)
u | Y for any

subset Y | N (`,i), then from Corollary 2, we must have that for any user u ∈M(`,i,j),

max
x,y∈S

|Pux −Puy| ≤ 16C∆`+1. (15)

This follows from the fact that every element s ∈ S must exist in R(`)
v | Y for some v ∈ M(`,i,j);

moreover, v is connected to u and therefore the shortest path joining them must be of length at most
2C− 1. Finally we use Corollary 2 to conclude equation 15.

28

Lemma 14. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active items N (`,i) for which guarantees in eq. 11 holds.
Consider the jth connected component of the graph G(`,i) comprising of usersM(`,i,j). LetN (`,i,j) ≡
∪u∈M(`,i,j)T (`)

u denote the union of good items for users inM(`,i,j). In that case,

1. For every user u ∈M(`,i,j), the items πu(s) | [N]\O(`)

M(`,i) for s ∈ [TB−1−
∣∣∣O(`)

M(`,i)

∣∣∣] must

belong to the setN (`,i,j) i.e. the golden items that have not been chosen for recommendation
to users inM(`,i,j) in exploit components of previous phases must belong to the surviving
set of items N (`,i,j).

2. For any subset Y ⊆ N (`,i,j) and any s ≤ |Y|, we must have the following for any A > 0:

If P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y ≥ A for some u ∈M(`,i,j)

then Pvπv(1)|Y −Pvπv(s)|Y

≥ P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y − 4∆`+1 ≥ A− (2C− 1)4∆`+1 for all v ∈M(`,i,j).

Proof. The proof of the first part follows directly from Lemma 11 where we showed that for a
particular user u ∈M(`,i), the items P

uπu(s)|[N]\O(`)

M(`,i)

for s ∈ [TB−1 −
∣∣∣O(`)

M(`,i)

∣∣∣] must belong to

the set T (`)
u (and the fact that N (`,i,j) ⊇ T (`)

u).

We move on to the proof of the second part of the lemma. Recall that any two users u, v ∈ M(`,i)

have an edge in the graph G(`,i) if
∣∣∣P̃(`)

ux − P̃
(`)
vx

∣∣∣ ≤ 2∆`+1 for all x ∈ N (`,i). In that case, we have

P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y ≥ P̃vπ̃u(1)|Y − P̃vπ̃u(s)|Y

≥ P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y − 4∆`+1 ≥ A− 4∆`+1.

We are going to prove the Lemma statement by induction on length of the shortest path joining the
users u, v. The base case (when the path length is 1 i.e. u, v are joined by an edge) is proved above.
Suppose the statement is true when length of the shortest path is L − 1. In that case, we have the
following set of inequalities (suppose w is the neighbor of v and the length of the shortest path joining
u,w is L− 1)

P̃vπ̃v(1)|Y − P̃vπ̃v(s)|Y ≥ P̃vπ̃w(1)|Y − P̃vπ̃w(s)|Y

≥ P̃wπ̃w(1)|Y − P̃wπ̃w(s)|Y − 4L∆`+1 ≥ A− 4L∆`+1.

The lemma statement follows from the fact that the length of the shortest path between users u, v in
the same connected component is at most 2C− 1. This completes the proof of the lemma.

Partition of M(`,i) in phase ` + 1 into nice subsets of users and their corresponding active
subsets of items: Consider a nice set of usersM(`,i) at the end of the explore component of phase
` i.e. the start of the subsequent phase ` + 1 for the users inM(`,i). At this point, conditioned on
events E(`)

2 , E(`)
3 , our goal is to further partition the users inM(`,i) into more nuanced nice subsets.

Suppose the number of rounds is at least T1/3/B = Õ(T1/3) implying that the active set of items
N (`,i) is of size at least Ω̃(T1/3) (induction assumption property B). Suppose, we index the connected
components of the graph G(`,i) formed by the users inM(`,i) ∈M′(`). Now, for each index j, the
set of users corresponding to the jth connected component of the graph {G(`,i)} forms the jth nice
subset of users (Lemma 7) stemming from users inM(`,i) ∈M′(`) - let us denote this set of users by
M(`+1,z) for some index s > 0. For this set of usersM(`+1,z), at the start of the exploit component
of phase `+ 1 (round t), we define the active set of items N (`+1,t,z) to be

⋃
u∈M(`+1,z) T (`)

u . Hence
{(M(`+1,z),N (`+1,t,z)}z forms the family of nice sets of users (that progress to the (`+ 1)th phase)
and their corresponding active set of items at the beginning (exploit component) of phase `+ 1 for
users stemming fromM′(`). Next, we discuss our recommendation strategy forM(`+1,z) (a nice
subset of users) in the exploit component of phase `+ 1.

29

Strategy in exploit component of phase `+ 1: Note that in the exploit component of phase `+ 1
for users inM(`,i,j) ≡M(`+1,z) (new notation indicating thatM(`,i,j) ≡M(`+1,z) is a nice subset
of users at phase ` + 1) for some indices i, j and z, we follow a recursive approach to identify
and recommend items in {πu(t)}TB−1

t=1 for all users u ∈ M(`+1,z). At the beginning of the exploit
component of phase ` + 1 (say round t), we will also initialize O(`+1,t)

M(`+1,z) to be the set of items

O(`)

M(`,i) (i.e. the golden items that have been chosen for recommendation in the exploit components
of previous phases (1− `) to users inM(`,i) and recommended sufficiently enough number of times
to be blocked). At start of the exploit component of phase `+ 1 (round t), recall that the active set of
items is given by N (`+1,t,z) ≡

⋃
u∈M(`+1,z) T (`)

u . We reiterate here that t corresponds to the index
of the starting round in the exploit component of phase `+ 1 for users in the nice subsetM(`+1,z).

Let us denote s = TB−1 −
∣∣∣O(`+1,t)

M(`+1,z)

∣∣∣ and Y = N (`+1,t,z). First of all, note that from Lemma 14,

for all users u ∈M(`+1,z) the items πu(r) | [N] \ O(`+1,t)

M(`+1,z) for r ∈ [s] must belong to the set Y i.e.

the best s items among those that are not in the set O(`+1,t)

M(`+1,z) must survive in Y (Lemma 14). Now,
we look at two possibilities:

1. (Possibility A): For all users u ∈M(`+1,z), we have that P̃uπ̃u(1)|Y−P̃uπ̃u(s)|Y ≤ 64C∆`+1

In that case, we stop the exploit component of phase ` + 1 and move on to the explore
component of phase ` + 1 for users in M(`+1,z) and active items Y . Conditioned on
events E(`)

2 , E(`)
3 , in Lemma 15, we show that the above condition implies for every user

u ∈M(`+1,z), we must have

max
x,y∈Y

≤ 88C∆`+1.

Furthermore, for Z = [N] \ O(`+1)

M(`+1,z) , it must happen that Y ⊇ {πu(s) |

Z}
T/B−

∣∣∣O(`+1)

M(`+1,z)

∣∣∣
s=1 for every user u ∈ M(`+1,z). In other words, for each user u ∈

M(`+1,z), the set Y must contain all the top TB−1 golden items ({πu(r)}TB−1

r=1) that were
not recommended in the exploit components so far.

2. (Possibility B): For some user u ∈ M(`+1,z), we have that P̃uπ̃u(1)|Y − P̃uπ̃u(s)|Y ≥
64C∆`+1. In that case, from Lemma 14, we know that for every user v ∈ M(`+1,z), we
must have Pvπv(1)|Y −Pvπv(s)|Y ≥ 56C∆`+1 . In that case, if we consider the set of items
S ≡ ∪u∈M(`+1,z)R(`)

u | Y , then from Lemma 13 (or see eq. 15), we must have that for
every user u ∈M(`+1,z),

max
x,y∈S

|Pux −Puy| ≤ 16C∆`+1 (16)

For every user u ∈M(`+1,z), recall that in Lemma 11, we showed that πu(1) | Y ∈ R(`)
u |

Y and in Lemma 14, we showed that πu(1) | Y = πu(1) | [N \
∣∣∣O(`+1,t)

M(`+1,z)

∣∣∣]. Hence,

πu(1) | Y = πu(1) | [N \
∣∣∣O(`+1,t)

M(`+1,z)

∣∣∣] belongs to the set S for every user u ∈ M(`+1,z).

