
Bounded rationality in
structured density estimation:

Supplementary material

A Experimental details

A.1 Experiment 1

A.1.1 Participants

Experiment 1 recruited 21 participants (11 females, aged 18–25). All participants had
provided informed consent before the experiment.

A.1.2 Cover story

Participants were told that they were apprentice magicians in a magical world. In this world,
dangerous magic lava rocks were emitted from an unknown number of invisible volcano(es).
On each trial, they observed past landing locations of lava rocks in a specific area (on the
screen), and their job was to predict the probability density of future landing locations.
More specifically, they were asked to draw a probability density by reporting, using click-
and-drag mouse gestures, three key properties of the volcano(es), corresponding to the mean,
the weight, and the standard deviation of a Gaussian component. They were told that their
bonus payment depended on the accuracy of the reported predictive density.

A.1.3 Procedure and Design

On each trial, the landing positions of lava rocks were visualized as red dots and sequentially
presented on a black line. The number of presented rocks (i.e., sample size) had two levels:
10 or 70. Each dot was presented for 166 ms, followed by a 166 ms empty screen. The
landing positions were i.i.d. samples drawn from an unseen mixture distribution.
After observing all dots, participants needed to follow a two-stage procedure to report both
(1) the predictive density of rocks’ future landing positions, and (2) the underlying generative
model. First, they marked the location of the volcano(es) by clicking on the black line. After
marking all volcano(es), they pressed “F” to proceed to the next reporting stage. In the
second stage, they chose a volcano by clicking the volcano icon and then moved the mouse
to report the relative density of the landing position of future lava rocks emitted from this
volcano. During the report, the overall density of the rock landing position was computed
and presented in real-ime.
The true generative distribution set was composed of 24 distributions (Fig. 6A). The dis-
tributions were created by following a merge-from-four procedure. All distributions’ overall
standard deviations were about 5.3 cm. On each trial, a uniform jitter ([-5.3 cm, +5.3 cm])
was added to the mean of the true generative distribution.
Participants completed 2 (sample size levels) × 4 (true cluster number levels) × 6 (distri-
bution subtype) × 3 (number of repeats) = 144 trials in total. The experiment length was
about 105 minutes.

A.1.4 Generation of true distribution set

The set of true distributions was constructed following the steps below. First, we created
6 four-cluster Gaussian mixture distributions (bottom row in Fig. 6A) in which each com-
ponent had the same SD of 0.72cm of visual angle and equal weight. The three center-to-
center distances between their adjacent Gaussian components, denoted [d1, d2, d3] (from left
to right, measured in cm), were chosen from the set of all permutations of {3.6, 4.65, 5.7}cm.
Second, each of the 6 four-cluster Gaussian mixtures went through “merging steps”, inspired
by the proposal step in the dynamic clustering algorithms (e.g. Reverse-jump MCMC) in
statistics [36]. In each merging step, we chose two adjacent Gaussian components to merge
into one, with the post-merger new component having the same zeroth, first and second

13



Figure 6: Detailed experimental design and results in Experiment 1. A, The distribution set.
B–F shows the prediction of the fitted economical DEFs compared to participants’ reports
under different conditions. B, The relative frequency of the reported cluster number. C,
The average reported cluster number. D, The overlap ratio between the reported clusters.
E, The reported moments versus the sample moments in the 10 sample-size condition, with
data (left sub-panels) contrasted with model prediction (right sub-panels). Three rows are
for mean, sd, and skewness. In each panel, the grey heatmap denotes the distribution of
responses of individual trials (collapsed across subjects). The 5 dots and error bars denote
average response and standard error across subjects in 5 local data bins. The line denotes
the regression line, with shading representing 95% confidence interval. F, The reported
moments versus the sample moments in the 70 sample-size condition

moments as the combination of the two pre-merger components. The to-be-merged adjacent
components were chosen in such a way that the post-merger Gaussian mixtures minimize KL-
divergence KL(ppre||ppost). By applying the merging step iteratively, the original four-cluster
Gaussian mixtures were transformed into three-cluster, two-cluster, and finally one-cluster
mixtures.

