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Abstract

We consider the problem of a revenue-maximizing seller with a large number of
items m for sale to n strategic bidders, whose valuations are drawn independently
from high-dimensional, unknown prior distributions. It is well-known that optimal
and even approximately-optimal mechanisms for this setting are notoriously diffi-
cult to characterize or compute, and, even when they can be found, are often rife
with various counter-intuitive properties. In this paper, following a model intro-
duced recently by Cai and Daskalakis [CD22], we consider the case that bidders’
prior distributions can be well-approximated by a topic model. We design an active
learning component, responsible for interacting with the bidders and outputting
low-dimensional approximations of their types, and a mechanism design compo-
nent, responsible for robustifying mechanisms for the low-dimensional model to
work for the approximate types of the former component. On the active learning
front, we cast our problem in the framework of Randomized Linear Algebra (RLA)
for regression problems, allowing us to import several breakthrough results from
that line of research, and adapt them to our setting. On the mechanism design front,
we remove many restrictive assumptions of prior work on the type of access needed
to the underlying distributions and the associated mechanisms. To the best of our
knowledge, our work is the first to formulate connections between mechanism
design, and RLA for active learning of regression problems, opening the door for
further applications of randomized linear algebra primitives to mechanism design.

1 Introduction

The design of revenue-optimal auctions is a central problem in Economics and Computer Science.
In this problem, a revenue-maximizing seller has m heterogeneous items for sale to n strategic
bidders. Each bidder i has a type ti ∈ Rd which contains enough information to encode the bidder’s
willingness to pay for every subset of items. Bidders’ types are private information, and thus, in order
to provide meaningful guarantees on the seller’s revenue, the standard approach in Economics is to
make a Bayesian assumption: types are drawn from a joint distribution D.

Assuming a single item for sale and bidders’ types that are drawn independently from known
distributions, Myerson’s seminal work [Mye81] provides a closed-form solution for the revenue-
optimal mechanism. Beyond this single-item case, however, multi-item mechanism design re-
mains an active research agenda, even forty years later. Optimal mechanisms are no longer
tractable, in any sense of the word, as well as exhibit various counter-intuitive properties [MV07,
DDT13, DDT15, BCKW15, HR15, HN19, PSCW22]; see [Das15] for a survey. On the other
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hand, significant research effort has culminated in numerous compelling positive results, such as
simple and approximately optimal auctions [CHK07, CHMS10, CMS15, Yao15, RW15, CM16,
CDW16, CZ17, KW19, BILW20], as well as efficient algorithms for computing near-optimal auc-
tions [AFH+12, CDW12a, CDW12b, CDW13a, CDW13b], even with just sampling access to the
type distribution [CR14, HMR15, DHP16, MR16, CD17, GHZ19, BCD20, GW21].

Despite all this progress, however, there are key challenges in applying these results in practice. First,
the computational complexity, sample complexity, approximation guarantees, and communication
complexity (i.e., the amount of information the bidder should communicate to the seller) of these
results often depend on the number of items m, which could be prohibitively large (e.g., think
of m as the number of items on Amazon.com). Second, bidders’ type distributions are typically
high-dimensional, or otherwise complex objects, that are not known nor can they be sampled. Instead,
the designer might have an estimated distribution D̂, e.g., through market research, that is close to
the real distribution D. Motivated by these issues, Cai and Daskalakis [CD22] introduce a model
where the true type distribution Di of bidder i is close to a structured distribution D̂i. Specifically,
they assume that there is an underlying design matrix A ∈ Rm×k of k “archetypes,” with k ≪ m.
Intuitively, bidder i can be approximated by a linear combination of k archetypal bidders. This
same assumption has been central in the study of recommender systems. In this model, [CD22]
give a framework for transforming a mechanism M̂ for the low-dimensional distribution D̂z into a
mechanism for the true type distribution with good revenue guarantees, and whose computational
and communication complexity does not depend on the number of items m.

The impact of their work notwithstanding, the above results require strong structural assumptions on:
the design matrix A; the bidders’ valuation functions; and very specific access to (or exact knowledge
of) the structured distribution D̂z and the mechanism M̂. Our work connects the recommender
system approaches for mechanism design with recent progress on Randomized Linear Algebra for
active learning for regression problems. We relax, and even remove these restrictive assumptions,
and open the door to future exploration of more elaborate recommender system models in the context
of mechanism design, using randomized linear algebra primitives.

The framework and results [CD22]. To place our results in context, we start with a brief overview
of [CD22], which considers a setting where the type distributionDi of bidder i is close to a distribution
D̂i in the Prokhorov distance, under the ℓ∞ norm (Definition 1). Here, D̂i first samples a vector
z ∈ [0, 1]k from a low-dimensional distribution D̂z,i, and then outputs Az, where A ∈ Rm×k is a
known matrix. The proposed framework has a learning and a mechanism design component.