Hence we must have that the items S is a subset of {πu(r) | [N] \ O(`+1,t)

M(`+1,z)}sr=1. Suppose
we index the items in S . For each of the subsequent B |S| rounds (indexed by b ∈ [BS]), for
every user u ∈M(`+1,z), we go to the d(b/B)eth item in S and recommend it to user u if
unblocked. On the other hand, if the d(b/B)eth item in S is blocked (or becomes blocked)
for the user u ∈M(`+1,z), then we simply recommend any unblocked item in N (`+1,t,z).
This is always possible because we will prove via induction (see Lemma 15 and in particular
eq. 23) that at every round in the exploit component of phase `+ 1, the number of unblocked
items for any user u ∈ M(`+1,z) in the set N (`+1,t,z) (where t is the previous decision
round forM(`+1,z) on whether possibility A or B is true) is always larger than the number

30

of remaining rounds. We make the following updates:

O(`+1,t+|S|)
M(`+1,z) ← O(`+1,t)

M(`+1,z) ∪ S (17)

N (`+1,t+|S|,z) ← N (`+1,t,z) \ O(`+1,t+|S|)
M(`+1,z) (18)

t← t+ |S| and Y ← N (`+1,t,s) (19)

i.e we update the set O(`+1,t)

M(`+1,z) by taking union with the set of |S| identified items in
{πu(t)}Tt=1 for all users u ∈M(`+1,z). After these |S| rounds, for the set of usersM(`+1,z),
the set of active itemsN (`+1,t,z) is pruned by removing the items in S and the time index is
increased from t to t+ |S|.
At this point, we repeat the same process again for users in M(`+1,z) with the pruned
set of active items N (`+1,t,s) i.e. we check for possibility A or possibility B. If we
encounter possibility B, then we again find the set of items S ≡ ∪u∈M(`+1,z)R(`)

u | Y
and recommended it to all users inM in |S|B steps as outlined above. We do this step
recursively until we encounter Step A for the users inM(`+1,z) and at that point we exit the
exploit component of phase `+ 1 and enter the explore component of phase `+ 1.

As before, at the beginning of the explore component of phase ` + 1 for the nice subset of users
M(`+1,z), let us denote the set of active items by N (`+1,z) and the set of items considered for
recommendation in the exploit phases including the (`+ 1)th one by O(`+1)

M(`+1,z) (i.e. we remove the t
in the superscript for simplicity). Therefore, at the end of the explore component of phase `+ 1 for
the nice subset of usersM(`+1,z), the set of active items N (`+1,z) satisfy the following:
Lemma 15. Consider a nice subset of usersM(`+1,z) and their corresponding set of active items
N (`+1,z) at the end of the exploit stage of phase ` + 1 i.e. for all users u ∈ M(`+1,z), we have
P̃uπ̃u(1)|N (`+1,z) − P̃uπ̃u(s)|N (`+1,z) ≤ 64C∆`+1 for s = TB−1 −

∣∣∣O(`+1)

M(`+1,z)

∣∣∣. SupposeM(`+1,z)

is comprised of the users in a connected component of the graph G(`,i) which in turn is formed by the
users inM(`,i) for which guarantees in eq. 11 holds true i.e. we condition on the events E(`)

2 , E(`)
3

being true. In that case, we must have that

1. for all users u ∈M(`+1,z),
max

x,y∈N (`+1,z)
|Pux −Puy| ≤ 88C∆`+1

i.e. the best and worst items in the set N (`+1,z) for any user u ∈ M(`+1,z) has close
rewards.

2. Denote Z = [N] \ O(`+1)

M(`+1,z) to be set of items not chosen for recommendation to users in
M(`+1,z) in the exploit component of phases until (and including) phase `+ 1. Then it must
happen that

O(`+1)

M(`+1,z) ⊆ {πu(t)}TB
−1

t=1 (20)

N (`+1,z) ⊇
⋃

u∈M(`+1,z)

{πu(t′) | Z}
TB−1−

∣∣∣O(`+1)

M(`+1,z)

∣∣∣
t′=1 . (21)

Proof. Suppose at the end of the explore component of phase `,M(`+1,z) ⊆M(`,i). We will prove
a more general statement. Consider the rounds t1, t2, . . . at which we check for possibility A or
possibility B (this includes the starting and ending rounds of the exploit component of phase `+1). At
any such round tr, for all users u ∈M(`+1,z), we must have that π̃u(TB−1 −

∣∣∣O(`,tr)

M(`,i)

∣∣∣) | N (`,i) ∈
N (`+1,tr,z) and

max
x,y∈N (`+1,tr,z)

|Pux −Puy| ≤ max
v∈M(`+1,z)

(
P̃uπ̃u(1)|N (`+1,tr,z) − P̃uπ̃u(s)|N (`+1,tr,z)

)
+ 24C∆`+1

(22)

N (`+1,tr,z) ⊇
⋃

u∈M(`+1,z)

{πu(t′) | Z}st′=1 where Z ≡ [N] \ O(`+1,tr)

M(`+1,z) (23)

O(`+1,tr)

M(`+1,z) ⊆ {πu(t)}TB
−1

t=1 (24)

31

for s = T−
∣∣∣O(`+1,tr)

M(`+1,z)

∣∣∣We will prove the statement above via induction on the recursions performed
in the exploit component of the phase ` + 1. For the base case, we consider the round t1 which
corresponds to the beginning of the exploit component of phase ` + 1. At this round, recall that
N (`+1,t1,z) = ∪u∈M(`+1,z)T (`)

u . Of course, with s = T−
∣∣∣O(`)

M(`,i)

∣∣∣, for every user u ∈ M(`+1,z),

we must have {π̃u(r) | N (`,i)}sr=1 ∈ T
(`)
u (Lemma 11) and since N (`+1,z) is a union of the sets

T (`)
u , π̃u(r) | N (`,i) = π̃u(r) | N (`+1,z) for all r ∈ [s]. Hence by invoking Lemma 9 (in the

statement of Lemma 9, we have J = φ i.e. Y = N (`+1,z) and π̃u(s) | N (`,i) = π̃u(s) | N (`+1,z)

for s = T−
∣∣∣O(`,tr)

M(`,i)

∣∣∣), we obtain the statement of the Lemma for round t1.

Suppose the induction statement is true for round ta and the second possibility i.e. possibility B
became true. In that case, we do not exit the recursion and our goal is to show that the lemma
statement is true at the next decision round ta+1. The induction hypothesis implies that for every
user u ∈ M(`+1,z), we have that π̃u(TB−1 −

∣∣∣O(`)

M(`,i)

∣∣∣) survives in the set of items N (`+1,ta,z)

and furthermore, we have π̃u(TB−1 −
∣∣∣O(`)

M(`,i)

∣∣∣) | N (`,i) = π̃u(s) | N (`+1,ta,z) for s = TB−1 −∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣ (note that s is common for all users inM(`+1,z)). The induction hypothesis also implies
that

N (`+1,tr,z) ⊇
⋃

u∈M(`+1,z)

{πu(t′) | Z}st′=1 where Z ≡ [N] \ O(`+1,ta)

M(`+1,z) and s = T−
∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣
(25)

O(`+1,tr)

M(`+1,z) ⊆ {πu(t)}TB
−1

t=1 (26)

Again, at the decision round ta, since the possibility B was true, for one of the users u ∈M(`+1,z),
we must have for s = T−

∣∣∣O(`+1,ta+1)

M(`+1,z)

∣∣∣,
P̃uπ̃u(1)|N (`+1,ta,z) − P̃uπ̃u(s)|N (`+1,ta,z) ≥ 64C∆`+1

implying that for every user v ∈M(`+1,z), we have

P̃vπ̃v(1)|N (`+1,ta,z) − P̃vπ̃v(s)|N (`+1,ta,z) ≥ 56C∆`+1.

The above equation further implies that (Lemma 8), for every user v ∈M(`+1,z), we will have

Pvπv(1)|N (`+1,ta,z) −Pvπv(s)|N (`+1,ta,z) ≥ 50C∆`+1.