A.1.5 Results

See Fig. 6 for the prediction of the fitted economical DEF.

A.2 Experiment 2

Experiment 2 recruited 21 participants (13 females, aged 18–25). All participants had
provided informed consent before the experiment. One participant was excluded due to

14



Table 1: The distribution set in Experiment 2
Distribution Paper Skewed or Symmetric Number of clusters Number of modes

1 [24] Symmetric 1 Unimodal
2 [24] Symmetric -* Unimodal
3 [25] Symmetric 2 Unimodal
4 [21] Skewed 2 Unimodal
5 [21] Skewed 2 Unimodal
6 [21] Skewed 2 Unimodal
7 [25] Skewed 2 Unimodal
8 [23] Skewed 2 Bimodal
9 [25] Symmetric 2 Bimodal
10 [22] Symmetric 2 Bimodal
11 [22] Symmetric 3 Trimodal
12 [20] Skewed 3 Trimodal
13 [20] Skewed 3 Trimodal
14 [20] Skewed 3 Trimodal

* This is a uniform distribution with smoothed edges.

their task performance being an outlier (measured by the earth-mover distance between the
reported predictive density and the true density, exceeding 3 standard deviations, z-score =
-3.3).
Experiment 1 uses 14 representative Gaussian mixture distributions selected from previ-
ous studies (Table 1). The distribution set can be divided into four subtypes: unimodal-
symmetric, unimodal-skewed, bimodal, and trimodal. Note that the number of modes is
not necessarily equal to the number of latent Gaussian clusters. For example, a unimodal
skewed distribution could be a mixture of two latent Gaussian clusters.
In each trial, participants observed 20 sequential samples drawn from one of the 14 distri-
butions. The standard deviations of all distributions were rescaled to 4.8 cm. Each dot was
presented for 166 ms, followed by a 166 ms empty screen interval. On each trial, a common
uniform jitter ([-3.7 cm, +3.7 cm]) was added to the means of the clusters. To balance the
skewness of the distribution in the experiment, we horizontally flipped the distribution in
half of the trials. To explore participant’s consistency in structure learning, we presented
the same sample sequence for two times in seperate trials. Participants completed a total
of 14 (distribution types) × 2 (flip or not) × 2 (number of random sequences) × 2 (number
of repeats) = 112 trials. The experiment lasted about 90 minutes.

A.2.1 Results

See Fig. 7B–D&G for the prediction of the economical model.
Experiment 2 contained repeated trials with identical stimuli. Using these trials, we show
in Fig. 7E that in repeated trials participants reported a different number of clusters just
below 50% of the time. Similarly, our model could predict with an accuracy around 0.5,
very close to the participants themselves. This shows that our model can predict human
report close to the participants themselves.
To illustrate the robustness of the model fitting procedure, we run model recovery exper-
iments. Given randomly chosen parameters for the full model, we generate 100 sets of
synthetic stimuli, reset the parameters to new random values, and then fit the parameters
on the synthetic dataset using the procedure described in the main paper. The results show
that the recovered parameters are largely consistent with the random initial values (Fig. 7F,
the average correlation between the source parameters and the fitted parameters is 0.84).

A.3 Experiment 3

Experiment 3 recruited 36 participants (21 females, aged 18–26). All participants had
provided informed consent before the experiment.
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Figure 7: Detailed experimental design and results for Experiment 2. A, The distribution
set. B-D&G shows the prediction of the fitted economical DEFs compared to participants’
reports under different conditions. B, The relative frequency of the reported cluster number.
C, The average reported cluster number. D, The overlap ratio between the reported clusters.
E, The proportion that the reported numbers of clusters are different when two trials have (1)
different distributions, (2) same distribution but different samples, or (3) same distribution
and samples. F, The quality of model recovery, measured by the correlations between the
source parameters and the fitted parameters. G, The reported moments versus the sample
moments.

