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A Notation

Table 1: Notations

Symbol Explanation

n Number of bidders
m Number of items
k Dimensionality of latent space
d Number of types
Di Distribution of bidders i type vector
D̂i Induced noisy representation of Di

D̂z,i Distribution of latent vector type of bidder i
ti ∈ Rd Type vector of bidder i
zi ∈ Rk Sample from D̂z,i of bidder i
A ∈ Rd×k Design matrix of archetypes
Q(ti) = z̃i ∈ Rk Output of query protocol under true type ti
ϵmdl,p ∈ Rd Modeling vector noise
εmdl,p > 0 Upper bound on ∥ϵmdl,p∥p
ϵnq,p ∈ Rd Query vector noise
εnq,p ≥ 0 Upper bound on ∥ϵnq,p∥p
vi(·, ·) Valuation function
M Mechanism
x(·) Allocation rule
p(·) Payment rule
Rev(M,D) Expected revenue of mechanism M under type distribu-

tions D
πP (·, ·) Prokhorov distance of two probability measures
γ A coupling between two probability measures
vAi (zi, S) vi(Azi, S)
L Lipschitz constant of valuation function
⌊F ⌋λ,δ Rounded down distribution
r(λ,δ)(x) Rounding down mapping function where δ is a parameter

chosen by the designer
supp(F ) Support of probability distribution F
ρℓ Total TV distance of rounded down distributions
ui(ti ← bi, t−i) Change in utility of bidder i when bidder reports bi instead

of ti and the remaining bidders bid t−i

B Proof of Theorem 3

Proof of Theorem 3. For arbitrary valuation functions, d = 2m, and each type ti represents the
valuation of bidder i for all possible bundles of items. Since we can ask queries of the form “What
is your value for subset S?”, in Theorem 1, we have that εnq,p = 0. Thus from Theorem 1 with

probability at least 1 − δ we have a
(
εmdl,p,

cpεmdl,p
σmin,p(A)

, p

)
-query protocol that communicates

once with the bidders and asks a total of sp queries. Where s1 = s2 = O (k · ln k · ln n/δ) and
sp = O

(
kp/2 · ln3 k · ln n/δ

)
. Combining this observation with Theorem 2 proves the theorem.

C The Mechanism Design Component

The main goal of this section is to prove Theorem 2. In order to establish the theorem, we use the
following key lemma, which essentially establishes the robustness guarantees described in Theorem 2,
but in the space of latent types.
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Lemma 2. Let A ∈ Rd×k be a design matrix. Suppose there exists a collection of distributions over
latent types {F̂z,i}i∈[n], where the support of each F̂z,i lies in [0, 1]k, and a mechanism M̂ that is IR
and BIC w.r.t. F̂z = ×n

i=1F̂z,i and valuations {vAi }i∈[n], where each vi is an L-Lipschitz valuation.
Let Fz = ×n

i=1Fz,i be any distribution such that πp(Fz,i, F̂z,i) ≤ ζp for all i ∈ [n]. Given query
access to M̂ (as defined in Definition 6), and sampling access to F̂z (as defined in Definition 7), we
can construct a mechanism M̃ such that the following hold: (i) M̃ is IR and (η, µ)-BIC w.r.t. Fz , and
(ii) the expected revenue of M̃ is Rev(M̃,Fz) ≥ Rev(M̂, F̂z)−O(nη), where µ = O(ζp+ δ k1/p)

and η = O
(
kL∥A∥∞

(
δ + n

(
1 + k1−1/p

δ

)
ζp

))
, for all δ > 0.

The proof of Lemma 2 is quite involved and will be the main focus of the subsequent analysis. Before
proving Lemma 2, we will show that it is sufficient to prove our main result, Theorem 2.

Proof of Theorem 2. Let ti be the type of bidder i, and zi be a random variable distributed according
to D̂z,i. We know that πp(Di,A ◦ D̂i) ≤ εmdl,p ≤ ζp. Due to Lemma 1, there exists a coupling such
that with probability greater than 1− ζp, ∥ti −Azi∥p ≤ ζp. Since the seller uses a (εmdl,p, ζp, p)-
query protocol, with probability at least 1− ζp, ∥Q(ti)− zi∥p ≤ ζp. Note that, this implies that zi
and Q(ti) are distributed such that their Prokhorov distance is at most ζp.

We now invoke Lemma 2 by setting Fz,i to be distributed as Q(ti), F̂z,i to be distributed as D̂z,i,
and δ =

√
ζp. We run the resultant mechanism, M̃, on types Q(t1), . . . ,Q(tn), obtained by

interacting with the bidders via the query protocol. With probability at least 1 − ζp, we have that
∥ti − Azi∥∞ ≤ ∥ti − Azi∥p ≤ εmdl,p and thus, using the fact that the query protocol ensures
∥Q(ti) − zi∥p ≤ ζp as well, we have ∥ti −AQ(ti)∥∞ ≤ εmdl,p + k∥A∥∞ζp. Note that M̃ is a
(η, µ)-BIC mechanism w.r.t. ×i∈[n]Fz,i, with η = O(n∥A∥∞L

√
ζp) and µ =

√
ζp. Therefore,

conditioned on the aforementioned scenario having probability at least 1− ζp, with probability at
least 1− µ, deviating from interacting with Q truthfully can increase the expected utility by at most
O(L(εmdl,p + k∥A∥∞ζp) + η) = O(η), and bidders can improve their utility by deviating with
probability less than εmdl,p ≤ ζp, i.e., with probability at most 1−(1−ζp)(1−µ) = O(ζp+µ) = O(µ).
Hence, the overall mechanism is (η, µ)-BIC w.r.t. D, as well as IR (since M̃ is IR). The revenue
guarantee is immediate. This concludes the proof.

C.1 Proof of Lemma 2

For the remainder of this section, we use the following notation, where all distributions of an agent i
are supported on [0, 1]k: F̂z = ×i∈[n]F̂z,i,

⌊
F̂z

⌋
ℓ,δ

= ×i∈[n]

⌊
F̂z,i

⌋
ℓ,δ

, ⌊Fz⌋ℓ,δ = ×i∈[n] ⌊Fz,i⌋ℓ,δ ,

and Fz = ×i∈[n]Fz,i. We follow an approach similar to Brustle et al. [BCD20]. The main idea is that
arguing directly about mechanisms for distributions that are close in Prokhorov distance is difficult.
On the flip side, arguing about mechanisms for distributions that are close in total variation distance
is much easier, since the total variation is a more stringent — and hence more well-behaved — notion
of distance. The key observation here is that if two distributions are close in Prokhorov distance then,
in expectation, their rounded-down versions will also be close in total variation distance, where the
expectation is taken over the randomness of parameter ℓ.

Our overall construction of the mechanism M̃ (of Lemma 2) is via three reductions. For ease of
presentation, we defer some proofs (and spefically, the proofs for Lemmas 3, 4 and 5, to Appendix C.2.
First, in Lemma 3, given a mechanism for F̂z we design a mechanism for the rounded-down version.

