434 A Multiple min s-t cuts

Let G and G' be two neighboring graphs, and let \tilde{G} and $\tilde{G'}$, respectively, be their modified versions constructed by Algorithm 1. Algorithm 1 outputs a min *s*-*t* cut in *G*. However, what happens if there are multiple min *s*-*t* cuts in \tilde{G} and the algorithm invoked on Line 4 breaks ties in a way that depends on whether a specific edge *e* appears in *G* or not? If it happens that *e* is the edge difference between *G* and *G'*, then such a tie-breaking rule might reveal additional information about *G* and *G'*. We now outline how this can be bypassed.

Observe that if the random variables $X_{s,u}$ and $X_{t,u}$ were sampled by using infinite bit precision, then with probability 1 no two cuts would have the same value. So, consider a more realistic situation where edge-weights are represented by $O(\log n)$ bits, and assume that the least significant bit corresponds to the value 2^{-t} , for an integer $t \ge 0$. We show how to modify edge-weights by additional $O(\log n)$ bits that have extremely small values but will help obtain a unique min *s*-*t* cut. Our modification consists of two steps.

First step. All the bits corresponding to values from 2^{-t-1} to $2^{-t-2\log n}$ remain 0, while those corresponding to larger values remain unchanged. This is done so that even summing across all – but at most $\binom{n}{2}$ – edges it holds that no matter what the bits corresponding to values $2^{-t-2\log n-1}$ and less are, their total value is less than 2^{-t} . Hence, if the weight of cut C_1 is smaller than the weight of cut C_2 before the modifications we undertake, then C_1 has a smaller weight than C_2 after the modifications as well.

453 **Second step.** We first recall the celebrated Isolation lemma.

Lemma A.1 (Isolation lemma, [25]). Let T and N be positive integers, and let \mathcal{F} be an arbitrary nonempty family of subsets of the universe $\{1, \ldots, T\}$. Suppose each element $x \in \{1, \ldots, T\}$ in the universe receives an integer weight g(x), each of which is chosen independently and uniformly at random from $\{1, \ldots, N\}$. The weight of a set $S \in \mathcal{F}$ is defined as $g(S) = \sum_{x \in S} g(x)$.

Then, with probability at least 1 - T/N there is a unique set in \mathcal{F} that has the minimum weight among all sets of \mathcal{F} .

We now apply Lemma A.1 to conclude our modification of the edge weights in \tilde{G} . We let the 460 universe $\{1, ..., T\}$ from that lemma be the following 2(n-2) elements $\mathcal{U} = \{(s, v) \mid v \in$ 461 $V(G) \setminus \{s,t\}\} \cup \{(t,v) \mid v \in V(G) \setminus \{s,t\}\}$. Then, we let \mathcal{F} represent all min s-t cuts in \widetilde{G} , 462 i.e., $S \subseteq \mathcal{U}$ belongs to \mathcal{F} iff there is a min *s*-*t* cut *C* in \widetilde{G} such that for each $(a, b) \in S$ the cut *C* 463 contains $X_{a,b}$. So, by letting $N = 2n^2$, we derive that with probability 1 - 1/n it holds that no two 464 cuts represented by \mathcal{F} have the same minimum value with respect to g defined in Lemma A.1. To 465 implement g in our modification of weights, we modify the bits of each $X_{s,v}$ and $X_{t,v}$ corresponding 466 to values from $2^{-t-2\log n-1}$ to $2^{-t-2\log n-\log N}$ to be an integer between 1 and N chosen uniformly 467 at random. 468

Only after these modifications, we invoke Line 4 of Algorithm 1. Note that the family of cuts \mathcal{F} is defined only for the sake of analysis. It is not needed to know it algorithmically.

B Lower Bound for min *s*-*t* cut error

In this section, we prove our lower bound. Our high-level idea is similar to that of 8 for proving a lower bound for private algorithms for correlation clustering.

