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Abstract

Multi-agent collaborative perception has recently received widespread attention as
an emerging application in driving scenarios. Despite the advancements in previous
efforts, challenges remain due to various dilemmas in the perception procedure,
including communication redundancy, transmission delay, and collaboration hetero-
geneity. To tackle these issues, we propose How2comm, a collaborative perception
framework that seeks a trade-off between perception performance and communi-
cation bandwidth. Our novelties lie in three aspects. First, we devise a mutual
information-aware communication mechanism to maximally sustain the informa-
tive features shared by collaborators. The spatial-channel filtering is adopted to
perform effective feature sparsification for efficient communication. Second, we
present a flow-guided delay compensation strategy to predict future characteristics
from collaborators and eliminate feature misalignment due to temporal asynchrony.
Ultimately, a pragmatic collaboration transformer is introduced to integrate holistic
spatial semantics and temporal context clues among agents. Our framework is
thoroughly evaluated on several LiDAR-based collaborative detection datasets in
real-world and simulated scenarios. Comprehensive experiments demonstrate the
superiority of How2comm and the effectiveness of all its vital components. The
code will be released at https://github.com/ydk122024/How2comm.

1 Introduction

Precise perception of complex and changeable driving environments is essential to ensure the safety
and reliability of intelligent agents [25, 46], e.g., autonomous vehicles (AVs). With the emergence of
learning-based technologies, remarkable single-agent perception systems are extensively explored
for several in-vehicle tasks, such as instance segmentation [19, 58] and object detection [26, 49].
Nevertheless, single-agent perception suffers from various shortcomings due to the isolated view,
such as unavoidable occlusions [55], restricted detection ranges [56], and sparse sensor observa-
tions [57]. Recently, multi-agent collaborative perception [39, 54] has provided promising solutions
as an emerging application for vehicle-to-vehicle/everything (V2V/X) communications. The im-
pressive studies [7, 14, 16, 17, 31, 32, 33, 38, 40, 51] have progressively presented to aggregate
valuable information and complementary perspectives among on-road agents, resulting in a more
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Figure 1: (a) and (b) show the point cloud fusion results in the absence and presence of transmission
delay, respectively. (c) and (d) show the vanilla image and fused point cloud of the collaborative
perception scene containing an ego vehicle (red circle) and an infrastructure, respectively.

precise perception. Despite recent advancements, challenges remain due to unpreventable dilemmas,
including communication redundancy, transmission delay, and collaboration heterogeneity.

Communication Redundancy. The dominant patterns for reducing communication overhead are
summarized as feature compression [14, 33, 40] and spatial filtering [7, 8]. The former assumes
that agents share all spatial areas indiscriminately, which dramatically wastes bandwidth. The latter
overly relies on confidence maps to highlight gullible locations and fails to consider spatially holistic
information. Moreover, these methods invariably cause losses of transmitted valuable information.

Transmission Delay. Figures 1(a)&(b) present the point cloud fusion results from an ego vehicle
and an infrastructure in the time-synchronous and time-asynchronous cases, respectively. The in-
evitable transmission delay causes position misalignment of fast-moving objects within the green
circles, potentially harming subsequent collaboration performance. Although several delay-aware
strategies [13, 40, 53] are proposed to tackle this issue, they either suffer from performance bottle-
necks [13, 40] or introduce massive computation costs [53], leading to sub-optimal solutions.

Collaboration Heterogeneity. Figures 1(c)&(d) show the typical collaboration scenario involving
two agents and the fused point cloud. Intuitively, LiDAR configuration discrepancies (e.g., different
LiDAR densities, distributions, reflectivities, and noise interference) across agents potentially cause
collaboration heterogeneity within the feature space. In this case, the orange box contains the
common perception region of both agents, which facilitates bridging the feature-level gap caused
by sensor configuration discrepancies [37, 40]. The magenta box contains the exclusive perception
region of the infrastructure, which provides complementary information for the ego vehicle and
compensates for the occluded view. Fusing valuable spatial semantics from these two perception
regions facilitates comprehensive and pragmatic perception. However, most previous methods [14, 16,
32, 33, 40] integrate collaborator-shared features via per-agent/location message fusion to enhance
ego representations, whose collaboration processes could be vulnerable since the advantages of
distinct perception regions from heterogeneous agents are not considered holistically. Moreover,
the current single-frame perception paradigm faces the challenges of 3D point cloud sparsity and
localization errors, increasing the difficulty of building a robust multi-agent perception system.