Lemma 3. Given query access to a mechanismM that is IR and BIC w.r.t. F̂z , and a sampling
algorithm Si for each i ∈ [n], where Si(x, δ) draws a sample from the conditional distribution of
F̂z,i on the k-dimensional cube ×j∈[k][xj , xj + δj), we can construct a mechanismMℓ

1, oblivious

to F̂ , that is IR and O(k∥A∥∞Lδ)-BIC w.r.t.
⌊
F̂z

⌋
ℓ,δ

. Furthermore,

Rev

(
Mℓ

1,
⌊
F̂z

⌋
ℓ,δ

)
≥ Rev(M, F̂z)−O(kn∥A∥∞Lδ).
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Second, in Lemma 4, given a mechanism for
⌊
F̂z

⌋
ℓ,δ

we design a mechanism for ⌊Fz⌋ℓ,δ, which

maintains its guarantees if πp(Fz, F̂z) is small.

Lemma 4. Let
⌊
F̂z

⌋
ℓ,δ

and ⌊Fz⌋ℓ,δ be distributions such that, for all i ∈ [n], it holds that (1)

∥
⌊
F̂z,i

⌋
ℓ,δ
− ⌊Fz,i⌋ℓ,δ ∥TV ≤ εℓi , and (2) πp

(
F̂z,i,Fz,i

)
≤ ζp. Then, letting ρℓ :=

∑
i ε

ℓ
i , given

a mechanismMℓ
1 that is IR and η-BIC w.r.t

⌊
F̂z

⌋
ℓ,δ

we can construct a mechanismMℓ
2 that is IR,(

O(kL∥A∥∞ρℓ + k
(
ζp + δ · k1/p

)
∥A∥∞L+ η), ζp + δk1/p

)
-BIC w.r.t. ⌊Fz⌋ℓ,δ . Furthermore:

Rev
(
Mℓ

2, ⌊Fz⌋ℓ,δ
)
≥ Rev

(
Mℓ

1,
⌊
F̂z

⌋
ℓ,δ

)
− nkL∥A∥∞ρℓ − nk(ζp + δk1/p)∥A∥∞L.

Third, in Lemma 5, given a mechanism for ⌊Fz⌋ℓ,δ we design a mechanism for Fz .

Lemma 5. Given a mechanismMℓ
2 that is IR and (η, µ)-BIC w.r.t. ⌊Fz⌋ℓ,δ, we can construct a

mechanism Mℓ that is IR and (3kL∥A∥∞δ + η, µ)-BIC w.r.t. Fz . Moreover, Rev
(
Mℓ,Fz

)
≥

Rev
(
Mℓ

2, ⌊Fz⌋ℓ,δ
)
− nkL∥A∥∞δ.

With all the prerequisite technical lemmas at hand, we finally prove Lemma 2.

Proof of Lemma 2. The mechanism M̃ simply operates as follows: (i) ℓ is sampled uniformly from
the interval [0, δ] (i.e., ℓ ∼ U [0, δ]) and (ii) the mechanismMℓ of Lemma 5 is run on the input
bids. Specifically, M̃ calls mechanismMℓ of Lemma 5, which calls mechanismMℓ

2 of Lemma 4,
which calls mechanismMℓ

1 of Lemma 3, which calls M̂ which is IR and BIC w.r.t. F̂ . In order to
invoke Lemma 4 we need a bound on the TV distance between

⌊
F̂z,i

⌋
ℓ,δ

and ⌊Fz,i⌋ℓ,δ. We use the

following lemma (whose proof can be found in Appendix C.2).

Lemma 6. Let Fz and F̂z be two distributions supported on Rk such that πp(Fz, F̂z) ≤ ε. For any

δ > 0, Eℓ∼U [0,δ]k

[
∥ ⌊Fz⌋ℓ,δ −

⌊
F̂z

⌋
ℓ,δ
∥TV

]
≤

(
1 + k1−1/p

δ

)
ε.

Letting ρℓ =
∑

i ε
ℓ
i , where ∥

⌊
F̂z,i

⌋
ℓ,δ
−⌊Fz,i⌋ℓ,δ ∥TV ≤ εℓi , Lemma 6 implies that Eℓ∼U [0,δ]

[
ρℓ
]
≤

n
(
1 + k1−1/p

δ

)
ζp, allowing us to invoke Lemma 4. The IR guarantee for M̃ is immediate. For the

BIC guarantee, there is a trade-off in choosing δ: Eℓ∼U [0,δ]

[
ρℓ
]

has a term inversely proportional to δ,
while the BIC guarantees of Lemma 4 and Lemma 3 have a term proportional to δ. We set δ =

√
ζp

to strike a balance between these terms. Combining the BIC and revenue guarantees of Lemma 3,
Lemma 4, and Lemma 5, and using the fact that k is a constant, we get that M̃ is a (η, µ)-BIC and
IR w.r.t. F where µ = O(ζp + δ · k1/p) and η = O

(
kL∥A∥∞

(
δ + n ·

(
1 + k1−1/p

δ

)
· ζp

))
and

Rev(M̃,F) ≥ Rev(M̂, F̂)−O(nη).

C.2 Proofs of Lemma 3, 4, 5, and 6

The following proposition will be useful in multiple proofs throughout this section.
Proposition 1. If vi is a L-Lipschitz valuation function, then vAi is a k∥A∥∞L-Lipschitz valuation
function.

Proof. The statement follows from the fact that vAi (z) = vi(Az), where z ∈ [0, 1]k and vi is
L-Lipschitz.

Lemma 3. Given query access to a mechanismM that is IR and BIC w.r.t. F̂z , and a sampling
algorithm Si for each i ∈ [n], where Si(x, δ) draws a sample from the conditional distribution of
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F̂z,i on the k-dimensional cube ×j∈[k][xj , xj + δj), we can construct a mechanismMℓ
1, oblivious

to F̂ , that is IR and O(k∥A∥∞Lδ)-BIC w.r.t.
⌊
F̂z

⌋
ℓ,δ

. Furthermore,

Rev

(
Mℓ

1,
⌊
F̂z

⌋
ℓ,δ

)
≥ Rev(M, F̂z)−O(kn∥A∥∞Lδ).

Proof. Let x be the allocation rule and p be the payment rule ofM. We constructMℓ
1 as follows.

Upon receiving bids {wi}i∈[n] we first query Si for each bidder i to get w′
i = Si(wi, β(wi)) where

βj(wi) = δ if wi,j ̸= 0 and βj(wi) = ℓj otherwise. Then, each bidder i gets allocated items xi(w
′)

and pays max{0, pi(w′)− k∥A∥∞Lδ}.
We first prove that this mechanism is IR. Note that, by definition of wi, we have ∥wi −w′

i∥∞ ≤ δ
for each i ∈ [n]. Since M is IR then we know that for all bids t−i of other bidders,
vAi (w′

i,M(w′
i, t−i)) − pi(w

′
i, t−i) = ui(w

′
i,M(w′

i, t−i)) ≥ 0. This gives us the required in-
equality since,

0 ≤ vAi (w′
i,M(w′

i, t−i))− pi(w
′
i, t−i)

= vAi (w′
i,M(w′

i, t−i))− k∥A∥∞Lδ − (pi(w
′
i, t−i)− k∥A∥∞Lδ)

≤ vAi (wi,M(w′
i, t−i)). (via Proposition 1)

We now prove that the mechanism is O(k∥A∥∞Lδ)-BIC. From the point of view of bidder i the
types of the other bidders are drawn from (F̂z)−i (i.e. w′

−i ∼ (F̂z)−i). From the fact thatM is BIC
w.r.t. F̂z we have the following:

E
w′

−i∼(F̂z)−i

[
ui(wi,M(w′

i,w
′
−i))

]
≥ E

w′
−i∼(F̂z)−i

[
ui(w

′
i,M(w′

i,w
′
−i))

]
− k∥A∥∞Lδ

≥ max
x∈supp(F̂z,i)

E
w′

−i∼(F̂z)−i

[
ui(w

′
i,M(x,w′

−i))
]
− k∥A∥∞Lδ

≥ max
x∈supp(F̂z,i)

E
w′

−i∼(F̂z)−i

[
ui(wi,M(x,w′

−i))
]
− 2k∥A∥∞Lδ.