Hence, as mentioned before, if we consider the set of items S ≡ ∪u∈M(`+1,z)R(`)
u | N (`+1,ta,z),

then from Lemma 13 (or see eq. 15), we must have that for every user u ∈ M(`+1,z), πu(1) |
N (`+1,ta,z) ∈ S and

max
y∈S

∣∣Puπu(1)|N (`+1,ta,z) −Puy

∣∣ ≤ 16C∆`+1. (27)

Hence, if we remove the set S to update N (`+1,ta,z) i.e. N (`+1,ta+1,z) ← N (`+1,ta,z) \ S , for every
user u ∈M(`+1,z), we must have

π̃u(TB−1 −
∣∣∣O(`)

M(`,i)

∣∣∣) | N (`,i) = π̃u(TB−1 −
∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣) | N (`+1,ta,z)

= π̃u(TB−1 −
∣∣∣O(`+1,ta+1)

M(`+1,z)

∣∣∣) | N (`+1,ta+1,z).

This is because for each user u, only elements which have larger rewards than π̃u(TB−1 −∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣) | N (`+1,ta,z) are removed which makes the aforementioned item survive in

N (`+1,ta+1,z) and also moves its position up (recall that O(`+1,ta+1)

M(`+1,z) ← O(`+1,ta)

M(`+1,z) ∪ S) in the
list of surviving items sorted in decreasing order by expected reward. Hence, we can apply Lemma

32

9 to conclude the first part of the induction proof. In order to show the final statement, with
s = TB−1 −

∣∣∣O(`+1,tr)

M(`+1,z)

∣∣∣, we can simply substitute that

max
v∈M(`+1,z)

(
P̃uπ̃u(1)|N (`+1,tr,z) − P̃uπ̃u(s)|N (`+1,tr,z)

)
≤ 64C∆`+1

when possibility A became true at a decision round tr and we exit the exploit component to enter the
explore component of phase `+ 1 for users inM(`+1,z).

Moreover, we will also have that

S ⊆ {πu(r) | N (`+1,ta,z)}sr=1 where s = TB−1 −
∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣ (28)

=⇒ S ⊆ {πu(r) | Z}sr=1 where Z ≡ [N] \ O(`+1,ta)

M(`+1,z) and s = T−
∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣ (29)

=⇒ S ⊆ {πu(t)}TB
−1

t=1 (30)

=⇒ N (`+1,ta+1,z) ⊇
⋃

u∈M(`+1,z)

{πu(t′) | Z}TB
−1−s

t′=1 (31)

where Z ≡ [N] \ O(`+1,ta+1)

M(`+1,z) and s =
∣∣∣O(`+1,ta+1)

M(`+1,z)

∣∣∣ (32)

This first implication is due to our induction hypothesis (see eq.25) which implies that the best
s items in the smaller set N (`+1,ta,z) is same as the best s = TB−1 −

∣∣∣O(`+1,ta)

M(`+1,z)

∣∣∣ items in the

larger set [N] \ O(`+1,ta)

M(`+1,z) . Hence, it is evident that the set S must also be a subset of the best TB−1

items (golden items) for user u namely {πu(t)}t∈[TB−1]. Since the above facts are true for all users
u ∈ M(`+1,z), we can also conclude that the new pruned set of items N (`+1,ta+1,z) at the next
decision round ta+1 is a superset of the best TB−1 −

∣∣∣O(`+1,ta+1)

M(`+1,z)

∣∣∣ items for every user u. This
completes the second part of the induction proof.

Lemma 16. Conditioned on the events E(`)
2 , E(`)

3 , with choice of ∆`+1 = ε`+1/88C, conditions A-C
will be satisfied at the beginning of the explore component of phase ` for the different nice subsets
{M(`+1,z)}z and their corresponding set of active arms {N (`+1,z)}z implying that the event E(`+1)

2
will be true.

Proof. 1. Proof of condition A: Due to our induction hypothesis, condition A is true for the
explore component of phase `. Hence, the explore component of phase ` is implemented
separately and asynchronously for each disjoint nice subset of usersM(`,i) ∈M′(`) ⊆M(`)

(recall thatM′(`) corresponds to the nice subsets of users which do not fall into the edge case
scenarios). Let us fix one such nice subset of usersM(`,i) ∈ M′(`). After the successful
low rank matrix completion step (event E(`)

3 is true), we find the connected components of a
graph G(`,i) which in turn correspond to nice subsets of users as well (see Lemma 7). Since
the above facts are true for all nice subsets of users inM′(`), the nice subsets of users that
progress to the (`+ 1)th phase are disjoint. Since these set of users are not modified during
the exploit component of phase ` + 1, condition A is true at the beginning of the explore
component of phase `+ 1.

2. Proof of conditions B and C: Again, let us fix a subset of nice users M(`+1,z) that has
progressed to phase `+ 1 and was in turn a part of the nice subset of usersM(`,i) in phase
`. In other words, the set of usersM(`+1,z) corresponds to a connected component of the
graph G(`,i). From Lemma 15, we can conclude that conditions B and C are true at the
beginning of the explore component of phase ` + 1 for users inM(`+1,z) with choice of
∆`+1 = ε`+1/88C where ε`+1 was pre-determined. Therefore, the conditions B and C hold
for all nice subsets of users {M(`+1,z)}z that have progressed to phase `+ 1.

Hence, conditioned on the events E(`)
2 , E(`)

3 , with choice of ∆`+1 = ε`+1/88C, the algorithm will be
(ε`+1, `+ 1)−good and the event E(`+1)

2 will be true.

33

D.2 Analyzing the regret guarantee

Lemma 17. Consider a fixed decreasing sequence {ε`}`≥1 where ε1 = ||P||∞ and ε` =

C ′2−` min
(
‖P‖∞,

σ
√
µ

log N

)
for ` > 1 for some constant C ′ > 0. Let us denote the event

E =
⋂
` E

(`)
2

⋂
` E

(`)
3 to imply that our algorithm is (ε`, `)−good at all phases indexed by ` and

the explore components of all phases are successful with the length of the explore component of phase
` being

m` = O
(σ2µ̃3 log(M

∨
N)

∆2
`+1

max
(

1,
Nτ

M

)
log T)

))
.

The above statement implies that for any nice subset of usersM(`,i) that has progressed to the `th
phase with active items N (`,i) at the beginning of the explore components, with m` rounds, we can
compute an estimate P̃M(`,i),N (`,i) of PM(`,i),N (`,i) satisfying∣∣∣∣∣∣P̃(`)

M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1.

In that case, the event E is true with probability at least 1− CT−2.

Proof. Notice that

Pr(Ec) = 1− Pr(
⋃
`

E(`)c
2

⋃
`

E(`)c
3)

≥ 1− (Pr(E(1)c
2) + Pr(E(1)c

3 | E(1)
2))

−
∑
`>1

(
Pr(E(`)c

2 |
⋂
`′<`

(E(`′)
2 ∩ E(`)

3)) + Pr(E(`)c
3 | E(`)c

2 ,
⋂
`′<`

(E(`′)
2 ∩ E(`)

3))
)

≥ 1− (Pr(E(1)c
2) + Pr(E(1)c

3 | E(1)
2))

−
∑
`>1

(
Pr(E(`)c

2 | E(`−1)
2 , E(`−1)

3) + Pr(E(`)c
3 | E(`)

2)
)
≥ 1− CT−2

where we used the following facts 1) Pr(E(1)c
2) = 0 and Pr(E(`)c

2 | E(`−1)
2 , E(`−1)

3) = 0 for all `
(Lemma 16) 2) Pr(E(`)c

3 | E(`)
2) ≤ CT−2 implied from Lemma 4 with additional union bounds over

the number of phases (at most the number of rounds T) and the number of disjoint nice subsets of
users that have progressed in each phase (at most the number of clusters C). An important fact to
keep in mind is that the above analysis is possible since the observations used to compute estimates
are never repeated in Alg. 2 and we are able to avoid complex dependencies.

Now, we are ready to prove our main regret bound. Suppose we condition on the event E as defined
in Lemma 17. Conditioned on the event E , let us denote by ρu to be some sequence of items
recommended to the user u ∈ [M] by our algorithm. The probability of this sequence of items being
recommended is Pr(∩u∈[M]ρu | E).