Their learning component consists of a communication-efficient1 query protocol Q for interacting
with each bidder i such that, if the type ti of bidder i satisfies ∥ti −Az∥∞ ≤ ε, the query protocol
outputs a vector Q(ti) such that ∥Q(ti) − z∥∞ ≤ ζ∞.2 [CD22] give such query protocols under
strong (distinct) conditions on A, and specifically when A: (i) satisfies an assumption similar to the
separability condition of [DS03], (ii) is generated from a distribution where each archetype is an
independent copy of an m-dimensional Gaussian, or (iii) is generated from a distribution where each
archetype is an independent copy of an m-dimensional, bounded distribution with weak dependence.
We discuss these restrictions in more detail in Appendix D.4.1. The query complexity, as well as the
error ζ∞, depend on them, but, importantly, are independent of the number of items m.

Their mechanism design component is a refinement of a robustification result of [BCD20]. For this
transformation to work, one needs to interact with the mechanism and the underlying distributions us-
ing highly non-trivial operations, which are computationally demanding, and require exact knowledge
of bidders’ valuation functions. In our work we overcome this issues by developing new reductions
and plugging them in the framework established by [BCD20] and [CD22]. The overall interplay
between the different mechanism design and active regression components can be seen in Fig. 1.

Combining the two components, [CD22] obtain mechanisms forD, for constrained-additive bidders.3
In these mechanisms, each bidder is required to answer a small number of simple Yes/No queries

1By efficient we mean a query protocol that asks each bidder a small amount of queries. Se also Definition 3.
2Recall that for any (integer) 1 ≤ p < ∞ and a vector x ∈ Rd, ∥x∥pp =

∑d
i=1 |xi|p; for p = ∞,

∥x∥∞ = maxi=1...d |xi|. See [CD22] for an exact expression for ζ∞.
3A function is constrained-additive if v(t, S) = max

T∈I∩2S

∑
j∈T tj , where I is a downward-closed set system.
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of the form “are you willing to pay p for item j?”, such that the loss in revenue and the violation in
incentive compatibility do not depend on the number of items m.

1.1 Our contributions

Randomized Linear Algebra (RLA) for active learning. RLA for active learning has focused on
solving regression problems of the form

z = argmin
x
∥t−Ax∥p,

for ℓp norms with 1 ≤ p <∞, by querying only a subset of elements of the vector t. In prior work
on RLA for active learning, the focus has been on recovering an approximate solution that achieves a
relative error or constant factor approximation to the optimum loss. We adapt these bounds to our
setting, which could include noisy instead of exact queries, and prove bounds for the ℓp norm error of
the exact minus the approximate solution. Specifically, we bound ∥Q(ti)− z∥p ≤ ζp. We provide
bounds on ζp for all integers 1 ≤ p < ∞. Our bounds depend on the modelling error ∥t −Ax∥p
and some measure of the query noise (see Definitions 4 and 5); both dependencies are expected.
Importantly, our bounds hold for arbitrary archetype matrices, very much unlike the work of [CD22],
which focused on very restricted classes of matrices. A single property of the archetype matrix, the
smallest singular value with respect to the ℓp induced matrix norm, σmin,p(A), can characterize
the quality of the error. As σmin,p(A) decreases, the error ζp grows. Intuitively, σmin,p(A) is a
measure of independence of the archetypes, with small values corresponding to linearly dependent
archetypes. The query complexity needed to achieve error ζp is almost linear (up to logarithmic
factors) on k for p = 1 and p = 2, and grows with kp/2 for p ≥ 3. Our query complexity bounds
have no dependency on m (number of items) or d (dimensionality of a type) enabling us to produce
results way beyond constrained-additive valuations, as d = 2m dimensions suffice to encode arbitrary
valuation functions.

It is critical to highlight that our ability to provide bounds on the approximation error for arbitrary
archetype matrices is, at least partly, due to leveraging information from the archetype matrix A.
Specifically, we use this information to select which bidder types to query, instead of just querying
types uniformly at random. This information involves the computation or approximation of the
well-studied leverage scores of A for p = 2 and of the so-called Lewis weights for all other values of
p (see Section 3.1). We do note that in our framework, the errors due to the modeling of the bidder
type t as the product Az and the query noise are always bounded by the respective ℓp norm. Thus,
our models are more restrictive compared to the ℓ∞ norm models of [CD22]. However, to the best
of our knowledge, even assuming such restrictive models, the results and tools of prior work do not
extend to arbitrary archetype matrices. This is precisely the gap that is bridged by our work, using
RLA for active learning of ℓp norm regression for 1 ≤ p <∞.

Mechanism Design. On the mechanism design front, our main contribution is relaxing the assump-
tions of [CD22, BCD20] on the type of access needed to the low-dimensional distribution and the
mechanism for it. Specifically, we further refine the robustification result of Brustle et al. [BCD20]
and remove the need for the aforementioned strong oracle.