Motivated by the above observations, we propose How2comm, an end-to-end collaborative perception
framework to address the existing issues jointly. Through three novel components, How2comm
advances towards a reasonable trade-off between perception performance and communication band-
width. Specifically, (i) we first design a mutual information-aware communication mechanism to
maximally preserve the beneficial semantics from vanilla characteristics in the transmitted messages
of collaborators. In this case, spatial-channel message filtering is introduced to determine how to use
less bandwidth for efficient communication. (ii) Second, we present a flow-guided delay compensation
strategy to predict the future features of collaborators by mining contextual dependencies in sequential
frames. Our ingenious strategy determines how to dynamically compensate for the delay’s impact
and explicitly accomplish temporal alignment. (iii) Furthermore, we construct a spatio-temporal
collaboration transformer (STCFormer) module to integrate perceptually comprehensive information
from collaborators and temporally valuable clues among agents. Our unified transformer structure
determines how to achieve pragmatic collaboration, contributing to a more robust collaborative per-
ception against localization errors and feature discrepancies. How2comm is systematically evaluated
on various collaborative 3D object detection datasets, including DAIR-V2X [52], V2XSet [40], and
OPV2V [41]. Quantitative experiments demonstrate that our framework significantly outperforms
previous state-of-the-art (SOTA) methods under the bandwidth-limited noisy setting. Systematic
analyses confirm the robustness of How2comm against distinct collaboration noises.
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Figure 2: How2comm overview. The projected features of all agents are obtained via a shared encoder.
Upon receiving requests {Rt0

i,s,R
t0
i,c} from the ego vehicle, the collaborator (i.e., infrastructure) shares

the sparse feature F̃ t0
j , feature flow Ot0

j , and scale matrix St0j via the message filtering and flow
generator. After that, the ego vehicle predicts the future feature Zt

j and adopts the importance maps
{Iti , Itj} to get the exclusive and common maps, which decouple Zt

j into Zt
j,e and Zt

j,c. Finally, our
STCFormer fuses the temporal context and decoupled spatial features to output F t

i used for detection.

2 Related Work

Multi-Agent Communication. Benefiting from rapid advances in learning-based technolo-
gies [12, 21, 22, 23, 24, 42, 43, 44, 45, 47, 48, 50], communication has played an essential role
in constructing robust and stable multi-agent systems. Although early works provided heuristic
insights into information sharing among different agents through predefined protocols and centralized
paradigms [4, 28, 29], these efforts are typically difficult to generalize into challenging scenarios.
Recently, several learning-driven communication strategies have been proposed to accommodate
diverse scenario applications. For instance, Vain [6] utilized an attentional neural structure to specify
what information needs to be shared in agent interactions. ATOC [9] introduced the recurrent unit
to decide whom the agent communicates with by receiving local observations and action intentions
from other agents. TarMAC [2] designed a reinforcement learning-oriented architecture to learn
communication from task-specific rewards. In comparison, we focus on LiDAR-based collaborative
3D object detection tasks. For more challenging driving scenarios, we design the mutual information
supervision and attention-guiding mechanism to achieve efficient communication across agents.

Collaborative Perception. Collaborative perception is only in its infancy as a promising application
of multi-agent systems. Several impressive approaches have been designed to facilitate the overall
perception performance of AVs. The mainstream works [7, 14, 16, 33, 37, 38, 40] followed the
intermediate collaboration pattern to balance average precision and bandwidth overhead. Specifically,
When2com [16] introduced a handshake mechanism to determine when to communicate with collab-
orators. V2VNet [33] employed a fully connected graph network to aggregate feature representations
shared by agents. After that, DiscoNet [14] proposed a knowledge distillation framework to supervise
the intermediate collaboration through an early collaboration of full views. V2X-ViT [40] designed
distinct attention interactions to facilitate adaptive information fusion among heterogeneous agents.
Where2comm [7] aimed to transmit perceptually critical information via sparse spatial confidence
maps. However, these methods invariably ignore valuable historical clues and lead to sub-optimal
solutions. In this paper, we propose a novel collaboration transformer to jointly capture spatial
semantics and temporal dynamics among agents, resulting in a more pragmatic collaboration.

3 Methodology

3.1 Problem Formulation

In this paper, we seek to develop a communication-efficient and collaboration-pragmatic multi-agent
system to enhance the perception ability of the ego agent. Figure 2 illustrates the proposed system
framework, which accommodates different agents (e.g., AVs and infrastructures). Consider N agents
in a driving scene, let Xt

i be the local point cloud observation of the i-th agent (i.e., ego agent) and
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Yi be the corresponding ground-truth supervision. The objective of How2comm is to maximize the
LiDAR-based 3D detection performance ℜ(·) under a total communication budget B:

ℜ(B) = argmax
θ,F̃j

N∑
i

ð(Ψθ(X
t
i , {F̃

t0
j }

N
j=1),Yi), s.t.