In Experiment 3, participants needed to learn the distribution of numeric values and report
their belief of the distribution by entering numbers on the keyboard. On each trial, the
horizontal coordinates of lava rocks were shown one-by-one on the screen, with each coordi-
nate presenting for 1.5 seconds, followed by a 0.5-second empty screen. After observing all
coordinates, participants were required to first report the number of volcanoes. Then, they
were required to enter the location and the relative eruption frequency of each volcano.
The true distribution set was composed of 2 unimodal distributions: one is a Gaussian
distribution, and the other is a skewed Gaussian mixture with 2 wide clusters (Fig. 2A).
Participants completed 3 (distribution type) × 8 (number of repeats) = 24 trials in total.
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Figure 8: The relative frequency of the reported cluster number in Experiment 3.

A.3.1 Results

See Fig. 8 for the prediction of the economical model.

B Density estimation framework details

B.1 Rational component

The rational component should take the sequential observations xT and predict the internal
construct properties φr reported by a participant. From a computational perspective, any
simulation-based model could be used for this component, as long as it can produce an inter-
nal construct based on xT . In this work, we adopt the rationale of Bayesian inference given
a plausible generative process that could have produced the observations xT , with approx-
imations mandated by cognitive constraints. Since the behavioral report is derived from a
subjective belief of the unobserved distribution in the environment, the generative process
in the participant’s mind describes a subjective prior (or a construct) over distributions. As
such, we call this generative process an “internal construct prior” (ICP).
The ICP in our main model is inspired by the nonparametric Gaussian mixture model. A
popular instantiation of the said model is defined through a CRP prior over the cluster
assignments, and a conjugate prior over the distribution of each cluster, abbreviated as
CRP-GMM. It is appealing for our purpose because the implied generative process of xT is
sequential, similar to how participants observe the xT . To make this prior more flexible, we
extend the cluster assignment prior by introducing additional parameters in (1) to control
the expansion decay rate (r) and count distortion rate β. The effects of these two parameters
on the prior distribution of partitions are shown in Fig. 9. While the number of clusters
in the ordinary CRP grows, the decaying parameter α in our extension substantially slows
down the introduction of new clusters as the model size increases. As of the distortion rate
β, when β < 1, there is weaker rich-get-richer effect, giving more evenly distributed cluster
sizes and higher entropy in the cluster assignment distribution, while a β > 1 produces more
extreme cluster sizes and lower entropy of the cluster assignment distribution.

B.1.1 Inexchangeability of the the economical ICP

The exchangeability of a cluster assignment prior is often desirable for online data mod-
eling, because it ensures that the posterior of cluster assignment is invariant to the order
(permutation) of data. However, in this work, we are interested in a prior that governs
how humans construct a density model online. Our discussion on cognitive constraints in
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Section 1 suggests that achieving order invariance requires implausible computations, so we
propose to relax order invariance for the purpose of modeling human cognition.
Here we show by counterexamples the proposed ICP cluster assignment prior (1) is not
exchangeable. First, for the case β = 1 and r ̸= 0. consider the partition {{z1, z2}, {z3}}.
We have

P(z1 = 1, z2 = 1, z3 = 2) = P(z1 = 1)P(z2 = 1|z1 = 1)P(z3 = 2|z1 = 1, z2 = 1)

= 1
1

1 + α0e−r

α0e
−r

2 + α0e−r
,

which is not the same as the probability of a permuted but equivalent partition,
P(z3 = 1, z1 = 2, z2 = 2) = P(z3 = 1)P(z1 = 2|z3 = 1)P(z2 = 2|z3 = 1, z2 = 2)

= 1
α0

1 + α0

1

2 + α0e−r
.