Theorem 1.2. Any (ϵ, δ) -differential private algorithm for min *s*-*t* cut on *n*-node graphs requires expected additive error of at least n/20 for any $\epsilon \leq 1$ and $\delta \leq 0.1$.

Proof. For the sake of contradiction, let A be a (ϵ, δ) -differential private algorithm for min *s*-*t* cut that on any input *n*-node graph outputs an *s*-*t* cut that has expected additive error of less than n/20. We construct a set of 2^n graphs S and show that A cannot have low expected cost on all of the graphs on this set while preserving privacy.

The node set of all the graphs in S are the same and consist of $V = \{s, t, v_1, \dots, v_n\}$ where s and t are the terminals of the graph and n > 30. For any $\tau \in \{0, 1\}^n$, let G_{τ} be the graph on node set V with the following edges: For any $1 \le i \le n$, if $\tau_i = 1$, then there is an edge between s and v_i . If $\tau = 0$, then there is an edge between t and v_i . Note that v_i is attached to exactly one of the terminals s and t. Moreover, the min s-t cut of each graph G_{τ} is zero.

Algorithm \mathcal{A} determines for each i if v_i is on the s-side of the output cut or the t-side. The contribution of each node v_i to the total error is the number of edges attached to v_i that are in the cut. We denote this random variable in graph G_{τ} by $e_{\tau}(v_i)$. Since there are no edges between any two non-terminal nodes in any of the graphs G_{τ} , the total error of the output is the sum of these individual errors, i.e., $\sum_{i=0}^{n} e_{\tau}(v_i)$. Let $\bar{e}_{\tau}(v_i)$ be the expected value of $e_{\tau}(v_i)$ over the outputs of \mathcal{A} given G_{τ} .

Let $p_{\tau}^{(i)}$ be the marginal probability that v_i is on the *s*-side of the output *s*-*t* cut in G_{τ} . If $\tau_i = 0$, then v_i is connected to *t* and so $\bar{e}_{\tau}(v_i) = p_{\tau}^{(i)}$. If $\tau_i = 1$, then v_i is connected to *s* and so $\bar{e}_{\tau}(v_i) = 1 - p_{\tau}^{(i)}$. By the assumption that \mathcal{A} has a low expected error on every input, we have that for any $\tau \in \{0, 1\}^n$,

$$(n+2)/20 > \sum_{i,\tau_i=0} p_{\tau}^{(i)} + \sum_{i,\tau_i=1} (1-p_{\tau}^{(i)})$$
(3)

Let S_i be the set of $\tau \in \{0,1\}^n$ such that $\tau_i = 0$, and \bar{S}_i be the complement of S_i , so that $\tau \in \bar{S}_i$ if $\tau_i = 1$. Note that $|S_i| = |\bar{S}_i| = 2^{n-1}$. Fix some *i*, and for any $\tau \in \{0,1\}^n$, let τ' be the same as τ except for the *i*-th entry being different, i.e., for all $j \neq i$, $\tau_j = \tau'_j$, and $\tau_i \neq \tau'_i$. Since G_{τ} and $G_{\tau'}$ only differ in two edges, from \mathcal{A} being (ϵ, δ) -differentially private for any *j* we have $p_{\tau}^{(j)} \leq e^{2\epsilon} \cdot p_{\tau'}^{(j)} + \delta$. So for any *i*, *j* we have

$$\sum_{\tau \in S_i} p_{\tau}^{(j)} \le \sum_{\tau \in \bar{S}_i} (e^{2\epsilon} p_{\tau}^{(j)} + \delta) \tag{4}$$

498 From Eq. (3) we have

$$\begin{split} 2^n \cdot 0.05(n+2) &> \sum_{\tau \in \{0,1\}^n} \sum_{i:\tau_i=1}^n (1-p_\tau^{(i)}) \\ &= \sum_{i=1}^n \sum_{\tau \in \bar{S}_i} (1-p_\tau^{(i)}) \\ &\geq \sum_{i=1}^n \sum_{\tau \in \bar{S}_i} (1-[e^{2\epsilon}p_\tau^{(i)}+\delta]) \\ &= n2^{n-1}(1-\delta) - e^{2\epsilon} \sum_{i=1}^n \sum_{\tau \in \bar{S}_i} p_\tau^{(i)} \end{split}$$

