
Retrieval-Augmented Multiple Instance Learning

Yufei Cui1� , Ziquan Liu2, Yixin Chen3, Yuchen Lu4, Xinyue Yu4,
Xue Liu1, Tei-Wei Kuo56, Miguel R. D. Rodrigues2, Chun Jason Xue3, Antoni B. Chan3

1Mila, McGill University 2University College London 3City University of Hong Kong
4 Mila, Université de Montréal 5National Taiwan University 6MBZUAI

Abstract

Multiple Instance Learning (MIL) is a crucial weakly supervised learning method
applied across various domains, e.g., medical diagnosis based on whole slide
images (WSIs). Recent advancements in MIL algorithms have yielded exceptional
performance when the training and test data originate from the same domain,
such as WSIs obtained from the same hospital. However, this paper reveals a
performance deterioration of MIL models when tested on an out-of-domain test set,
exemplified by WSIs sourced from a novel hospital. To address this challenge, this
paper introduces the Retrieval-AugMented MIL (RAM-MIL) framework, which
integrates Optimal Transport (OT) as the distance metric for nearest neighbor
retrieval. The development of RAM-MIL is driven by two key insights. First, a
theoretical discovery indicates that reducing the input’s intrinsic dimension can
minimize the approximation error in attention-based MIL. Second, previous studies
highlight a link between input intrinsic dimension and the feature merging process
with the retrieved data. Empirical evaluations conducted on WSI classification
demonstrate that the proposed RAM-MIL framework achieves state-of-the-art
performance in both in-domain scenarios, where the training and retrieval data
are in the same domain, and more crucially, in out-of-domain scenarios, where
the (unlabeled) retrieval data originates from a different domain. Furthermore,
the use of the transportation matrix derived from OT renders the retrieval results
interpretable at the instance level, in contrast to the vanilla l2 distance, and allows
for visualization for human experts.

1 Introduction
As the standard supervised learning paradigm, single instance learning has been the focus of machine
learning research and its performance has been improved significantly since the advent of deep
learning [1]. Nonetheless, a notable drawback of single instance learning lies in its reliance on a
substantial volume of labeled data [2], which poses practical challenges as a result of the high expense
and time-consuming nature of fine-grained data labeling. Consequently, multiple instance learning
(MIL) [3] has gained increasing popularity, given its ability to be trained with limited supervision.
This trend has particularly gained momentum within the domain of histopathology, where the analysis
of medical images at a gigabyte scale, such as whole slide images (WSI), has emerged as a focal
point in recent studies [4, 5, 6, 7, 8, 9, 10, 11].

Even though the performance of MIL on cancer diagnosis [13, 12] is remarkable, existing algorithms
are only evaluated on the in-domain test set and have the risk of performance degradation when
confronted with distribution shifts between the training and test sets [14, 15]. The distribution shift
problem is particularly important in the context of automated medical diagnosis models, since the
models are deployed across diverse hospitals in distinct regions, each may employing varying imaging
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Figure 1: The proposed RAM-MIL method. Left: An attention-based MIL model is pre-trained on
the training set to produce feature representations and attention weights. Right: With pre-trained
features and attention weights, Optimal-Transport (OT) is employed to compute bag-to-bag distance,
based on which the nearest neighbor bag from the retrieval set is selected. A training bag’s feature is
then merged with its retrieved bag, which is used as the input feature to a bag classifier.

techniques. The robustness of such models in the face of distribution shift is of utmost importance
within this safety-critical application, as any failure to address this challenge may result in severe
consequences.
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Figure 2: The comparisons of accu-
racy of MIL methods under in-domain
and out-of-domain (OOD) settings. The
out-of-domain is tested on Camelyon17
[12] with models trained on Camelyon16
[13]. MIL fails to generalize well to
OOD data, while the proposed RAM-
MIL improves the OOD performance as
well as the in-domain performance.

This paper first unveils that the performance degradation
indeed happens for state-of-the-art MIL models (Fig. 2)
and proposes a retrieval-based MIL solution for improving
both in-domain and out-of-domain performance. We prove
a theorem that demonstrates the reduced input dimensions
leads to improved MIL performance. Inspired by the con-
nection between feature merging learning and intrinsic di-
mension [16], we propose the Retrieval-AugMented MIL
(RAM-MIL) algorithm to learn a low intrinsic dimension
feature space and enhance the model generalization, es-
pecially for out-of-domain data. In the retrieval process,
we use the optimal transport (OT) as the distance metric
between two bags because our main theorem is proved
with the generalized OT measure. In our setting, the in-
stances in a bag and their associated attention values in
attention-based MIL are used to form a discrete distribu-
tion used to represent a bag, and OT is used to calculate
the distance between the two discrete distributions of two

