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1 Highlights of Our Contribution

We propose How2comm, a collaborative perception framework that seeks a trade-off between per-
ception performance and communication bandwidth. The contributions of our How2comm are
highlighted as follows:

• We propose a Mutual Information-aware Communication (MIC) mechanism to address the
communication redundancy issue. On the one hand, MIC directs collaborators to share
spatial-channel sparse, yet perceptually critical information through spatial-channel message
filtering. On the other hand, the mutual information maximization supervision is introduced
to mitigate the depletion of locally valuable semantics in the transmitted features.

• We design a Flow-guided Delay Compensation (FDC) strategy to address the transmission
delay issue. FDC eliminates two-sided fusion error at the feature level due to the temporal
asynchrony by predicting the future features of the collaborators. FDC provides a promising
solution to mitigate the inevitable transmission delay in collaborative perception by a
self-supervised motion estimation paradigm.

• We present a Spatio-Temporal Collaboration transFormer (STCFormer) to address the
collaboration heterogeneity issue. STCFormer delivers a unified structure for pragmatic
and robust collaboration by simultaneously modelling the temporal dynamics and spatial
semantics among heterogeneous agents.

2 Details about the System Pipeline

Alg. 1 presents the system pipeline of the proposed multi-agent collaborative perception framework
How2comm. We assume that there is a data transmission delay τ (i.e., t = t0 + τ ) between the ego
agent (i) and the collaborators. The point clouds {Xt0−k

j , ...,Xt0
j | 1 ≤ j ≤ N, j ̸= i} of N − 1

collaborators and the ego agent’s historical frames {Xt0
i , ...,Xt

i} are defined as the system inputs,
which are synchronized to the current coordinate system of the ego agent. As stated in the main
paper, the primary goal of How2comm is to maximize the 3D object detection performance of the ego
agent by aggregating the semantic information from the above system inputs under a communication
budget B. Specifically, FFN is the feed-forward network, TCA, ESA, CSA, and ALF denote the
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Algorithm 1: System pipeline of How2comm

Input :{Xt0−k
j , ...,Xt0

j | 1 ≤ j ≤ N, j ̸= i}, {Xt0
i , ...,Xt

i | t = t0 + τ}
1 # Each agent processes independently
2 # 1. Mutual Information-aware Communication
3 for each agent j = 1, 2, ..., N do
4 F t0

j = fenc(X
t0
j ) ∈ RH×W×C ;

5 Obtain attention queries: At0
i,s ∈ RH×W×1, At0

i,c ∈ R1×1×C ;
6 if j == i then
7 Broadcast request queries: Rt0

i,s = 1−At0
i,s, R

t0
i,c = 1−At0

i,c;

8 else
9 Mt0

j = Eq. (2)* ∈ {0, 1}H×W×C ;
10 Ot0

j , St0
j = fflow([F

t0−k
j , ...,F t0

j ]);
11 Send F̃ t0

j = F t0
j ⊙Mt0

j and {Ot0
j , St0

j } to the i-th agent;

12 # For ego agent
13 # 2. Flow-guided Delay Compensation
14 Zt

j = fwarp(F̃
t0
j , (t− t0) · Ot0

j )⊙ St0
j ;

15 # 3. Spatio-Temporal Collaboration Transformer
16 It

i/It
j = σ(φm(fgen(F

t
i /Z

t
j))) ∈ [0, 1]H×W ;

17 Zt
j,e = fsel((1− It

i )⊙ It
j)⊙Zt

j , Zt
j,c = fsel(It

i ⊙ It
j)⊙Zt

j ;
18 Ht

i = TCA([F̃ t0
j ,F t0

i , ...,F t
i ]);

19 F t
i,e = ESA(Ht

i , {Zt
j,e | 1 ≤ j ≤ N, j ̸= i}) +Ht

i , F t
i,e = FFN(F t

i,e) + F t
i,e;

20 F t
i,c = CSA(Ht

i , {Zt
j,c | 1 ≤ j ≤ N, j ̸= i}) +Ht

i , F t
i,c = FFN(F t

i,c) + F t
i,c;

21 F t
i = ALF(F t

i,e, F
t
i,c) ∈ RH×W×C ;

