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Abstract

We present a PTAS for learning random constant-depth networks. We show that for
any fixed ϵ > 0 and depth i, there is a poly-time algorithm that for any distribution
on

√
d · Sd−1 learns random Xavier networks of depth i, up to an additive error of

ϵ. The algorithm runs in time and sample complexity of (d̄)poly(ϵ
−1), where d̄ is

the size of the network. For some cases of sigmoid and ReLU-like activations the
bound can be improved to (d̄)polylog(ϵ

−1), resulting in a quasi-poly-time algorithm
for learning constant depth random networks.

1 Introduction

One of the greatest mysteries surrounding deep learning is the discrepancy between its phenomenal
capabilities in practice and the fact that despite a great deal of research, polynomial-time algorithms
for learning deep models are known only for very restrictive cases. Indeed, state of the art results
are only capable of dealing with two-layer networks under assumptions on the input distribution and
the network’s weights. Furthermore, theoretical study shows that even with very naive architectures,
learning neural networks is worst-case computationally intractable.

In this paper, we contrast the aforementioned theoretical state of affairs, and show that, perhaps
surprisingly, even though constant-depth networks are completely out of reach from a worst-case
perspective, most of them are not as hard as one would imagine. That is, they are distribution-free
learnable in polynomial time up to any desired constant accuracy. This is the first polynomial-time
approximation scheme (PTAS) for learning neural networks of depth greater than 2 (see the related
work section for more details). Moreover, we show that the standard SGD algorithm on a ReLU
network can be used as a PTAS for learning random networks. The question of whether learning
random networks can be done efficiently was posed by Daniely et al. [15], and our work provides a
positive result in that respect.

In a bit more detail, we consider constant-depth random networks obtained using the standard Xavier
initialization scheme [22, 26], and any input distribution supported on the sphere

√
d · Sd−1. For

Lipschitz activation functions, our algorithm runs in time (d̄)poly(ϵ
−1), where d̄ is the network’s size

including the d input components, and ϵ is the desired accuracy. While this complexity is polynomial
for constant ϵ, we also consider the special cases of sigmoid and ReLU-like activations, where the
bound can be improved to (d̄)polylog(ϵ

−1).

The main technical idea in our work is that constant-depth random neural networks with Lipschitz
activations can be approximated sufficiently well by low-degree polynomials. This result follows by
analyzing the network obtained by replacing each activation function with its polynomial approxima-
tion using Hermite polynomials. It implies that efficient algorithms for learning polynomials can be
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used for learning random neural networks, and specifically that we can use the SGD algorithm on
ReLU networks for this task.

1.1 Results

In this work, we show that random fully-connected feedforward neural networks can be well-
approximated by low-degree polynomials, which implies a PTAS for learning random networks.
We start by defining the network architecture. We will denote by σ : R → R the activa-
tion function, and will assume that it is L-Lipschitz. To simplify the presentation, we will
also assume that it is normalized in the sense that EX∼N (0,1) σ

2(X) = 1. Define ϵσ(n) =

mindeg(p)=n EX∼N (0,1)(σ(X)− p(X))2, namely, the error when approximating σ with a degree-n
polynomial, and note that limn→∞ ϵσ(n) = 0. We will consider fully connected networks of depth i
and will use d0 = d to denote the input dimension and d1, . . . , di to denote the number of neurons in
each layer. Denote also d̄ =

∑i
j=0 dj . Given weight matrices

W⃗ = (W 1, . . . ,W i) ∈ Rd1×d0 × . . .× Rdi×di−1

and x ∈ Rd0 we define Ψ0
W⃗
(x) = x. Then for 1 ≤ j ≤ i we define recursively

Φj

W⃗
(x) = W jΨj−1

W⃗
(x), Ψj

W⃗
(x) = σ

(
Φj

W⃗
(x)
)

We will consider random networks in which the weight matrices are random Xavier matrices [22, 26].
That is, each entry in W j is a centered Gaussian of variance 1

dj−1
. This choice is motivated by the fact

that it is a standard practice to initialize the network’s weights with Xavier matrices, and furthermore,
it ensures that the scale across the network is the same. That is, for any example x and a neuron n,
the second moment of the output of n (w.r.t. the choice of W⃗ ) is 1.

Our main result shows that Ψi
W⃗

can be approximated, up to any constant accuracy ϵ, via constant
degree polynomials (the constant will depend only on ϵ, the depth i, and the activation σ). We will
consider the input space S̃d−1 = {x ∈ Rd : ∥x∥ = 1}. Here, and throughout the paper, ∥x∥ stands

for the normalized Euclidean norm ∥x∥ =
√

1
d

∑d
i=1 x

2
i .

Theorem 1.1. For every i and n such that ϵσ(n) ≤ 1
2 there is a constant D = D(n, i, σ) such that if

d1, . . . , di−1 ≥ D the following holds. For any weights W⃗ , there is a degree ni−1 polynomial pW⃗
such that for any distribution D on S̃d−1

E⃗
W

E
x∼D

∥∥∥Φi
W⃗
(x)− pW⃗ (x)

∥∥∥ ≤ 14 · (L+ 1)2 · (ϵσ(n))
1

2i−1 ≤ 14 · (L+ 1)3

n
1

2i−1

.

Furthermore, the coefficients of pW⃗ are bounded by (2d̄)4n
i−1

.

Since constant degree polynomials are learnable in polynomial time, Theorem 1.1 implies a PTAS for
learning random networks of constant depth. In fact, as shown in [9], constant degree polynomials
with polynomial coefficients are efficiently learnable via SGD on ReLU networks starting from
standard Xavier initialization. Thus, this PTAS can be standard SGD on neural networks. To be

more specific, for any constant ϵ > 0 there is an algorithm with (d̄)
O

((
14(L+1)3

ϵ

)(i−1)2i−1)
time and

sample complexity that is guaranteed to return a hypothesis whose loss is at most ϵ in expectation.
For some specific activations, such as the sigmoid σ(x) = erf(x) := 2√

π

∫ x

0
e−

t2

2 dt, or the ReLU-
like activation σ(x) =

∫ x

0
erf(t) + 1dt we have that ϵσ(n) approaches to 0 exponentially fast (see

Lemma A.4 in the appendix). In this case, we get get a quasi-polynomial time and sample complexity

of (d̄)
O

((
log

(
14(L+1)3

ϵ

))(i−1)
)

.