bags. Following retrieval, the original bags are merged with their retrieved counterparts from a
retrieval dataset, employing a merge function such as convex combination, to generate feature repre-
sentations. Subsequently, a classifier is trained as the MIL model. The retrieval dataset can either
be the original dataset in the absence of out-of-domain data, or an unlabeled out-of-domain dataset
in the out-of-domain adaptation setting. Our empirical study confirms that RAM-MIL effectively
reduces the intrinsic dimensionality of the input feature space, surpassing existing MIL methods in
both in-domain and out-of-domain settings. The advantage of OT distance over l2 and OT-variant
distances is demonstrated by our ablation study. In addition, the OT-based retrieval result can be
visualized using the transportation matrix, which makes the retrieval process interpretable. Our
contributions are three-fold:

1. This work is among the first to investigate the out-of-domain performance for MIL, which
is a vital issue for the application of MIL in automated medical diagnosis with WSIs. Our
empirical study exposes the risk of recent MIL algorithms under distribution shifts.

2. Our theoretical result based on Wasserstein distance in the input space shows a negative
correlation between MIL performance and the input data dimension, which motivates us
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to propose the novel RAM-MIL framework based on the OT as the distance metric in the
retrieval process.

3. Our experiment demonstrates that RAM-MIL outperforms state-of-the-art MIL methods in
both in-domain and out-of-domain adaptation scenarios. Additionally, the transportation
matrix of OT distance provides a tool to visualize the correspondence between original and
retrieval instances, which makes our retrieval method interpretable.

2 Motivation of RAM-MIL
In this section, we show that why using OT could lead to a performance improvement for multiple
instance learning.

We follow the standard formulation of Attention-based Multiple Instance Learning (MIL) [3, 4]. In
MIL, the input is a bag of instances, X = {x1, . . . ,xK},xk ∈ RD, X ∈ X and K is the number of
instances, which varies for different bags. There is a bag-level label Y , which is positive if at least one
of the instances is positive, and negative if all instances are negative. We further assume the instances
also have corresponding instance-level labels {y1, . . . , yK}, which are unknown during training.
There are N such bag-label pairs constituting the dataset D = {Xn, Yn}Nn=1. The objective of MIL
is to learn an optimal function for predicting the bag-level label with the bag of instances as input. To
this end, the MIL model should be able to aggregate the information of instances {xk}Kk=1 to make
the final decision. A well-adopted aggregation method is the embedding-based approach which maps
X to a bag-level representation z ∈ Rd and use z to predict Y . [3] extends the embedding-based
aggregation approach by leveraging the attention mechanism, namely attention-based deep MIL
(ABMIL). First, a transformation g(·) computes a low-dimensional embedding hk = g(xk) ∈ Rd

for each instance xk. The attention module aggregates the set of embeddings {hk}Kk=1 into a bag
level embedding z =

∑K
k=1 akhk =

∑K
k=1 akg(xk) = A(X), where the attention ak for the k-th

instance is computed via a softmax function,

ak =
exp{mT (tanh(V T

1 hk)⊙sigmoid(V T
2 hk))}∑K

j=1 exp{mT (tanh(V T
1 hj)⊙sigmoid(V T

2 hj))}
. (1)

where m,V1,V2 are the network parameters. The bag embedding z is then mapped to the logits u
with a feed forward layer with parameter W for the bag-level classification, u = W Tz.

Assuming there is a ground-truth set scoring function S(X) : X 7→ R that generates the label Y , our
task is to approximate the function with the attention-based model. We have the following theorem
demonstrating that, when employing the Wasserstein distance in the input space, the approximation
error of a Lipschitz continuous set scoring function is upper bounded by a term associated with the
input dimension d. The insight from the theorem offers a guidepost for the design of our methodology.
Theorem 1. Suppose S(·) is a Lipschitz continuous function with respect to Wasserstein distance
Wp (1 ≤ p < ∞) and the Lipschitz constant is L. The bag of instances X is sampled from a
probability distribution µ(x) with distribution dimension dµ (intrinsic dimension). For any invertible
map Φ : X → Rd, ∃ function σ and γ, such that for any X ∈ X ,

|S(X)− γ(ΦX∈X {σ(x) : x ∈ X})| ≤ O(L ·K− 1
dµ ). (2)