Where the last inequality comes from Eq. (4). Using Eq. (3) again, we have that $\sum_{i=1}^{n} \sum_{\tau \in \bar{S}_i} p_{\tau}^{(i)} < 2^n \cdot 0.05(n+2)$, so we have that $2^n \cdot 0.05(n+2) > n2^{n-1}(1-\delta) - e^{2\epsilon}(2^n \cdot 0.05(n+2))$. Dividing by 2^n we have $0.05(n+2)(1+e^{2\epsilon}) > n(1-\delta)/2$.

$$0.05(n+2)(1+e^{2\epsilon}) > n(1-\delta)$$

Now since $\epsilon \le 1, \delta \le 0.1$, and $e^2 < 7.4$ we get that
 $0.05 \cdot 8.4(n+2) > 0.45n$

Hence we have n < 28 which is a contradiction to n > 30.

500 C Omitted Proofs

501 C.1 Proof of Claim 1

502 By definition, we have

$$\frac{f_{\text{Lap}}(t+\tau)}{f_{\text{Lap}}(t)} = \frac{\frac{\epsilon}{2}\exp\left(-\epsilon|t+\tau|\right)}{\frac{\epsilon}{2}\exp\left(-\epsilon|t|\right)} = \exp\left(-\epsilon|t+\tau|+\epsilon|t|\right) \le \exp\left(\tau\epsilon\right).$$
(5)

Also by definition, it holds $F_{\text{Lap}}(t+\tau) = \int_{-\infty}^{t+\tau} f_{\text{Lap}}(x) dx$. Using Eq. (5) we derive

$$F_{\text{Lap}}(t+\tau) \le \exp\left(\tau\epsilon\right) \int_{-\infty}^{t+\tau} f_{\text{Lap}}(x-\tau) dx = \exp(\tau\epsilon) \int_{-\infty}^{t} f_{\text{Lap}}(x) dx = \exp(\tau\epsilon) F_{\text{Lap}}(t).$$

504 C.2 Proof of Lemma 3.1

To prove the lower-bound, we observe that if $x < \alpha$ and $y < \beta$, then $x < \alpha + \tau$ and $y < \beta + \tau$ as well. Hence, it trivially holds $P(\alpha + \tau, \beta + \tau, \gamma) \ge P(\alpha, \beta, \gamma)$ and hence

$$\frac{P(\alpha + \tau, \beta + \tau, \gamma)}{P(\alpha, \beta, \gamma)} \ge 1.$$

- We now analyze the upper-bound. For the sake of brevity, in the rest of this proof, we use F to denote F_{Lap} and f to denote f_{Lap} . We consider three cases depending on parameters α, β, γ .
- 509 **Case** $\gamma \ge \alpha + \beta + 2\tau$. In this case we have $\Pr[x + y < \gamma | x < \alpha, y < \beta] = 1 = 1$ 510 $\Pr[x + y < \gamma | x < \alpha + \tau, y < \beta + \tau]$. So we have that

$$P(\alpha, \beta, \gamma) = \Pr \left[x + y < \gamma | x < \alpha, y < \beta \right] \cdot \Pr \left[x < \alpha, y < \beta \right]$$
$$= \Pr \left[x < \alpha, y < \beta \right]$$
$$= F(\alpha)F(\beta)$$

Similarly, $P(\alpha + \tau, \beta + \tau, \gamma) = F(\alpha + \tau)F(\beta + \tau)$. Now using Claim 1, we obtain that $\frac{P(\alpha + \tau, \beta + \tau, \gamma)}{P(\alpha, \beta, \gamma)} \leq e^{2\tau\epsilon}$.