Corollary 1.2. For every constants ϵ, i and σ there is a constant D, a univariate-polynomial p and a
polynomial-time algorithm A such that if d1, . . . , di−1 ≥ D the following holds. For any distribution
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D on S̃d−1, if h is the output of A upon seeing p(d0, . . . , di) examples from D, then1

E
h
E⃗
W

E
x∼D

∥∥∥Φi
W⃗
(x)− h(x)

∥∥∥ ≤ ϵ .

Furthermore, A can be taken to be SGD on a ReLU network starting from a Xavier initialization.

1.2 Related Work

Learning neural networks efficiently. Efficiently learning classes of neural networks has attracted
much interest in recent years. Several works established polynomial-time algorithms for learning one-
hidden-layer neural networks with certain input distributions (such as the Gaussian distribution) under
the assumption that the weight matrix of the hidden layer is non-degenerate [27, 34, 19, 20, 5, 32, 4].
For example, Awasthi et al. [4] showed such a result for non-degenerate one-hidden-layer ReLU
networks with bias terms under Gaussian inputs, and also concluded that one-hidden-layer networks
can be learned efficiently under the smoothed-analysis framework. Efficient algorithms for learning
one-hidden-layer ReLU networks with Gaussian inputs were also shown in Diakonikolas et al.
[18], Diakonikolas and Kane [17]. These results do not require non-degenerate weight matrices, but
they require that the output layer weights are all positive, as well as a sub-linear upper bound on
the number of hidden neurons. Chen et al. [8] recently showed an efficient algorithm for learning
one-hidden-layer ReLU networks with Gaussian inputs, under the assumption that the number of
hidden neurons is a constant. Note that all of the aforementioned works consider only one-hidden-
layer networks. Chen et al. [7] gave an algorithm for learning deeper ReLU networks, whose
complexity is polynomial in the input dimension but exponential in the other parameters (such as the
number of hidden units, depth, spectral norm of the weight matrices, and Lipschitz constant of the
overall network). Finally, several works established algorithms for learning neural networks, whose
complexity is exponential unless we impose strong assumptions on the norms of both the inputs and
the weights [23, 30, 33, 24].

Hardness of learning neural networks. As we discussed in the previous paragraph, efficient
algorithms for learning ReLU networks are known only for depth-2 networks and under certain
assumptions on both the network weights and the input distribution. The limited progress in learning
ReLU networks can be partially understood by an abundance of hardness results.

Learning neural networks without any assumptions on the input distribution or the weights is known
to be hard (under cryptographic and average-case hardness assumptions) already for depth-2 ReLU
networks [28, 3, 11]. For depth-3 networks, hardness results were obtained already when the input
distribution is Gaussian [13, 6]. All of the aforementioned hardness results are for improper learning,
namely, they do not impose any restrictions on the learning algorithm or on the hypothesis that it
returns. For statistical query (SQ) algorithms, unconditional superpolynomial lower bounds were
obtained for learning depth-3 networks with Gaussian inputs [6], and superpolynomial lower bounds
for Correlational SQ (CSQ) algorithms were obtained already for learning depth-2 networks with
Gaussian inputs [25, 18].

The above negative results suggest that assumptions on the input distribution may not suffice for
obtaining efficient learning algorithms. Since in one-hidden-layer networks efficient algorithms exist
when imposing assumptions on both the input distribution and the weights, a natural question is
whether this approach might also work for deeper networks. Recently, Daniely et al. [15] gave a
hardness result for improperly learning depth-3 ReLU networks under the Gaussian distribution even
when the weight matrices are non-degenerate. This result suggests that learning networks of depth
larger than 2 might require new approaches and new assumptions. Moreover, [15] showed hardness of
learning depth-3 networks under the Gaussian distribution even when a small random perturbation is
added to the network’s parameters, namely, they proved hardness in the smoothed-analysis framework.
While adding a small random perturbation to the parameters does not seem to make the problem
computationally easier, they posed the question of whether learning random networks, which roughly
correspond to adding a large random perturbation, can be done efficiently. The current work gives a
positive result in that respect.

Daniely and Vardi [12] studied whether there exist some “natural” properties of the network’s weights
that may suffice to allow efficient distribution-free learning, where a “natural” property is any property

1The leftmost expectation denoted Eh is over the examples provided to A, as well as the internal randomness
of A.
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that holds w.h.p. in random networks. More precisely, they considered a setting where the target
network is random, an adversary chooses some input distribution (that may depend on the target
network), and the learning algorithm needs to learn the random target network under this input
distribution. They gave a hardness result for improper learning (within constant accuracy) in this
setting. Thus, they showed that learning random networks is hard when the input distribution may
depend on the random network. Note that in the current work, we give a positive result in a setting
where we first fix an input distribution and then draw a random network. Finally, learning deep
random networks was studied in Das et al. [16], Agarwal et al. [1], where the authors showed hardness
of learning networks of depth ω(log(d)) in the SQ model.

2 Proof of Theorem 1.1

2.1 Notation

We recall that for vectors x ∈ Rd we use the normalized Euclidean norm ∥x∥ =

√∑d
i=1 x2

i

d and take
the unit sphere S̃d−1 = {x ∈ Rd : ∥x∥ = 1} w.r.t. this norm as our instance space. Inner products

will also be normalized: for x,y ∈ Rd we denote ⟨x,y⟩ =
∑d

i=1 xiyi

d . For x ∈ Rd and a closed set
A ⊂ Rd we denote d(x, A) := minx′∈A ∥x− x′∥. Unless otherwise specified, a random scalar is
assumed to be a standard normal, a random vector in Rd is assumed to be a centered Gaussian vector
with covariance matrix 1

dI , and a random matrix is assumed to be a Xavier matrix. For f : R → R,
we denote ∥f∥2 = EX f2(X). We denote the Kronecker delta by δij , i.e. δij = 1 if i = j and 0
otherwise.

