A Multiple min s - t cuts

Let G and G^{\prime} be two neighboring graphs, and let \widetilde{G} and \widetilde{G}^{\prime}, respectively, be their modified versions constructed by Algorithm 1 Algorithm 1 outputs a min $s-t$ cut in G. However, what happens if there are multiple min s - t cuts in G and the algorithm invoked on Line 4 breaks ties in a way that depends on whether a specific edge e appears in G or not? If it happens that e is the edge difference between G and G^{\prime}, then such a tie-breaking rule might reveal additional information about G and G^{\prime}. We now outline how this can be bypassed.
Observe that if the random variables $X_{s, u}$ and $X_{t, u}$ were sampled by using infinite bit precision, then with probability 1 no two cuts would have the same value. So, consider a more realistic situation where edge-weights are represented by $O(\log n)$ bits, and assume that the least significant bit corresponds to the value 2^{-t}, for an integer $t \geq 0$. We show how to modify edge-weights by additional $O(\log n)$ bits that have extremely small values but will help obtain a unique min $s-t$ cut. Our modification consists of two steps.

First step. All the bits corresponding to values from 2^{-t-1} to $2^{-t-2 \log n}$ remain 0 , while those corresponding to larger values remain unchanged. This is done so that even summing across all - but at most $\binom{n}{2}$ - edges it holds that no matter what the bits corresponding to values $2^{-t-2 \log n-1}$ and less are, their total value is less than 2^{-t}. Hence, if the weight of cut C_{1} is smaller than the weight of cut C_{2} before the modifications we undertake, then C_{1} has a smaller weight than C_{2} after the modifications as well.

Second step. We first recall the celebrated Isolation lemma.
Lemma A. 1 (Isolation lemma, [25]). Let T and N be positive integers, and let \mathcal{F} be an arbitrary nonempty family of subsets of the universe $\{1, \ldots, T\}$. Suppose each element $x \in\{1, \ldots, T\}$ in the universe receives an integer weight $g(x)$, each of which is chosen independently and uniformly at random from $\{1, \ldots, N\}$. The weight of a set $S \in \mathcal{F}$ is defined as $g(S)=\sum_{x \in S} g(x)$.
Then, with probability at least $1-T / N$ there is a unique set in \mathcal{F} that has the minimum weight among all sets of \mathcal{F}.

We now apply Lemma A. 1 to conclude our modification of the edge weights in \widetilde{G}. We let the universe $\{1, \ldots, T\}$ from that lemma be the following $2(n-2)$ elements $\mathcal{U}=\{(s, v) \mid v \in$ $V(G) \backslash\{s, t\}\} \cup\{(t, v) \mid v \in V(G) \backslash\{s, t\}\}$. Then, we let \mathcal{F} represent all min s - t cuts in \widetilde{G}, i.e., $S \subseteq \mathcal{U}$ belongs to \mathcal{F} iff there is a min s - t cut C in \widetilde{G} such that for each $(a, b) \in S$ the cut C contains $X_{a, b}$. So, by letting $N=2 n^{2}$, we derive that with probability $1-1 / n$ it holds that no two cuts represented by \mathcal{F} have the same minimum value with respect to g defined in Lemma A. 1 To implement g in our modification of weights, we modify the bits of each $X_{s, v}$ and $X_{t, v}$ corresponding to values from $2^{-t-2 \log n-1}$ to $2^{-t-2 \log n-\log N}$ to be an integer between 1 and N chosen uniformly at random.

Only after these modifications, we invoke Line 4 of Algorithm 1. Note that the family of cuts \mathcal{F} is defined only for the sake of analysis. It is not needed to know it algorithmically.

B Lower Bound for min $s-t$ cut error

In this section, we prove our lower bound. Our high-level idea is similar to that of [8] for proving a lower bound for private algorithms for correlation clustering.
Theorem 1.2. Any (ϵ, δ)-differential private algorithm for min s-t cut on n-node graphs requires expected additive error of at least $n / 20$ for any $\epsilon \leq 1$ and $\delta \leq 0.1$.