Then, for the case β ̸= 1 but r = 0, consider the partition {{z1, z3, z5}, {z2, z4}}. We have

P(z1 = 1, z2 = 2, z3 = 1, z4 = 1) = 1
α0

1 + α0

2 · 1β

1β+1β

2 + α0

3 · 2β

2β+1β

3 + α0
=

3α02
β

(2β + 1)
∏3

t=1(t+ α0)
,

which is not the same as the probability of a permuted but equivalent partition,

P(z1 = 1, z3 = 1, z4 = 1, z2 = 2) = 1
1

1 + α0

2

2 + α0

α0

3 + α0
=

2α0∏3
t=1(t+ α0)

.

Therefore, the prior defined by (1) is not exchangeable in general if β ̸= 1 or r ̸= 0.

B.1.2 Sufficient statistics

For completeness, we give the explicit expressions of the sufficient statistics in (3) as

ni
t,k =

t∑
τ=1

1[ziτ = k], µ̄i
t,k =

1

ni
t,k

t∑
τ=1

1[zit = k]xt, σ̄i
t,k =

1

ni
t,k

t∑
τ=1

1[zit = k](xt − µ̄i
t,k)

2. (8)

We assume that participants maintain these sufficient statistics when building their internal
constructs, and also report them at the end of the trial, after normalizing ni to obtain the
weights. Note that, unconventionally, we denote the variance by σ.
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Figure 9: Effects of the decay rate and distortion rate β in (1) on the distribution of
partitions. Heatmaps on the top row show distributions of the number of clusters as a
function of time steps. Brighter color means higher probability. Blue solid line indicates
the mean, blue dotted lines indicate 1 standard deviation. The bottom row shows the
distribution of cluster sizes at t = 30. Yellow bar indicates median.
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B.1.3 Baseline batch ICP

As both the economical ICP in Section 3.1 and the proposed fitting algorithm (to appear in
Appendix B.3) are new, it is important to compare the economical ICP and the exchangeable
ICP, CRP-GMM, with another baseline ICP, all fit by the same algorithm. If we expect
the baseline ICP to provide a worse description of human cognition than CRP-GMM on
this task, then the proposed algorithm must be able to produce a less favorable model
comparison result for this baseline after fitting them to human data. We choose a batch
ICP as the baseline: it generates all observations as i.i.d. samples conditioned on cluster
assignments, but, unlike the CRP, the cluster assignment prior is time-invariant and is thus
exchangeable; inference over this ICP produces order-invariant posteriors. Because our task
has a strong sequential nature, we expect this batch ICP to be a worse descriptor of human
cognition for this task.
Specifically, this batch ICP pB maintains a truncated Poisson prior distribution over Kmax
submodels of mixture distributions.

pB(K) ∝
{
Poisson(K; K̄), 1 ≤ k ≤ Kmax;

0, otherwise. (9)

The K’th submodel is a Gaussian mixture of K components. Each submodel has a sym-
metric Dirichlet prior over the cluster weights, and each component has mean and variance
following the conjugate Gauassian-Inverse-χ2 distribution, as in (2). The truncated Poisson
prior is a heuristic choice; we also tried other priors, such as a Categorical distribution sup-
ported on K = 2 and K = 3, or a truncated Poisson with mean dependent on the sample
size (10 vs 70). These choices improved the AIC only insignificantly.

Inference in each submodel The following description applies to each of the Kmax
submodels. Given the observed noisy data x̃i

T , each submodel produces an inferred cluster
property φi

K , which are the sufficient statistics of the cluster property posteriors returned
by the variational-EM algorithm (see Chapter 10.2 of [37]). We now drop the superscript i
to reduce clutter, bearing in mind that all the variables are samples depending on a noisy
observation x̃i

T and a sampled Ki. This algorithm alternates between the E-step: updating
a Dirichlet posterior over the cluster weights; and the M-step updating a Gaussian-Inverse-
χ2 posterior over the cluster means and variances. It turns out that the posterior over the
cluster parameters φK depends on a set of sufficient statistics similar to (8), except that
the cluster assignments are now soft as computed by the responsibilities rt,k for each xt and
k ∈ {1, . . . ,K} during the variational E-step.
After the variational-EM procedure converges, we perform a hard cluster assignment for
each observation xt by choosing the cluster with the highest responsibility,

zt = argmax
k∈{1,...,Kmax}

rt,k.