2.2 Some Preliminaries

We will use the Hermite Polynomials [29] which are defined via the following recursion formula.

hn+1(x) =
x√
n+ 1

hn(x)−
√

n

n+ 1
hn−1(x), h0(x) = 1, h1(x) = x (1)

The Hermite polynomials are the sequence of normalized orthogonal polynomials w.r.t. the standard
Gaussian measure. That is, it holds that

E
X
hi(X)hj(X) = δij

More generally, if (X,Y ) is a Gaussian vector with covariance matrix
(
1 ρ
ρ 1

)
then

E
X,Y

hi(X)hj(Y ) = δijρ
i (2)

We will use the fact that
h′
n =

√
nhn−1 (3)

and that for even n
E
X
Xn = (n− 1)!! (4)

Let σ =
∑∞

i=0 aihi be the representation of the activation function σ in the basis of the Hermite
polynomials. We will also use the dual activation σ̂(ρ) =

∑∞
i=0 a

2
i ρ

i as defined in [14]. We note
that σ̂ is defined in [−1, 1] and satisfies σ̂(1) = ∥σ∥2 = 1.

2.3 Defining a Shadow Network

In order to approximate Ψi
W⃗

via a polynomial, we will use a “shadow network" that is obtained by
replacing the activation σ with a polynomial approximation of it. We will show that for random
networks we can approximate each activation sufficiently well with low-degree Hermite polynomials.
Recall that σ =

∑∞
i=0 aihi is the representation of σ in the basis of the Hermite polynomials. Define

σn = 1√∑n
i=0 a2

i

∑n
i=0 aihi. We have ϵσ(n) =

∑∞
i=n+1 a

2
i and hence σn = 1√

1−ϵσ(n)

∑n
i=0 aihi.
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We next define a shadow network. For x ∈ Rd we let Ψ0,n

W⃗
(x) = x. For 1 ≤ j ≤ i we define

recursively

Φj,n

W⃗
(x) = W jΨj−1,n

W⃗
(x), Ψj,n

W⃗
(x) = σn

(
Φj,n

W⃗
(x)
)

for 1 ≤ j ≤ i−1 and Ψi,n

W⃗
(x) = W iΨi−1,n

W⃗
(x). We will prove the following theorem, which implies

Theorem 1.1.

Theorem 2.1. Fix i and let n be large enough so that ϵσ(n) ≤ 1
2 . There is a constant D = D(n, i, σ)

such that if d1, . . . , di−2 ≥ D then for any x ∈ S̃d−1,

E⃗
W

∥∥∥Φi
W⃗
(x)− Φi,n

W⃗
(x)
∥∥∥ ≤ 13 · (L+ 1)2 · (ϵσ(n))

1

2i−1

Since ϵσ(n) is the error in the approximation of a single activation σ with a degree-n polynomial, it is
natural to expect that the above bound will depend on ϵσ(n). To see why Theorem 2.1 (together with
Lemma A.3 which bounds ϵσ(n)) implies Theorem 1.1, note that Φi,n

W⃗
(x) is a polynomial of degree

ni−1. This implies Theorem 1.1, except the requirement that the coefficients of the polynomial are
polynomially bounded. To deal with this, define

Φ̃i,n

W⃗
(x) =

{
Φi,n

W⃗
(x) if all entries in W⃗ are at most

∑i
j=0 dj

0 otherwise

As we show next limmin(d1,...,di−1)→∞ EW⃗

∥∥∥Φi,n

W⃗
(x)− Φ̃i,n

W⃗
(x)
∥∥∥ = 0. Hence, in the theorem we

can replace Φi,n by Φ̃i,n which has polynomially bounded coefficients. See Appendix A.3 and A.4
for the proofs.

Lemma 2.2. For every ϵ and n there is a constant D such that if d1, . . . , di−1 ≥ D then for any
x ∈ S̃d−1, EW⃗

∥∥∥Φi,n

W⃗
(x)− Φ̃i,n

W⃗
(x)
∥∥∥ < ϵ.

Lemma 2.3. Φ̃i,n

W⃗
computes a polynomial whose sum of coefficients is at most (2d̄)4n

i−1

.

2.4 Proof of Theorem 2.1 for depth-two networks

We will first prove Theorem 2.1 for depth-2 networks (i.e. for i = 2). We will prove
Lemma 2.5 below which implies that for every ϵ there is n such that for any x ∈ S̃d−1,
EW⃗

∥∥∥Ψ1,n

W⃗
(x)−Ψ1

W⃗
(x)
∥∥∥ ≤ ϵ. We will then prove Lemma 2.6, that together with Lemma 2.5

will show that EW⃗

∥∥∥Φ2,n

W⃗
(x)− Φ2

W⃗
(x)
∥∥∥ ≤ ϵ, thus proving Theorem 2.1 for i = 2. We will start

however with the following lemma that will be useful throughout (see Appendix A.5 for the proof).