Proof. For the sake of contradiction, let \mathcal{A} be a (ϵ, δ)-differential private algorithm for min s - t cut that on any input n-node graph outputs an s - t cut that has expected additive error of less than $n / 20$. We construct a set of 2^{n} graphs S and show that \mathcal{A} cannot have low expected cost on all of the graphs on this set while preserving privacy.
The node set of all the graphs in S are the same and consist of $V=\left\{s, t, v_{1}, \ldots, v_{n}\right\}$ where s and t are the terminals of the graph and $n>30$. For any $\tau \in\{0,1\}^{n}$, let G_{τ} be the graph on node set V
with the following edges: For any $1 \leq i \leq n$, if $\tau_{i}=1$, then there is an edge between s and v_{i}. If $\tau=0$, then there is an edge between t and v_{i}. Note that v_{i} is attached to exactly one of the terminals s and t. Moreover, the $\min s-t$ cut of each graph G_{τ} is zero.

Algorithm \mathcal{A} determines for each i if v_{i} is on the s-side of the output cut or the t-side. The contribution of each node v_{i} to the total error is the number of edges attached to v_{i} that are in the cut. We denote this random variable in graph G_{τ} by $e_{\tau}\left(v_{i}\right)$. Since there are no edges between any two non-terminal nodes in any of the graphs G_{τ}, the total error of the output is the sum of these individual errors, i.e., $\sum_{i=0}^{n} e_{\tau}\left(v_{i}\right)$. Let $\bar{e}_{\tau}\left(v_{i}\right)$ be the expected value of $e_{\tau}\left(v_{i}\right)$ over the outputs of \mathcal{A} given G_{τ}.
Let $p_{\tau}^{(i)}$ be the marginal probability that v_{i} is on the s-side of the output s - t cut in G_{τ}. If $\tau_{i}=0$, then v_{i} is connected to t and so $\bar{e}_{\tau}\left(v_{i}\right)=p_{\tau}^{(i)}$. If $\tau_{i}=1$, then v_{i} is connected to s and so $\bar{e}_{\tau}\left(v_{i}\right)=1-p_{\tau}^{(i)}$. By the assumption that \mathcal{A} has a low expected error on every input, we have that for any $\tau \in\{0,1\}^{n}$,

$$
\begin{equation*}
(n+2) / 20>\sum_{i, \tau_{i}=0} p_{\tau}^{(i)}+\sum_{i, \tau_{i}=1}\left(1-p_{\tau}^{(i)}\right) \tag{3}
\end{equation*}
$$

Let S_{i} be the set of $\tau \in\{0,1\}^{n}$ such that $\tau_{i}=0$, and \bar{S}_{i} be the complement of S_{i}, so that $\tau \in \bar{S}_{i}$ if $\tau_{i}=1$. Note that $\left|S_{i}\right|=\left|\bar{S}_{i}\right|=2^{n-1}$. Fix some i, and for any $\tau \in\{0,1\}^{n}$, let τ^{\prime} be the same as τ except for the i-th entry being different, i.e., for all $j \neq i, \tau_{j}=\tau_{j}^{\prime}$, and $\tau_{i} \neq \tau_{i}^{\prime}$. Since G_{τ} and $G_{\tau^{\prime}}$ only differ in two edges, from \mathcal{A} being (ϵ, δ)-differentially private for any j we have $p_{\tau}^{(j)} \leq e^{2 \epsilon} \cdot p_{\tau^{\prime}}^{(j)}+\delta$. So for any i, j we have

$$
\begin{equation*}
\sum_{\tau \in S_{i}} p_{\tau}^{(j)} \leq \sum_{\tau \in \bar{S}_{i}}\left(e^{2 \epsilon} p_{\tau}^{(j)}+\delta\right) \tag{4}
\end{equation*}
$$

From Eq. (3) we have

$$
\begin{aligned}
2^{n} \cdot 0.05(n+2) & >\sum_{\tau \in\{0,1\}^{n}} \sum_{i: \tau_{i}=1}\left(1-p_{\tau}^{(i)}\right) \\
& =\sum_{i=1}^{n} \sum_{\tau \in S_{i}}\left(1-p_{\tau}^{(i)}\right) \\
& \geq \sum_{i=1}^{n} \sum_{\tau \in \bar{S}_{i}}\left(1-\left[e^{2 \epsilon} p_{\tau}^{(i)}+\delta\right]\right) \\
& =n 2^{n-1}(1-\delta)-e^{2 \epsilon} \sum_{i=1}^{n} \sum_{\tau \in \bar{S}_{i}} p_{\tau}^{(i)}
\end{aligned}
$$