The main difficulty of transforming mechanisms for one distribution into mechanisms for another
distribution is that the two distributions might not share the same support. The crux of the issue is
that the incentive constraints are very delicate; a small change in the underlying distribution may
drastically change the agents’ valuation distribution over the mechanisms’ outcomes. One way to
tame the distribution of outcomes is to map bids that are not in the support of the initial distribution,
to bids that are. Brustle et al. [BCD20] do this by “optimally misreporting” on behalf of the bidder,
by calculating argmaxt′i∈supp(D̃z,i) Eb−i∼D̃z,−i

[ui(vi,M̂(t′i,b−i))], where D̃z,i is a rounded-down

version of D̂z,i. As we’ve discussed, for this operation to be viable, many things need to be assumed
about what the designer knows and can compute about M̂, D̂z,i, and the bidder’s valuation function.
Our approach, instead, leverages the fact that when two distributions are close in Prokhorov distance,
under any ℓp norm, any point on the support of one distribution is close to a point on the support
of the other, with high probability. Our construction simply maps a report wi to the “valid” report
(approximately) closest to wi in ℓp distance. This operation is linear on the support size. Furthermore,
our overall robustification result holds for all norms, not just ℓ∞, and our construction is completely
agnostic to bidders’ valuation functions.
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Combining the components. Combining the two components we can, without any assumptions on
A, given a mechanism for the low-dimensional prior, design mechanisms with comparable revenue
guarantees, where each bidder is required to answer a small number of queries. Our queries ask a
bidder her value for a subset of items, and our mechanism can accommodate any valuation function,
significantly extending the scope of our results.

Related Work. Aside from the work of [CD22], on the mechanism design front, the most relevant
works are [CD17], that consider learning multi-item auctions given “approximate” distributions,
and [BCD20], that consider learning multi-item auctions when type distributions are correlated,
yet admit special structure. On the RLA front, we leverage and adapt multiple recent results on
approximating ℓp regression problems in an active learning setting. We discuss prior work on RLA
for active learning and its connections to our setting in Section 3.1 and Appendix D.

2 Preliminaries

Let [n] := {1, 2, . . . , n} denote the first n natural numbers. A revenue-maximizing seller has a
set [m] of m heterogeneous items for sale to n strategic bidders indexed by [n]. Bidder i has a
private type vector ti ∈ Rd, and the types of all bidders are represented by a valuation profile
t = (t1, . . . , tn). Bidder i has a valuation function vi : Rd × 2[m] → R+, that takes as input the
bidder’s type and a (possibly randomized4) set of items S ⊆ [m] and outputs the bidder’s value for S.
Note that d ≤ 2m, since expressing a valuation function requires at most one real number per subset
of items. Types are drawn independently. Let D = ×i∈[n]Di be the distribution over bidders’ types,
D−i = ×j∈[n]/{i}Dj be the distribution of all bidders excluding i, and supp(D) be the support of a
distribution D.

Mechanisms. A mechanismM = (x, p) is a tuple where x : Rnd
+ → 2[nm] is the allocation rule,

and p : Rnd
+ → Rn

+ is the payment rule, which map reported types to allocations of the items
and payments, respectively. Specifically, xi,j(b) := (x(b))i,j denotes the probability that bidder i
receives item j for input valuation profile b, and pi(b) := (p(b))i denotes the amount bidder i has
to pay. Let ui(ti,M(b)) be the utility of bidder i with type ti for participating in mechanismM,
under reports b. Bidders are risk-free and quasi-linear i.e., ui(ti,M(b)) = E [vi(ti, x(b))− pi(b)],
where the expectation is taken over the randomness of the allocation rule. Since we only consider
truthful mechanisms, unless stated otherwise, reported types will be the same as the true types.

A bidder’s objective is to maximize her utility. The seller strives to design mechanisms that incentivize
bidders to report truthfully. We use the following notions of truthfulness. A mechanismM is ε-
Bayesian Incentive Compatible (ε-BIC), if for each bidder i ∈ [n], any type ti and misreport t′i we
have that: Et−i∼D−i

[ui(ti,M(ti, t−i))] ≥ Et−i∼D−i
[ui(ti,M(t′i, t−i))]− ε. A mechanismM is

(ε, δ)-BIC if for each bidder i ∈ [n], and any misreport t′i we have that:

P
ti∼Di

[
E

t−i∼D−i

[ui(ti,M(ti, t−i))] ≥ E
t−i∼D−i

[ui(ti,M(t′i, t−i))]− ε

]
≥ 1− δ.

A (ε, 0)-BIC mechanism is a ε-BIC mechanism; a 0-BIC mechanism is simply BIC. Finally, a
mechanismM is ex-post Individually Rational (IR) if for all valuation profiles t and all bidders i ∈ n,
ui(ti,M(ti, t−i)) ≥ 0. The seller’s objective is to maximize her expected revenue. For a mechanism
M and distributionD we denote the expected revenue as Rev(M,D) = Et∼D

[∑
i∈[n] pi(t)

]
. Note

that, we are calculating revenue assuming truthful reports, even for, e.g., (ε, δ)-BIC mechanisms.