∑
j

|F̃ t0
j | ≤ B, (1)

where ð(· , ·) denotes the perception evaluation metric and Ψθ is the perception system parameterized
by θ. F̃ t0

j is the message transmitted from the j-th agent to the i-th agent at time delay τ -aware
moment t0, where t0 = t− τ . The remainder of Section 3 details the major components.

3.2 Metadata Conversion and Feature Extraction

In the initial stage of collaboration, we build a communication graph [14, 40] where one agent is
selected as the ego agent and the other connected agents act as collaborators. Upon receiving the
broadcast metadata (e.g., poses and extrinsic) from the ego agent, the collaborators project their
local observations to the ego agent’s coordinate system. Moreover, ego-motion compensation [35]
synchronizes each agent’s historical frames. The shared PointPillar [11] encoder fenc(·) converts
the point cloud of the i-th agent at timestamp t into the bird’s-eye-view (BEV) features as F t

i =
fenc(X

t
i ) ∈ RH×W×C , where H,W,C denote height, width, and channel, respectively.

3.3 Mutual Information-aware Communication

Previous attempts to reduce the required transmission bandwidth relied heavily on autoencoders [14,
33, 40] or confidence maps [7, 8], which are one-sided as they only consider information compression
over spatial positions or channels. To this end, we design a mutual information-aware communication
(MIC) mechanism to select the most informative messages from space and channels to save precious
bandwidth. MIC consists of two core parts as follows.

Spatial-channel Message Filtering. Stemming from solid evidence in signal picking, we first
introduce the CBAM [34]-like spatial-channel attention queries to assist each agent in sharing their
salient features. The spatial query At0

i,s = σ(ω3∗3[φa(F
t0
i );φm(F t0

i )]) ∈ RH×W×1 reflects what
spatial locations on delayed feature F t0

i are informative, where [· ; ·] is the concatenation, σ is the
sigmoid activation, φa/m(·) denote average and max pooling functions, and ω3∗3(·) is the 2D 3× 3

convolution operation. The channel query At0
i,c = σ(ω1∗1(φa(F

t0
i )) + ω1∗1(φm(F t0

i ))) ∈ R1×1×C

reflects which channels in F t0
i are semantically meaningful. φa/m(·) in the spatial and channel

queries are applied to the channel and spatial dimensions, respectively. Then, the ego agent indicates
the supplementary messages required to improve local perception performance by broadcasting
request queriesRt0

i,s/R
t0
i,c = 1−At0

i,s/A
t0
i,c. The j-th collaborator then aggregates the requests with

its attention queries to obtain a spatial-channel binary message filtering matrix as follows:

Mt0
j = fsel(ω1∗1[Rt0

i,s;A
t0
j,s]⊙ ω1∗1[Rt0

i,c;A
t0
j,c]) ∈ {0, 1}

H×W×C
, (2)

where fsel(·) is a threshold-based selection function and ⊙ is the element-wise multiplication.
Ultimately, the selected feature map is obtained as F̃ t0

j = F t0
j ⊙M

t0
j , which provides spatial-

channel sparse, yet perceptually critical information.

Mutual Information Maximization Supervision. Most existing works ignore the potential loss of
valuable information due to feature compression. To overcome this dilemma, we maximally sustain
the local critical semantics in the corresponding vanilla feature F t0

j on the selected regions of the
transmitted features F̃ t0

j by mutual information estimation. Since we only focus on maximizing the
mutual information rather than getting its precise value, a stable estimator [5] is utilized to build the
objective supervision based on the Jensen-Shannon divergence. Formally, the mutual information
between two random variables X and Z is estimated as follows:

Î(JSD)
ϱ (X ,Z) = Ep(x,z)[−log(1 + e−Tϱ(x,z))]− Ep(x)p(z)[log(1 + eTϱ(x,z))], (3)

where Tϱ : X ×Z → R is a statistics network parameterized by ϱ. In our case, the mutual information
supervision of all collaborators within the communication link is defined as follows:

Lmul =
1

N − 1

∑
j∈{1,...,N},j ̸=i

Î(JSD)
ϱ (F t0

j , F̃ t0
j ). (4)
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Figure 3: (a) The overall architecture of the proposed STCFormer. (b) and (c) show the structure
of the temporal cross-attention (TCA) and exclusive spatial attention (ESA) modules, respectively,
which contain the computational flow and the major dimensional transformations of features.