D.2.1 Swapping argument

Let us fix a particular user u ∈ [M] and a sequence of recommended items ρu such that ρu(t) ∈ [N]
is the item recommended to user u at round t. For sake of analysis, we will construct a permutation
θu : [T] → {ρu(t)}t∈[T] of the items {ρu(t)}t∈[T] with sequential modifications (θu is initialized
with ρu). For any phase indexed by `, consider the exploit and explore components for a nice subset
of usersM(`,i). The sequence of items recommended to user u during the explore component remain
unchanged i.e. for any phase `, θu(t) = ρu(t) for all rounds t ∈ [t] such that t corresponds to the
explore component of phase ` for the user u.

Now, for the exploit component in phase `, recall that O(`)

M(`,i) \ O
(`−1)

M(`,i) is the set of items chosen
for recommendation particularly in the exploit component of phase ` (we remove the super-script t
since we refer to the end of the exploit components in phase ` and phase `− 1 respectively). Suppose
at round t in the explore component of phase `, the bth item in the set O(`)

M(`,i) \ O
(`−1)

M(`,i) was chosen

34

to be recommended to all users inM(`,i) but was found to be blocked for user u ∈ M(`,i) before
it could be recommended B times. Let us also denote N (`,ta,i) to be set of active items for users in
M(`,i) at round t (i.e. ta was the previous decision round where it was decided whether possibility
A or possibility B was true). Since the bth item in the set O(`)

M(`,i) \ O
(`−1)

M(`,i) was blocked for user u,
instead we recommend any unblocked item for user u from the current set of active items N (`,ta,i).
This is always possible; we showed in Lemma 15 (see eq. 23) that the active set of items always
contain sufficient unblocked items for possible recommendations for remaining rounds for any user in
the corresponding nice subset of users during the exploit component. Now there are two possibilities:

1. (bth item in the setO(`)

M(`,i) \O
(`−1)

M(`,i) was recommended in round t′ in the explore component
of previous phase `′) We consider the active set of items N (`′,h) (such that u ∈M(`′,h) in
phase `′) where `′ < ` is the phase index (and t′ is the round index) when the bth item in
O(`)

M(`,i) \ O
(`−1)

M(`,i) (say a) was recommended to the user u during the explore component.
Let us denote the item that we have recommended as replacement to user u at round t by a′.
Note that since a′ ∈ N (`,ta,i), it must happen that a′ ∈ N (`′,h) since N (`,ta,i) ⊆ N (`′,h).
In that case, we have

ρu(t) = a′ and ρu(t′) = a

We swap the above items so that in the modified sequence, we have

θu(t) = a and θu(t′) = a′

The goal of the swapping operation at round t in the exploit component is to modify the
sequence of items such that 1) the item a chosen for recommendation at round t is assigned
to round t in the exploit component 2) the item a actually recommended in round t′ < t and
phase `′ < ` is replaced by another item a′ (actually recommended at round t > t′ in phase
` > `′) such that both a, a′ belongs to the same set of active items N (`′,h) (u ∈ M(`′,h)

for some h). We will also say that the item a chosen for recommendation is replaced by a
swapping operation of length 1. This is because the chosen element for recommendation a
was recommended in the explore component of a previous phase. A more precise definition
of the length of a swapping operation is provided below.

2. (bth item in the setO(`)

M(`,i) \O
(`−1)

M(`,i) was recommended in the exploit component of previous
phase): This is the more difficult case. As before, let us denote the bth item in the set
O(`)

M(`,i) \ O
(`−1)

M(`,i) by a. Of course, the item a could not have been chosen for recom-
mendation in the exploit component of a previous phase (i.e. a cannot belong in the set
O(`′)

M(`′,j) \ O
(`′−1)

M(`′,j) for any `′ < ` with u ∈ M(`′,j) in phase `′.) In that case, the item a
was recommended in the exploit component of phase ` as part of a swapping operation.
With this intuition in mind, let us define length of a swapping operation precisely:
Definition 3 (Length of swapping operation). For a user u, suppose a1 ∈ O(`)

M(`,i) \O
(`−1)

M(`,i)

is an item chosen for recommendation in the exploit component of phase ` but found to be
blocked. In that case, we will say that a1 is replaced by a swapping operation of length L + 1
if there exists L + 1 items a1, a2, . . . , aL, aL+1, L + 1 phases p1 > p2 > · · · > pL > pL+1

and respective rounds t1, t2, . . . , tL, tL+1 such that 1) a1 is chosen for recommendation
in exploit component of phase p1 at round t1 2) for each 2 ≤ i < L, ai−1 has been
recommended in the exploit component of phase pi at round ti when the intended item
chosen for recommendation was ai 3) aL has been recommended in the explore component
of phase pL+1 at round tL+1 3) aL+1 is the item recommended to user u in place of a1 in
phase p1 at round t1.
As before, aL+1 belongs to current set of active items N (`,ta,i) at round t1 for users in
M(`,i) (recall that ta is the decision round just prior to t1). In the above definition, note that
L must be finite since there are a finite number of components and the first phase only has
an explore component (recall that exploit component in the first phase has zero rounds).
For a user u ∈ M(`,i), suppose a1 ∈ O(`)

M(`,i) \ O
(`−1)

M(`,i) is an item chosen for recommen-
dation in the exploit component of phase ` but found to be blocked. Moreover suppose a1

must be replaced by a swapping operation of length L (see Definition 3 for notations). In
that case, we make the following modifications to the permutation θu:

θu(ti) = ai for all 1 ≤ i ≤ L + 1

35

Lemma 18. Condition on the event E . Consider the modified sequence of distinct items {θu(t)}t∈[T]

for a certain fixed user u. For any phase ` to which the user u has progressed as part of the nice
subsetM(`,i), consider the exploit component starting from round index texploit,start,` to texploit,end,`.
In that case, the set of elements {θu(t) | t ∈ [texploit,start,`, texploit,end,`]} is equivalent to the set of
elementsO(`)

M(`,i) \O
(`−1)

M(`,i) repeated B times i.e. the golden items chosen for recommendation in the
exploit component of phase ` to users inM(`,i). Similarly, consider the explore component starting
from round index texplore,start,` to texplore,end,`. In that case, for any t ∈ [texplore,start,`, texplore,end,`], it
must happen that θu(t) ∈ N (`,i) i.e. the set of active items forM(`,i) during the explore component
of phase `.

Proof. We start with the following claim.

Claim 1. For a user u ∈M(`,i), suppose a1 ∈ O(`)

M(`,i) \ O
(`−1)

M(`,i) is an item chosen for recommen-
dation in the exploit component of phase ` at round t1 but found to be blocked for user u. Moreover
suppose a1 has been replaced by a swapping operation of length L+1 (see Definition 3 for notations).
In that case, we already have θu(ti) = ai for all 2 ≤ i ≤ L. We only need to modify the sequence
by making the following two changes: 1) θu(t1) = a1 2) θu(tL+1) = aL+1. Note that in the true
sequence, aL+1 has been recommended in the round t1 replacing the intended item a1.

Proof. We will prove the claim via induction. Notation-wise, suppose for any `′ ≤ `, the user u
belongs to the setM(`′,i) and the set of active items at round t1 for users inM(`,i) is denote by N
(for simplicity, we remove the superscripts). The base case for L = 0 is true by construction - here
the item a1 is recommended in the explore component of phase p2 at round t2. We find an unblocked
item a2 in the set N ⊆ N (`,i) (note that items are never added to the active set across phases and
only pruned), recommend it at round t1 according to our algorithm. For analysis, we modify

θu(t1) = a1 and θu(t2) = a2

Now, suppose our claim is true for some L = l. Now, for L = l + 1, note that a1 was recommended
in the exploit component of phase p2 at round t2; this implies that a1 must have been used to replace
another item a2 via a swapping operation of length l. By our induction hypothesis, we must have
θu(ti) = ai for all 2 ≤ i ≤ L (as a matter of fact, we will have θu(tL+1) = a1). Therefore, only
the pair of modifications θu(t1) = a1 and θu(tL+1) = aL+1 suffice to bring the desired changes in
θu.