Statistical Distance. In this work we design mechanisms that work well, as long as they are evaluated
on distributions that are “close” to D. Here, we define the notion of distance between two probability
measures that we use throughout the paper.

Definition 1 (Prokhorov Distance). Let (U , d) be a metric space and B be a σ-algebra on U . For
A ∈ B, let Aε = {x : ∃y ∈ A s.t. π(x, y) < ε} where π is some distance metric. Two probability
measures P , Q on B have Prokhorov distance: inf{ε > 0 : P (A) ≤ Q(Aε) + ε and Q(A) ≤
P (Aε) + ε,∀A ∈ B}. We choose π to be the ℓp-distance, and we denote the Prokhorov distance
between measures P,Q as πp(P,Q).

4Each subset might be selected according to a probability distribution.
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The following is an equivalent characterization of Prokhorov distance due to Strassen [Str65].
Lemma 1 ([Str65]). Let D and D′ be two distributions supported on Rn. πp(D,D′) ≤ ε iff there
exists coupling γ of D and D′, such that P(x,y)∼γ [∥x− y∥p > ε] ≤ ε.

Recommendation system-inspired model. We assume that, for each bidder, there exists a known
design matrix A ∈ Rd×k 5, where the columns of A represent k “archetypes”, for a constant k. Our
results hold if these matrices are different for each bidder, however, for ease of notation we will
assume all bidders have the same design matrix. For each bidder i there exists a distribution D̂z,i

supported on the latent space [0, 1]k. Let D̂i = A ◦ D̂z,i be the distribution induced by multiplying a
sample from D̂z,i with the design matrix A, i.e., D̂i is the distribution of Ay where y ∼ D̂z,i.

The valuation function over the latent types is defined as vAi (zi, S) := vi(Azi, S) for any bundle
S ⊆ [m]. We will use the following notion of Lipschitz continuity for valuation functions.

Definition 2 (Lipschitz Valuation). A valuation function v(·, ·) : Rd × [0, 1]m → R+ is L-Lipschitz,
if for any two types t, t′ ∈ Rd and any bundle S ⊆ [m], |v(t, S)− v(t′, S)| ≤ L∥t− t′∥∞.

We include a table, Table 1, with all the notation used throughout the paper in the appendix.

3 Active Learning for Regression and Mechanism Design

In this section, we state our main results, deferring all technical proofs to the appendix. We present
mechanisms that are completely agnostic with respect to D, the distribution from which bidders’
types are drawn from. However, we have limited access (described later in this section) to (i) a
design matrix A; (ii) distributions D̂z,i over Rk, where for all i ∈ [n], πp(Di,A ◦ D̂z,i) ≤ εmdl,p for
some εmdl,p > 0; and (iii) a mechanism M̂ for D̂z = ×i∈[n]D̂z,i. This limited access to the design
matrix motivates the use of active learning, which deals precisely with settings where the algorithm
is allowed to (interactively) query a subset of the available data points for their respective labels
(see [MD21, MMWY22] for precise definitions of the active learning setting in regression problems).
Our approach is modular and starts by building an active learning component for regression problems
(Section 3.1) followed by the mechanism design component (Section 3.2). We combine the two
components to get an overall mechanism for D in Section 3.3.

3.1 Active learning for regression via Randomized Linear Algebra

Our objective is to design a communication-efficient, active learning query protocol for the seller
that interacts with each bidder i, and infers their type ti ∈ Rd by accessing only a small subset
of elements of the type vector (as d is very large). We use Q to denote the query protocol, whose
output is a vector in the low-dimensional latent space Rk. A bidder interacts with the query protocol
truthfully if it is in her best interest to evaluate functions requested by the protocol on her true private
type ti. We use Q(ti) ∈ Rk to denote the output of Q when interacting with a truthful bidder with
type ti. We now define the notion of an (εmdl,p, ζp, p)-query protocol and the notion of query noise.
Definition 3 ((εmdl,p, ζp, p)-query protocol). Q is called an (εmdl,p, ζp, p)-query protocol, if, for all
t ∈ Rd and z ∈ Rk satisfying ∥t−Az∥p ≤ εmdl,p, we have ∥z−Q(t)∥p ≤ ζp.
Definition 4 (Query noise). Let ti be the true type of a bidder. Our query protocol can access entries
of ti + ϵnq,p, where ϵnq,p is an (unknown) vector. The query noise εnq,p satisfies ∥ϵnq,p∥p ≤ εnq,p.

The query noise depends on the specifics of the interactions between the seller and the bidder. For
example, if the seller is only allowed to ask queries of the form “‘what is your value for the subset
S?”, the query noise εnq,p is equal to zero. Our bounds will also depend on the model error.