3.4 Flow-guided Delay Compensation

We present a flow-guided delay compensation (FDC) strategy to eliminate the two-sided fusion error
in feature-level collaboration due to temporal asynchrony. Existing solutions relied on received
historical features [13] and produced large errors under severe delay [53], leading to performance
bottlenecks. To tackle the issues, we adopt the philosophy of feature flow to predict the collaborators’
future features for temporal alignment with the ego representation. The details are as follows.

Flow Generation and Warping. Due to the uncertain delay between the ego agent and collaborators,
FDC predicts the feature flow Ot0

j for a fixed time interval and scale matrix St0j based on the j-th
agent’s historical frames. Specifically, as Figure 2 shows, features {F t0−k

j , ...,F t0
j } are concatenated

in channel dimension and entered to a generator fflow(·) to output Ot0
j ∈ RH×W×2 and St0j ∈

RH×W×1. Then the j-th agent sends {Ot0
j , St0j } with prediction ability and sparse feature F̃ t0

j to
the ego agent. The ego agent estimates predicted collaborator features as Zt

j = fwarp(F̃
t0
j , (t− t0) ·

Ot0
j )⊙St0j , where fwarp(·) is the bilinear warping function applied to all positions and channels [60,

61], and · is the scalar multiplication. The temporally aligned features are passed to the STCFormer.

Self-supervised Training Pattern. Self-supervised learning is employed to train the flow generator
fflow(·) since the existing datasets [40, 41, 52] lack the motion annotations. Concretely, we first form
the training group {F t0−k

j , ...,F t0
j ,F t

j }, where {F t0−k
j , ...,F t0

j } is a continuous feature sequence,
and F t

j is considered as the ground truth feature. Subsequently, we predict the feature Zt
j as

Zt
j = fwarp(F

t0
j , (t− t0) · Ot0

j )⊙ St0j . Since the optimization objective of fflow(·) is to increase
the similarity between F t

j and Zt
j , we formulate the self-supervised loss function Lflow based on the

cosine similarity [53] as follows:

Lflow =
1

N − 1

∑
j∈{1,...,N},j ̸=i

(1−
F t
j ⊙Zt

j

∥F t
j ∥2F · ∥Zt

j∥2F
), (5)

where ∥ · ∥2F is the squared Frobenius norm.

3.5 Spatio-Temporal Collaboration Transformer

To efficiently mitigate collaboration heterogeneity, we propose a spatio-temporal collaboration trans-
former (STCFormer) to jointly integrate the decoupled spatial semantics and temporal dynamics
among agents. From Figure 3(a), the core contributions of STCFormer lie in the following three cus-
tomized modules, where the other basic components follow the choice of the vanilla transformer [30].

Temporal Cross-Attention. To bridge the detection gap regarding fast-moving objects due to
point cloud sparsity, we capture historical context clues across agents to reinforce the current
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representation via a temporal cross-attention (TCA) module. The core is to perform Query-Key-
Value-like attention operations by projecting the ego feature F t

i and merged temporal features
E = [F̃ t0

j ,F t0
i , ...,F t

i ] into different subspaces via three 2D convolutional layers ω3∗3(·). In
Figure 3(b), the branches of Key&Value Ek/v ← ω1(φa(ω3∗3(E))) ⊙ ω3∗3(E) share the same
structure but separate weights, where a 1D temporal convolution ω1(·) with global average pooling
φa(·) provides temporal correlations. φa(·) is applied to the spatial dimension to shrink the feature
map. The computation of TSA can be shown as:

Ht
i = ω3∗3(softmax(ω3∗3(F

t
i )⊗ET

k )⊗Ev) ∈ RH×W×C . (6)

Decoupled Spatial Attention. To comprehensively integrate the distinct spatial semantics from
the collaborators, we facilitate pragmatic message fusion with a feature decoupling perspective
inspired by the observation in Figure 1(d). Formally, an importance generator fgen(·) is employed
to generate the importance maps of the ego feature F t

i and the estimated collaborator feature Zt
j

as Iti/Itj = σ(φm(fgen(F
t
i /Z

t
j))) ∈ [0, 1]H×W . The importance maps reflect the perceptually

critical level of each pixel in the features. Then, the j-th agent spatially decouples the feature Zt
j via

candidate maps Etj = (1−Iti )⊙Itj and Ctj = Iti ⊙Itj . Intuitively, Etj and Ctj depict the collaborators’
exclusive and common perception regions relative to the ego agent, respectively. The exclusive and
common collaborator features are obtained as Zt

j,e = fsel(Etj)⊙Zt
j and Zt

j,c = fsel(Ctj)⊙Zt
j .