We can also conclude from Claim 1 that 1) at any round t in the exploit component of some phase for
user u, if the chosen item to be recommended is found to be blocked, then that chosen item is brought
to the tth position in the sequence θu 2) Once the chosen item is brought to its correct position in θu,
it will not be modified/moved in any future round. 3) All chosen items for recommendation to user u
corresponding to exploit components are moved to their correct position (i.e. the intended round for
their recommendation) in the sequence θu. Next we make the following claim:

Claim 2. Consider the setting in Claim 1. It must happen that all the items a1, a2, . . . , aL+1 must
belong to the set N (pL+1,i) - the set of active items in the phase pL+1 for users in the nice subset
M(pL+1,i) to which u belongs and aL was recommended in its explore component.

Proof. Again, note that items are never added to the active set across phases and only pruned. If
an item a1 is replaced by aL+1 via a swapping operation of length L + 1, it implies that a1 was
used to replace item a2 (via a swapping operation of length L), a2 was used to replace a3 (via a
swapping operation of length L− 1) and so on. The final golden item for user u in this sequence aL
was recommended in phase pL+1 in the explore component and belonged to the set of active items
N (pL+1,i). Hence, this implies that all the subsequent surviving items a1, a2, a3, . . . , aL−1, aL+1 must
have belonged to the set of active items N (pL+1,i) as well.

From Claim 2, we can conclude that for any round t in the explore component of some phase ` for
user u, if ρu(t) is replaced in the sequence θu at round t, then ρu(t), θu(t) belong to the same set of
active items N (`,i). With both these arguments, we complete the proof of the lemma.

36

D.2.2 Final Regret analysis

Let us condition on the event E . Consider any user u ∈ [M] - recall that {ρu(t)}t∈[T] is the random
variable denoting the sequence of T items recommended to the user u, ρu(t) is a realization of
{ρu(t)}t∈[T] conditioned on the event E . Furthermore, θu is the modified sequence - a permutation
of the T items {ρu(t)} recommended for user u. For simplicity of notation, we will assume that
u ∈M(`,i) for every phase `. Hence the active set of items during the explore component of phase
` for the nice subset of usersM(`,i) is denoted by N (`,i). Also, in line with our previous usage
of notations, let us denote O(`)

M(`,i) \ O
(`−1)

M(`,i) to be the set of items chosen for recommendation
particularly in the exploit component of phase `. Moreover, O denotes the entire set of items chosen
for recommendation in all the exploit components to user u. In other words, if `u is the final phase to
which user u has progressed then Ou = O(`u)

M(`u,i) . We denote the regret for the user u by

Regu(T) | E ,= E
[(∑

t∈[T]

Puπu(t) −Puρu(t)

)
| E
]

where the expectation is over the randomness in the algorithm and the noise in the observations.
Note that with this notation, we have Reg(T) | E = M−1

∑
u∈[M] Regu(T) | E . We now have the

following set of inequalities for regret of user u:

Regu(T) | E , E
[(∑

t∈[T]

Puπu(t) −Puρu(t)

)
| E
]

= E
[(∑

t∈[T]

Puπu(t) −Puρu(t)

)
| E
]

=
∑
ρu(t)

Pr(ρu(t) = ρu(t) | E)
(∑
t∈[T]

Puπu(t) −Puθu(t)

)
=
∑
ρu(t)

Pr(ρu(t) = ρu(t) | E)
(∑
t∈[T]

Puπu(t) −Puθ̃u(t)

)
.

Let us denote the set of rounds in the exploit component of `th phase by exploit(`,M(`,i)) and the
explore component of `th phase by explore(`,M(`,i)). Therefore we can further decompose the
regret for user u as follows:

Regu(T) | E =
∑
ρu(t)

Pr(ρu(t) = ρu(t) | E)
(∑
`∈[`u]

∑
t∈exploit(`,M(`,i))

(
Puπu(t) −Puθ̃u(t)

)
+
∑
`∈[`u]

∑
t∈explore(`,M(`,i))

(
Puπu(t) −Puθ̃u(t)

))
.

Next, our arguments are conditioned on the event E and any sequence ρu(t) having a non-zero
probability of appearing conditioned on event E . Recall in Lemma 15, we proved by induction
that Ou ⊆ {πu(t)}Tt=1. Moreover, in Lemma 18, we proved that items chosen for recommendation
in the exploit components for user u are in their correct positions (i.e. the round when they were
intended to be recommended but might have been found to be blocked) in the sequence θu. Consider
a permutation of the best T items for user u σu : [T]→ {πu(t)}Tt=1 such that

σu(t) = θu(t) for all t ∈ ∪`exploit(`,M(`,i))

{σu(t)}t∈∪`explore(`,M(`,i)) ≡ {πu(t′)}t′∈[T] \ Ou
where in a round in any exploit component, the permutation σ maps the item chosen for recom-
mendation (which we know to be among the best T items) for user u to that round. For any round
belonging to the explore component, the permutation σ arbitrarily maps the remaining items among
the best T items (namely the set {πu(t′)}t′∈[T] \Ou). Notice that

∑
t∈[T] Puπu(t) =

∑
t∈[T] Puσu(t).

Therefore, we can further decompose the regret as

Regu(T) | E =
∑
ρu(t)

Pr(ρu(t) = ρu(t) | E)
(∑
`∈[`u]

∑
t∈exploit(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)
+
∑
`∈[`u]

∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

))
=
∑
ρu(t)

Pr(ρu(t) = ρu(t) | E)
(∑
`∈[`u]

∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

))

37

For the explore component in the phase indexed by `, we have proved in Lemma 14 that the active set
of items N (`,i) is a superset of {πu(t′)}t′∈[T] \ Ou. Therefore, we can bound (using Lemma 4 and
condition C stated at beginning of sec. D.1) for any ` 6= `u (`u denotes index of the final phase that
user u was part of)∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)
≤ m` · ε` = O

(σ2µ̃3 log(M
∨

N)

∆2
`+1

max
(

1,
Nτ

M

)
log T)

))
· ε`.

where µ̃ is the incoherence factor of the sub-matrix PM(`,i),N (`,i) . Next, using the facts that ∆`+1 =
ε`+1/88C, 2ε` = ε`+1, C, τ = O(1), we get that (after hiding log factors for simplicity)∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)
= Õ

(σ2µ̃3

ε`
max

(
1,

N

M

))
= Õ

(σ2µ3

ε`
max

(
1,

N

M

))
.

In the above statement, from Lemmas 2 and 3, we also used the fact that µ̃ = O(µ) and the condition
number of the sub-matrix PM(`,i),N (`,i) is O(1). Finally, for the explore component of the final
phase `u, from Lemma 11, we will also have (in the final phase, one of the edge case scenarios might
appear)∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)
= Õ

(
σµ3/2 max

(√
T,

√
T2

M

))
+ Õ

(σ2µ3

ε`u
max

(
1,

N

M

))
Hence, we can put together everything to conclude that∑

`∈[`u]

∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)

=
∑
`

Õ
(σ2µ3

ε`
max

(
1,

N

M

))
+ Õ

(
σµ3/2 max

(√
T,

√
T2

M

))
≤
∑
`:ε`≤Φ

m`Φ +
∑
`:ε`≥Φ

Õ
(σ2µ3

Φ
max

(
1,

N

M

))
+ Õ

(
σµ3/2 max

(√
T,

√
T2

M

))
≤ TΦ + J · Õ

(σ2µ3

Φ
max

(
1,

N

M

))
+ Õ

(
σµ3/2 max

(√
T,

√
T2

M

))
where J is the number of phases with ε` ≥ Φ. By choosing Φ =

√
σ2µ3

T max
(

1, N
M

)
, we can bound

∑
`∈[`u]

∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)
= Õ

(
Jσµ3/2

√
T max

(
1,

N

M

))
where we used the fact that N� T and therefore the last term in the previous equation is a lower order
term compared to the first two ones. Next, recall that we choose ε` = C ′2−` min

(
‖P‖∞,

σ
√
µ

log N

)
(so that the condition on σ > 0 in Lemma 1 is automatically satisfied for all `) for some constant
C ′ > 0, the maximum number of phases ` for which ε` > Φ can be bounded from above by
J = O

(
log
(

1
Φ min

(
‖P‖∞,

σ
√
µ

log N

)))
. Therefore, we can hide J inside Õ and obtain∑

`∈[`u]

∑
t∈explore(`,M(`,i))

(
Puσu(t) −Puθ̃u(t)

)
= Õ

(
σµ3/2

√
T max

(
1,

N

M

))
.