Definition 5 (Model error). Given a valuation profile t ∈ Rnd, the model error is εmdl,p if, for all
i ∈ [n], there exists a zi ∈ Rk such that ∥ti −Azi∥p ≤ εmdl,p.

Note that, we don’t have bounds of the form “∥ti − Azi∥ ≤ ε” for individual types, but for the
distributions Di and A ◦ D̂z,i. The characterization of Prokhorov distance (Lemma 1) allows us to
relate the two quantities in the proofs that follow.

5Notice that we consider the more general case of having d number of rows (instead of m).
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We now rephrase the above discussion in order to cast it in the framework of Randomized Linear
Algebra (RLA) and active learning. Dropping the index i for notational simplicity, we assume that
Az ≈ t and we seek to recover an approximate solution vector Q(t) such that the ℓp norm error
between the approximate and the optimal solution is bounded. Importantly, the query protocol Q is
not allowed full access to the vector t in order to construct the approximate solution vector. This is a
well-studied problem in the context of RLA: the learner is given a large collection of k-dimensional
data points (the d≫ k rows of the design matrix A ∈ Rd×k), but can only query a small subset of
the real-valued labels associated with each data point (elements of the vector t ∈ Rd). Prior work in
RLA and active learning has studied this problem in order to identify the optimal number of queries
that allow efficient, typically relative error, approximations of the loss function. In our parlance, prior
work has explored the existence of query protocols that construct a vector Q(t) such that

∥t−AQ(t)∥p ≤ γp∥t−Az∥p, (1)

where γp > 1 is an error parameter that controls the approximation accuracy. Of particular interest
in the RLA literature are relative error approximations, with γp = 1 + ϵ, for some small ϵ > 0;
see [MMWY21, MMWY22] for a detailed discussion. However, relative error approximations are
less important in our setting, since our protocols in Section 3.2 necessitate ζp ≥ εmdl,p. For p = 2,
the underlying problem is active learning for least-squares regression: [DMMS11] analyzed its
complexity (namely, the number of queries) of query protocols in this setting, eventually providing
matching upper and lower bounds. Similarly, for p = 1, the underlying problem is active learning for
least absolute deviation regression, a robust version of least-squares regression: [MD21] analyzed
the complexity of query protocols in this setting. The query protocols of [DMMS11, MD21] are
straightforward: they sample a small set of labels (i.e., bidder types) and elicit the bidder’s preferences
for this set. Then, the respective ℓp norm regression problem is solved on the smaller set and the
resulting solution is returned as an approximation to the original solution.6 The types to be sampled
(see Appendix D.1 for details) are selected using distributions that can be constructed by accessing
only the design matrix A. Specifically, for the p = 2 case, one needs to compute or approximate
the leverage scores of the rows of the matrix A. For the p = 1 case, one needs to compute or
approximate the Lewis weights of the design matrix A. (The Lewis weights are an extension of the
leverage scores to ℓp norms for p ̸= 2.) The work of [DW17, DWH18, DM21, DW18, CP19] for the
p = 2 case involves more elaborate query protocols, using primitives such as volume sampling and
the Batson-Spielman-Srivastava sparsifier to improve the query complexity. Finally, the p > 2 case
for active learning for regression problems was recently resolved in [MMWY22, MMWY21]; we
discuss their approach in our context in Appendix D.2.

To the best of our knowledge, our work is the first one to formulate connections between mechanism
design and Randomized Linear Algebra for active learning. Two technical points of departure that
are needed in order to adapt the RLA work for active learning to the mechanism design framework
are: (i) we need to derive bounds of the form of eqn. (1) for the ℓp norm distance between the exact
and approximate solutions, whereas prior work typically bounds the error of the loss function when
an approximate solution is used; and (ii) the entries of the bidder’s type vector t might not be known
exactly, but only up to a small error. The latter assumption corresponds to the use of noisy queries in
the model of [CD22] and is known to be equivalent, up to logarithmic factors, to threshold queries
via binary search. Our work addresses both technicalities and seamlessly combines the RLA work
for active learning with mechanism design.

Prior to stating our main result, we need to define a fundamental property of the design matrix
A ∈ Rd×k that will affect the approximation error. Let

σmin,p(A) = min
x∈Rk, ∥x∥p=1

∥Ax∥p. (2)

For p = 2, this is simply the smallest singular value of the matrix A. For other values of p, the
above definition is the standard generalization of the smallest singular value of A for the induced
matrix ℓp norm. Notice that σmin,p(A) is a property of the matrix A and can be computed a priori
via, say, the QR factorization or the Singular Value Decomposition (SVD) for p = 2 and via linear
programming for p = 1. As we will see in Theorem 1 below, smaller values of σmin,p(A) result in
increased sample complexity for our query protocols.