Lemma 2.4. Fix f, g : R → R, x,y ∈ Rd1 and a Xavier matrix W ∈ Rd2×d1 . Let (X,Y ) be a

centered Gaussian vector with covariance matrix
(
∥x∥2 ⟨x,y⟩
⟨x,y⟩ ∥y∥2

)
. Then

E
W

∥f(Wx)− g(Wy)∥ ≤
√

E
W

∥f(Wx)− g(Wy)∥2 =
√

E
X,Y

(f(X)− g(Y ))2

Lemma 2.5. Fix x ∈ S̃d1−1. Let W ∈ Rd2×d1 be a Xavier matrix. Then

E
W

∥σ(Wx)− σn(Wx)∥ ≤
√
2ϵσ(n)

Proof. By Lemma 2.4 we have

E
W

∥σ(Wx)− σn(Wx)∥ ≤
√

E
W

∥σ(Wx)− σn(Wx)∥2 =
√

E
X
(σ(X)− σn(X))2 .
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Now, the above equals to√√√√ n∑
i=0

(
1− 1√

1− ϵσ(n)

)2

a2i +

∞∑
i=n+1

a2i =

√√√√(1− ϵσ(n))

(
1− 1√

1− ϵσ(n)

)2

+ ϵσ(n)

=

√√√√(1− ϵσ(n))

(√
1− ϵσ(n)− 1√
1− ϵσ(n)

)2

+ ϵσ(n)

=

√
2− ϵσ(n)− 2

√
1− ϵσ(n) + ϵσ(n)

=

√
2(1−

√
1− ϵσ(n))

≤
√
2(1−

√
1− ϵσ(n))(1 +

√
1− ϵσ(n))

=
√
2ϵσ(n)

Lemma 2.5 implies that EW⃗

∥∥∥Ψ1,n

W⃗
(x)−Ψ1

W⃗
(x)
∥∥∥ ≤

√
2ϵσ(n). Thus, given ϵ > 0, for suf-

ficiently large n, EW⃗

∥∥∥Ψ1,n

W⃗
(x)−Ψ1

W⃗
(x)
∥∥∥ ≤ ϵ. The following lemma therefore implies that

EW⃗

∥∥∥Φ2,n

W⃗
(x)− Φ2

W⃗
(x)
∥∥∥ ≤

√
2ϵσ(n) and thus implies Theorem 2.1 for depth two networks.

Lemma 2.6. For any x ∈ S̃d−1

E
W i

∥∥∥Φi,n

W⃗
(x)− Φi

W⃗
(x)
∥∥∥ ≤

∥∥∥Ψi−1,n

W⃗
(x)−Ψi−1

W⃗
(x)
∥∥∥

Proof. By Lemma 2.4 we have

E
W i

∥∥∥Φi,n

W⃗
(x)− Φi

W⃗
(x)
∥∥∥ = E

W i

∥∥∥W i
(
Ψi−1,n

W⃗
(x)−Ψi−1

W⃗
(x)
)∥∥∥

≤
√

E
X∼N

(
0,
∥∥∥Ψi−1,n

W⃗
(x)−Ψi−1

W⃗
(x)
∥∥∥2)X

2

=
∥∥∥Ψi−1,n

W⃗
(x)−Ψi−1

W⃗
(x)
∥∥∥

2.5 Proof of Theorem 2.1 for General Networks

For x ∈ R̃di−1 we denote ΨW i(x) = σ(W ix) and Ψn
W i(x) = σn(W

ix). Lemma 2.5 can be roughly
phrased as

(x = x′) and (∥x∥ = 1) ⇒ ΨW i(x) ≈ Ψn
W i(x′)

In order to prove Theorem 2.1 for general networks we will extend it by replacing the strict equality
conditions with softer ones. That is, we will show that

(x ≈ x′) and (∥x∥ ≈ 1) and (∥x′∥ ≈ 1) ⇒ ΨW i(x) ≈ Ψn
W i(x′) (5)

This will be enough to prove Theorem 2.1 for general networks. Indeed, the conditions ∥x∥ ≈ 1 and
∥x′∥ ≈ 1 are valid w.h.p. via a simple probabilistic argument. Thus, Eq. (5) implies that

x ≈ x′ ⇒ ΨW i(x) ≈ Ψn
W i(x′) (6)

Now, for x ∈ S̃d−1 Eq. (6) implies that ΨW 1(x) ≈ Ψn
W 1(x′). Using Eq. (6) again we get that

ΨW 2 ◦ΨW 1(x) ≈ Ψn
W 2 ◦Ψn

W 1(x′). Using it i−3 more times we we get that ΨW i−1 ◦· · ·◦ΨW 1(x) ≈
Ψn

W i−1 ◦Ψn
W 1(x′), or in other words that Ψi−1

W⃗
(x) ≈ Ψi−1,n

W⃗
(x). As we will show “≈” stands for

a sufficiently strong approximation, which guarantees that EW⃗ ∥Ψi−1

W⃗
(x) − Ψi−1,n

W⃗
(x)∥ ≤ ϵ, and

hence Lemma 2.6 implies Theorem 2.1.
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To prove Eq. (5) we first prove Lemma 2.7 which softens the requirement that x = x′. That is, it
shows that

(x ≈ x′) and (∥x∥ = ∥x′∥ = 1) ⇒ ΨW i(x) ≈ Ψn
W i(x′)

The second condition which requires that ∥x∥ = ∥x′∥ = 1 is softened via Lemmas 2.8 and 2.9.
Lemma 2.10 then wraps the two softenings together, and shows that Eq. (5) is valid. Finally, in
section 2.5.1 we use Lemma 2.10 to prove Theorem 2.1.

Lemma 2.7. Fix x,x+ v ∈ S̃d1−1 with ∥v∥ ≤ ϵ. Let W ∈ Rd2×d1 be a Xavier matrix. Then

E
W

∥σ(Wx)− σn(W (x+ v))∥ ≤
√
2ϵσ(n) +

√
2L2

1− ϵσ(n)
ϵ

Proof. We have

∥σ(Wx)− σn(W (x+ v))∥ ≤ ∥σ(Wx)− σn(Wx)∥+ ∥σn(Wx)− σn(W (x+ v))∥

By Lemma 2.5 we have EW ∥σ(Wx)− σn(Wx)∥ ≤
√
2ϵσ(n). It remains to bound

EW ∥σn(Wx)− σn(W (x+ v))∥. By Lemma 2.4 We have

E
W

∥σn(Wx)− σn(W (x+ v))∥ ≤
√

E
X,Y

(σn(X)− σn(Y ))2

where (X,Y ) is a centered Gaussian vector with correlation matrix
(
1 ρ
ρ 1

)
for ρ = ⟨x,x+ v⟩ ≥

1− ϵ. Finally, we have

E
X,Y

(σn(X)− σn(Y ))2 =
1

1− ϵσ(n)
E

X,Y

(
n∑

i=0

ai(hi(X)− hi(Y ))

)2

=
1

1− ϵσ(n)

n∑
i=0

n∑
j=0

aiaj E
X,Y

(hi(X)− hi(Y ))(hj(X)− hj(Y ))

Eq. (2)
=

1

1− ϵσ(n)

n∑
i=0

a2i (2− 2ρi)

≤ 2

1− ϵσ(n)
(σ̂(1)− σ̂(ρ))

In Lemma A.1 we show that σ̂ is L2-Lipschitz. Hence the above is at most 2L2

1−ϵσ(n)
ϵ.