513 **Case** $\gamma < \alpha + \beta$. We write $P(\alpha, \beta, \gamma)$ as follows.

$$P(\alpha, \beta, \gamma) = \int_{-\infty}^{\beta} \int_{-\infty}^{\min(\alpha, \gamma - y)} f_x(x|y) dx f_y(y) dy$$

=
$$\int_{-\infty}^{\beta} F(\min(\alpha, \gamma - y)) f(y) dy$$

=
$$F(\alpha) \int_{-\infty}^{\gamma - \alpha} f(y) dy + \int_{\gamma - \alpha}^{\beta} F(\gamma - y) f(y) dy$$

=
$$F(\alpha) F(\gamma - \alpha) + \int_{\gamma - \alpha}^{\beta} F(\gamma - y) f(y) dy$$
 (6)

514 Similar to Eq. (6) we have

$$P(\alpha + \tau, \beta + \tau, \gamma) = F(\alpha + \tau)F(\gamma - \alpha - \tau) + \int_{\gamma - \alpha - \tau}^{\beta + \tau} F(\gamma - y)f(y)dy$$
(7)

Now we rewrite Eq. (6) as follows to obtain a lower bound on $P(\alpha, \beta, \gamma)$.

$$P(\alpha,\beta,\gamma) = F(\alpha)F(\gamma-\alpha-2\tau) + \int_{\gamma-\alpha-2\tau}^{\gamma-\alpha} F(\alpha)f(y)dy + \int_{\gamma-\alpha}^{\beta} F(\gamma-y)f(y)dy$$
$$\geq F(\alpha)F(\gamma-\alpha-2\tau) + e^{-2\tau\epsilon}\int_{\gamma-\alpha-2\tau}^{\beta} F(\gamma-y)f(y)dy \tag{8}$$

In obtaining the inequality, we used the fact that if $y \in [\gamma - \alpha - 2\tau, \gamma - \alpha]$ then $0 \le (\gamma - y) - \alpha \le 2\tau$ and so by Claim 1 we have $F(\alpha) \ge e^{-2\tau\epsilon}F(\gamma - y)$.

Now we compare the two terms of Eq. (8) with Eq. (7) By Claim 1 we have that $F(\alpha)F(\gamma-\alpha-2\tau) \ge e^{-2\tau\epsilon}F(\alpha+\tau)F(\gamma-\alpha-\tau)$ and $\int_{\gamma-\alpha-2\tau}^{\beta}F(\gamma-y)f(y)dy \ge e^{-\tau\epsilon}\int_{\gamma-\alpha-\tau}^{\beta+\tau}F(\gamma-y)f(y)dy$. So we have $P(\alpha,\beta,\gamma) \ge e^{-3\tau\epsilon}P(\alpha+\tau,\beta+\tau,\gamma)$.

521 **Case** $\alpha + \beta \leq \gamma < \alpha + \beta + 2\tau$. Then

$$P(\alpha, \beta, \gamma) = \int_{-\infty}^{\beta} \int_{-\infty}^{\min(\alpha, \gamma - y)} f_x(x|y) dx f_y(y) dy$$

=
$$\int_{-\infty}^{\beta} F(\min(\alpha, \gamma - y)) f(y) dy$$

=
$$F(\alpha) F(\beta)$$
(9)
$$\geq e^{-2\tau\epsilon} F(\alpha + \tau) F(\beta + \tau)$$
(10)

$$= e^{-2\tau\epsilon} (F(\alpha+\tau)F(\beta-\tau) + F(\alpha+\tau)(F(\beta+\tau) - F(\beta-\tau)))$$

$$\geq e^{-4\tau\epsilon} (F(\alpha+\tau)F(\beta+\tau) + F(\alpha+\tau)(F(\beta+\tau) - F(\beta-\tau)).$$
(11)