Then, we present two spatial attention modules based on deformable cross-attention [59] to aggregate
the decoupled exclusive and common features, which share the same structure but different weights.
Here the exclusive spatial attention (ESA) is taken as an example (see Figure 3(c)), and its input
comprises Ht

i and Zt
j,e. An importance-aware query initialization is first designed to guide ESA to

focus on the potential foreground objects. Specifically, we obtain the element-wise summation of
the importance maps as It =

∑N
j=1 Itj and extract Nq target queries from the salient locations in It.

The attention scores are learned from the initial queries via a linear layer and the softmax function.
Subsequently, a linear layer learns an offset map for each input feature, providing the 2D spatial
offset {∆qv |1 ≤ v ≤ Nv} for each query q. We sample the keypoints based on the learned offset
maps and extract these keypoints’ features to form the attending feature. The cross-attention layer
aggregates multiple collaborators’ features to output the enhanced feature for each query q as:

ESA(q) =

U∑
u=1

Wu[

N∑
j=1

Nv∑
v=1

softmax(WfH
t
i (q))Z

t
j,e(q +∆qv)], (7)

where u indexs the attention head, and Wu/f denotes the learnable parameters. Then, the filling
operation fills ESA(q) into Ht

i based on the initial positions of the queries and outputs F t
i,e. Similarly,

the enhanced common feature F t
i,c is obtained via the common spatial attention (CSA).

Adaptive Late Fusion. The adaptive late fusion (ALF) module is presented to effectively fuse the
exclusive and common representations {F t

i,e,F
t
i,c} for incorporating their perceptual advantages.

Formally, we obtain two weight maps as Gti,e/Gti,c = ω1∗1(F
t
i,e/F

t
i,c), and apply the softmax function

to produce the normalized weight maps as Gt
i,e/G

t
i,c = softmax(Gti,e/Gti,c). The learned Gt

i,e and
Gt

i,c reflect the complementary perception contributions of {F t
i,e,F

t
i,c} at each spatial location.

Therefore, we adaptively activate the perceptually critical information of each representation by a
weighted summation. The refined feature map is obtained as F t

i = Gt
i,e ⊙ F t

i,e +Gt
i,c ⊙ F t

i,c.

3.6 Detection Decoders and Objective Optimization

Two detection decoders {fr
dec(·), f c

dec(·)} are employed to convert the output fused representation
F t

i into the prediction results. The regression result represents the position, size, and yaw angle of the
predefined box at each location, which is Y(t)

i,r = fr
dec(F t

i ) ∈ RH×W×7. The classification result is

Y(t)
i,c = f c

dec(F t
i ) ∈ RH×W×2, revealing the confidence value of each bounding box to be an object.

For objective optimization, we leverage the smooth absolute error loss for regression (denoted as
Lreg) and the focal loss [15] for classification (denoted as Lcla). In total, we formulate the overall
objective function as follows: Lall = Lreg + Lcla + Lmul + Lflow.
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Figure 4: Collaborative perception performance comparison of How2comm and Where2comm [7] on
the DAIR-V2X, V2XSet, and OPV2V datasets with varying communication volumes.
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Figure 5: Robustness to the localization error on the DAIR-V2X, V2XSet, and OPV2V datasets.

4 Experiments

4.1 Datasets and Implementation Details

Multi-Agent 3D Detection Datasets. To evaluate the performance of How2comm on the collabora-
tive perception task, we conduct extensive experiments on three multi-agent datasets, including DAIR-
V2X [52], V2XSet [40], and OPV2V [41]. DAIR-V2X [52] is a real-world vehicle-to-infrastructure
perception dataset containing 100 realistic scenarios and 18,000 data samples. Each sample collects
the labeled LiDAR point clouds of a vehicle and an infrastructure. The training/validation/testing
sets are split in a ratio of 5:2:3. V2XSet [40] is a simulated dataset supporting V2X perception,
co-simulated by Carla [3] and OpenCDA [36]. It includes 73 representative scenes with 2 to 5
connected agents and 11,447 3D annotated LiDAR point cloud frames. The training/validation/testing
sets are 6,694, 1,920, and 2,833 frames, respectively. OPV2V [41] is a large-scale simulated dataset
for multi-agent V2V perception, comprising 10,914 LiDAR point cloud frames with 3D annotation.
The training/validation/testing splits include 6,764, 1,981, and 2,169 frames, respectively.