The theorem has two implications for the ABMIL problem. First, using the Wasserstein metric in the
input space, we establish this dimension-dependent error bound for the approximation, indicating
the good property of Wasserstein metric in the theoretical sense. Second, this dimension-dependent
error bound motivates our RAM-MIL framework to reduce the intrinsic dimensionality of the input
space for improving the performance of ABMIL, which is consistent with a previous work [16] that
shows feature mixup is effective at reducing input feature dimension. This paper uses OT distance
as the instantiation of the Wasserstein distance, since OT with Euclidean distance as the cost is
equivalent to W1. We use the entropy-regularized OT as the approximation of OT distance in our
implementation since the regularization makes the optimization process more stable and efficient
and is widely used in machine learning and vision research [17, 18]. The incorporation of OT into
Multiple Instance Learning (MIL) provides a new framework for understanding and assessing the
similarity between different instances. Intuitively, each bag in MIL can be considered as a probability
distribution of instances, where the probabilities are the attention values a. Thus, OT offers a rigorous
and meaningful metric to quantify the similarity between two distributions. It takes into account not
only the individual differences of instances but also their global arrangement within a bag, hence,
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Algorithm 1 Retrieval-AugMented Multiple Instance Learning (RAM-MIL) Algorithm

1: Pre-train an MIL model on Do = {Xn, Yn}No
n=1.

2: Extract the sets of instance representations, i.e., Ho = {Hn}No
n=1 and Hr = {H̃m}Nr

m=1, and
compute their attentions, i.e., {an}No

n=1 and {ãm}Nr
m=1

3: Extract the sets of bag representations {zn}No
n=1 and {z̃n}Nr

n=1 with pre-trained model.
4: Input: {Xn, Yn,Hn, zn,an}No

n=1, {X̃m, Ỹm, H̃m, z̃m, ãm}Nr
m=1

5: for n from 1 to No do
6: ν∗ = argminH̃m∈Hr

dOT (µn, νm), where dOT (µn, νm) is solved by (4)
7: Store ẑn = π(zn, zm∗), where m∗ = getIndex(ν∗)
8: end for
9: Train a logistic regression bag classifier on {ẑn, Yn}Nr

n=1.

providing a holistic comparison. Note that although Theorem 1 is proved for the input space X , it is
trivial to prove a similar result for the feature space H (see the supplemental).

Building upon the benefits brought by OT, we propose a retrieval mechanisms to further strengthen
the MIL framework. The key intuition is to leverage the rich information available across different
bags. This allows for more robust and generalizable learning as each bag might not exist in isolation
but is part of a broader set of data with shared and contrasting characteristics. The retrieval process,
particularly when guided by OT, helps to identify and bring into context “neighbor” bags that are
most relevant or similar to a given bag. This allows the model to learn more effectively by taking
into account the broader context in which each bag exists. Empirically, we confirm the OT-guided
retrieval could effectively reduce the intrinsic dimension of input feature space, which explains
the performance of proposed methodology. Moreover, with the computed transport matrix, the
correspondence between the original and selected bag can be visualized, which makes the retrievial
and classification process more interpretable/explainable.

3 Methodology
This section presents the RAM-MIL algorithm based on OT distance and its application in the
out-of-domain adaptation.

3.1 Retrieval-Augmented Multiple Instance Learning based on Optimal Transport
We introduce the methodology that utilizes OT distance to address the retrieval problem for multiple
instance learning (MIL). The idea of enhancing MIL using retrieval lies in augmenting a bag feature
from the original dataset with its nearest neighbor bag feature from the retrieval dataset. Consider the
original dataset of bags marked for model training and validation, denoted as Do = {Xn, Yn}No

n=1,
and the unlabeled retrieval set represented as Dr = {X̃m}Nr

m=1, where No and Nr signify the
number of bags in the two respective sets. For each instance xk in a bag X , we extract an instance
representation hk = g(xk), where g(·) is a neural net for feature extraction, such as ResNet50
[19]. Recall that an MIL model maps the bag of instance representations to the logits u for loss
computation, expressed as u = W Tz. The intermediate representation z = A(X), computed by
averaging instance features and attention weights z = A(X) =

∑K
k=1 akhk =

∑K
k=1 akg(xk), is

regarded as the bag representation.

The objective of the retrieval scheme is to select the bag in the retrieval set that is nearest to the input
bag. To perform bag-to-bag retrieval, we use the distributional distance between two bags, which
considers their constituent instances. Once the retrieved bag is obtained, its bag representation z̃∗ is
then merged with the original bag representation z. The merged feature, denoted as ẑ = π(z, z̃∗), is
used for bag classification , where π(·, ·) is the merging function, e.g., a convex combination.