We next give a lemma that allows us to “almost jointly project” a pair of points x1,x2 ∈ Rd on a
closed set A ⊂ Rd, without expanding the distance too much. See Appendix A.6 for the proof.
Lemma 2.8. Let A ⊂ Rd a closed set and fix x1,x2 ∈ Rd. There are x̃1, x̃2 ∈ A such that

∥x1 − x̃1∥ ≤ 2d(x1, A), ∥x2 − x̃2∥ ≤ 2d(x2, A) and ∥x̃1 − x̃2∥ ≤ 3∥x1 − x2∥

Lemma 2.9. Let x,x+ v ∈ Rd1 be vectors such that ∥x∥ = 1 and ∥v∥ ≤ ϵ ≤ 1. Let W ∈ Rd2×d1

be a Xavier matrix. Then
E
W

∥σ(Wx)− σ(W (x+ v))∥ ≤ Lϵ

and
E
W

∥σn(Wx)− σn(W (x+ v))∥ ≤ 22n+1 (9(4n− 1)!!)
1/4

ϵ =: λ(n)ϵ

Proof. Fix a centered Gaussain vector (X,Y ) with covariance matrix
(

1 ⟨x+ v,x⟩
⟨x+ v,x⟩ ∥x+ v∥2

)
.

Let Z = Y −X . Note that Var(Z) ≤ ϵ2. By Lemma 2.4 we have

E
W

∥σ(Wx)− σ(W (x+ v))∥ ≤
√

E(σ(X)− σ(X + Z))2 ≤
√
L2 EZ2 ≤ Lϵ

7



We now prove the second part. In Lemma A.2, we show that |hi(x)− hi(x+ y)| ≤ 2i max(|x|, |x+
y|, 1)i|y|. Therefore,

|σn(x)− σn(x+ y)| ≤
n∑

i=0

|ai|√
1− ϵσ(n)

|hi(x)− hi(x+ y)|

≤ |y|
n∑

i=0

2i max(|x|i, |x+ y|i, 1)

≤ |y|2n+1 max(|x|n, |x+ y|n, 1)

Hence,

E(σn(X)− σn(X + Z))2 ≤ 22n+2 EZ2 max(|X|n, |X + Z|n, 1)2

≤ 22n+2
√
EZ4

√
Emax(|X|4n, |X + Z|4n, 1)

≤ 22n+2
√
EZ4

√
E [|X|4n + |X + Z|4n + 1]

Eq. (4)
= 22n+2

√
3∥v∥4

√
1 + (4n− 1)!!(∥x+ v∥4n + ∥x∥4n)

≤ 22n+2
√
3ϵ4
√

3(1 + ϵ)4n(4n− 1)!!

≤ 22n+2
√
3ϵ4
√

3 · 24n · (4n− 1)!!

Lemma 2.4 now implies that

E
W

∥σn(Wx)− σn(W (x+ v))∥ ≤ 22n+1 (9(4n− 1)!!)
1/4

ϵ

Lemma 2.10. Let x,x + v ∈ Rd1 be vectors such that ∥v∥ ≤ ϵ, |∥x∥ − 1| ≤ δ ≤ 1/2 and
|∥x+ v∥ − 1| ≤ δ. Let W ∈ Rd2×d1 be a Xavier matrix. Then

E
W

∥σ(Wx)− σn(W (x+ v))∥ ≤ 2Lδ +
√
2ϵσ(n) +

√
6L2

1− ϵσ(n)
ϵ+ 2λ(n)δ

Proof. By Lemma 2.8 there are vectors x′,v′ such that ∥x′∥ = ∥x′ + v′∥ = 1 and

∥x− x′∥ ≤ 2δ, ∥x+ v − x′ − v′∥ ≤ 2δ, and ∥v′∥ ≤ 3∥v∥

Now, we have, by Lemmas 2.7 and 2.9,

E
W

∥σ(Wx)− σn(W (x+ v))∥ ≤ E
W

∥σ(Wx)− σ(Wx′)∥+ E
W

∥σ(Wx′)− σn(W (x′ + v′))∥

+ E
W

∥σn(W (x′ + v′))− σn(W (x+ v))∥

≤ 2Lδ +
√

2ϵσ(n) +

√
6L2

1− ϵσ(n)
ϵ+ 2λ(n)δ

2.5.1 Concluding the proof of Theorem 2.1

Define

Ψi
W⃗
(x, δ) =

{
0 |1− ∥Ψj

W⃗
(x)∥| > δ or |1− ∥Ψj,n

W⃗
(x)∥| > δ for some j < i

Ψi
W⃗
(x) otherwise

and

Ψi,n

W⃗
(x, δ) =

{
0 |1− ∥Ψj

W⃗
(x)∥| > δ or |1− ∥Ψj,n

W⃗
(x)∥| > δ for some j < i

Ψi,n

W⃗
(x) otherwise

8



We have

E⃗
W

∥∥∥Ψi
W⃗
(x)−Ψi,n

W⃗
(x)
∥∥∥ ≤ E⃗

W

∥∥∥Ψi
W⃗
(x)−Ψi

W⃗
(x, δ)

∥∥∥+ E⃗
W

∥∥∥Ψi
W⃗
(x, δ)−Ψi,n

W⃗
(x, δ)

∥∥∥
+ E⃗

W

∥∥∥Ψi,n

W⃗
(x, δ)−Ψi,n

W⃗
(x)
∥∥∥

Theorem 2.1 now follows from Lemmas 2.11 and 2.12 below, together with Lemma 2.6.