Note that Eq. (9) is obtained since for any $y \le \beta$ we have $\alpha \le \gamma - y$. Eq. (10) and Eq. (11) are both obtained using Claim 1. One can easily verify that Eq. (7) for $P(\alpha + 1, \beta + 1, \gamma)$ holds in this case as well. Using the fact that $\gamma - \alpha - \tau \le \beta + \gamma$ and F being a non-decreasing function, we further lower-bound Eq. (7) as

$$P(\alpha + \tau, \beta + \tau, \gamma) \leq F(\alpha + \tau)F(\beta + \tau) + \int_{\gamma - \alpha - \tau}^{\beta + \tau} F(\gamma - y)f(y)dy$$

$$\leq F(\alpha + \tau)F(\beta + \tau) + F(\alpha + \tau)\int_{\gamma - \alpha - \tau}^{\beta + \tau} f(y)dy$$

$$= F(\alpha + \tau)F(\beta + \tau) + F(\alpha + \tau)(F(\beta + \tau) - F(\gamma - \alpha - \tau))$$

$$\leq F(\alpha + \tau)F(\beta + \tau) + F(\alpha + \tau)(F(\beta + \tau) - F(\beta - \tau)).$$
(12)

⁵²⁶ Eqs. (11) and (12) conclude the analysis of this case as well.

527 C.3 Proof of Theorem 4.1

We use induction on k to prove the theorem. Suppose that Algorithm 2 outputs C_{ALG} . We show that the C_{ALG} is a multiway k-cut and that the value of C_{ALG} is at most $w(E(\overline{V})) + \sum_{i=1}^{k} \delta(V_i) + 2 \log (k)e(n)$. We will first perform the analysis of approximation assuming that \mathcal{A} provides the stated approximation deterministically, and at the end of this proof, we will take into account that the approximation guarantee holds with probability $1 - \alpha$.

Base case: k = 1. If k = 1, then $C_{ALG} = \emptyset$, and so it is a multiway 1-cut and $w(C_{ALG}) = 0 \le \delta(V_1) + w(E(\overline{V}))$.

Inductive step: $k \ge 2$. So suppose that $k \ge 2$. Hence, $k' \ge 1$ and $k-k' \ge 1$, where k' is defined on Line 4. Let (A, B) be the *s*-*t* cut obtained in Line 6, where \tilde{G}_1 is the graph induced on A and \tilde{G}_2 is the graph induced on B. Since the only terminals in \tilde{G}_1 are $s_1, \ldots, s_{k'}$, we have that $V_1 \cap A, \ldots, V_{k'} \cap A$ is a partial multiway k'-cut on \tilde{G}_1 . By the induction hypothesis, the cost of the multiway cut that Algorithm 2 finds on \tilde{G}_1 is at most $w(E(\overline{V} \cap A)) + \sum_{i=1}^{k'} \delta_{\tilde{G}_1}(V_i \cap A) + 2\log(k')e(|A|)$. Similarly, by considering the partial multiway (k-k') cut $V_{k'+1} \cap B, \ldots, V_k \cap B$ on \tilde{G}_2 , the cost of the multiway cut that Algorithm 2 finds on \tilde{G}_2 is at most $w(E(\overline{V} \cap B)) + \sum_{i=k'+1}^{k} \delta_{\tilde{G}_2}(V_i \cap B) + 2\log(k-k')e(|B|)$. So the total cost $w(C_{ALG})$ of the multiway cut that Algorithm 2 outputs is at most

$$w(C_{ALG}) \le w(E(V \cap A)) + w(E(V \cap B))$$

$$+ \sum_{i=1}^{k'} \delta_{\tilde{G}_{1}}(V_{i} \cap A) + \sum_{i=k'+1}^{k} \delta_{\tilde{G}_{2}}(V_{i} \cap B)$$

$$+ w(E(A, B))$$

$$+ 2\log(k')e(|A|) + 2\log(k - k')e(|B|)$$
(13)

First note that C_{ALG} is a multiway k-cut: this is because by induction the output of the algorithm on \widetilde{G}_1 is a multiway k'-cut and the output of the algorithm on \widetilde{G}_2 is a multiway (k - k')-cut. Moreover,

Figure 2: Node subsets of graph G. The subsets in asterisks have terminals in them. Red edges indicate the left-hand side edges in Eq. (14), and purple edges indicate the edges on the right-hand side in Eq. (14).