Evaluation Metrics. We adopt the Average Precision (AP) at Intersection-over-Union (IoU) thresh-
olds of 0.5 and 0.7 to evaluate the 3D object detection performance. Also, the calculation format of
communication volume in [7] is used to count the message size by byte in the log scale with base 2.

4.2 Quantitative Evaluation

Table 1: Performance comparison on the DAIR-
V2X [52], V2XSet [40], and OPV2V [41] datasets.
The results are reported in AP@0.5/0.7.

Models DAIR-V2X V2XSet OPV2V
AP@0.5/0.7 AP@0.5/0.7 AP@0.5/0.7

No Fusion 50.03/43.57 60.60/40.20 68.71/48.66
Late Fusion 48.93/34.06 54.92/30.75 79.62/59.48

When2com [16] 46.64/32.49 65.06/41.87 70.64/53.73
F-Cooper [1] 49.77/35.21 71.48/46.92 75.27/63.05
AttFuse [41] 50.86/38.30 70.85/48.66 79.14/64.52
V2VNet [33] 52.18/38.62 79.09/49.25 77.45/62.10
DiscoNet [14] 51.44/40.01 79.83/54.06 81.08/64.85
V2X-ViT [40] 51.68/39.97 83.64/61.41 80.61/66.42
CoBEVT [38] 56.08/41.45 81.07/54.33 81.59/67.50

Where2comm [7] 59.34/43.53 82.02/53.38 82.75/67.29
How2comm (ours) 62.36/47.18 84.05/67.01 85.42/72.24

Experimental Settings. We build all the mod-
els using the Pytorch toolbox [18] and train
them on Tesla V100 GPUs with the Adam opti-
mizer [10]. The learning rate is set to 2e-3 and
decays exponentially by 0.1 every 15 epochs.
The training settings on the DAIR-V2X [52],
V2XSet [40], and OPV2V [41] datasets include:
the training epochs are {30, 40, 40}, and batch
sizes are {2, 1, 1}. The height and width reso-
lution of the feature encoder fenc(·) is 0.4 m.
The selection function fsel(·) has a threshold of
0.01. The flow generator fflow(·) leverages the
multi-scale backbone to extract multi-grained
representations and an extra encoder to produce
Ot0

j and St0j . We implement the importance gen-
erator fgen(·) and statistical network Tϱ(·) with the classification decoder in [11] and following [27],
respectively. The keypoint number Nv is 9, and the attention head is 8. Two 1×1 convolutional layers
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Figure 6: Robustness to the heading error on the DAIR-V2X, V2XSet, and OPV2V datasets.
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Figure 7: Robustness to the transmission delay on the DAIR-V2X, V2XSet, and OPV2V datasets.

are utilized to implement the detection decoders. Under the default noise settings, the transmission
delay τ is set to 100 ms, and the localization and heading errors of the collaborators are sampled from
a Gaussian distribution with standard deviations of 0.2 m and 0.2◦, respectively. All experiments are
constrained to ≈ 1 MB bandwidth consumption to reflect the narrow communication channels in real
V2V/X scenarios [20].

Detection Performance Comparison. Table 1 compares the detection performance of the proposed
How2comm with various models on three datasets under default noise settings. We consider two
typical baselines. No Fusion is a single-agent perception pattern that only uses the local observations.
Late Fusion integrates predicted boxes across agents and produces results with non-maximum sup-
pression. Moreover, the existing SOTAs are comprehensively considered, including When2com [16],
F-Cooper [1], AttFuse [41], V2VNet [33], DiscoNet [14], V2X-ViT [40], CoBEVT [38], and
Where2comm [7]. Intuitively, How2comm outperforms previous methods in the real-world (DAIR-
V2X [52]) and simulated datasets, demonstrating the superiority of our model and its robustness to
various realistic noises. In particular, the SOTA performance of AP@0.7 on the DAIR-V2X and
OPV2V is improved by 8.4% and 7.0%, respectively. Compared to previous per-agent/location
message fusion efforts [14, 16, 33, 40], How2comm simultaneously considers the decoupled spatial
semantics and temporal dynamics among agents, resulting in a more precise perception.