This ensures that the cluster weights are quantized, as is the case for the particle-based
inference methods on the other two ICPs—we do not want to introduce additional effects
to the variational model due to having continuous support for cluster weights. Thus, at
the last time step t = T , the cluster weights are determined by nk =

∑T
t=1 1[zt = k]. The

cluster mean µk and variance σk still depend on the original unquantized responsibilities
and per-cluster sufficient statistics similar to (8) but with indicators 1[zt = k] replaced by
responsibilities rt,k. As a result, for each submodel with K clusters, the inferred cluster
properties are summarized by φK := [nk, µ̄k, σ̄k]

K
k=1.

Submodel selection After obtaining sufficient statistics for all K models, the batch
rational component selects the submodel with the largest marginal likelihood given the
hard cluster assignments, computed through Student’s t marginal densities as in (4), minus
a penalty of a weighted model size

KB := argmax
K∈{1,...,Kmax}

{pB(xT |φ̂K)− γK} (10)
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where γ is a trainable parameter. This penalty is consistent with how AIC penalizes model
complexity. Then, the submodel with KB clusters is selected, passing φKB to the aleatoric
component. As such, the batch-based rational component differs from the CRP-GMM in
the following ways:

1. In the batch rational component, the cluster assignments are performed by varia-
tional inference rather than a particle filter;

2. the batch rational component performs model selection that penalizes large models
after inferring multiple submodels, whereas CRP-GMM embeds the preference for
smaller models in the cluster assignment prior.

Likelihood approximation These inferred cluster properties are passed to the aleatoric
component, giving (slacked) number of cluster K̂B and the predicted φ̂B. This amounts
to a single simulation of the batch DEF. To compute the likelihood, the batch DEF still
needs to marginalize out the visual noise and the slacked K̂B in the aleatoric component.
To this end, we run a large number of simulations, each with an independent draw of noisy
observations x̃i

T , giving the predicted cluster properties φ̂i
B. The likelihood p(φr|xT ) for the

batch model is then approximated by (7).
The batch rational model and the aleatoric component combine to give the batch DEF, which
is used to benchmark the economical ICP and exchangeable ICP in the corresponding DEFs.

B.2 Aleatoric component

Here, we explain in more detail the aleatoric component described in Fig. 3. As discussed
in Section 3.2, one challenge in modeling this dataset is that the dimensionality of the
internal construct varies across trials. This requires that the model be able to produce
variable-dimensional predictions. In order to fit the DEFs by maximum-likelihood, the DEF
must place nonzero probability to all possible numbers of clusters. We thus defined the
distribution pA(K̂|K) in (5) supported on {1, . . . ,Kmax}, and restrict the maximum number
of clusters to Kmax to be the largest number of clusters ever reported by participants in
an Experiment. One can also define other slack distributions over K with decaying tails to
avoid an explicit upper bound.
If there is no slack, then the predicted cluster properties are as inferred. If the participant
slacks with probability ϵ and commits to a prediction K̂i that does not agree with the
inferred Ki from the rational component, they must modify the inferred φi so that there
are K̂i clusters. We assume that, during modification, the participant should keep the overall
distribution roughly intact. We propose the following deterministic procedure, denoted by
f(φi, K̂i), which recursively increases or decreases the number of clusters in φi until there
are K̂i left.