Where the last inequality comes from Eq. (4) Using Eq. (3) again, we have that $\sum_{i=1}^{n} \sum_{\tau \in \bar{S}_{i}} p_{\tau}^{(i)}<$ $2^{n} \cdot 0.05(n+2)$, so we have that $2^{n} \cdot 0.05(n+2)>n 2^{n-1}(1-\delta)-e^{2 \epsilon}\left(2^{n} \cdot 0.05(n+2)\right)$. Dividing by 2^{n} we have

$$
0.05(n+2)\left(1+e^{2 \epsilon}\right)>n(1-\delta) / 2
$$

Now since $\epsilon \leq 1, \delta \leq 0.1$, and $e^{2}<7.4$ we get that

$$
0.05 \cdot 8.4(n+2)>0.45 n
$$

Hence we have $n<28$ which is a contradiction to $n>30$.

C Omitted Proofs

C. 1 Proof of Claim 1

By definition, we have

$$
\begin{equation*}
\frac{f_{\text {Lap }}(t+\tau)}{f_{\text {Lap }}(t)}=\frac{\frac{\epsilon}{2} \exp (-\epsilon|t+\tau|)}{\frac{\epsilon}{2} \exp (-\epsilon|t|)}=\exp (-\epsilon|t+\tau|+\epsilon|t|) \leq \exp (\tau \epsilon) \tag{5}
\end{equation*}
$$

Also by definition, it holds $F_{\text {Lap }}(t+\tau)=\int_{-\infty}^{t+\tau} f_{\text {Lap }}(x) d x$. Using Eq. (5) we derive

$$
F_{\text {Lap }}(t+\tau) \leq \exp (\tau \epsilon) \int_{-\infty}^{t+\tau} f_{\text {Lap }}(x-\tau) d x=\exp (\tau \epsilon) \int_{-\infty}^{t} f_{\text {Lap }}(x) d x=\exp (\tau \epsilon) F_{\text {Lap }}(t)
$$

C. 2 Proof of Lemma 3.1

To prove the lower-bound, we observe that if $x<\alpha$ and $y<\beta$, then $x<\alpha+\tau$ and $y<\beta+\tau$ as well. Hence, it trivially holds $P(\alpha+\tau, \beta+\tau, \gamma) \geq P(\alpha, \beta, \gamma)$ and hence

$$
\frac{P(\alpha+\tau, \beta+\tau, \gamma)}{P(\alpha, \beta, \gamma)} \geq 1
$$

We now analyze the upper-bound. For the sake of brevity, in the rest of this proof, we use F to denote $F_{\text {Lap }}$ and f to denote $f_{\text {Lap }}$. We consider three cases depending on parameters α, β, γ.

Case $\gamma \geq \alpha+\beta+2 \tau$. In this case we have $\operatorname{Pr}[x+y<\gamma \mid x<\alpha, y<\beta]=1=$ $\operatorname{Pr}[x+y<\gamma \mid x<\alpha+\tau, y<\beta+\tau]$. So we have that

$$
\begin{aligned}
P(\alpha, \beta, \gamma) & =\operatorname{Pr}[x+y<\gamma \mid x<\alpha, y<\beta] \cdot \operatorname{Pr}[x<\alpha, y<\beta] \\
& =\operatorname{Pr}[x<\alpha, y<\beta] \\
& =F(\alpha) F(\beta)
\end{aligned}
$$

Similarly, $P(\alpha+\tau, \beta+\tau, \gamma)=F(\alpha+\tau) F(\beta+\tau)$. Now using Claim 1, we obtain that $\frac{P(\alpha+\tau, \beta+\tau, \gamma)}{P(\alpha, \beta, \gamma)} \leq e^{2 \tau \epsilon}$.

Case $\gamma<\alpha+\beta$. We write $P(\alpha, \beta, \gamma)$ as follows.

$$
\begin{align*}
P(\alpha, \beta, \gamma) & =\int_{-\infty}^{\beta} \int_{-\infty}^{\min (\alpha, \gamma-y)} f_{x}(x \mid y) d x f_{y}(y) d y \\
& =\int_{-\infty}^{\beta} F(\min (\alpha, \gamma-y)) f(y) d y \\
& =F(\alpha) \int_{-\infty}^{\gamma-\alpha} f(y) d y+\int_{\gamma-\alpha}^{\beta} F(\gamma-y) f(y) d y \\
& =F(\alpha) F(\gamma-\alpha)+\int_{\gamma-\alpha}^{\beta} F(\gamma-y) f(y) d y \tag{6}
\end{align*}
$$