Lemma 2.11. Let n be large enough so that ϵσ(n) ≤ 1
2 and let δ <

√
ϵσ(n)

2L+2λ(n) . Then,

E⃗
W

∥∥∥Ψi
W⃗
(x, δ)−Ψi,n

W⃗
(x, δ)

∥∥∥ ≤ 12 · (L+ 1)2 · (ϵσ(n))2
−i

Proof. We will prove the result by induction on i. The case i = 0 is clear as Ψ0
W⃗
(x, δ) = Ψ0,n

W⃗
(x, δ).

Fix i > 0. For every δ < 1
2 and n we have by Lemma 2.10

E
W i

∥∥∥Ψi
W⃗
(x, δ)−Ψi,n

W⃗
(x, δ)

∥∥∥ ≤ 2Lδ +
√

2ϵσ(n) +

√
6L2

1− ϵσ(n)

∥∥∥Ψi−1

W⃗
(x, δ)−Ψi−1,n

W⃗
(x, δ)

∥∥∥+ 2λ(n)δ

Taking expectation over W 1, . . . ,W i−1 we get

E⃗
W

∥∥∥Ψi
W⃗
(x, δ)−Ψi,n

W⃗
(x, δ)

∥∥∥
≤ 2Lδ +

√
2ϵσ(n) + E⃗

W

√
6L2

1− ϵσ(n)

∥∥∥Ψi−1

W⃗
(x, δ)−Ψi−1,n

W⃗
(x, δ)

∥∥∥+ 2λ(n)δ

Jensen inequality
≤ 2Lδ +

√
2ϵσ(n) +

√
6L2

1− ϵσ(n)
E⃗
W

∥∥∥Ψi−1

W⃗
(x, δ)−Ψi−1,n

W⃗
(x, δ)

∥∥∥+ 2λ(n)δ

δ<

√
ϵσ(n)

2L+2λ(n)

≤ 4
√

ϵσ(n) +

√
6L2

1− ϵσ(n)
E⃗
W

∥∥∥Ψi−1

W⃗
(x, δ)−Ψi−1,n

W⃗
(x, δ)

∥∥∥
ϵσ(n)≤ 1

2

≤ 4
√

ϵσ(n) + L

√
12 E⃗

W

∥∥∥Ψi−1

W⃗
(x, δ)−Ψi−1,n

W⃗
(x, δ)

∥∥∥
Induction hypothesis

≤ 4
√

ϵσ(n) + L

√
12 · 12 · (L+ 1)2 · (ϵσ(n))2

−i+1

≤ (L+ 1)

√
12 · 12 · (L+ 1)2 · (ϵσ(n))2

−i+1

= 12 · (L+ 1)2 · (ϵσ(n))2
−i

Lemma 2.12. Fix i, n, δ and ϵ > 0. There is a constant D such that if d1, . . . , di−1 ≥ D then

E⃗
W

∥∥∥Ψi
W⃗
(x)−Ψi

W⃗
(x, δ)

∥∥∥+ E⃗
W

∥∥∥Ψi,n

W⃗
(x, δ)−Ψi,n

W⃗
(x)
∥∥∥ ≤ ϵ

Proof sketch (see Appendix A.7 for the formal proof). Let Bi,δ be the event that for some j < i,
|1− ∥Ψj

W⃗
(x)∥| > δ or |1− ∥Ψj,n

W⃗
(x)∥| > δ. We have

E⃗
W

∥∥∥Ψi
W⃗
(x)−Ψi

W⃗
(x, δ)

∥∥∥ = E⃗
W

[∥∥∥Ψi
W⃗
(x)
∥∥∥ 1Bi,δ

]
≤

√
E⃗
W

[∥∥∥Ψi
W⃗
(x)
∥∥∥2]√Pr(Bi,δ) .

Similarly,

E⃗
W

∥∥∥Ψi,n

W⃗
(x)−Ψi,n

W⃗
(x, δ)

∥∥∥ ≤

√
E⃗
W

[∥∥∥Ψi,n

W⃗
(x)
∥∥∥2]√Pr(Bi,δ) .

Now, the lemma follows by proving that EW⃗

∥∥∥Ψi
W⃗
(x)
∥∥∥2 and EW⃗

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2 are bounded by a

constant (independent of d0, . . . , di), and that for every δ, ϵ′, i and n, there is a constant D such that
if d1, . . . , di−1 ≥ D then Pr(Bi,δ) < ϵ′.
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3 Conclusion and Future work

One of the prominent approaches for explaining the success of neural networks is trying to show
that they are capable of learning complex and “deep” models. So far this approach has relatively
limited success. Despite that significant progress has been made to show that neural networks can
learn shallow models, so far, neural networks were shown to learn only “toy” deep models (e.g.
[21, 2, 10, 31]). Not only that, but there are almost no known rich families of deep models that are
efficiently learnable by some algorithm (not necessarily gradient methods on neural networks). Our
paper suggests that random neural networks might be candidate models. To take this approach further,
a natural next step, and a central open question that arises from our work, is to show the existence
of an algorithm that learns random networks in time that is polynomial both in 1

ϵ and the network
size. This question is already open for depth-two ReLU networks with two hidden neurons. We note
that as implied by [31], such a result, even for a single neuron, will have to go beyond polynomial
approximation of the network, and even more generally, beyond kernel methods.