(5)

The first and the third inequalities above follow from Proposition 1. Thus if i could pick the type
exactly w′

i as she pleased, she could not possibly make more than 2k∥A∥∞Lδ. However she

must pick a bi ∈ supp

(⌊
F̂z,i

⌋
ℓ,δ

)
, which gets rounded to b′

i = Si(bi, β(bi)). Specifically,

b′
i ∼ F̂z,i| ×j∈[k] [bi,j , bi,j + βj(bi)); for notational simplicity, we will simply denote this as

b′
i ∼ Si(bi, β(bi)). Bidder i’s utility when she reports bid bi ∈ supp

(⌊
F̂z,i

⌋
ℓ,δ

)
can be bounded

using the following observation.

E
b′

i∼Si(bi,β(bi))

[
ui(wi,M(b′

i,w
′
−i))

]
= E

b′
i∼Si(bi,β(bi))

[
E

w′
−i∼(F̂z)−i

[
ui(wi,M(b′

i,w
′
−i))

]]

≤ max
x∈supp(F̂z,i)

[
E

w′
−i∼(F̂z)−i

[
ui(wi,M(x,w′

−i))
]]

.

(6)

On combining inequalities (5) and (6), we get that our new mechanism is 2k∥A∥∞Lδ-BIC w.r.t.
×i∈[m]

⌊
F̂z,i

⌋
ℓ,δ

. Finally, note that under truthful bidding this mechanism extracts revenue at

least Rev(M, F̂z)−O(kn∥A∥∞Lδ) since w′ is essentially drawn from F̂z and each bidder gets a
discount of k∥A∥∞Lδ.
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Lemma 4. Let
⌊
F̂z

⌋
ℓ,δ

and ⌊Fz⌋ℓ,δ be distributions such that, for all i ∈ [n], it holds that (1)

∥
⌊
F̂z,i

⌋
ℓ,δ
− ⌊Fz,i⌋ℓ,δ ∥TV ≤ εℓi , and (2) πp

(
F̂z,i,Fz,i

)
≤ ζp. Then, letting ρℓ :=

∑
i ε

ℓ
i , given

a mechanismMℓ
1 that is IR and η-BIC w.r.t

⌊
F̂z

⌋
ℓ,δ

we can construct a mechanismMℓ
2 that is IR,(

O(kL∥A∥∞ρℓ + k
(
ζp + δ · k1/p

)
∥A∥∞L+ η), ζp + δk1/p

)
-BIC w.r.t. ⌊Fz⌋ℓ,δ . Furthermore:

Rev
(
Mℓ

2, ⌊Fz⌋ℓ,δ
)
≥ Rev

(
Mℓ

1,
⌊
F̂z

⌋
ℓ,δ

)
− nkL∥A∥∞ρℓ − nk(ζp + δk1/p)∥A∥∞L.

Proof. We will construct Mℓ
2 as follows. For every input bid w ∈ supp

(
×i∈[n] ⌊Fz,i⌋ℓ,δ

)
, we

first find, for each i ∈ [n], the closest point in ℓp norm distance that is in
⌊
F̂z,i

⌋
ℓ,δ

; let w′
i =

argmin
x∈supp

(
⌊F̂z,i⌋

ℓ,δ

) ∥w − x∥p be this point. Notice here, that we assume that we can calculate

the above expression exactly. However, according to Definition 7 we can actually compute ŵi =
argminx∈supp(F̂z,i) ∥w − x∥p. For the sake of simplicity, we continue the analysis as if we could

calculate the desired expression. However, we can set w′
i = r(ℓ,δ)(ŵi) (as defined in Definition 8)

and the following proposition implies that we only lose a small factor of 2δk
1+p
p ∥A∥∞L in the BIC

guarantee and a 2nδk
1+p
p ∥A∥∞L factor in the revenue guarantee. In the following proposition and

for the rest of our analysis we use the notation ∥x−A∥p to denote the distance of a vector x to the
closest vector in a set of vectors A, i.e., ∥x−A∥p := miny∈A ∥x− y∥p.

Proposition 2. Let B be a probability distributions supported on [0, 1]k. Then for any x and

w = argminz∈supp(B) ∥x−z∥p we have that ∥x− r(ℓ,δ)(w)∥p ≤ 2k1/pδ+ ∥x− supp
(
⌊B⌋ℓ,δ

)
∥p.

Proof. For any x we have that ∥x− r(ℓ,δ)(x)∥p ≤ k1/pδ. Then, by using the triangle inequality for
the ℓp-norm and chaining the resulting inequalities, the proposition is implied.

After finding w′, we then runMℓ
1 on w′ giving a discount to each bidder, and at the same time making

sure that the IR constraint is not violated. Let x(·) and p(·) be the allocation and payment rules ofMℓ
1.

For each i ∈ [n] we do the following: if ∥wi−w′
i∥p ≤

(
ζp + δ · k1/p

)
, bidder i will receive allocation

xi (w
′) and pay max{p̂i(w′), 0} where p̂i(w

′) := pi(w
′)− k

(
ζp + δ · k1/p

)
∥A∥∞L. Otherwise,

if ∥wi − w′
i∥p >

(
ζp + δ · k1/p

)
, she will receive nothing and pays nothing. By construction, and

using Proposition 1, mechanismMℓ
2 is IR.

Next, we show thatMℓ
2 is

(
O(kL∥A∥∞ζp + k

(
ζp + δ · k1/p

)
∥A∥∞L+ η), ζp + δk1/p

)
-BIC w.r.t.

⌊Fz⌋ℓ,δ. As a first step, we prove thatMℓ
2 is O(k

(
ζp + δ · k1/p

)
∥A∥∞L+ η)-BIC w.r.t.

⌊
F̂z

⌋
ℓ,δ

.

Recall thatMℓ
1 is η-BIC w.r.t. to

⌊
F̂z

⌋
ℓ,δ

, i.e., for all bidders i, latent types ti, t′i we have,

E
b−i∼⌊(F̂z)−i⌋

ℓ,δ

[
ui(ti,Mℓ

1(ti,b−i))
]
≥ E

b−i∼⌊(F̂z)−i⌋
ℓ,δ

[
ui(ti,Mℓ

1(t
′
i,b−i))

]
− η.