Similar to Eq. (6) we have

$$
\begin{equation*}
P(\alpha+\tau, \beta+\tau, \gamma)=F(\alpha+\tau) F(\gamma-\alpha-\tau)+\int_{\gamma-\alpha-\tau}^{\beta+\tau} F(\gamma-y) f(y) d y \tag{7}
\end{equation*}
$$

Now we rewrite Eq. (6) as follows to obtain a lower bound on $P(\alpha, \beta, \gamma)$.

$$
\begin{align*}
P(\alpha, \beta, \gamma) & =F(\alpha) F(\gamma-\alpha-2 \tau)+\int_{\gamma-\alpha-2 \tau}^{\gamma-\alpha} F(\alpha) f(y) d y+\int_{\gamma-\alpha}^{\beta} F(\gamma-y) f(y) d y \\
& \geq F(\alpha) F(\gamma-\alpha-2 \tau)+e^{-2 \tau \epsilon} \int_{\gamma-\alpha-2 \tau}^{\beta} F(\gamma-y) f(y) d y \tag{8}
\end{align*}
$$

In obtaining the inequality, we used the fact that if $y \in[\gamma-\alpha-2 \tau, \gamma-\alpha]$ then $0 \leq(\gamma-y)-\alpha \leq 2 \tau$ and so by Claim 1 we have $F(\alpha) \geq e^{-2 \tau \epsilon} F(\gamma-y)$.
Now we compare the two terms of Eq. (8) with Eq. (7) By Claim 1 we have that $F(\alpha) F(\gamma-\alpha-2 \tau) \geq$ $e^{-2 \tau \epsilon} F(\alpha+\tau) F(\gamma-\alpha-\tau)$ and $\int_{\gamma-\alpha-2 \tau}^{\beta} F(\gamma-y) f(y) d y \geq e^{-\tau \epsilon} \int_{\gamma-\alpha-\tau}^{\beta+\tau} F(\gamma-y) f(y) d y$. So we have $P(\alpha, \beta, \gamma) \geq e^{-3 \tau \epsilon} P(\alpha+\tau, \beta+\tau, \gamma)$.

Case $\alpha+\beta \leq \gamma<\alpha+\beta+2 \tau$. Then

$$
\begin{align*}
P(\alpha, \beta, \gamma) & =\int_{-\infty}^{\beta} \int_{-\infty}^{\min (\alpha, \gamma-y)} f_{x}(x \mid y) d x f_{y}(y) d y \\
& =\int_{-\infty}^{\beta} F(\min (\alpha, \gamma-y)) f(y) d y \\
& =F(\alpha) F(\beta) \tag{9}\\
& \geq e^{-2 \tau \epsilon} F(\alpha+\tau) F(\beta+\tau) \tag{10}\\
& =e^{-2 \tau \epsilon}(F(\alpha+\tau) F(\beta-\tau)+F(\alpha+\tau)(F(\beta+\tau)-F(\beta-\tau)) \\
& \geq e^{-4 \tau \epsilon}(F(\alpha+\tau) F(\beta+\tau)+F(\alpha+\tau)(F(\beta+\tau)-F(\beta-\tau)) \tag{11}
\end{align*}
$$

Note that Eq. (9) is obtained since for any $y \leq \beta$ we have $\alpha \leq \gamma-y$. Eq. (10) and Eq. (11) are both obtained using Claim 1 . One can easily verify that Eq. (7) for $P(\alpha+1, \beta+1, \gamma)$ holds in this case as well. Using the fact that $\gamma-\alpha-\tau \leq \beta+\gamma$ and F being a non-decreasing function, we further lower-bound Eq. (7) as

$$
\begin{align*}
P(\alpha+\tau, \beta+\tau, \gamma) & \leq F(\alpha+\tau) F(\beta+\tau)+\int_{\gamma-\alpha-\tau}^{\beta+\tau} F(\gamma-y) f(y) d y \\
& \leq F(\alpha+\tau) F(\beta+\tau)+F(\alpha+\tau) \int_{\gamma-\alpha-\tau}^{\beta+\tau} f(y) d y \\
& =F(\alpha+\tau) F(\beta+\tau)+F(\alpha+\tau)(F(\beta+\tau)-F(\gamma-\alpha-\tau)) \\
& \leq F(\alpha+\tau) F(\beta+\tau)+F(\alpha+\tau)(F(\beta+\tau)-F(\beta-\tau)) . \tag{12}
\end{align*}
$$

We use induction on k to prove the theorem. Suppose that Algorithm 2 outputs $C_{A L G}$. We show that the $C_{A L G}$ is a multiway k-cut and that the value of $C_{A L G}$ is at most $w(E(\bar{V}))+\sum_{i=1}^{k} \delta\left(V_{i}\right)+$ $2 \log (k) e(n)$. We will first perform the analysis of approximation assuming that \mathcal{A} provides the stated approximation deterministically, and at the end of this proof, we will take into account that the approximation guarantee holds with probability $1-\alpha$.