6To be precise, multiple smaller problems have to be solved and a “good enough” solution has to be chosen
in order to boost the success probability. See Appendix D for details.
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Theorem 1. Let A ∈ Rd×k be the design matrix, and recall the definitions of the model error εmdl,p
(Definition 5) and the query noise (Definition 4). For all integers 1 ≤ p < ∞, there exist query
protocols Q using sp queries for each bidder i ∈ [n], such that, with probability at least 1− δ,

∥zi −Q(ti)∥p ≤
cp(εmdl,p + εnq,p)

σmin,p(A)
= ζp

holds for all n bidders i ∈ [n]. Here cp is a small constant that depends on p.7 The respective query
complexities for p = 1 and p = 2 are (asymptotically) identical:

s1 = s2 = O (k · ln k · ln n/δ) . (3)

For p ≥ 3, the query complexity is

sp = O
(
k

p/2 · ln3 k · ln n/δ
)
. (4)

Several comments are in order. (i) The error ζp is a small constant times the modelling error plus
the error due to noisy queries. In the limit case where the modelling error is equal to zero and the
queries are noiseless, the bidders’ types can be recovered exactly in our framework. However, as
the modelling error and the query noise increase, approximating user types becomes harder and
less accurate. (ii) Importantly, the approximation accuracy of Theorem 1 grows linearly with the
inverse of the smallest ℓp norm singular value of the design matrix A. Our results indicate that the
approximation accuracy of the query model Q depends on this simple property of the design matrix
A. For example, focusing on the p = 2 case, our theorem shows that as the archetypes (columns of
the matrix A) become more linearly dependent and the smallest singular value approaches zero, the
error of our approximation worsens. This is quite reasonable: if archetypes are linearly dependent,
then it is increasingly difficult to approximate the respective entries of the vector z. (iii) The query
complexities s1 and s2 are asymptotically identical, growing linearly with k ln k, where k is the
number of archetypes. They both depend on the log of the number of bidders (due to a union bound)
and on the log of 1/δ, where δ is the failure probability. The query complexity for p ≥ 3 is larger
and is dominated by the kp/2 term. Importantly, the query complexity remains independent of d, the
number of bidder types, which, in worst case, could be exponential to the number of underlying
items. (iv) Improving the sampling complexities s1 and s2 has been a topic of intense interest in the
RLA community and we defer the reader to [MMWY21, MMWY22], which has essentially provided
matching upper and lower bounds for various values of p. We just note that for the well-studied p = 2
case, volume sampling approaches [DW17, DWH18, DM21, DW18] achieve essentially matching
bounds, while the work of [CP19] removes (at least in expectation) the ln k factor from s2, at the
expense of significant additional protocol complexity. From a technical perspective, we note that
ζp ≥ εmdl,p, as necessitated in Theorem 2 and that our query protocols are all one-round protocols.

Finally, notice that our theorem works for all p ≥ 1, but not for p = ∞, which was the setting
of [CD22]. In Appendix D.4, we present a (modest) improvement of the result of [CD22] and
explain why it seems improbable that the p =∞ case can be generalized to a much broader class of
design matrices. This is a strong motivating factor to explore properties of mechanism design for the
recommender system setting for other ℓp norms, as we do in this work.

3.2 The Mechanism Design component

The goal of the mechanism design component is to transform a mechanism M̂ for D̂ into a mechanism
M for Dz . We first define exactly the type of access to D̂z and M̂ our construction requires.

Definition 6 (Access to M̂). By “query access to M̂” we mean access to an oracle which, given a
valuation profile t, outputs the allocation and payments of M̂ on input t.

Definition 7 (Access to D̂z). By “oracle access to D̂” we mean access to (1) a sampling algorithm
Si for each i ∈ [n], where Si(x, δ) draws a sample from the conditional distribution of D̂z,i on
the k-dimensional cube ×j∈[k][xj , xj + δj), and (2) an oracle which, given as input a type ti for
bidder i, outputs the type in the support of D̂z,i that is closest to ti in ℓp distance, i.e., outputs
argmint′i∈supp(D̂z,i)

∥ti − t′i∥p.

7We make no attempt to optimize constants and focus on simplicity of presentation. In our proofs, c1 = 2.5;
c2 = 7.5; and for p ≥ 3, cp = 18 · (200)1/p + 3. Notice that the last constant converges to 21 as p increases.
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If the allocation is randomized, our approach works even if the query to the oracle returns a (correct)
deterministic instantiation of the randomized allocation.8

In Definition 7, the first part of our oracle access (sampling from the conditional) is also necessary
in [CD22]. The second part is new to our work, and replaces a strong requirement in [CD22]. In more
detail, given a type ti, Cai and Daskalakis [CD22] (as well as Brustle et al. [BCD20]) need to know if
ti ∈ supp(D̃z,i), and, if not, need access to argmaxt′i∈supp(D̃z,i) Eb−i∼D̃z,−i

[ui(vi,M̂(t′i,b−i))]

where D̃z,i is a rounded-down version of D̂z,i. However, for arbitrary distributions and mechanisms,
this task might be computationally inefficient, or simply infeasible. In our work, we need access to
argmint′i∈supp(D̂z,i)

∥ti − t′i∥p in the “no” case.