Removing the smallest cluster. This happens whenever φi has more clusters than K̂i.
We simply remove the cluster with the smallest weight. An alternative is the following
merging strategy: take the cluster with the smallest weight, and merge into its nearest
neighbor. The merged distribution has weight equal to the sum of the weights of the
clusters merged, and has mean and variances equal to the effective mean and variance of
the two. More precisely, for two clusters with properties [w1, µ̄1, σ̄1] and [w2, µ̄2, σ̄2] (note
that we denote the variance by σ), the merged cluster has properties

[w1 + w2, µm, σm],

where µm = w1µ̄1+w2µ̄2 and σm = w1(σ̄1+ µ̄2
1)+w2(σ̄2+ µ̄2

2)−µ2
m. Our results show that

the removal strategy produced better AIC than the merging strategy.

Splitting the largest cluster. This happens whenever φi has fewer clusters than K̂i. We
take the cluster with the largest weight and split it into two clusters. The new clusters are
centered at equal distance from and on two sides of the original cluster, and their variance
is a scaled version of the variance of the original cluster. Specifically, denote the properties
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Figure 10: Estimated log-likelihood of data for one participant given different numbers of
simulations. We show the mean and standard deviations of the estimate based on 30 runs
for each value of M .

of this cluster to be split by [w,m, σ], we set the cluster properties of the new clusters to be[w
2
, m− bσ

√
σ, sσσ

]
,
[w
2
, m+ bσ

√
σ, sσσ

]
. (11)

where bσ > 0 and 0 ≤ sσ ≤ 1 are free parameters to be optimised. We also tested a version
of this strategy where these two parameters are fixed at bσ =

√
3
2 and sσ = 1/4, but this

gave worse AIC.

Noise processes. The noise processes defined in (6) are given by

pw(w; n̂) = Dirichlet(w; c(n̂ + 1)), (12)

pµ(µ
r; µ̂) =

K̂∏
k=1

N (µr
k; µ̂k, σµ), (13)

pµ(σ
r; σ̂) =

K̂∏
k=1

logN (σr
k; σ̂k, σv). (14)

where K̂ is implied from φ̂. The addition by 1 in (12) ensures that the mode of the Dirichlet
distribution is equal to w ∝ n̂. The scaling parameter c changes the confidence. The
variances σµ and σν are free parameters.

B.3 Fitting algorithm

The MC estimator for the likelihood in (7) is unbiased. However, the corresponding log-
likelihood estimator, adopted in practice for numerical stability, is only consistent and pro-
duces a nonzero bias for a finite number of simulations M . This is due to Jensen’s inequality.
Suppose each simulation provides a log-likelihood estimate of ℓi conditioned on some latent
variables (such as ziT and K̂i). Let the true conditional likelihood be X so that eℓi ∼ X.
then the estimated marginal log-likelihood is

E

[
log
(

1

M

M∑
i=1

eℓi

)]
≤ log

(
E

[
1

M

M∑
i=1

eℓi

])
= log(E[X]) (15)

Note that E[X] is the marginal likelihood. Fortunately, this bias is downwards, meaning
that the expected MC estimate provides a lower bound on the true log-likelihood Still,
we must use a large M during training and evaluation, as this reduces the variance of the
empirical average in (15) and thus lowers the bias. We show in Fig. 10 the dependence of the
estimated log-likelihood for different numbers of simulations, using data from a randomly
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Figure 11: Log-likelihood of different DEFs in ablation studies, including the economical
and CRP-GMM DEFs.