 $E(A, B) \in C_{ALG}$. So the union of these cuts and E(A, B) is a k-cut, and since each terminal is in exactly one partition, it is a multiway k-cut.

Now we prove the value guarantees. Let $U_1 = V_1 \cup \ldots \cup V_{k'}$ and $U_2 = V_{k'+1} \cup \ldots \cup V_k$. So $U = U_1 \cup U_2 = V_1 \cup \ldots \cup V_k$ is the set of nodes that are in at least one partition. Recall that $\overline{V} = V \setminus U$ is the set of nodes that are not in any partition.

Consider the following cut that separates $\{s_1, \ldots, s_{k'}\}$ from $\{s_{k'+1}, \ldots, s_k\}$: Let $A' = [U_1 \cap A] \cup [U_1 \cap B] \cup [\overline{V} \cap A]$. Let $B' = [U_2 \cap B] \cup [U_2 \cap A] \cup [\overline{V} \cap B]$. Since (A, B) is a *min* cut that separates $\{s_1, \ldots, s_{k'}\}$ from $\{s_{k'+1}, \ldots, s_k\}$ with additive error e(n), we have $w(E(A, B)) \leq w(E(A', B')) + e(n)$. Note that $A = [U_1 \cap A] \cup [U_2 \cap A] \cup [\overline{V} \cap A]$ and $B = [U_1 \cap B] \cup [U_2 \cap B] \cup [\overline{V} \cap B]$. So turning (A, B) into (A', B') is equivalent to switching $U_2 \cap A$ and $U_1 \cap B$ between A and B. So we have that

$$w(E(U_{2} \cap A, U_{2} \cap B)) + w(E(U_{2} \cap A, \overline{V} \cap B)) + w(E(U_{1} \cap B, U_{1} \cap A)) + w(E(U_{1} \cap B, \overline{V} \cap A)) \\ \leq (14) \\ w(E(U_{2} \cap A, U_{1} \cap A)) + w(E(U_{2} \cap A, \overline{V} \cap A)) + w(E(U_{1} \cap B, U_{2} \cap B)) + w(E(U_{1} \cap B, \overline{V} \cap B)) \\ + e(n)$$

⁵⁵⁶ Eq. (14) is illustrated in Figure 2. Using Eq. (14), we obtain that

$$\begin{split} w(E(A,B)) &= w(E(U_2 \cap A, U_2 \cap B)) + w(E(U_2 \cap A, \overline{V} \cap B)) \\ &+ w(E(U_1 \cap B, U_1 \cap A)) + w(E(U_1 \cap B, \overline{V} \cap A)) \\ &+ w(E(U_2 \cap A, U_1 \cap B)) + w(E([U_1 \cap A] \cup [\overline{V} \cap A], [U_2 \cap B] \cup [\overline{V} \cap B])) \\ &\leq w(E(U_2 \cap A, U_1 \cap A)) + w(E(U_2 \cap A, \overline{V} \cap A)) \\ &+ w(E(U_1 \cap B, U_2 \cap B)) + w(E(U_1 \cap B, \overline{V} \cap B)) \\ &+ w(E(U_2 \cap A, U_1 \cap B)) + w(E([U_1 \cap A] \cup [\overline{V} \cap A], [U_2 \cap B] \cup [\overline{V} \cap B])) \\ &+ e(n) \end{split}$$