Given these definitions, our main theorem for this component is stated as follows.

Theorem 2. Let D = ×n
i=1Di be the bidders’ type distribution and vi : Rd × 2[m] → R+ be a

L-Lipschitz valuation function for each bidder i ∈ [n]. Also, let A ∈ Rd×k be a design matrix and
D̂z = ×n

i=1D̂z,i, where D̂z,i is a distribution over Rk for each i ∈ [n].

Suppose that we are given (1) query access to a mechanism M̂ that is IR and BIC w.r.t. D̂z and
valuations {vAi }i∈[n], (2) oracle access to D̂z , and (3) any (εmdl,p, ζp, p)-query protocol Q with
ζp ≥ εmdl,p. Then, we can construct a mechanismM that is oblivious to D and v(·, ·), such that for
all D that satisfy πp(Di,A ◦ D̂z,i) ≤ εmdl,p for all i ∈ [n], the following hold: (1)M only interacts
with every bidder using Q once, (2) M is IR and (η, µ)-BIC w.r.t. D, where µ = O(

√
ζp) and

η = O(n∥A∥∞L
√
ζp), and (3) the expected revenue ofM is at least Rev(M̂, D̂z)−O(nη).

Note thatM is an indirect mechanism, so it is slightly imprecise to call it (η, µ)-BIC. Formally,
interacting with Q truthfully is an approximate Bayes-Nash equilibrium.

In order to prove Theorem 2, we use a key lemma, Lemma 2, which establishes the robustness
guarantees of Theorem 2, but in the space of latent types. Intuitively, let ti be the type of bidder
i, and zi be a random variable distributed according to D̂z,i. We know that πp(Di,A ◦ D̂i) ≤
εmdl,p ≤ ζp. Due to Lemma 1, there exists a coupling such that with probability greater than 1− ζp,
∥ti−Azi∥p ≤ ζp. Since the seller uses a (εmdl,p, ζp, p)-query protocol, with probability at least 1−ζp,
∥Q(ti)−zi∥p ≤ ζp. Note that, this implies that zi andQ(ti) are distributed such that their Prokhorov
distance is at most ζp. At this step, Lemma 2 provides us a mechanism M̃, constructed from M̂,
that we can execute on types Q(t1), . . . ,Q(tn), obtained by interacting with the bidders via the
query protocol. With probability at least 1− ζp, we have that ∥ti −Azi∥∞ ≤ ∥ti −Azi∥p ≤ εmdl,p
and thus, using the fact that the query protocol ensures ∥Q(ti) − zi∥p ≤ ζp as well, we have
∥ti −AQ(ti)∥∞ ≤ εmdl,p + k∥A∥∞ζp. The guarantees of M̃ for the distribution over Q(ti)s are
therefore translated into guarantees (with a small error) of the overall mechanism for the D.

The proof of Lemma 2 is quite involved and is the main focus of our analysis. Here, we sketch the key
ideas behind the proof, and defer all formal arguments to Appendix C. The proof uses the following
notion of a rounded distribution.

Definition 8 (Rounded Distribution). Let F be a distribution supported on Rk
≥0. For any δ > 0 and

ℓ ∈ [0, δ]k, we define function r(ℓ,δ) : Rk
≥0 7→ Rk

≥0 such that r(ℓ,δ)i (x) = max
{⌊

xi−ℓi
δ

⌋
· δ + ℓi, 0

}
for all i ∈ [k]. Let x be a random vector sampled from F . We define ⌊F⌋ℓ,δ as the distribution for
the random variable r(ℓ,δ)(x), and we call ⌊F⌋ℓ,δ the rounded distribution of F .

We follow an approach similar to Brustle et al. [BCD20]. The main idea is that arguing directly
about mechanisms for distributions that are close in Prokhorov distance is difficult. On the flip side,
arguing about mechanisms for distributions that are close in total variation distance is much easier,
since the total variation is a more stringent (and hence more tamable) notion of distance. The key
observation is that, if two distributions are close in Prokhorov distance then, in expectation over the
random parameter ℓ, their rounded-down versions are close in total variation distance.

8That is, if, for example, M̂ allocates item j to bidder i with probability 1/2 and with the remaining
probability item j is not allocated, our construction does not need to know this distribution/fractional allocation
and works even if nature samples and returns an integral allocation for item j.
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Our overall construction is via three reductions. First, in Lemma 3, given a mechanism for F̂z

we design a mechanism for the rounded-down version. Second, in Lemma 4, given a mechanism
for the rounded-down F̂z we design a mechanism for ⌊Fz⌋ℓ,δ, which maintains its guarantees if
πp(Fz, F̂z) is small. Third, in Lemma 5, given a mechanism for ⌊Fz⌋ℓ,δ we design a mechanism
for Fz . Fig. 1 presents a detailed overview of the overall design architecture, and how the RLA and
different mechanism design components interact.