This further implies that

E
b−i∼⌊(F̂z)−i⌋

ℓ,δ

[
ui(ti,Mℓ

1(ti,b−i)) + k
(
ζp + δ · k1/p

)
∥A∥∞L

]
≥ E

b−i∼⌊(F̂z)−i⌋
ℓ,δ

[
ui(ti,Mℓ

1(t
′
i,b−i)) + k

(
ζp + δ · k1/p

)
∥A∥∞L

]
− η

= E
b−i∼⌊(F̂z)−i⌋

ℓ,δ

[
vAi (ti, xi(t

′
i,b−i))− pi(t

′
i,b−i) + k

(
ζp + δ · k1/p

)
∥A∥∞L

]
− η

> E
b−i∼⌊(F̂z)−i⌋

ℓ,δ

[
vAi (ti, xi(t

′
i,b−i))−max{p̂i(t′i,b−i), 0}

]
− η. (7)
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Additionally, using the fact that x = max{x, 0}+min{x, 0} for all x ∈ R, we can upper bound the
left-hand side to obtain,

E
b−i∼⌊(F̂z)−i⌋

ℓ,δ

[
vAi (ti, xi(ti,b−i))− pi(ti,b−i) + k

(
ζp + δ · k1/p

)
∥A∥∞L

]
= E

b−i∼⌊(F̂z)−i⌋
ℓ,δ

[
vAi (ti, xi(ti,b−i))−max{p̂i(t′i,b−i), 0} −min{p̂i(t′i,b−i), 0}

]
≤ E

b−i∼⌊(F̂z)−i⌋
ℓ,δ

[
vAi (ti, xi(ti,b−i))−max{p̂i(t′i,b−i), 0}

]
+ k

(
ζp + δ · k1/p

)
∥A∥∞L.

(8)

Combining inequalities (7) and (8), gives us the required inequality for the first step, i.e. thatMℓ
2 is

O(k
(
ζp + δ · k1/p

)
∥A∥∞L+ η)-BIC w.r.t.

⌊
F̂z

⌋
ℓ,δ

.

For the second step, we define, for types ti, t−i, and bi, the following auxiliary function
ui(ti ← bi, t−i) := ui

(
ti,Mℓ

2(ti, t−i)
)
−ui

(
ti,Mℓ

2(bi, t−i)
)
. In other words ui(ti ← bi, t−i)

simply represents the difference in utility of i when he reports his true type ti as compared to
bi to the mechanism Mℓ

2. Due to the Lipschitz continuity of valuation functions and the fact
that Mℓ

2 is IR, we get that for all choices of i, ti,bi, t−i we must have ui(ti,Mℓ
2(bi, t−i)) ∈

[−kL∥A∥∞, kL∥A∥∞]. Specifically, this follows from the following two observations: first,
vAi (0,Mℓ

2(bi, t−i)) = 0, thus due to Lipschitz continuity of vAi and the fact that ti ∈ [0, 1]k,
we have vAi (t,Mℓ

2(bi, t−i)) ≤ kL∥A∥∞, and second, that the payments inMℓ
2 are upper bounded

by the maximum utility sinceMℓ
2 is IR. Therefore, −2kL∥A∥∞ ≤ ui(ti ← bi, t−i) ≤ 2kL∥A∥∞,

or equivalently, for all x−i,y−i we have that E [ui(ti ← bi,x−i)] − E [ui(ti ← bi,y−i)] ≤
4kL∥A∥∞1{x−i ̸= y−i}, where the expectation is taken over the randomness of the mechanism.
This implies that for any coupling γ of

⌊
(F̂z)−i

⌋
ℓ,δ

, ⌊(Fz)−i⌋ℓ,δ — and in particular for the coupling

γ∗ = argminγ E(x−i,y−i)∼γ [1{x−i ̸= y−i}] — we have that,

E
(x−i,y−i)∼γ∗

[ui(ti ← bi,x−i)− ui(ti ← bi,y−i)] ≤ 4kL∥A∥∞ E
(x−i,y−i)∼γ∗

[1{x−i ̸= y−i}]

≤ 4kL∥A∥∞ ∥
⌊
(F̂z)−i

⌋
ℓ,δ
− ⌊(Fz)−i⌋ℓ,δ ∥TV

≤ 4kL∥A∥∞ ρℓ,

where the final inequality follows from the fact that ∥
⌊
(F̂z)−i

⌋
ℓ,δ
− ⌊(Fz)−i⌋ℓ,δ ∥TV ≤

∥
⌊
F̂z

⌋
ℓ,δ
− ⌊Fz⌋ℓ,δ ∥TV ≤

∑
i ε

ℓ
i = ρℓ. Note that the left hand side can be simplified as

E(x−i,y−i)∼γ∗ [ui(ti ← bi,x−i)− ui(ti ← bi,y−i)] = Ex−i∼⌊(F̂z)−i⌋
ℓ,δ

[ui(ti ← bi,x−i)]−

Ey−i∼⌊(Fz)−i⌋ℓ,δ [ui(ti ← bi,y−i)], and therefore, rearranging give us,

E
y−i∼⌊(Fz)−i⌋ℓ,δ

[
ui

(
ti,Mℓ

2(ti,y−i)
)]
− E

y−i∼⌊(Fz)−i⌋ℓ,δ

[
ui

(
ti,Mℓ

2(bi,y−i)
)]

= E
y−i∼⌊(Fz)−i⌋ℓ,δ

[ui(ti ← bi,y−i)]

≥ E
x−i∼⌊(F̂z)−i⌋

ℓ,δ

[ui(ti ← bi,x−i)]− 4kL∥A∥∞ρℓ. (9)

As the final step of establishing the BIC guarantee of Mℓ
2, we lower bound

Ex−i∼⌊(F̂z)−i⌋
ℓ,δ

[ui(ti ← bi,x−i)]. Note that Mℓ
2 maps the reported bids to the closest

point in supp

(⌊
F̂z

⌋
ℓ,δ

)
, and hence, without loss of generality we can assume that when bidders

misreport they choose a bid bi ∈ supp

(⌊
F̂z

⌋
ℓ,δ

)
. Letting t∗i = argmin

x∈supp
(
⌊F̂z,i⌋

ℓ,δ

) ∥ti−x∥p
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and λ = ∥ti − supp

(⌊
F̂z

⌋
ℓ,δ

)
∥p, we have that,

E
x−i∼⌊(F̂z)−i⌋

ℓ,δ

[ui(ti ← bi,x−i)] = E
x−i∼⌊(F̂z)−i⌋

ℓ,δ

[
ui

(
ti,Mℓ

2(ti,x−i)
)
− ui

(
ti,Mℓ

2(bi,x−i)
)]

= E
x−i∼⌊(F̂z)−i⌋

ℓ,δ

[
ui

(
ti,Mℓ

2(t
∗
i ,x−i)

)
− ui

(
ti,Mℓ

2(bi,x−i)
)]

≥ E
x−i∼⌊(F̂z)−i⌋

ℓ,δ

[
ui

(
t∗i ,Mℓ

2(t
∗
i ,x−i)

)
− ui

(
t∗i ,Mℓ

2(bi,x−i)
)]
− 2kL∥A∥∞λ.

To complete the argument, we use the following two propositions.

Proposition 3. Let B and B′ be two probability distributions supported on [0, 1]k for which

πp(B,B′) ≤ ε. Then it must be true that πp

(
⌊B⌋ℓ,δ , ⌊B′⌋ℓ,δ

)
≤ ε+ δ · k1/p.