557 So we conclude that

$$w(E(A,B)) \leq w(E(U_1 \cap B, [U_2 \cap B] \cup [\overline{V} \cap B] \cup [U_2 \cap A]))$$

$$+ w(E(U_1 \cap A, [U_2 \cap B] \cup [\overline{V} \cap B]))$$

$$+ w(E(U_2 \cap A, [U_1 \cap A] \cup [\overline{V} \cap A]))$$

$$+ w(E(U_2 \cap B, \overline{V} \cap A))$$

$$+ w(E(\overline{V} \cap A, \overline{V} \cap B))$$

$$+ e(n)$$

$$(15)$$

We substitute w(E(A, B)) in Eq. (13) using Eq. (15). Recall that $U_1 = \bigcup_{i=1}^{k'} V_i$, $\delta_{\widetilde{G}_1}(V_i \cap A) = w(E(V_i \cap A, A \setminus V_i))$ and $\delta_G(V_i) = w(E(V_i, V \setminus V_i))$. For any $i \in \{1, \dots, k'\}$, we have that

 $\begin{array}{ll} & E(V_i \cap B, [U_2 \cap B] \cup [\overline{V} \cap B] \cup [U_2 \cap A]) \text{ and } E(V_i \cap A, [U_2 \cap B] \cup [\overline{V} \cap B]) \text{ are both disjoint} \\ & \text{from } E(V_i \cap A, A \setminus V_i). \text{ Moreover all these three terms appear in } E(V_i, V \setminus V_i). \text{ So we have} \end{array}$

$$w(E(U_1 \cap B, [U_2 \cap B] \cup [\overline{V} \cap B] \cup [U_2 \cap A])) + w(E(U_1 \cap A, [U_2 \cap B] \cup [\overline{V} \cap B])) + \sum_{i=1}^{k'} \delta_{\widetilde{G}_1}(V_i \cap A)$$
$$\leq \sum_{i=1}^{k'} \delta_G(V_i)$$

Note that the first two terms above are the first two terms in Eq. (15). Similarly, we have

$$w(E(U_2 \cap A, [U_1 \cap A] \cup [\overline{V} \cap A])) + w(E(U_2 \cap B, \overline{V} \cap A)) + \sum_{i=k'+1}^k \delta_{\widetilde{G}_2}(V_i \cap B) \le \sum_{i=k'+1}^k \delta_G(V_i)$$
(16)

Note that the first two terms above are the third and forth terms in Eq. (15). Finally $w(E(\overline{V} \cap A)) + w(E(\overline{V} \cap B)) + w(E(\overline{V} \cap A, \overline{V} \cap B)) \le w(E(\overline{V}))$. So, we upper-bound Eq. (13) as

$$w(C_{ALG}) \le \sum_{i=1}^{k} \delta_G(V_i) + w(E(\overline{V}))$$

$$\delta(C_{ALG}) \le \sum_{i=1}^{N} \delta_G(V_i) + w(E(V)) + e(n) + 2\log(k')e(|A|) + 2\log(k-k')e(|B|)$$

Since $k' = \lfloor k/2 \rfloor$ and $k - k' = \lceil k/2 \rceil$, we have that $k' \leq \lfloor \frac{k+1}{2} \rfloor$ and $k - k' \leq \lfloor \frac{k+1}{2} \rfloor$. Moreover, since $e = cn/\epsilon$ for $\epsilon > 0$ and $c \geq 0$, we have that $e(|A|) + e(|B|) \leq e(|A| + |B|) = e(n)$. Therefore,

$$\begin{split} & e(n) + 2\log\left(k'\right)e(|A|) + 2\log\left(k - k'\right)e(|B|) \\ & \leq e(n)(1 + 2\log\left(\left\lfloor\frac{k+1}{2}\right\rfloor)\right) \leq 2\log(k)e(n). \end{split}$$

⁵⁶⁷ The above inequality finishes the approximation proof.

The success probability. As proved by Lemma 4.1, the min *s*-*t* cut computations by Algorithm 2

can be seen as invocations of a min *s*-*t* cut algorithm on $O(\log k)$ many *n*-node graphs; in this claim, we use \mathcal{A} to compute min *s*-*t* cuts. By union bound, each of those $O(\log k)$ invocations output the

desired additive error by probability at least $1 - \alpha O(\log k)$.