Base case: $k=1$. If $k=1$, then $C_{A L G}=\emptyset$, and so it is a multiway 1-cut and $w\left(C_{A L G}\right)=0 \leq$ $\delta\left(V_{1}\right)+w(E(\bar{V}))$.

Inductive step: $k \geq 2$. So suppose that $k \geq 2$. Hence, $k^{\prime} \geq 1$ and $k-k^{\prime} \geq 1$, where k^{\prime} is defined on Line 4 Let (A, B) be the s - t cut obtained in Line 6, where \widetilde{G}_{1} is the graph induced on A and \widetilde{G}_{2} is the graph induced on B. Since the only terminals in G_{1} are $s_{1}, \ldots, s_{k^{\prime}}$, we have that $V_{1} \cap A, \ldots, V_{k^{\prime}} \cap A$ is a partial multiway k^{\prime}-cut on \widetilde{G}_{1}. By the induction hypothesis, the cost of the multiway cut that Algorithm 2 finds on \widetilde{G}_{1} is at most $w(E(\bar{V} \cap A))+\sum_{i=1}^{k^{\prime}} \delta_{\widetilde{G}_{1}}\left(V_{i} \cap A\right)+2 \log \left(k^{\prime}\right) e(|A|)$. Similarly, by considering the partial multiway $\left(k-k^{\prime}\right)$ cut $V_{k^{\prime}+1} \cap B, \ldots, V_{k} \cap B$ on \widetilde{G}_{2}, the cost of the multiway cut that Algorithm 2 finds on \widetilde{G}_{2} is at most $w(E(\bar{V} \cap B))+\sum_{i=k^{\prime}+1}^{k} \delta_{\widetilde{G}_{2}}\left(V_{i} \cap B\right)+2 \log \left(k-k^{\prime}\right) e(|B|)$. So the total cost $w\left(C_{A L G}\right)$ of the multiway cut that Algorithm 2 outputs is at most

$$
\begin{align*}
w\left(C_{A L G}\right) & \leq w(E(\bar{V} \cap A))+w(E(\bar{V} \cap B)) \tag{13}\\
& +\sum_{i=1}^{k^{\prime}} \delta_{\widetilde{G}_{1}}\left(V_{i} \cap A\right)+\sum_{i=k^{\prime}+1}^{k} \delta_{\widetilde{G}_{2}}\left(V_{i} \cap B\right) \\
& +w(E(A, B)) \\
& +2 \log \left(k^{\prime}\right) e(|A|)+2 \log \left(k-k^{\prime}\right) e(|B|)
\end{align*}
$$

First note that $C_{A L G}$ is a multiway k-cut: this is because by induction the output of the algorithm on \widetilde{G}_{1} is a multiway k^{\prime}-cut and the output of the algorithm on \widetilde{G}_{2} is a multiway $\left(k-k^{\prime}\right)$-cut. Moreover,

Figure 2: Node subsets of graph G. The subsets in asterisks have terminals in them. Red edges indicate the left-hand side edges in Eq. (14), and purple edges indicate the edges on the right-hand side in Eq. (14).

$$
\begin{align*}
& w\left(E\left(U_{2} \cap A, U_{2} \cap B\right)\right)+w\left(E\left(U_{2} \cap A, \bar{V} \cap B\right)\right)+w\left(E\left(U_{1} \cap B, U_{1} \cap A\right)\right)+w\left(E\left(U_{1} \cap B, \bar{V} \cap A\right)\right) \\
& \leq \tag{14}\\
& w\left(E\left(U_{2} \cap A, U_{1} \cap A\right)\right)+w\left(E\left(U_{2} \cap A, \bar{V} \cap A\right)\right)+w\left(E\left(U_{1} \cap B, U_{2} \cap B\right)\right)+w\left(E\left(U_{1} \cap B, \bar{V} \cap B\right)\right) \\
& +e(n)
\end{align*}
$$