22 # 4. Detection Decoders
23 Yt

i,r = fr
dec(F t

i ) ∈ RH×W×7, Yt
i,c = f c

dec(F t
i ) ∈ RH×W×2.

proposed temporal cross-attention, exclusive spatial attention, common spatial attention, and adaptive
late fusion components, respectively. Eq. (·)* represents the equation in the main paper, σ and
φm(·) denote the sigmoid activation and max pooling function, respectively. ⊙ and · denote the point-
wise multiplication and scalar multiplication, respectively. As Alg. 1 shows, How2comm leverages
two tailored components to facilitate an efficient communication pattern and eliminate temporal
asynchrony, respectively. Moreover, the proposed STCFormer component effectively aggregates the
historical context clues and comprehensive collaborator information, leading to a more pragmatic
collaboration. The output prediction results of the ego agent are produced based on the refined visual
representation F t

i . Note that we present the processing of each agent in an iteration format only for
clarity; these processes are conducted in parallel during the implementation.

3 Experiments

3.1 Implementation Details

The height and width resolution of the feature encoder fenc(·) is set to 0.4 m. The extracted BEV
feature map size is (100, 252, 64) on the DAIR-V2X [11] dataset and (100, 352, 64) on the
V2XSet [9] and OPV2V [10] datasets.

Communication Volume. As stated in the main paper, the j-th agent, as a collaborator, employs
the learned binary message filtering matrix Mt0

j ∈ {0, 1}H×W×C to obtain the sparse feature as
F̃ t0
j = F t0

j ⊙ Mt0
j ∈ RH×W×C and sends F̃ t0

j to the ego agent. Moreover, the feature flow
Ot0

j ∈ RH×W×2 and scale matrix St0
j ∈ RH×W×1 are also transmitted. We count the message size

by byte in the log scale with base 2 by formulating the communication volume as follows:

log2[(|M
t0
j |+ 3HW )× 32/8], (1)
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where | · | is the L0-norm operation counting non-zero elements. 32 represents that each element of
the transmitted feature is the float32 data type, and 8 represents that byte is used as the metric. The
vanilla calculation format of communication volume as [1] is applied for other feature compression
or spatial filtering methods.

Bandwidth Limitation. The existing commercial V2V communication products based on 802.11p
achieve transmission rates close to 6 MBps, while LTE-V2V channels can reach approximately 10
MBps [5]. Given the capturing frequency of 10 Hz for commonly used LiDAR [10], LTE-V2V
communication products can transmit message sizes of about 1 MB in 100 ms. Therefore, we set a
basic bandwidth limitation of ≈ 1 MB to simulate the restricted communication resources in real
V2X/V scenarios and evaluate the performance of all models under this limitation setting.

3.2 Experimental Setup

Communication Graph. Following the settings of existing works [3, 4, 6, 9, 10], we identify
an agent (e.g., vehicle) as the ego agent and set other agents within the communication range as
collaborators during the collaboration. The communication range is set to 70 m [1] in practice. With
this design, our primary goal is to improve the perception ability of the ego agent by aggregating
complementary information from its local historical observations and collaborator-shared features.
In practice, the ego agent can broadcast its metadata (e.g., poses, extrinsic, and sensor type) using
the existing Vehicle-to-Vehicle/Everything communication channel. The transmission delay of the
metadata is negligible due to the small message size. Upon receiving the metadata of the ego agent,
the collaborators will first project their local point cloud observations under the ego coordinate system
through the coordinate transformation. Moreover, to extract historical context clues efficiently, the
preceding point cloud frames considered in our framework are synchronized to the current coordinate
frame via the ego-motion compensation module [7].

Feature Encoder. For optimizing processing latency and memory usage, we employ the anchor-
based method PointPillar [2] as the feature encoder fenc(·) to extract visual representations from
the captured point cloud frames. The encoder converts the raw point clouds into the stacked pillars
and scatters them into a 2D pseudo-image. A feature pyramid network processes the pseudo-image
and outputs the final Bird’s-Eye-View (BEV) features. Given the point cloud Xt

i of i-th agent at
timestamp t, the corresponding extracted BEV feature map is F t

i = fenc(X
t
i ) ∈ RH×W×C , where

H,W,C stand for the height, width, and channel. The network parameters of the feature encoder
fenc(·) are shared among all agents.