Therefore, we must have that

Regu(T) | E = Õ
(
σµ3/2

√
T max

(
1,

N

M

))
=⇒ Reg(T) | E = Õ

(
σµ3/2

√
T max

(
1,

N

M

))
.

Finally, we use the fact that
Reg(T) ≤ Reg(T) | E + Pr(Ec)(Reg(T) | Ec).

From Lemma 17, we know that Pr(Ec) ≤ CT−2, Reg(T) | Ec ≤ T||P||∞ therefore,

Reg(T) ≤ Reg(T) | E + Pr(Ec)(Reg(T) | Ec) = Õ
(
σµ3/2

√
T max

(
1,

N

M

)
+ T−1||P||∞

)
which completes the proof of our main result.

38

E Proof of Lower Bound (Theorem 2)

Consider our problem setting with M users, N items and T rounds, blocking constraint B, noise
variance proxy σ2 = 1 and all expected rewards in [0, 1]. Here we consider C = 1 i.e. all users
belong to the same cluster. Let us denote a particular policy chosen by the recommendation system
as π that belongs to the class of polices Π. Moreover, let us also denote by E the set of possible
environments corresponding to the expected reward matrices that has all rows to be same (satisfies
cluster structure for C = 1). In that case, the minimax regret is given by

inf
π∈Π

sup
ν∈E

Reg(T; E)

E.1 Lower Bound via reduction

We can ease the problem by assuming that at each round t = 1, 2, . . . ,T, the users come in a
sequential fashion - the jth user is recommended an item based on all previous history of observations
including the feedback obtained from recommending items from users 1, 2, . . . , j − 1 at round t.
Furthermore, we also assume that the N items can be partitioned into NB/T known groups where
each group has identical items - hence we have a simple multi-armed bandit problem (MAB) with
NB/T arms and MT rounds with a single user. A lower bound on this simplified MAB problem will
imply a lower bound on our setting i.e by appropriately normalizing, we have

inf
π∈Π

sup
ν∈E

Reg(T; E) ≥ 1

M
inf
π∈Π

sup
ν∈E

RegMAB(MT; E) = Ω
(1

M

√
NB

T
·MT

)
= Ω

(√NB

M

)
where we simply used the standard regret lower bound in multi-armed bandits with K arms and T
rounds which is Ω(

√
KT) [19].

E.2 Lower Bound via application of Fano’s inequality

As before, we can ease the original problem by assuming that at each round t = 1, 2, . . . ,T, the users
come in a sequential fashion - the jth user is recommended an item based on all previous history of
observations including the feedback obtained from recommending items from users 1, 2, . . . , j − 1 at
round t. Clearly, a lower bound on the simplified problem will imply a lower bound on our setting i.e
by appropriately normalizing, we have

inf
π∈Π

sup
ν∈E

Reg(T; E) ≥ 1

M
inf
π∈Π

sup
ν∈E

RegMAB(MT; E).

Furthermore, ignoring the normalizing factor by M, for C = 1, the simplified problem is equivalent
to a standard Multi-armed bandit (MAB) problem with a single agent with MT rounds and an
additional hard constraint that each item can be pulled at most MB times. We will construct

(
N

TB−1

)
environments in the following way: let T ≡ {S ⊆ [N] | |S| = TB−1} be the set of all subsets of
[N] of size TB−1. Now for each subset S ∈ T , we construct an environment by assuming that the
agent on pulling any arm in the set S observes a random reward distributed according to N (∆, 1)
and on pulling any arm outside the set S observes a random reward distributed according to N (0, 1).
This corresponds to the the reward matrix P (in our original problem) having an entry ∆ in the
TB−1 columns indexed in S and 0 in the remaining columns. Let ES ,PS , ES denote the expectation,
probability measure and the environment if S ∈ T is the set of chosen columns for constructing the
environment.

Next we assume that the set S is chosen uniformly at random from T . Hence we must have

inf
π∈Π

sup
ν∈E

RegMAB(MT; E) ≥ inf
π∈Π

ES∼T RegMAB(T; ES)

Fix any policy π ∈ Π. Condition on the set S being selected from T . Let R(S) be the number of
times arms indexed in the set S are pulled in the MT rounds. In that case we must have

RegMAB(T; ES) ≥ PS(R(S) ≤ 3MT

4
)

MT∆

4
.

Now, consider the estimation problem of which set S was selected from T . Let X̂ be an estimator
that takes as input the observations in the MT rounds and returns a set Ŝ in the following way: it

39

finds Ŝ as the set of T arms that have been pulled the most number of times jointly and returns Ŝ
if R(Ŝ) ≥ 3MT/4 and the null set ∅ otherwise. We consider the estimator X̂ to make an error if it
returns a set Ŝ such that Ŝ ∩S ≤ T/4B. If the estimator X̂ makes an error, note that R(Ŝ) ≥ 3MT/4

implies that R(Ŝ \ S) ≥ MT/2 (since each arm can be pulled at most M times) - hence, it implies
that R(S) ≤ MT/2. Therefore, if we denote Error as the error event, then we must have

RegMAB(T; ES) ≥ PS(R(S) ≤ 3MT

4
)

MT∆

4
≥ PS(Error)

MT∆

4

=⇒ inf
π∈Π

sup
ν∈E

RegMAB(MT; E) ≥ P(Error)
MT∆

4
= ES∼T PS(Error)

MT∆

4

Therefore, our goal is to bound the quantity ES∼T PS(Error). At this point we have reduced our
problem to a multiple hypothesis testing problem. Therefore, in order to lower bound the probability
of the event Error, we use Fano’s inequality for approximate recovery:

Lemma (Fano’s inequality with approximate recovery [28]). For any random variables V, V̂ on
alphabets V, V̂ , consider an error when d(V, V̂) ≥ t for some t > 0 and distance function d :

V × V̂ → R. In that case, if we denote the error event by Error, we must have

P(Error) ≥ 1− I(V ; V̂) + log 2

log |V|
Gmax

where Gmax = maxv̂∈V̂
∑
v∈V 1[d(v, v̂) ≤ t] and I(V ; V̂) is the mutual information between the

random variables V and V̂ .

In the special case when the random variable V is uniform, then we can upper bound the mutual
information by I(V ; V̂) ≤ maxv,v̂∈V KL(PV̂ |V=v||PV̂ |V=v′) ≤ maxv,v̂∈V KL(Pv||Pv′) where the
second inequality follows from Data-processing inequality (Pv = P (· | v) corresponds to the
probability of the observations given V = v).

Next, we apply it to our setting to prove an estimation error lower bound for our designed estimator X̂ .
In our setting, Gmax corresponds to the maximum possible number of sets in T that have intersection
of size more than T/4B with some fixed set S ∈ T . Clearly we have

Gmax ≤
T∑

t=T/4B+1

(
N− T

T− t

)(
T

t

)
≤ T

(
N− T

T− T/4B

)(
T

T/4

)
≤ T

(2Ne

T

)T−T/4B(
4e
)T/4B

.

Furthermore, in our setting, we also have that
max
S,S′∈T

KL(PS ||PS′)

≤
∑

i∈S∪S′
ESR({i}) max(KL(N (0, 1)||N (∆, 1)),KL(N (∆, 1)||N (0, 1))) ≤ 2MBT∆2

- this follows from the fact that the distributions PS , PS′ are most separated in KL-Divergence if
S ∩ S ′ = ∅ and by using the fact that each arm can be pulled at most MB times. Therefore, we must
have (provided N = cT for some large enough constant c > 0, and T is large enough) for some
constant c′ > 0

P(Error) ≥ 1− I(S; Ŝ) + log 2

log |T |
Gmax

≥ 1− 2MBT∆2 + log 2

log
(

(N/T)T

T

(
2Ne
T

)T−T/4B(
4e

)T/4B

)

≥ 1− 2MB2T∆2 + B log 2

c′T log(N/T)
≥ 0.9− 2MB∆2

c′ log(N/T)
.

Therefore, substituting ∆ =
c′
√

log(N/T)

B
√
M

, we have that for some constant c′′ ≥ 0

inf
π∈Π

sup
ν∈E

RegMAB(MT; E) ≥ c′′TB−1
√

M log(N/T)

and therefore

inf
π∈Π

sup
ν∈E

Reg(T; E) ≥ 1

M
inf
π∈Π

sup
ν∈E

RegMAB(MT; E) = Ω
(T
√

log(N/T)

B
√

M

)
.