Comparison of Communication Volume. Figure 4 presents the performance comparison results
with distinct bandwidth consumptions. Concretely, the orange and blue curves denote the detection
precision of our How2comm and Where2comm under varying communication volumes, respec-
tively. (i) How2comm keeps superior to Where2comm across all the communication choices, i.e.,
How2comm achieves a better performance-bandwidth trade-off with spatial-channel filtering than
Where2comm. (ii) Moreover, our framework seeks comparable performances as the SOTAs by con-
suming less bandwidth. The noteworthy improvements demonstrate that the proposed communication
mechanism filters invalid semantics and maintains performance by mutual information maximization.

Robustness to Localization and Heading Errors. We verify the detection performance of
How2comm under varying pose errors of collaborators in Figures 5 and 6 following the noise
settings in [40]. Specifically, the localization and heading errors are sampled from Gaussian distri-
butions with a standard deviation of σxyz ∈ [0, 0.5] m and [0◦, 1.0◦], respectively. As shown in the
figures, the performance of all intermediate collaboration models consistently deteriorates due to
feature map misalignment as the pose errors increase. Noticeably, How2comm is superior to the
previous SOTA models and No Fusion across three datasets under all error levels, while some models
(e.g., V2VNet and When2com) are even weaker than No Fusion when the error exceeds 0.2 m and
0.2◦ on the DAIR-V2X dataset. This comparison demonstrates the robustness of How2comm against
collaboration pose noises. One reasonable explanation is that our framework captures perceptually
critical and holistic information across heterogeneous agents via the tailored STCFormer.
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Robustness to Transmission Delay. As noted in Figure 1(b), temporal asynchrony due to transmis-
sion delay results in two-sided fusion errors and harms the collaboration procedure. We analyze the
sensitivity of existing models to varying delays (i.e., from 0 to 400 ms) in Figure 7. Noticeably, all the
intermediate fusion methods inevitably degrade with increasing transmission delay due to misleading
feature matching. Nevertheless, How2comm maintains higher precision than SOTAs at all delay levels
across all three datasets and improves AP@0.7 by 7.5% than No Fusion on DAIR-V2X under a severe
delay (400 ms). This robustness to the transmission delay proves that How2comm accomplishes
temporal alignment of two-sided features by predicting the collaborators’ future features.

4.3 Ablation Studies
We perform thorough ablation studies on all datasets to understand the necessity of the different
designs and strategies in How2comm. Table 2 shows the following vital observations.

Table 2: Ablation study results of the proposed
components and strategies on all the datasets. “w/o”
stands for the without.

Components/Strategies DAIR-V2X V2XSet OPV2V
AP@0.5/0.7 AP@0.5/0.7 AP@0.5/0.7

Full Framework 62.36/47.18 84.05/67.01 85.42/72.24
Rationality of Communication Mechanism

w/o Spatial Query 61.25/46.33 83.14/66.15 84.52/71.40
w/o Channel Query 61.76/46.52 83.70/66.58 85.23/71.76

w/o Mutual Information 60.61/46.04 82.53/65.75 84.06/70.69

Effect of Delay Compensation Strategy

w/o Scale Matrix 62.17/46.86 83.61/66.63 85.08/71.54
w/o Self-supervised Training 60.55/45.77 82.84/65.78 84.20/70.36

Importance of STCFormer

w/o Temporal Cross-Attention 60.13/45.92 83.09/65.88 84.27/70.85
w/o Exclusive Spatial Attention 59.46/45.06 82.65/65.70 83.81/71.19
w/o Common Spatial Attention 61.24/46.63 83.48/66.41 84.39/71.44

w/o Adaptive Late Fusion 61.93/46.77 83.72/66.69 84.86/71.64

Impact of Keypoint Number Nv

Nv = 6 61.68/46.05 82.82/66.15 84.67/71.38
Nv = 9 (Default) 62.36/47.18 84.05/67.01 85.42/72.24

Nv = 12 62.13/46.57 84.12/66.59 85.28/72.01

Necessity of Decoupled Design

w/o Decoupled Design 60.08/45.36 82.41/65.38 84.02/71.15

Rationality of Communication Mechanism.
(i) The spatial and channel attention queries
are first removed separately to perform incom-
plete message filtering. The decreased perfor-
mance implies that both query patterns con-
tribute to sharing sparse yet salient features
among agents. (ii) There is a significant degra-
dation in the detection results on all datasets
when the communication mechanism lacks mu-
tual information supervision. A plausible de-
duction is that our supervision mitigates the
loss of valuable information due to spatial-
channel feature filtering.