Our result requires a lower bound D for the network’s width, where D is a constant. We conjecture
that this requirement can be relaxed, and leave it to future work. Additional open directions are:
(i) the analysis of random convolutional networks, (ii) achieving time and sample complexity of
(d̄)O(ϵ−2) for random networks of any constant depth (and not only for depth two), and (iii) finding a
PTAS for random networks of depth ω(1).
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A Missing proofs

A.1 Some Technical Lemmas

Lemma A.1. If σ is L-Lipschitz then σ̂ is L2-Lipschitz in [−1, 1]

Proof. As shown in [14], (σ̂)′ = σ̂′. Hence, for ρ ∈ [−1, 1],

|(σ̂)′(ρ)| =
∣∣∣σ̂′(ρ)

∣∣∣
≤ ∥σ′∥2

≤ L2

Lemma A.2. |hn(x)− hn(x+ y)| ≤ 2n max(|x|, |x+ y|, 1)n|y|

Proof. It is not hard to verify by induction on Eq. (1) that

|hn(x)| ≤ 2n/2 max(1, |x|n)
This implies that for ξ ∈ [x, x+ y]

|hn(x)− hn(x+ y)| = |h′
n(ξ)y|

Eq. (3)
=

√
n|hn−1(ξ)y|

≤
√
n2n/2 max(|x|, |x+ y|, 1)n|y|

≤ 2n max(|x|, |x+ y|, 1)n|y|

A.2 Bounds on ϵσ(n)

By Eq. (3) if σ is differentiable k times then we have σ(k) =
∑∞

i=k

√
i!

(i−k)!aihi−k. Hence, for
k ≤ n+ 1,

ϵσ(n) =

∞∑
i=n+1

a2i ≤ (n+ 1− k)!

(n+ 1)!

∞∑
i=n+1

i!

(i− k)!
a2i ≤ (n+ 1− k)!

(n+ 1)!

∥∥∥σ(k)
∥∥∥2 (7)

Lemma A.3. For any L-Lipschitz σ we have ϵσ(n) ≤ L2

n .

Proof. By Eq. (7) for k = 1 we get

ϵσ(n) ≤
1

n+ 1
∥σ′∥2 ≤ L2

n+ 1

Lemma A.4. For the sigmoid activation σ(x) =
∫ x

0
e−

t2

2 dt we have ϵσ(n) ≤ 2−n.

Proof. We have σ(k)(x) = (−1)k−1
√

(k − 1)!hk−1(x)e
− x2

2 . Indeed, it is not hard to verify it for
k = 1 and k = 2. For k > 2 we have via induction that

σ(k+1)(x) = (−1)k−1
√
(k − 1)!

[
h′
k−1(x)− xhk−1(x)

]
e−

x2

2

Eq. (3)
= (−1)k

√
k!

1√
k

[
xhk−1(x)−

√
k − 1hk−2(x)

]
e−

x2

2

Eq. (1)
= (−1)k

√
k!hk(x)e

− x2

2

Hence, |σ(k)(x)| ≤ |
√
(k − 1)!hk−1(x)|, and now Eq. (7) implies that for any k ≤ n+ 1

ϵσ(n) ≤
(n+ 1− k)!

(n+ 1)!
(k − 1)! =

(n+ 1− k)!k!

(n+ 1)!k
=

1

k
(
n+1
k

)
Taking k =

⌈
n+1
2

⌉
we conclude that ϵσ(n) ≤ 2−n.
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A.3 Proof of Lemma 2.2

Let A be the event that there is an entry in W⃗ that is greater than
∑i

j=0 dj . We have

E⃗
W

∥∥∥Φi,n

W⃗
(x)− Φ̃i,n

W⃗
(x)
∥∥∥ = E

[∥∥∥Φi,n

W⃗
(x)
∥∥∥ · 1A] ≤√E

∥∥∥Φi,n

W⃗
(x)
∥∥∥2√Pr(A)

Now, it is not hard to verify that E
∥∥∥Φi,n

W⃗
(x)
∥∥∥2 is polynomial in

∑i
j=0 dj while Pr(A) con-

verges to 0 exponentially fast in
∑i

j=0 dj . Thus, if min(d1, . . . , di−1) is large enough then

EW⃗

∥∥∥Φi,n

W⃗
(x)− Φ̃i,n

W⃗
(x)
∥∥∥ < ϵ.

A.4 Proof of Lemma 2.3

We assume that Φ̃i,n

W⃗
= Φi,n

W⃗
, as otherwise Φ̃i,n

W⃗
≡ 0, in which case the lemma is clear. Write

σn(x) =
∑n

k=0 bkx
k and hj(x) =

∑j
k=0 cj,kx

k. Via induction on Eq. (1), we have |cj,k| ≤ 2
j
2 .

Hence,

|bk| ≤ 1√∑n
j=0 a

2
j

n∑
j=0

|aj ||cj,k|

≤ 1√∑n
j=0 a

2
j

n∑
j=0

|aj |2
j
2

≤ 1√∑n
j=0 a

2
j

√√√√ n∑
j=0

a2j

√√√√ n∑
j=0

2j

≤ 2
n+1
2

Now, let Mj be the maximal sum of coefficients of any polynomial computed by an output neuron
of Ψj,n

W⃗
. We next show by induction that Mj ≤ (2d̄)2

∑j
k=1 nk

. This will conclude the proof

as it will imply that the sum of the coefficients of the polynomial computed by Φi,n

W⃗
is at most

(2d̄)2Mi−1 ≤ (2d̄)2
∑i−1

k=0 nk ≤ (2d̄)4n
i−1

. For j = 0 we have M0 = 1. For j ≥ 1 we we have

Mj ≤
n∑

k=0

|bk|
(
(d̄)2Mj−1

)k ≤ 2
n+1
2 · 2 ·

(
(d̄)2Mj−1

)n ≤
(
(2d̄)2Mj−1

)n
By the induction hypothesis we have

Mj ≤ (2d̄)2n+2n
∑j−1

k=1 nk

= (2d̄)2
∑j

k=1 nk

A.5 Proof of Lemma 2.4

We have

E
W

∥f(Wx)− g(Wy)∥
Jensen Inequality

≤
√

E
W

∥f(Wx)− g(Wy)∥2

=

√√√√ 1

d2

d2∑
j=1

E
W
(f((Wx)j)− g((Wy)j)2

Now, the lemma follows from the fact that {((Wx)j , (Wy)j)}d2
j=1 are independent centered Gaussian

vectors with covariance matrix
(
∥x∥2 ⟨x,y⟩
⟨x,y⟩ ∥y∥2

)
.
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A.6 Proof of Lemma 2.8

Let PA : Rd → A a function such that for any x ∈ Rd, ∥PA(x) − x∥ = d(x, A). Assume w.l.o.g.
that ∥x1 − PA(x1)∥ ≤ ∥x2 − PA(x2)∥.