Proof. Intuitively, the proposition follows since two probability masses, when rounded, will
move at most by an additive factor of δ · k1/p in the ℓp norm distance compared to each
other. Formally, since πP (B,B′) ≤ ε from Lemma 1 we know that there exist coupling γ of
B,B′ such that P(x,y)∼γ [∥x− y∥p > ε] ≤ ε. From the definition of rounding, we know that

∥r(ℓ,δ)(x)− r(ℓ,δ)(y)∥p ≤ ∥x− y +
−→
δ ∥p ≤ ∥x− y∥p + δ∥−→1 ∥p = ∥x− y∥p + δ · k1/p. Therefore,

for the same coupling γ we have that,

P
(x,y)∼γ

[
∥r(ℓ,δ)(x)− r(ℓ,δ)(y)∥p > ε+ δ · k1/p

]
≤ P

(x,y)∼γ

[
∥x− y∥p + δ · k1/p > ε+ δ · k1/p

]
≤ ε ≤ ε+ δ · k1/p.

Proposition 4. Let B and B′ be two probability distributions supported on [0, 1]k for which
πp(B,B′) ≤ ε. Then it must be true that Px∼B [∥x− supp(B′)∥p > ε] ≤ ε.

Proof. Using Lemma 1 we know that there exist coupling γ of B,B′ such that
P(x,y)∼γ [∥x− y∥p > ε] ≤ ε. This directly gives us the required inequality,
Px∼B [∥x− supp(B′)∥p > ε] ≤ Px∼B,y∼γ|x [∥x− y∥p > ε] = P(x,y)∼γ [∥x− y∥p > ε] ≤ ε.

First, as previously shown, our mechanism Mℓ
2 is a k

(
ζp + δ · k1/p

)
∥A∥∞L + η-BIC w.r.t.

×i∈[n]

⌊
F̂z,i

⌋
ℓ,δ

. Therefore, for every i, ti, and bi we have Et−i∼⌊(F̂z)−i⌋
ℓ,δ

[ui(ti ← bi, t−i)] ≥

−k
(
ζp + δ · k1/p

)
∥A∥∞L − η. Second, we know that πp

(
F̂z,i,Fz,i

)
≤ ζp, and hence via Propo-

sition 3, we have πp

(⌊
F̂z,i

⌋
ℓ,δ

, ⌊Fz,i⌋ℓ,δ

)
≤ ζp + δ · k1/p. Hence, by invoking Proposition 4, we

get that λ = ∥ti − supp

(⌊
F̂z

⌋
ℓ,δ

)
∥p ≤ ζp + δ · k1/p with probability at least 1 − ζp − δ · k1/p.

Using these two observations we get that,

E
t−i∼⌊(F̂z)−i⌋

ℓ,δ

[ui(ti ← bi, t−i)] ≥ −k
(
ζp + δ · k1/p

)
∥A∥∞L − η − 2kλ∥A∥∞L

≥ −3k
(
ζp + δ · k1/p

)
∥A∥∞L − η.

On combining this with Eq. (9), we get that with probability at least 1− ζp − δ · k1/p,

E
x−i∼⌊(Fz)−i⌋ℓ,δ

[
ui

(
ti,Mℓ

2(ti,x−i)
)]
− E

x−i∼⌊(Fz)−i⌋ℓ,δ

[
ui

(
ti,Mℓ

2(bi,x−i)
)]

≥ −3k
(
ζp + δ · k1/p

)
∥A∥∞L − kL∥A∥∞ρℓ − η.
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That is,Mℓ
2 is

(
O(kL∥A∥∞ρℓ + k

(
ζp + δ · k1/p

)
∥A∥∞L+ η), ζp + δk1/p

)
-BIC w.r.t. ⌊Fz⌋ℓ,δ .

Finally, we prove the revenue guarantee of Mℓ
2. Since our mechanism operates by offer-

ing a discount of k
(
ζp + δ · k1/p

)
∥A∥∞L to each bidder, we have Rev

(
Mℓ

2,
⌊
F̂z

⌋
ℓ,δ

)
≥

Rev

(
Mℓ

1,
⌊
F̂z

⌋
ℓ,δ

)
− nk(ζp + δk1/p)∥A∥∞L. Next, we consider the following two cases. Let

t ∼ ⌊Fz⌋ℓ,δ and t̂ ∼
⌊
F̂z

⌋
ℓ,δ

. If t = t̂, mechanism Mℓ
2 will produce the same revenue. Oth-

erwise, if t ̸= t̂ one instance can extract at most nkL∥A∥∞ more revenue than the other. Since
∥
⌊
F̂
⌋
ℓ,δ
− ⌊F⌋ℓ,δ ∥TV ≤

∑
i ε

ℓ
i = ρℓ, from the characterization of TV distance [LPW09]10 we

know that there exists a coupling such that t ̸= t̂ with probability less than ρℓ. This gives us the
desired bound on revenue:

Rev
(
Mℓ

2, ⌊Fz⌋ℓ,δ
)
≥ Rev

(
Mℓ

2,
⌊
F̂z

⌋
ℓ,δ

)
− nkL∥A∥∞ρℓ

≥ Rev

(
Mℓ

1,
⌊
F̂z

⌋
ℓ,δ

)
− nkL∥A∥∞ρℓ − nk(ζp + δk1/p)∥A∥∞L.

Lemma 5. Given a mechanismMℓ
2 that is IR and (η, µ)-BIC w.r.t. ⌊Fz⌋ℓ,δ, we can construct a

mechanism Mℓ that is IR and (3kL∥A∥∞δ + η, µ)-BIC w.r.t. Fz . Moreover, Rev
(
Mℓ,Fz

)
≥

Rev
(
Mℓ

2, ⌊Fz⌋ℓ,δ
)
− nkL∥A∥∞δ.

Proof. Let x be the allocation rule and p be the payment rule ofMℓ
2. The mechanismMℓ operates as

follows: given the input bid wi of each i, we first construct w′
i = r(ℓ,δ)(wi), and then we allocate to

bidder i, the items xi(w
′) and make him pay max{pi(w′)− k∥A∥∞Lδ, 0}. Note that if wi ∼ Fz,i

then w′
i ∼ ⌊Fz,i⌋ℓ,δ .

We first argue that the mechanism is (3kL∥A∥∞δ + η, µ)-BIC wrt Fz .

E
t−i∼(Fz)−i

[
ui(wi,Mℓ(wi, t−i))

]
≥ E

t′−i∼⌊(Fz)−i⌋ℓ,δ

[
ui(wi,Mℓ

2(w
′
i, t

′
−i))

]
≥ E

t′−i∼⌊(Fz)−i⌋ℓ,δ

[
ui(w

′
i,Mℓ

2(w
′
i, t

′
−i))

]
− k∥A∥∞Lδ.

The first inequality follows from the definition of the mechanismMℓ
2 and the last inequality follows

from the fact that ∥w′
i −wi∥∞ ≤ δ. Towards completing the proof of the BIC guarantee, we will

now lower bound the right-hand side. To this end, note that the mechanismMℓ
2 is (η, µ)-BIC, i.e.,

with probability at least 1− µ, for any bi ∈ supp(Fz,i) we have,

E
t′−i∼⌊(Fz)−i⌋ℓ,δ

[
ui(w

′
i,Mℓ

2(w
′
i, t

′
−i))

]
− k∥A∥∞Lδ

≥ E
t′−i∼⌊(Fz)−i⌋ℓ,δ

[
ui(w

′
i,Mℓ

2(r
(ℓ,δ)(bi), t

′
−i))

]
− η − k∥A∥∞Lδ

≥ E
t′−i∼⌊(Fz)−i⌋ℓ,δ

[
ui(wi,Mℓ

2(r
(ℓ,δ)(bi), t

′
−i))

]
− η − 2k∥A∥∞Lδ

≥ E
t−i∼(Fz)−i

[
ui(wi,Mℓ(r(ℓ,δ)(bi), t−i))

]
− η − 3k∥A∥∞Lδ

= E
t−i∼(Fz)−i

[
ui(wi,Mℓ(bi, t−i))

]
− η − 3k∥A∥∞Lδ,

10That is, ∥X−Y ∥TV = minγ P(X,Y )∼γ [X ̸= Y ], where γ is the minimum over all couplings of X and Y .
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The second inequality follows from the fact that ∥w′
i−wi∥∞ ≤ δ and the last is due to the definition

of the mechanismMℓ.