40

Algorithm 7 BBUIC (Blocked Latent Bandits with User and Item Clusters)

Require: Phase index `, List of disjoint nice subsets of usersM(`), list of corresponding subsets
of active items N (`), clusters C, rounds T, noise σ2 > 0, round index t0, exploit rounds texploit,
estimate P̃ of P, incoherence µ, entry-wise error guarantee ε` of P̃ restricted to all users inM(`)

and all items in N (`), count matrix K ∈ NM×N.
1: for ith nice subset of usersM(`,i) ∈M(`) with active items N (`,i) (ith set in list N (`)) do
2: Set t = t0. Set ε`+1 = ε`/2, ∆` = ε`/88C and ∆`+1 = ε`+1/88C.
3: Run exploit component for users in M(`,i) with active items N (`,i). Obtain

updated active set of items, round index and exploit rounds N (`,i), t, texploit ←
Exploit_Item_Cluster(M(`,i),N (`,i), t, texploit, P̃M(`,i),N (`,i) ,∆`).

4: Set d1 = max(|M(`,i)|, |N (`,i)|), d2 = min(|M(`,i)|, |N (`,i)|) and p = c
(
σ2µ3 log d1

∆2
`+1d2

)
for

some appropriate fixed constant c > 0.
5: if |N (`,i)| ≥ T1/3 and p < 1 then
6: Run explore component for users in M(`,i) with active items N (`,i). Obtain updated

estimate and round index P̃, t ← Explore_Item_Cluster(M(`,i),N (`,i), t, p) such that∣∣∣∣∣∣P̃M(`,i),N (`,i) −PM(`,i),N (`,i)

∣∣∣∣∣∣
∞
≤ ∆`+1 w.h.p.

7: For every user u ∈M(`,i), compute T (`)
u ≡ {j ∈ N (`,i) | P̃uπu(T−texploit)−P̃uj ≤ 2∆`+1}.

8: Construct graph G(`,i) whose nodes are users inM(`,i) and an edge exists between two
users u, v ∈M(`,i) if

∣∣∣P̃(`)
ux − P̃

(`)
vx

∣∣∣ ≤ 2∆`+1 for all arms x ∈ N (`,i).

9: Intitialize listsM(`+1)
i = [] and N (`+1)

i = [].
10: For each connected component M(`,i,j) (∪jM(`,i,j) ≡ M(`,i)), compute N (`,i,j) ≡

∪u∈M(`,i,j)T (`)
u .

11: For each connected componentM(`,i,j), construct graph G(`,i,j)
item whose nodes are items

in N (`,i) and an edge exists between two items u, v ∈ N (`,i) if
∣∣∣P̃(`)

xu − P̃
(`)
xv

∣∣∣ ≤ 16C∆`+1

for all users x ∈ M(`,i,j). Update N (`,i,j) to be the set of items N (`,i,j) ≡ {x ∈ N (`,i) |
x is connected with some node inN (`,i,j)}.

12: Invoke B-LATTICE(`+ 1,M(`+1)
i ,N (`+1)

i ,C,T.σ2, t, texploit, P̃, ε`+1,K,G(`,i,j)
item).

13: else
14: For each user u ∈M(`,i), recommend T− t unblocked items in N (`,i) until end of rounds.
15: end if
16: end for

F Blocked Bandits having User and Item Clusters with blocking constraint
B = 1

Recall that in this setting, the N items can be grouped into C′ disjoint clusters D(1),D(2), . . . ,D(C′)

that are unknown. The expected reward for user u (belonging to cluster a ∈ [C]) on being recom-
mended item j (belonging to cluster b ∈ [C′]) is Pij = Qab where Q ∈ RC×C′ is the small core
reward matrix (unknown). In this setting, we provide our theoretical guarantees with B = 1 i.e. any
item can be recommended to a user only once under the blocking constraint.

Recall that the main reason our theoretical analysis required B = Θ(log T) for Thm. 1 setting is that
if the observations that were used to compute estimates of some reward sub-matrix in a certain phase
with certain guarantees that hold with some probability, then conditioning on such estimates with
the said guarantees make the aforementioned observations dependent in analysis of future phases.
In the BBIC setting, we show that in each phase, the possibility of the nice subsets of users and
their corresponding active items is actually bounded and small. On the other hand, the possibilities
were exponentially large in the number of items in the GBB setting. Therefore, we can use a for all
argument here implying that for a set of already used observations, we can show that for all possible
nice subsets of users and their active items, they can be used again to compute acceptable estimates.
Such an analysis allows us to provide theoretical guarantees even with B = 1 for the BBIC setting.

41

Algorithm 8 Exploit_Item_Cluster(Exploit Component of a phase)

Require: Phase index `, nice subset of usersM, active itemsN , round index t0, estimate P̃ of P and
error guarantee ∆` such that

∣∣∣∣∣∣P̃M,N −PM,N

∣∣∣∣∣∣
∞
≤ 88C∆` with high probability, similarity

graph Gitem over the set of items N .
1: while there exists u ∈M(`,i) such that P̃uπ̃u(1)|N − P̃uπ̃u(T−texploit)|N ≥ 64C∆`} do
2: Compute Ru = {j ∈ N | P̃uj ≥ P̃uπ̃u(1)|N − 2∆`+1} for every user u ∈ M. Compute

S = ∪u∈MRu.
3: Update S ← {v ∈ Gitem | v is connected with some node in S}.
4: for rounds t = t0 + 1, t0 + 2, . . . , t0 + |S|B do
5: for each user u ∈M do
6: Denote by x the (t− t0)th item in S . If Kux == 0 (x is unblocked), then recommend x

to user u and update Kux ← 1. If Kux == 1 (x is blocked), recommend any unblocked
item y in N (i.e Kuy = 0) for the user u and update Kuy ← 1

7: end for
8: end for
9: Update N ← N \ S. Update t0 ← t0 + |S|.

10: end while
11: Return N , t0.

Algorithm 9 Explore_Item_Cluster(Explore Component of a phase)

Require: Phase index `, nice subset of usersM, active itemsN , round index t0, sampling probability
p.

1: For each tuple of indices (i, j) ∈ M× N , independently set δij = 1 with probability p and
δij = 0 with probability 1− p.

2: Denote Ω = {(i, j) ∈ M×N | δij = 1} and m = maxi∈M | |j ∈ N | (i, j) ∈ Ω| to be the
maximum number of index tuples in a particular row. Initialize observations corresponding to
indices in Ω to be A = φ.

3: for rounds t = t0 + 1, t0 + 2, . . . , t0 +m do
4: for each user u ∈M do
5: Find an item z in {j ∈ N | (u, j) ∈ Ω, δuj = 1}. If Kuz == 0 (z is unblocked), set

ρu(t) = z and recommend z to user u. Observe R
(t)
uρu(t) and update A = A ∪ {R(t)

uρu(t)},
Kuz ← 1.

6: If Kuz == 1 (z is blocked), recommend any unblocked item ρu(t) inN s.t. (u, ρu(t)) 6∈ Ω.
Update Kuρu(t) ← 1. Set A = A ∪ {R(t′)

uρu(t′)} where t′ < t is the round when ρu(t′) = z

was recommended to user u.
7: end for
8: end for
9: Compute the estimate P̃ = Estimate(M,N , σ2,C,Ω,A) and return P̃, t0 +m.

Therefore in Algorithm 7 for the BBIC setting, we only have a single counter matrix K ∈ {0, 1}M×N
which is binary. The matrix K is initialized to be a zero matrix. Whenever an item j is recommended
to user i, we set Kij = 1. If, in a future phase, we need to recommend item j to user i again, due to
the blocking constraint, we simply reuse the observation (see Step 6 in Alg. 9).

F.1 Algorithm and Discussion

We start with a definition for nice subsets of items analogous to the nice subset of users (see Definition
1).
Definition 4. A subset of items S ⊆ [N] will be called “nice" if S ≡

⋃
j∈AD(j) for some A ⊆ [C′].

In other words, S can be represented as the union of some subset of clusters of items.