Eq. (14) is illustrated in Figure 2. Using Eq. (14), we obtain that

$$
\begin{aligned}
w(E(A, B)) & =w\left(E\left(U_{2} \cap A, U_{2} \cap B\right)\right)+w\left(E\left(U_{2} \cap A, \bar{V} \cap B\right)\right) \\
& +w\left(E\left(U_{1} \cap B, U_{1} \cap A\right)\right)+w\left(E\left(U_{1} \cap B, \bar{V} \cap A\right)\right) \\
& +w\left(E\left(U_{2} \cap A, U_{1} \cap B\right)\right)+w\left(E\left(\left[U_{1} \cap A\right] \cup[\bar{V} \cap A],\left[U_{2} \cap B\right] \cup[\bar{V} \cap B]\right)\right) \\
& \leq w\left(E\left(U_{2} \cap A, U_{1} \cap A\right)\right)+w\left(E\left(U_{2} \cap A, \bar{V} \cap A\right)\right) \\
& +w\left(E\left(U_{1} \cap B, U_{2} \cap B\right)\right)+w\left(E\left(U_{1} \cap B, \bar{V} \cap B\right)\right) \\
& +w\left(E\left(U_{2} \cap A, U_{1} \cap B\right)\right)+w\left(E\left(\left[U_{1} \cap A\right] \cup[\bar{V} \cap A],\left[U_{2} \cap B\right] \cup[\bar{V} \cap B]\right)\right) \\
& +e(n)
\end{aligned}
$$

So we conclude that

$$
\begin{align*}
w(E(A, B)) & \leq w\left(E\left(U_{1} \cap B,\left[U_{2} \cap B\right] \cup[\bar{V} \cap B] \cup\left[U_{2} \cap A\right]\right)\right) \\
& +w\left(E\left(U_{1} \cap A,\left[U_{2} \cap B\right] \cup[\bar{V} \cap B]\right)\right) \\
& +w\left(E\left(U_{2} \cap A,\left[U_{1} \cap A\right] \cup[\bar{V} \cap A]\right)\right) \\
& +w\left(E\left(U_{2} \cap B, \bar{V} \cap A\right)\right) \\
& +w(E(\bar{V} \cap A, \bar{V} \cap B)) \\
& +e(n)
\end{align*}
$$

558 We substitute $w(E(A, B))$ in Eq. (13) using Eq. (15) Recall that $U_{1}=\cup_{i=1}^{k^{\prime}} V_{i}, \delta_{\widetilde{G}_{1}}\left(V_{i} \cap A\right)=$ 559
$E(A, B) \in C_{A L G}$. So the union of these cuts and $E(A, B)$ is a k-cut, and since each terminal is in exactly one partition, it is a multiway k-cut.

Now we prove the value guarantees. Let $U_{1}=V_{1} \cup \ldots \cup V_{k^{\prime}}$ and $U_{2}=V_{k^{\prime}+1} \cup \ldots \cup V_{k}$. So $U=U_{1} \cup U_{2}=V_{1} \cup \ldots \cup V_{k}$ is the set of nodes that are in at least one partition. Recall that $\bar{V}=V \backslash U$ is the set of nodes that are not in any partition.
Consider the following cut that separates $\left\{s_{1}, \ldots, s_{k^{\prime}}\right\}$ from $\left\{s_{k^{\prime}+1}, \ldots, s_{k}\right\}$: Let $A^{\prime}=\left[U_{1} \cap\right.$ $A] \cup\left[U_{1} \cap B\right] \cup[\bar{V} \cap A]$. Let $B^{\prime}=\left[U_{2} \cap B\right] \cup\left[U_{2} \cap A\right] \cup[\bar{V} \cap B]$. Since (A, B) is a min cut that separates $\left\{s_{1}, \ldots, s_{k^{\prime}}\right\}$ from $\left\{s_{k^{\prime}+1}, \ldots, s_{k}\right\}$ with additive error $e(n)$, we have $w(E(A, B)) \leq$ $w\left(E\left(A^{\prime}, B^{\prime}\right)\right)+e(n)$. Note that $A=\left[U_{1} \cap A\right] \cup\left[U_{2} \cap A\right] \cup[\bar{V} \cap A]$ and $B=\left[U_{1} \cap B\right] \cup\left[U_{2} \cap B\right] \cup[\bar{V} \cap B]$. So turning (A, B) into $\left(A^{\prime}, B^{\prime}\right)$ is equivalent to switching $U_{2} \cap A$ and $U_{1} \cap B$ between A and B. So we have that $w\left(E\left(V_{i} \cap A, A \backslash V_{i}\right)\right)$ and $\delta_{G}\left(V_{i}\right)=w\left(E\left(\bar{V}_{i}, V \backslash V_{i}\right)\right)$. For any $i \in\left\{1, \ldots, k^{\prime}\right\}$, we have that
$E\left(V_{i} \cap B,\left[U_{2} \cap B\right] \cup[\bar{V} \cap B] \cup\left[U_{2} \cap A\right]\right)$ and $E\left(V_{i} \cap A,\left[U_{2} \cap B\right] \cup[\bar{V} \cap B]\right)$ are both disjoint from $E\left(V_{i} \cap A, A \backslash V_{i}\right)$. Moreover all these three terms appear in $E\left(V_{i}, V \backslash V_{i}\right)$. So we have