We now argue that the mechanismMℓ is IR. To establish this, we only need to check instances where
pi(w

′) ̸= 0; if pi(w′) = 0, then the mechanism is trivially IR. Using the fact thatMℓ
2 is IR and

∥wi −w′
i∥p ≤ δ, we have that

0 ≤ ui

(
w′

i,
(
Mℓ

2(w
′
i,w

′
−i)

))
= vAi

(
w′

i,
(
Mℓ

2(w
′
i,w

′
−i)

))
− pi(w

′
i,w

′
−i)

≤ vAi
(
wi,

(
Mℓ

2(w
′
i,w

′
−i)

))
− pi(w

′
i,w

′
−i) + k∥A∥∞Lδ

= ui

(
wi,

(
Mℓ(wi,w

′
−i)

))
.

Therefore,Mℓ is IR. Finally, note that when all bidders bid truthfullyMℓ extracts the same revenue
asMℓ

2 with a cumulative discount of at most nkL∥A∥∞δ for all the bidders, this directly implies
the revenue bound stated in the lemma statement.

Lemma 6. Let Fz and F̂z be two distributions supported on Rk such that πp(Fz, F̂z) ≤ ε. For any

δ > 0, Eℓ∼U [0,δ]k

[
∥ ⌊Fz⌋ℓ,δ −

⌊
F̂z

⌋
ℓ,δ
∥TV

]
≤

(
1 + k1−1/p

δ

)
ε.

Proof. Using Lemma 1 we know that there exists a coupling γ of Fz and F̂z so that P(x,y)∼γ [∥x−
y∥p > ε] ≤ ε. Thus, we can bound the following probability:

P
ℓ∼U [0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y)

]
= P

ℓ∼U [0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y) ∧ ∥x− y∥p > ε

]
+

P
ℓ∼U [0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y) ∧ ∥x− y∥p ≤ ε

]
.

We can upper bound the first term above by P(x,y)∼γ [∥x− y∥p > ε] ≤ ε, and using
Bayes rule, the second term can be written as Pℓ∼U [0,δ]k

[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y) | ∥x− y∥p ≤ ε

]
·

P(x,y)∼γ [∥x− y∥p ≤ ε] ≤ Pℓ∼U [0,δ]k
[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y) | ∥x− y∥p ≤ ε

]
. Plugging these upper

bounds we get,

P
ℓ∼U [0,δ]k,(x,y)∼γ

[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y)

]
≤ ε+ P

ℓ∼U [0,δ]k

[
r(ℓ,δ)(x) ̸= r(ℓ,δ)(y) | ∥x− y∥p ≤ ε

]
≤ ε+

∑
i∈[k]

P
ℓi∼U [0,δ]

[
r
(ℓ,δ)
i (x) ̸= r

(ℓ,δ)
i (y) | ∥x− y∥p ≤ ε

]
≤

(
1 +

k1−1/p

δ

)
ε.

The final inequality follows from the fact that
∑

i∈[k] Pℓi∼U [0,δ]

[
r
(ℓ,δ)
i (x) ̸= r

(ℓ,δ)
i (y)

]
≤∑

i∈[k]
|xi−yi|

δ = ∥x−y∥1

δ ≤ k1−1/p∥x−y∥p

δ , where in the final inequality here we used Holder’s
inequality.

D Active learning for regression problems via Randomized Linear Algebra:
Details

D.1 Our query protocol: details for p = 1 and p = 2

Our query protocol takes as input the archetype matrix A and a set of sampling proba-
bilities qi, i ∈ [d], summing up to one. It outputs a sampling (and a rescaling) ma-
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trix that can be used to select a small subset of types to query bidders’ preferences.

Algorithm 1: Sampling & Rescaling Algorithm

Input: A ∈ Rd×k, sampling complexity sp, probabilities qi > 0, i ∈ [d],
∑d

i=1 qi = 1
Output: sampling matrix Sp ∈ Rsp×d, rescaling matrix Dp ∈ Rsp×sp

Initialize Sp, Dp to be all-zero matrices;
for t← 1 to sp do

Sample index j ∈ [d] with respect to the probabilities q1 . . . qd;
Sp(t, j)← 1 ; // Set the tth row of S to ej
Dp(t, t)← 1√

spqj
; // and rescale

end

D.1.1 The p = 2 case

We start with the p = 2 case and note that ℓ2 regression is the most studied problem in the RLA
literature, including the active learning setting. In this case, the sampling probabilities will be the
so-called (row) leverage scores of A, which can be computed exactly in O(dk2) time. Leverage
scores can be approximated faster, in time that depends basically on the sparsity of the input matrix
and we refer the reader to [M. 11, Woo14, DM16] for details on this very well-studied quantities.
The main quality-of-approximation result is captured in the following lemma.

Lemma 7. Let A ∈ Rd×k and (t + ϵnq,2) ∈ Rd. Assume that the sampling probabilities qi of
Algorithm 1 are the row leverage scores of A. Let z̃ ∈ Rk be

z̃ = arg min
z∈Rk

∥D2S2Az−D2S2(t+ ϵnq,2)∥2.

Then, with probability at least 0.99,

∥Az̃− (t+ ϵnq,p)∥p ≤ γ2OPT,

where OPT = minz∈Rk ∥Az − (t + ϵnq,2)∥2. Here γ2 = 1 + εQ, where εQ > 0 and the query
complexity s′2 satisfies

s′2 = O(k ln k + k/εQ).

The proof of the above lemma follows from Lemmas 4 and 5 of [DMMS11], which each hold with
probability at least 1− δ/2, by setting the query complexity to s2 = O(k log k + k/εQ) and using the
leverage scores as sampling probabilities. Applying a union bound over the failure probabilities of
the two lemmas concludes the proof.

We now use Theorem 3.3 of [MMWY21] to boost the success probability of the above algorithm.
Specifically, we repeat our algorithm O (ln 1/δ′) times to derive multiple candidate solutions for any
δ′ ∈ (0, 1). Then, we can use Algorithm 3 of [MMWY21] to select a solution that satisfies a slightly
worse accuracy guarantee with high probability. More precisely, our final solution z̃ will satisfy

∥Az̃− (t+ ϵnq,p)∥p ≤ (3 · (1 + εQ) + 2)OPT (10)

with probability at least 1− δ′. Fixing εQ = 0.5, we get an overall query complexity equal to

s2 = O (ln (1/δ′) s′2) = O (k ln k ln (1/δ′)) .