picked participant in Experiment 3. When the model is untrained (left panel), the bias does
not completely go away even at M = 10 000, but the variance is much smaller than using
fewer M ’s. When the model is well-trained, both the bias and variance of the estimated
log-likelihood are substantially reduced (right panel). Thus, the likelihood estimates become
more reliable as the DEF fits the data better.
Thanks to the small estimation variance, we are able to fit the parameters of the DEFs
using a gradient-free optimization routine Nelder-Mead implemented in the NLOpt package
2. During training, we estimate the log-likelihood using M = 10 000 parallel simulations on
NVIDIA GTX 1080 and A100 GPUs. The latter GPU provides a likelihood estimate within
3 seconds for Experiment 2, and 5 seconds for Experiments 1 and 3. The Nelder-Mead
routine typically converges to a 0.001 relative precision on parameters within 300 iterations.
We restart Nelder-Mead 10 times with parameters found from the previous optimization,
as this avoids early convergence of Nelder-Mead. To further avoid local optima, we repeat
this whole procedure (with 10 restarts) 10 times with different random seeds. We can then
check if our algorithm has found a good solution by taking the maximum likelihood found
across the 10 repeats. If this solution is reliable, then we should observe that this maximum
is stable across the 10 restarts. We then take the best solution among the 10 random seeds
at the last repeat as the fitted DEF parameters.
Fig. 11 shows the best (among seeds) log-likelihood across 10 restarts, averaged over all
participants, for each DEF setup (see Appendix B.5.1). During the first repeat, the log-
likelihood increases and stabilizes. Because we do not keep the best log-likelihood across
the restarts, we see small fluctuations across the restarts. We see a very slow increase of
log-likelihood for some DEFs in Experiment 3, but the relative rank of different DEFs is
mostly preserved.

B.3.1 Fitting the batch DEF

For the Batch DEF, each simulation maintains Kmax submodels before the comparison in
(10). Because the cluster weights posterior can be computed during variational inference,
unlike in the CRP where we used particles, we do not need as many simulations, and so we
run M = 100 simulations of each of the Kmax submodels. The output of the Batch rational
component is then fed into the same aleatoric component for a fair comparison between the
ICPs.

B.4 Particles versus MC simulations

There is an important distinction between the number of particles and the number of MC
simulations. In this work, we assume that the participant uses a single particle for infer-
ring the cluster assignments, but this is not observed from the experimenter’s viewpoint.
The reported internal construct may be associated with one out of many possible cluster

2https://github.com/stevengj/nlopt
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assignments. As such, we run many simulations of the single-particle particle filter. The
number of MC simulations is M , and each simulation is indexed by i. Since we stick to the
single-particle assumption throughout the paper, we do not need an additional index for the
number of particles within each MC simulation.
Future work may consider multiple particles. In this case, each MC simulation will con-
tain multiple sequences of cluster assignments. Maintaining multiple cluster assignment
sequences allows re-assignment or re-weighting of the observations at each time step, achiev-
ing some retrospective correction. However, it is unknown how the participant makes a
decision on reporting the cluster properties from multiple samples, especially when the num-
ber of clusters do not agree across different particles. We thus leave multiple-particle models
for future work.

B.5 Additional modeling results

After training the DEFs, we evaluate the log-likelihood using a large number of simulations:
106 for the sequential DEFs in our main results, and 105 for the baseline batch DEF.

B.5.1 Ablation studies on DEF

Our initial experiment design used the exchangeable DEF (with a CRP-GMM rational com-
ponent) as a reference model. We explored the model space by making small modifications
to this DEF motivated by resource constraints and other heuristics. Here, we show that the
two modifications in the economical DEF, namely the Decay in expansion rate αt and Dis-
tortion in cluster count nt,k produce reliable improvements over the reference exchangeable
DEF. The DEFs resulting from other modifications either did not produce reliable improve-
ments or were insignificant compared to the reference model. All model parameters are
listed in Table 2. We introduce the modifications below.
Decay: adding a model-size dependent decay rate r, as in (1).
Distort: adding an exponential transformation to the size of the clusters, as in (1).