Figure 1: Agents interact with the query protocol Q, which learns their latent types Q(ti)s. The
mechanism design component (which is oblivious to the distributions of the true agents’ types D)
then uses these to produce the final allocation and payments, utilizing only query access to M̂ and
sampling access to D̂z such that the overall framework is approximately (η, µ)-BIC wrt D.

Our proofs for Lemmas 3 and 5 are adaptations of the corresponding lemmas of [BCD20],
where our main task is to flesh out the exact dependence on the dimensionality of the latent
space and the ℓp-norm (versus the ℓ1-norm in [BCD20]). The novelty of our approach comes
in the construction and analysis of Lemma 4. The difficulty of transforming mechanisms for
⌊F̂z⌋ℓ,δ into mechanisms for ⌊Fz⌋ℓ,δ is that the two distributions might not share the same sup-
port. Thus, we need a way to map bids that are not in the support of ⌊F̂z⌋ℓ,δ to bids that are.
Brustle et al. [BCD20] do this by “optimally misreporting” on behalf of the bidder, by calculat-
ing argmaxz∈supp(⌊F̂z,i⌋

ℓ,δ
) Eb−i∼⌊(F̂z)−i⌋

ℓ,δ

[ui(vi,M̂(z,b−i))], and then picking matching pay-

ments that make the overall mechanism IR. Our approach leverages the fact that F̂z,i and Fz,i are
close in Prokhorov distance, and thus any point on the support of one distribution is close to a point
on the support of the other, with high probability. An ideal construction would map a report wi

to the “valid” report (i.e., a report in the support of ⌊F̂z,i⌋ℓ,δ) that minimizes the ℓp distance to
wi. This operation is linear on the support of ⌊F̂z,i⌋ℓ,δ, and does not need any information on the
valuation functions, nor on the actual probabilities that elements of the distribution are sampled with.
Unfortunately, our assumption on what “oracle access” means does not allow us to do this operation
(finding the closest point w.r.t. ℓp) on ⌊F̂z,i⌋ℓ,δ , but only on F̂z,i; we prove that, by occurring a small
loss, our assumption suffices.
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3.3 Putting everything together

Combining Theorems 1 and 2, we can give mechanisms for concrete settings. Formally, we have the
following theorem.
Theorem 3. Under the same setting as in Theorem 2, for bidders with arbitrary valuation functions,
we can construct mechanismM using only query access to the mechanism M̂ (Definition 6) and
oracle access to distribution D̂ (Definition 7), and oblivious to the true type distribution D. We
consider queries (to each bidder i) of the form “What is your value for the subset of items S?”

MechanismM is IR and (η, µ)-BIC w.r.t. D, where µ = O(
√

ζp) and η = O(n∥A∥∞L
√

ζp), and
the expected revenue ofM is at least Rev(M̂, D̂z)−O(nη). Additionally, with probability at least
1− δ,

ζp = cp · (σmin,p(A))
−1 · εmdl,p

for a small constant cp that depends on the parameter p (see footnote 7). The number of queries is
O (k · ln k · ln(n/δ)) and O

(
kp/2 · ln3 k · ln(n/δ)

)
for p = 1, 2 and p ≥ 3, respectively.

The proof of Theorem 3 follows from Theorem 2 and Theorem 1, and is deferred to Appendix B.

As we’ve already discussed, the main mechanism of Cai and Daskalakis [CD22] requires bidders
to have constrained-additive valuations9, as well A to satisfy a number of restrictions. Here, we
completely remove both conditions. On the flip-side, [CD22] ask bidders weaker queries, of the form
“are you willing to pay price τ for item j?” Using such queries, one can binary search over τ , and
drive down the query noise (see Definition 4). For ℓ∞, the extra cost of such an operation would
be ln (∥A∥∞/ε), where ε is the desired accuracy. However, for other p-norms, for the same target
accuracy, this operation requires an extra factor of Θ(log(d1/p)) queries, giving a dependence on d.

4 Conclusions and Future Work

In this paper, we study mechanism design for prior distributions close to a topic model, inspired
from the recommender systems literature. We formulate connections between mechanism design and
Randomized Linear Algebra for active learning for regression problems, importing state-of-the-art
results from Randomized Linear Algebra to mechanism design, and alleviate or relax restrictive
assumptions of prior work. Developing a deeper understanding of such connections is an important
direction for future research. For example, one could study this and other topic models in the context
of mechanism design for correlated bidders, two-sided markets, information structure design, etc.
Additionally, another interesting open problem would be to develop a framework for proving lower
bounds for mechanism design (e.g., lower bounds on the query complexity for single-round or
multi-round protocols used to communicate with the bidders) using known limitations of algorithms
in active learning, and vice-versa.
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