Eventually, we will need the bound of eqn. (10) to hold for all n bidders via a union bound, so the
failure probability must be reduced to δ′ = δ/n. Recall that εQ = 0.5; eqn. (10) becomes

∥Az̃− (t+ ϵnq,p)∥p ≤ 6.5 · OPT. (11)

The above bound holds with probability at least 1− δ′ = 1− δ/n if

s2 = O (k ln k ln (n/δ)) ,

for any δ ∈ (0, 1).
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D.1.2 The p = 1 case

We now focus on the p = 1 case. In this setting, the sampling probabilities will be the Lewis weights,
which can be approximated efficiently following the lines of [CP15, MD21]. We do emphasize that
approximations to the Lewis weights (or the leverage scores) are sufficient in our setting. We now
directly apply Theorem 1.2 of [MD21]). We again need a failure probability that is at most δ/n, since
we will need to apply a union bound over all n bidders. In our notation, Theorem 1.2 of [MD21] can
be restated as follows.
Lemma 8. Let A ∈ Rd×k and (t + ϵnq,1) ∈ Rd. Assume that the sampling probabilities qi of
Algorithm 1 are the row Lewis weights (p = 1) of A. Let z̃ ∈ Rk be

z̃ = arg min
z∈Rk

∥D1S1Az−D1S1(t+ ϵnq,1)∥1.

Then, with probability at least 1− (δ/n),

∥Az̃− (t+ ϵnq,1)∥1 ≤ γ1OPT,

where OPT = minz∈Rk ∥Az − (t + ϵnq,1)∥1. Here γ1 = 1 + εQ, where εQ > 0 and the query
complexity s1 satisfies

s1 = O (k/ε2Q ln kn/εQδ) .

In our proof of Theorem 1, we will set εQ to 0.5 for simplicity.

D.2 Our query protocol: details for p > 2

In this section, we show how to adapt the results of [MMWY22, MMWY21] in our setting in order
to prove Theorem 1). We restate a sequence of results from [MMWY22, MMWY21], focusing on
p > 2 and using our notation.
Lemma 9 (Theorem 2.11 in [MMWY21]). Let 3 ≤ p <∞ be an integer. There exists a randomized
algorithm which constructs a sampling matrix Sp ∈ Rs′p×d and a rescaling matrix Dp ∈ Rs′p×s′p

such that, with probability at least 0.99, the ℓp subspace embedding property holds:

1/2∥Ax∥p ≤ ∥DpSpx∥p ≤ 3/2∥Ax∥p, ∀x ∈ Rk.

Using Remark 2.21 [MMWY21], we get

s′p = O
(
kp/2 ln3 k

)
.

Notice that Remark 2.21 [MMWY21] removes the dependency of s′p on ln d. We also note that we
can construct the matrices Dp and Sp using Algorithm 1 of [MMWY21]. Then, we solve the sampled
ℓp regression problem z̃ = argminz∈Rk ∥DpSpAz−DpSp(t+ ϵnq,p)∥p, to get guarantees of the
form:

∥Az̃− (t+ ϵnq,p)∥p ≤ γp∥Aẑ− (t+ ϵnq,p)∥p, (12)

for some constant γp > 1 that depends on the choice of 3 ≤ p <∞. In the above,

ẑ = arg min
z∈Rk

∥Az− (t+ ϵnq,p)∥p.

Lemma 10 (Theorem 3.2 in [MMWY21]). Let A ∈ Rd×k and (t+ ϵnq,p) ∈ Rd. Let 3 ≤ p <∞
be an integer and

OPT = min
z∈Rk

∥Az− (t+ ϵnq,p)∥p.

If z̃ = argminz∈Rk ∥DpSpAz−DpSp(t+ ϵnq,p)∥p, then, with probability at least 0.99,

∥Az̃− (t+ ϵnq,p)∥p ≤ 6(200)1/pOPT.

The quantity (200)1/p decreases very fast as p increases. To put things into perspective for p = 3,
(200)1/p < 6. Importantly, to boost the success probability, we can compute O (ln (1/δ′)) candidate
solutions by running the algorithm implied by Lemma 10 multiple times, for any δ′ ∈ (0, 1). Then,
we can use Algorithm 3 of [MMWY21] to select a solution that satisfies a slightly worse accuracy
guarantee with high probability. More precisely:
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Lemma 11 (Theorem 3.3 in [MMWY21]). Call Algorithm 3 [MMWY21] with inputs O (ln (1/δ))
candidate solutions computed by the algorithm of Lemma 10. Then, we get a vector z̃ ∈ Rk such that,
with probability at least 1− δ′,

∥Az̃− (t+ ϵnq,p)∥p ≤ (18(200)1/p + 2)OPT.

Overall, the query complexity for 3 ≤ p <∞ is

sp = O
(
ln (1/δ′) s′p

)
= O

(
kp/2 ln3 k ln (1/δ′)

)
.

Recall that we will need our bound to hold for all n bidders via a union bound, so the failure
probability must be reduced to δ′ = δ/n. Thus, our final sampling complexity sp is

sp = O
(
kp/2 ln3 k ln (n/δ)

)
,

for any δ ∈ (0, 1).

D.3 The proof of Theorem 1

Proof of Theorem 1. For notational simplicity, in this proof, we use z̃ instead of Q(t). Recall from
Definition 5 that we can write (dropping the index i for simplicity):

t = Az+ ϵmdl,p, (13)

where ∥ϵmdl,p∥p ≤ εmdl,p. We now use the active learning protocols of Sections D.1 or D.2 to
construct a solution z̃ ∈ Rk such that

∥Az̃− (t+ ϵnq,p)∥p ≤ γp∥Aẑ− (t+ ϵnq,p)∥p, (14)

for some constant γp > 1 that depends on the choice of 1 ≤ p <∞. In the above,

ẑ = arg min
z∈Rk

∥Az− (t+ ϵnq,p)∥p.

For p = 2, eqn. (11) implies that γ2 = 6.5. For p = 1, Lemma 8 implies that γ1 = 1.5. For p ≥ 3,
Lemma 11 implies that γp = 18(200)1/p + 2.

We now proceed to bound ∥z − z̃∥p. To achieve this, we bound the left- and right-hand-sides of
eqn. (14). Substitute t = Az+ ϵmdl,p to the left hand side to get:

∥Az̃− (t+ ϵnq,p)∥p = ∥A(z̃− z)− (ϵnq,p + ϵmdl,p)∥p‘
≥ ∥A(z− z̃)∥p − ∥ϵnq,p + ϵmdl,p∥p
≥ ∥A(z− z̃)∥p − (εnq,p + εmdl,p). (15)

The first inequality follows from the reverse triangle inequality and the second from the assumptions
on ϵnq,p and ϵmdl,p. We now manipulate the right hand side of eqn. (14):

γp∥Aẑ− (t+ ϵnq,p)∥p ≤ γp∥Az− (t+ ϵnq,p)∥p
= γp∥ − (ϵnq,p + ϵmdl,p)∥p
≤ γp(εnq,p + εmdl,p). (16)

The first inequality follows from the fact that ẑ is the optimum solution of eqn. (14) and the second
equality follows from eqn. (13). By combining eqns. (14), (15), and (16), we get

∥A(z− z̃)∥p ≤ (γp + 1)(εnq,p + εmdl,p).