As in the analysis of GBB setting, we will have the desirable properties A-C that should be satisfied
with high probability at the beginning of the explore component of phase `. Recall that we defined
the event E(`)

2 to be true if properties (A-C) are satisfied at the beginning of the explore component

42

of phase ` by the phased elimination algorithm. Here, we stipulate a further property D that the
corresponding surviving set of items for each nice subset of usersM(`,i) ∈M(`) is also a nice subset
of items.

Furthermore, we defined the event E(`)
3 when eq. 10 is true for all nice subsetsM(`,i) ∈M′(`) in the

explore component of phase `. Algorithm 7 is a similar recursive algorithm as Algorithm 1 and the
only modification is the addition of Step 11. As in Alg. 1, we instantiate Alg. 7 with phase index
1, list of nice subsets of users having a single element comprising all users i.e. M(1) = [[M]] and
corresponding list of active itemsN (1) = [[N]], clusters C, rounds T, blocking constraint B, noise σ2,
round index 1, exploit rounds 0, estimate P̃ to be 0M×N, incoherence µ and ε1 = O

(
‖P‖∞,

σ
√
µ

log M

)
.

Here, we will have a single count matrix K which is binary and is initialized to be an all zero matrix.
We are going to show recursively that conditioned on E(`)

2 , E(`)
3 , properties A-D will be satisfied at

the beginning of phase `+ 1.

Base Case: For ` = 1 (the first phase), the number of rounds in the exploit component is zero and we
start with the explore component. We initializeM(1,1) = [N], N (1,1) = [M] and therefore, we have∣∣∣∣ max

j∈N (`,1)
Puj − min

j∈N (`,1)
Puj

∣∣∣∣ ≤ ||P||∞ for all u ∈ [M].

Clearly, [M] is a nice subset of users, [N] is a nice subset of items and finally for every user u ∈ [M],
the best T/B items (golden items) {πu(t)}T/Bt=1 belong to the entire set of items. Thus for ` = 1,
conditions A-D are satisfied at the beginning of the explore component and therefore the event E(1)

2
is true. Furthermore, from Lemma 4, eq. 10 is true for the first phase with probability 1− o(T−12)

implying that the event E(1)
3 is true with high probability.

Inductive Argument: Suppose, at the beginning of the phase `, we condition on the events⋂`
j=1 E

(j)
2

⋂`
j=1 E

(j)
2 that Algorithm is (εj , j)−good for all j ≤ `. This means that conditions

(A-D) are satisfied at the beginning of the explore component of all phases up to and including that of
` for each reward sub-matrix (indexed by i ∈ [a`]) corresponding to the users inM(`,i) and items
in N (`,i). Furthermore, we also condition on the event eq. 10 is true for all nice subsets of users
M(`,i) ∈ M(`) and their corresponding set of items N (`,i) - implying that the event E(`)

3 is true.
Recall that for a user v, the set T (`)

v was constructed as

T (`)
v ≡ {j ∈ N (`,i) | P̃vj ≥ P̃vπ̃v(s′)|N (`,i) − 2∆`+1} where s′ = TB−1 −

∣∣∣O(`)

M(`,i)

∣∣∣ (33)

which implies that every item in T (`)
v is close to one of the golden items in N (`,i). At the end of

Step 10 in Alg. 7, we can still show that Lemma 9 holds for each set of usersM(`,i,j) as they form
a connected component. Notice that in Step 11 in Lemma 9, for each set of users M(`,i,j), we
construct a graph G

(`,i,j)
item whose nodes correspond to the items in N (`,i) and an edge exists between

two items u, v ∈ N (`,i) if
∣∣∣P̃(`)

xu − P̃
(`)
xv

∣∣∣ ≤ 16C∆`+1 for all users x ∈ M(`,i,j). Analogous to the
proof of Lemma 7, we can conclude here as well that items in the same item cluster form a clique.
Therefore, any connected component in the graph G

(`,i,j)
item must correspond to a nice subset of items

since condition D is true and N (`,i) is already a nice subset of items. Hence the set of modified items
N (`,i,j) constructed at the end of Step 11 in Alg. 7 is a nice subset of items. Furthermore, we can
also prove the corresponding version of Lemma 9:

Lemma 19. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i,j)

and their corresponding set of active items N (`,i,j) for which guarantees in eq. 11 holds. Fix any set
Y = N (`,i,j) \ J for some J such that for every user u ∈ G, we have π̃u(s′) | N (`,i,j) ≡ π̃u(s) | Y
for s′ = TB−1 −

∣∣∣O(`)

M(`,i)

∣∣∣ and some common index s. In that case, we must have

max
v∈G

(
max
x,y∈Y

P̃vx − P̃vy

)
≤ max

u∈G

(
P̃uπ̃u(1)|Y − P̃uπ̃u(s′)|N (`,i)

)
+ 24(C + C′)∆`+1

Proof. Note that with the analysis of Lemma 9, the conclusion was true for the constructed N (`,i,j)

at the end of Step 10 in Alg. 7. However, in the modified set of items N (`,i,j), we are only adding

43

items inN (`,i) that either belong to the same cluster (in which case there is no added gap) or if we are
adding items belonging to a different cluster, then the added gap on the RHS can be at most C′∆`+1.
The above statement follows from a similar argument as in Lemma 13 where we showed that gap in
expected reward between two users inM(`,i,j) (or rather two users connected by a path in G(`,i)) for
the same item is at most O(C∆`+1).

Hence, we have shown that each subset of usersM(`,i,j) is a nice subset of users and furthermore,
the corresponding subset of items constructed at the end of Step 11 is nice subset of items. Next, we
move on to the exploit component of phase ` + 1 where we use a similar trick (See Step 3 in Alg.
8) to ensure that at the end, we are left with a nice subset of items. As before, we can show that the
constructed set of items S is itself a nice subset of items. We can again prove the following modified
version of Corollary 2

Corollary 3. Condition on the events E(`)
2 , E(`)

3 being true. Consider a nice subset of usersM(`,i) ∈
M′(`) and their corresponding set of active itemsN (`,i) for which guarantees in eq. 11 holds. Fix any
subset Y ⊆ N (`,i). Consider two users u, v ∈M(`,i) having a path in the graph G(`,i). Conditioned
on the events E(`)

2 , E(`)
3 , we must have

max
x,y∈S

|Pux −Puy| ≤ 16(C + C′)∆`+1 and max
x,y∈S

|Pvx −Pvy| ≤ 16(C + C′)∆`+1

where S ≡ {z ∈ N (`,i,j) | z is connected withR(`)
u ∪R(`)

v }.

Proof. The proof again follows from the fact that adding items belonging to a different cluster but
connected via a path to the original items inR(`)

u ∪R(`)
V can only add a term of at most 16C′∆`+1 in

the RHS.

Therefore, at the beginning of the explore component of phase `+ 1 for a particular nice subset of
usersM(`+1,z), the corresponding set of itemsN (`+1,z) must be a nice subset of items as well. Most
importantly, what this implies is that for the low rank matrix completion step in the explore component
of phase `+ 1, we can re-use observations from previous phases and provide theoretical guarantees
as well. This is because, in eq. 10 in Lemma 4, we can take a union bound over all possible nice
subsets of users and all possible nice subsets of items. Since the number of clusters C,C′ = O(1),
the total possibilities is O(1) as well (although exponential in the number of clusters). Hence, the
complex dependencies of the previously made observations used to compute prior estimates resulted
by the conditioning on surviving items and users is no longer a problem - we have simply made a for
all argument. The rest of the analysis follows as in the GBB setting and we can arrive at a similar
result as in Theorem 1 but with B = 1 when the set of items can be clustered into C′ = O(1) disjoint
clusters.

44

	Introduction
	Problem Setting and Background
	Low-Rank Matrix Completion

	Main Results
	B-LATTICE Algorithm
	Conclusion and Future Work
	Low rank matrix completion
	Explore-Then-Commit (ETC)
	Experiments
	Detailed Proof of Theorem 1
	Main Analysis
	Analyzing the regret guarantee
	Swapping argument
	Final Regret analysis

	Proof of Lower Bound (Theorem 2)
	Lower Bound via reduction
	Lower Bound via application of Fano's inequality

	Blocked Bandits having User and Item Clusters with blocking constraint B=1
	Algorithm and Discussion