Selection Function. As shown in Eq. (2) in the main paper, the selection function fsel(·) is introduced
to select the salient spatial-channel elements and obtain the binary message filtering matrix Mt0

j .
Specifically, the elements of the input matrix are first arranged in descending order. Considering
the dynamic communication resources of the realistic V2V/X channel, fsel(·) leverages the given
bandwidth limitation to set a communication threshold, which determines the spatial-channel elements
that will be transmitted. The matrix Mt0

j is obtained by a filtering operation, where the corresponding
elements in the input matrix greater than the communication threshold are set to 1 and 0 verses.

Time Embedding. Time embedding is presented to explicitly introduce the temporal relationships of
input BEV features into the temporal cross-attention module. Following [12], we apply a linear layer
to encode the relative time [t− t0, t− t0, ..., 0] ∈ R1×(Nτ+1) of the input features [F̃ t0

j ,F t0
i , ...,F t

i ]

as a time embedding, whose shape is (Nτ +1, 1, 1, C). Then, the input features are reshaped to the
size of (Nτ + 1, H, W, C) and added with the learned time embedding across all spatial locations.

3.3 Qualitative Evaluation

Figure 1 shows more detection results to verify the effectiveness of How2comm in high-density traffic
flow scenarios. We show the visual comparisons between How2comm and current SOTA methods,
including V2X-ViT [9], CoBEVT [8], and Where2comm [1], under the collaboration noises and
communication bandwidth constraints aligned with the main paper. Unsurprisingly, How2comm has
fewer regression misalignments and fewer undetected objects, resulting in a more robust performance.
In comparison, previous methods fail to tackle fast-moving objects and perceive remotely occluded
regions. The indisputable evidence is that some ground truth bounding boxes are not well matched
with their detection results.
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(a) V2X-ViT (b) CoBEVT (c) Where2comm (d) How2comm (ours)

Figure 1: Detection visualization comparison in real-world scenarios. Green and red boxes denote
the ground truth and detection results, respectively.

4 Broader Impacts

▶ The positive impact of this work is that How2comm can leverage vehicular communication
technology to facilitate information sharing and enhance the vehicles’ perception ability of the
surrounding environment, reducing the incidence of traffic accidents.

▶ Additionally, the collaborative perception ability provided by How2comm can be used to monitor
real-time traffic conditions and improve traffic efficiency.

▶ Collaborative perception systems may leak vehicle-related information (e.g., locations and driving
speed), violating the owner’s privacy. Meanwhile, illegal personnel may invade the vehicle communi-
cation channel to attack the collaborative perception system, leading to the vehicles’ misjudgment of
the surrounding environment or malicious remote control.

▶ In summary, this work facilitates Vehicle-to-Vehicle/Everything (V2V/X)-oriented multi-agent
communication applications in autonomous driving.

5 Discussion on the Realistic Limitations

As an emerging field, there are many challenges in building a robust multi-agent collaborative
perception system. This paper addresses three of the biggest challenges, including communica-
tion redundancy, transmission delay, and collaboration heterogeneity, through tailored components.
Although previous works have appropriately focused on these dilemmas, collaborative perception
systems still have considerable room for improvements in the trade-off between perception per-
formance and communication bandwidth. How2comm achieves superior performance with lower
communication overheads in real V2V/X scenarios with limited communication capacity. We further
discuss other realistic limitations and indicate future research directions to optimize our system.

▶ For the attack issue, How2comm could improve the robustness against potential adversarial attacks
by introducing an adversarial training paradigm. In addition, by focusing on decoupled spatial regions
and discovering perceptually critical information, How2comm is relatively less likely to be attacked.

▶ For the data bias issue, How2comm has demonstrated its preliminary generalization on real-world
and simulated datasets with different configurations and sensor facilities. In future work, How2comm
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could disentangle causal relationships among variables in the collaborative perception pipeline with
the assistance of causal-effect techniques, further enhancing its ability to generalize to more complex
real-world scenarios.

▶ For the domain gap issue, How2comm could hopefully achieve sim2real adaptation and inter-agent
adaptation by introducing an unsupervised sim2real domain bridging mechanism.
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