Using eqn. (2), we get ∥A(z− z̃)∥p ≥ σmin,p∥z− z̃∥p. Let cp = γp + 1 to conclude:

∥z− z̃∥p ≤ σ−1
min,p(A) · cp(εnq,p + εmdl,p). (17)

Using the γp values from above, we conclude that for p = 2, c2 = 7.5; for p = 1, c1 = 2.5; and for
p ≥ 3, cp = 18(200)1/p + 3. (We did not optimize constants, but it is worth noting that reducing
cp below two will need a different approach.) The failure probability of the theorem follows from
the failure probability of eqn. (14), which needs to hold for all n bidders with probability at least
1− δ. Applying a union bound and using the failure probabilities presented in Sections D.1 and D.2
concludes the proof of the theorem.
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D.4 Improving Theorem 2 of [CD22] and comparisons with our work

We revisit the proof of Theorem 2 of [CD22], using our notation. We present a slightly improved
analysis for the ℓ∞ norm case. Let D∞S∞t and D∞S∞(t+ ϵnq,∞) be the bidders’ responses to the
query protocol Q with and without the noise of the noisy query model. [CD22] makes the following
assumptions, which are completely analogous to our work:

1. ∥ϵnq,∞∥∞ ≤ εnq,∞ (query noise), and
2. ∥t−Az∥∞ ≤ εmdl,∞ (model noise).

[CD22] proceeds by solving the induced least squares (instead of ℓ∞) regression problem as follows:

z̃ = arg min
z∈Rk

∥D∞S∞Az−D∞S∞(t+ ϵnq,∞)∥2

=
(
(D∞S∞A)TD∞S∞A

)−1
(D∞S∞A)TD∞S∞(t+ ϵnq,∞) (18)

= (D∞S∞A)†D∞S∞(t+ ϵnq,∞). (19)

In the above we assume that the inverse of the k × k matrix (D∞S∞A)TD∞S∞A exists, which is
also an implicit assumption in [CD22]. Thus, D∞S∞A ∈ Rs∞×k has full column rank equal to k.
However, unlike [CD22], we will use eqn. (19) instead of eqn. (18) in our analysis. This will result
in improved bounds with respect to various quantities that arise in the analysis. We now proceed to
bound ∥z̃− z∥∞, as follows:

z̃− z = (D∞S∞A)†
(
D∞S∞(t+ ϵnq,∞)−D∞S∞Az

)
= (D∞S∞A)†

(
D∞S∞ϵnq,∞

)
+ (D∞S∞A)†D∞S∞(t−Az).

The first equality follows by the assumption that D∞S∞A ∈ Rs∞×k has full column rank equal
to k, which implies that (D∞S∞A)†D∞S∞A = I. By applying the triangle inequality and using
sub-multiplicativity properties of the ℓ∞ norm, we get

∥z̃− z∥∞ ≤ εnq,∞∥(D∞S∞A)†∥∞∥D∞∥∞∥S∞∥∞
+ ∥(D∞S∞A)†∥∞∥D∞∥∞∥S∞∥∞∥t−Az∥∞
≤ εnq,∞∥(D∞S∞A)†∥∞∥D∞∥∞ + εmdl,∞∥(D∞S∞A)†∥∞∥D∞∥∞
= (εnq,∞ + εmdl,∞)∥(D∞S∞A)†∥∞∥D∞∥∞
≤ (εnq,∞ + εmdl,∞)

√
s∞∥(D∞S∞A)†∥2∥D∞∥∞

≤
√
s∞(εnq,∞ + εmdl,∞)σ−1

min (D∞S∞A) ∥D∞∥∞, (20)

where for a matrix X ∈ Rm×n we have ∥X∥∞ = maxi∈[m]

∑n
j=1 |Xij | and ∥X∥2 =

max∥y∥2=1 ∥Xy∥2 = σmax(X). In the above we used that fact that ∥S∞∥∞ = 1, since S∞ is
a sampling matrix and the property ∥X∥∞ ≤

√
n∥X∥2 for any matrix X ∈ Rm×n. The use of

eqn. (19) instead of eqn. (18) improves the bound of [CD22] by avoiding an extra
√
k term and a

quadratic dependency on σmin (D∞S∞A).

The bound of eqn. (20) generalizes the bound of [CD22] to allow for sampling and rescaling of the
revealed noisy bidder preferences, as well as the corresponding rows of the archetype matrix A,
following the lines of Algorithm 1. It is important to note that in order to get meaningful results using
the bound of eqn. (20), we need a lower bound on σmin (D∞S∞A) and an upper bound on ∥D∞∥∞.
The approach of [CD22] has no rescaling: it sets D∞ = I and, therefore, ∥D∞∥∞ = 1. However,
this makes it hard to get non-trivial lower bound for the smallest singular value of the matrix S∞A.
This matrix is simply a sample of rows of the matrix A without any rescaling and its smallest singular
value could, in general, be arbitrarily close to zero. As a result, only special cases of the archetype
matrix A were analyzed in [CD22]: for those special cases, the smallest singular value of a sample
of rows of the input matrix (without rescaling) can be lower bounded. It is a well-known fact that
if one were to form the sampling matrix S∞ and the rescaling matrix D∞ using Algorithm 1 and
the row leverage scores of A as the sampling probabilities, the smallest singular value of D∞S∞A
would be close to the smallest singular value of A. This, however, cannot be done without rescaling,
which would necessitate an upper bound on ∥D∞∥∞. As a concrete example, if all the row leverage
scores of A were equal, as would be the case if A’s columns were a subset of the columns of a
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Hadamard matrix, the sampling probabilities would all be equal to 1/d. In this case, the diagonal
rescaling matrix D∞ has entries that are propotional to the reciprocal of the sampling probabilities
and ∥D∥∞ =

√
d/s∞. This makes the overall error bound depend on the number of bidder types d,

since s∞ (the query complexity) is much smaller than d. This tension between lower-bounding the
smallest singular value of D∞S∞A and upper bounding the infinity norm of D∞ does not seem
easy to resolve by following the proposed analysis for arbitrary archetype matrices A ∈ Rd×k.

D.4.1 Discussing the assumptions of [CD22] for the archetype matrix

We conclude this section with a brief discussion of the three settings of Theorem 2 of [CD22]
for the archetype matrix. First, for the deterministic structure, the assumption on the archetype
matrix A ∈ Rd×k is that it has to contain a square k × k submatrix C, which is both row- and
column-diagonally-dominant. It is unclear whether this is a reasonable assumption in the context of
archetype matrices; some connections with the non-negative matrix factorization literature are briefly
discussed [DS03]. Importantly, it is unclear what the query protocol Q will be in this setting, since
the query matrix Q has to satisfy Q ·A = C and it is not obvious how to recover Q if C is unknown.
The other two settings are both probabilistic and draw k archetypes either from a d-dimensional
Gaussian distribution, or as copies of a d-dimensional random vector. In both cases, the archetypes
are drawn from distributions that are designed to construct matrices whose columns are approximately
orthogonal, at least in expectation. This observation results in large values for σmin(A), and, under
additional technical assumptions stated in Theorem 2 and Proposition 1 of [CD22], large values for
the smallest singular value of S∞A. Our work directly characterizes the sample complexity of the
protocol in terms of a single parameter of the archetype matrix that, intuitively, measures archetype
independence with respect to p-norms. We provide explicit query protocols that leverage information
in the archetype matrix and achieve the promised query complexity. We believe that this is a natural
way to connect mechanism design with active learning for regression problems.
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