Case I: ∥x2 − PA(x2)∥ ≤ ∥x1 − x2∥

Simply define x̃i = PA(xi). We have

∥x1 − x̃1∥ = ∥x1 − PA(x1)∥ , ∥x2 − x̃2∥ = ∥x2 − PA(x2)∥

and
∥x̃1 − x̃2∥ ≤ ∥PA(x1)− x1∥+ ∥x1 − x2∥+ ∥x2 − PA(x2)∥ ≤ 3∥x1 − x2∥

Case II: ∥x1 − x2∥ ≤ ∥x2 − PA(x2)∥

Define x̃1 = x̃2 = PA(x1). We have

∥x1 − x̃1∥ = ∥x1 − PA(x1)∥ , ∥x̃1 − x̃2∥ ≤ 0∥x1 − x2∥

and
∥x2 − x̃2∥ ≤ ∥x2 − x1∥+ ∥x1 − PA(x1)∥ ≤ 2 ∥x2 − PA(x2)∥

A.7 Proof of Lemma 2.12

Let Bi,δ be the event that for some j < i, |1− ∥Ψj

W⃗
(x)∥| > δ or |1− ∥Ψj,n

W⃗
(x)∥| > δ. We have

E⃗
W

∥∥∥Ψi
W⃗
(x)−Ψi

W⃗
(x, δ)

∥∥∥ = E⃗
W

[∥∥∥Ψi
W⃗
(x)
∥∥∥ 1Bi,δ

]
≤

√
E⃗
W

[∥∥∥Ψi
W⃗
(x)
∥∥∥2]√Pr(Bi,δ)

Similarly,

E⃗
W

∥∥∥Ψi,n

W⃗
(x)−Ψi,n

W⃗
(x, δ)

∥∥∥ ≤

√
E⃗
W

[∥∥∥Ψi,n

W⃗
(x)
∥∥∥2]√Pr(Bi,δ)

the lemma now follows from the following two claims.

Claim 1. EW⃗

∥∥∥Ψi
W⃗
(x)
∥∥∥2 and EW⃗

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2 are bounded by a constant (independent of

d0, . . . , di).

Proof. We have

E
W i

∥∥∥Ψi
W⃗
(x)
∥∥∥2 = E

w
σ2
(
w⊤Ψi−1

W⃗
(x)
)

≤ 2σ2(0) + 2L2 E
w

(
w⊤Ψi−1

W⃗
(x)
)2

= 2σ2(0) + 2L2∥Ψi−1

W⃗
(x)∥2

By induction on i, this implies that EW⃗

∥∥∥Ψi
W⃗
(x)
∥∥∥2 is bounded by a constant that depends only on i

and L (but not on d1, . . . , di). For EW⃗

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2 we have

E
W i

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2 = E

w
σ2
n

(
w⊤Ψi−1,n

W⃗
(x)
)

Hence, EW i

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2 is an even polynomial in

∥∥∥Ψi−1,n

W⃗
(x)
∥∥∥ of degree ≤ 2n. The polynomial

depends only on σn. It therefore enough to show that for any i and k, EW⃗

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2k is bounded,
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by a bound that is independent of d0, . . . , di. We will show that via induction on i. For i = 0 this is

trivial as
∥∥∥Ψ0,n

W⃗
(x)
∥∥∥2k ≡ 1. Fix i ≥ 1. We have

E
W i

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2k = E

W i


∑di

j=1 σ
2
n

((
W iΨi−1,n

W⃗
(x)
)
j

)
di


k

Jensen inequality
≤ 1

di
E
W i

di∑
j=1

σ2k
n

((
W iΨi−1,n

W⃗
(x)
)
j

)
= E

w
σ2k
n

(
w⊤Ψi−1,n

W⃗
(x)
)

The last expression is an even polynomial in ∥Ψi−1,n

W⃗
(x)∥. The polynomial depends only on 2k and

n. By the induction hypothesis we conclude that EW⃗

∥∥∥Ψi,n

W⃗
(x)
∥∥∥2k is bounded by a bound that is

independent from d0, . . . , di.

Claim 2. For every δ, ϵ′, i and n, there is a constant D such that if d1, . . . , di−1 ≥ D then
Pr(Bi,δ) < ϵ′.

Proof. We will prove the lemma by induction on i. For i = 1 this is immediate as Pr(Bi,δ) = 0. Fix
i ≥ 2. Let δ′ be small enough so that if |∥x∥ − 1| ≤ δ′ then∣∣∣E

w
σ2(w⊤x)− 1

∣∣∣ < δ

4
and

∣∣∣E
w
σ2
n(w

⊤x)− 1
∣∣∣ < δ

4

and ∣∣∣E
w
σ4(w⊤x)− E

X
σ4(X)

∣∣∣ < 1 and
∣∣∣E
w
σ4
n(w

⊤x)− E
X
σ4
n(X)

∣∣∣ < 1

we have
Pr(Bi,δ) ≤ Pr(Bi,δ|Bc

i−1,δ′) + Pr(Bi−1,δ′)

By Chebyshev inequality, Pr(Bi,δ|Bc
i−1,δ′) < ϵ′

2 for sufficiently large di−1. By the induction
hypothesis, Pr(Bi−1,δ′) <

ϵ′

2 for sufficiently large d1, . . . , di−2
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