$$
\begin{aligned}
& w\left(E\left(U_{1} \cap B,\left[U_{2} \cap B\right] \cup[\bar{V} \cap B] \cup\left[U_{2} \cap A\right]\right)\right) \\
& +w\left(E\left(U_{1} \cap A,\left[U_{2} \cap B\right] \cup[\bar{V} \cap B]\right)\right)+\sum_{i=1}^{k^{\prime}} \delta_{\widetilde{G}_{1}}\left(V_{i} \cap A\right) \\
& \leq \sum_{i=1}^{k^{\prime}} \delta_{G}\left(V_{i}\right)
\end{aligned}
$$

$$
\begin{equation*}
w\left(E\left(U_{2} \cap A,\left[U_{1} \cap A\right] \cup[\bar{V} \cap A]\right)\right)+w\left(E\left(U_{2} \cap B, \bar{V} \cap A\right)\right)+\sum_{i=k^{\prime}+1}^{k} \delta_{\widetilde{G}_{2}}\left(V_{i} \cap B\right) \leq \sum_{i=k^{\prime}+1}^{k} \delta_{G}\left(V_{i}\right) \tag{16}
\end{equation*}
$$

3 Note that the first two terms above are the third and forth terms in Eq. (15) Finally $w(E(\bar{V} \cap A))+$

Since $k^{\prime}=\lfloor k / 2\rfloor$ and $k-k^{\prime}=\lceil k / 2\rceil$, we have that $k^{\prime} \leq\left\lfloor\frac{k+1}{2}\right\rfloor$ and $k-k^{\prime} \leq\left\lfloor\frac{k+1}{2}\right\rfloor$. Moreover, since $e=c n / \epsilon$ for $\epsilon>0$ and $c \geq 0$, we have that $e(|A|)+e(|B|) \leq e(|A|+|B|)=e(n)$. Therefore,

$$
\begin{aligned}
& e(n)+2 \log \left(k^{\prime}\right) e(|A|)+2 \log \left(k-k^{\prime}\right) e(|B|) \\
\leq & e(n)\left(1+2 \log \left(\left\lfloor\frac{k+1}{2}\right\rfloor\right)\right) \leq 2 \log (k) e(n)
\end{aligned}
$$

Note that the first two terms above are the first two terms in Eq. (15) Similarly, we have $w(E(\bar{V} \cap B))+w(E(\bar{V} \cap A, \bar{V} \cap B)) \leq w(E(\bar{V}))$. So, we upper-bound Eq. (13) as

$$
\begin{aligned}
w\left(C_{A L G}\right) & \leq \sum_{i=1}^{k} \delta_{G}\left(V_{i}\right)+w(E(\bar{V})) \\
& +e(n)+2 \log \left(k^{\prime}\right) e(|A|)+2 \log \left(k-k^{\prime}\right) e(|B|)
\end{aligned}
$$

The above inequality finishes the approximation proof.
The success probability. As proved by Lemma 4.1, the min $s-t$ cut computations by Algorithm 2 can be seen as invocations of a min s - t cut algorithm on $O(\log k)$ many n-node graphs; in this claim, we use \mathcal{A} to compute min s - t cuts. By union bound, each of those $O(\log k)$ invocations output the desired additive error by probability at least $1-\alpha O(\log k)$.