Fixed Splitting: when K̂i < Ki and splitting a cluster, the parameters of the splitting
are fixed with bσ =

√
3/2 and sσ = 1/4

Merge Cluster: when K̂i < Ki, instead of removing a cluster, the function f(φ, K̂) merge
the smallest cluster into the cluster with closest mean. The cluster properties of the new
component is computed by moment matching, as detailed in Appendix B.2.
Local MAP: instead of sampling the cluster assignment according to (4), take the cluster
with largest posterior probability. This is the local MAP procedure described in [15].
Constant Variance: instead of updating the variance of each cluster according to (3), the
cluster mean is fixed to the trainable parameter σ0

Fixed Mean: instead of updating the mean of each cluster according to (3), the mean is
fixed at the first observation assigned to the cluster. This checks if participants are able to
update the mean or simply remember the first observations assigned to the clusters.
Fixed Mean Confidence: instead of fitting λ0 as a parameter, we fix it at λ0 = 0.01

No Visual Noise: do not add Gaussian noise to the observations.
No Distribution Prior: when computing the per-step assignment posterior in (4), the like-
lihood is a Student’s t-distribution obtained from having a conjugate prior over the Gaussian
distribution parameters. Instead of computing this likelihood using the t-distribution, this
modification computes this likelihood by a Gaussian with mean µt,k and variance σt,k.
No Counting Prior: in (1), instead of using the nt,k maintained for each cluster, use the
average cluster size.
The results of these DEFs, averaged over participants, are shown in ??. Clearly, only Decay
and Distort produced reliable improvement on AICs compared to the CRP-GMM DEF
across all Experiments. All other modifications that deviate from a rational approximation
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of the Bayes rule (e.g. Fixed Mean, No Counting Prior, etc.) resulted in significantly worse
fit to the reported internal constructs from our participants. We also see that removing
visual noise is detrimental to the quality of the fit.
The stability of the likelihood approximated from (7) is shown in Fig. 11. All DEFs fit-
ting converged well as the number of restarts increases, except for a few worse DEFs in
Experiment 3.
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(c) Experiment 3

Figure 12: Model ablation comparisons for all Experiments. Lower values are better. Error
bars are 1 sems. Blue bar indicates the reference DEF with CRP-GMM as the rational
component. Green bars indicate significant differences to the reference model (Wilcoxon
signed-rank test, p<0.05), and grey bars indicate insignificant comparison. The Proposed
(Distort + Decay) is the economical ICP.
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Figure 13: Distribution of fitted ICP parameters using data in Experiment 2.

B.5.2 Strong prior on cluster width

We found in most fitted ICPs that the prior cluster standard deviation is small (see Fig. 5
and Fig. 13), and the confidence indicated by its pseudocount a0 is much greater than zero.
This high confidence contrasts with the low pseudocount associated with the prior cluster
mean λ0. This means that participants could learn the cluster mean mostly driven by the
observations while failing to adapt to the cluster uncertainty. This contributes to the large
number of clusters seen when there is a single Gaussian in the true data distribution. We
noted that Gershman and Niv [35] also used a relatively high a0 = 10 parameter for their
task.
References
[36] Sylvia Richardson and Peter J. Green. On Bayesian analysis of mixtures with an
unknown number of components (with discussion). Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 1997.
[37] Christopher M. Bishop. Pattern Recognition and Machine Learning, Springer, 2006.

27


	Introduction
	Human behavioral experiments of structured density estimation
	Experiment 1: learning visuo-spatial distributions
	Experiments 2 and 3: distributions across domains and scales

	The density estimation framework
	The rational component
	The aleatoric component and maximum-likelihood model fitting

	Experiments: fitting and comparing internal construct priors
	Discussion
	Experimental details
	Experiment 1
	Participants
	Cover story
	Procedure and Design
	Generation of true distribution set
	Results

	Experiment 2
	Results

	Experiment 3
	Results


	Density estimation framework details
	Rational component
	Inexchangeability of the the economical ICP
	Sufficient statistics
	Baseline batch ICP

	Aleatoric component
	Fitting algorithm
	Fitting the batch DEF

	Particles versus MC simulations
	Additional modeling results
	Ablation studies on DEF
	Strong prior on cluster width