Effect of Delay Compensation Strategy. (i)
Here, we remove the scale matrix to verify its
effect. The poor results show that appropriate
scaling of predicted features promotes effective
temporal alignment. (ii) Furthermore, the per-
formance drop caused by the self-supervised
training removal shows the importance of im-
posing motion representation supervision for
collaborator-shared features.

Importance of STCFormer. STCFormer is evaluated in three dimensions. (i) We first find that
temporal cross-attention provides beneficial gains due to performance deterioration when discarded.
It is because the meaningful temporal clues in historical frames bridge the single-frame detection gap.
(ii) Then, exclusive and common spatial attention modules are removed separately to explore the
impact on performance. The consistently decreased results on each dataset suggest that integrating
distinct spatial semantics is indispensable for pragmatic collaboration. (iii) Finally, the adaptive
late fusion is replaced by pixel-wise addition. The gain decline suggests that our fusion paradigm
provides new insights for aggregating the perceptual advantages of distinct spatial semantics.

Impact of Keypoint Number Nv. Empirically, we set the variable number of keypoints for the
decoupled spatial attention modules to perform experiments and find that 9 keypoints achieve the most
competitive detection performance. Conversely, too few keypoints may cause valuable semantics loss
and too many keypoints may cause performance bottlenecks due to accumulated errors. The above
finding inspires us to determine the appropriate keypoint number that samples more rich visual clues
and captures more pragmatic collaboration information from collaborators.

Necessity of Decoupled Design. Ultimately, we set Etj and Ctj to 1 while maintaining two spatial
attention branches in the STCFormer to justify the decoupled design. Without explicitly defining
exclusive and common features, spatial attention would indiscriminately sample the entire region due
to the lack of guidance from prior perception information, which may introduce excessive collaborator
noises and impede bridging to collaboration heterogeneity.
4.4 Qualitative Evaluation

Visualization of Detection Results. To illustrate the perception performance of different models,
Figure 8 shows the detection visualizations of two challenging scenarios from the DAIR-V2X
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(a) V2X-ViT (b) CoBEVT (c) Where2comm (d) How2comm (ours)

Figure 8: Detection visualization comparison in real-world scenarios from the DAIR-V2X dataset.
Green and red boxes denote the ground truths and detection results, respectively.

(a) GT bounding boxes (b) Exclusive spatial attention (c) Common spatial attention

Figure 9: Visualization of learned exclusive and common spatial attention maps. The red and blue
point clouds are derived from the ego vehicle and infrastructure, respectively. In (b)&(c), cyan cross
marker denotes the target query in the deformable cross-attention. The 9 sampled keypoints are
represented by the forestgreen dots whose colors reflect the corresponding attention weights.

dataset [52] under default noise settings. How2comm axiomatically achieves more robust and
accurate detection compared to previous SOTA models, including V2X-ViT [40], CoBEVT [38], and
Where2comm [7]. Concretely, our method produces more predicted bounding boxes well aligned
with the ground truths. The merits may lie in two aspects. (i) Our delay compensation strategy
mitigates feature misalignment due to temporal asynchrony, improving detection performance. (ii)
The proposed STCFormer provides effective temporal context clues for detecting fast-moving objects
and fuses meaningful information from nearby agents to compensate for the occluded perspective.

Visualization of Spatial Attention Maps. We show visualizations of exclusive and common spatial
attention (ESA/CSA) in Figure 9 to justify the effectiveness of our feature decoupling philosophy. (i)
Intuitively, from Figure 9(b), ESA effectively samples keypoints at the exclusive perception region
from the infrastructure, providing complementary information for the ego agent to promote perception
ability. (ii) In Figure 9(c), CSA mitigates the detection gap due to collaboration heterogeneity by
sampling keypoints that reasonably focus on the common perception region between two agents.

5 Conclusion and Limitation
This paper presents How2comm, a novel collaborative perception framework to tackle existing
issues jointly. How2comm maximizes the beneficial semantics in filtered features and accomplishes
temporal alignment via the feature flow estimation. Moreover, our STCFormer holistically aggregates
the spatial semantics and temporal dynamics among agents. Extensive experiments on several
multi-agent datasets show the effectiveness of How2comm and the necessity of all its components.

Limitation and Future Work. The current work only exploits the short-term historical frames. In
future work, we plan to expand the utilization of temporal information to long-term point cloud
sequences. Also, we will explore optimizing the feature flow prediction with uncertainty estimation.

Acknowledgment. This work is supported in part by the National Key R&D Program of China under
Grant 2021ZD0113503 and in part by the Shanghai Municipal Science and Technology Major Project
under Grant 2021SHZDZX0103.
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