Retrieval with Optimal Transport. To leverage the probabilistic geometry between instances,
instead of directly retrieving the nearest bags based on the bag representations z, our retrieval
operates on the bags of instance representations Hr = {H̃m}Nr

m=1 = {{h̃mk}Kk=1}
Nr
m=1. Here K

represents the number of instances, H̃m indicates the bag of instance representations and h̃mk is an
instance representation derived via h̃mk = g(x̃mk). For each bag in Do, we similarly extract bags of
instance representations as Ho.

For each bag H ∈ Ho, we find its nearest neighbor in Hr using the following OT problem to calculate
distance between the two bags H and H̃ ∈ Hr. Let µ =

∑K
i=1 aiδhi

and ν =
∑K̃

j=1 ãjδh̃j
be
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discrete distributions supported on H = {hk}Kk=1 and H̃ = {h̃k}K̃k=1, where δµ = δ(h − µ) is
the translated Dirac delta function. Here, ai and ãj are the attention scores from the MIL model for
instance i in bag H and instance j in bag H̃ , respectively, forming the probability vectors for the
bags. The OT problem between these two distributions can be formulated as follows:

dOT(µ, ν) = min
T∈T (a,ã)

K∑
i=1

K̃∑
j=1

c(hi, h̃j)Tij (3)

In this equation, T denotes the transport plan matrix where each element Tij specifies the amount of
"mass" to be transported from hi to h̃j . The function c(hi, h̃j) is a cost function that quantifies the
cost of transporting a unit of mass from hi to h̃j . A common choice of c(hi, h̃j) is the squared l2
distance between the instance features, i.e., c(hi, h̃j) = ∥hi − h̃j∥22. T (a, ã) represents the set of
all matrices T that satisfy the marginals T⊤1K = a and T1K̃ = ã. Here, 1n and 1m are vectors of
ones. We also impose an entropy regularization [20] term to reduce the sensitivity to outlier instances.
Specifically, we solve the following OT problem with a Sinkhorn’s algorithm [20]:

dOT(µ, ν) = min
T∈T (a,ã)

K∑
i=1

K̃∑
j=1

c(hi, h̃j)Tij + β ·
∑
ij

Tij log Tij (4)

s.t.,T⊤1K = a,T1K̃ = ã,T ≥ 0

In the context of the retrieval-based MIL problem, the nearest neighbor bag for a given bag H would
be the one H̃ in the retrieval set that results in the smallest OT cost with H:

ν∗ = argmin
H̃m∈Hr

dOT (µ, νm) (5)

In the retrieval process, we use an MIL model pre-trained on Do to extract the attention vectors a and
ã, which serve as mass probability distributions for calculating the OT, in addition to extracting bag
representations z and z̃. This method effectively transforms the instance importance, as determined
by the model, into a mass probability distribution. Instances with high attention scores are considered
to possess larger "mass". In the context of the OT problem, such instances become more "expensive"
to transport, thereby significantly influencing the computation of the transport cost. Consequently,
the model is encouraged to pair similar instances carrying substantial mass, a strategy that aligns with
the intuitive notion of matching similar instances together. Employing the pre-extracted attention to
classify the weighted bag representation after retrieval ensures consistency with the retrieval process
and enhances efficiency. The whole retrieval-enhanced multiple instance learning is shown in Algo. 1.

3.2 Unsupervised Domain Adaptation
The proposed methodology can be effectively employed in the context of unsupervised domain
adaptation (UDA) [21]. UDA seeks to leverage labeled data from a source domain to train a model
that can perform well on an unlabeled target domain.

Remarkably, our retrieval algorithm (as described in Algo. 1) can be seamlessly applied to the UDA
task. To achieve this, we set Ho to represent the source domain and Hr to represent the target domain.
Our approach retrieves the nearest neighbor bag representation from the target domain for each bag
representation in the source domain. Subsequently, we train the final classifier using the merged
representation and the source domain label.

The RAM-MIL based on OT allows leveraging the geometric structure of the instance space across
domains. This promotes the alignment of the source and target domains at the instance level. By
merging the bag features, the discriminative information embedded in the source domain is transferred
to the target domain. As a result, the bag classifier is able to discriminate the target domain bags
without needing access to their labels.

3.3 Reduction of Intrinsic Dimension
In this section, we validate our hypothesis that retrieval can effectively reduce the intrinsic dimension
of each bag’s distribution. We use the two NN estimator [22] for computing the intrinsic dimension
for the bag representations, either the original features for MIL or merged features for retrieval
models. Figure 3 shows the intrinsic dimension of CLAM [4], Manifold Mixup [16], OT based
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retrieval and different variants of retrieval methods. The l2 distance based retrieval, approximate
OT retrieval and Hausdorff distance based retrieval are variants of our retrieval method that will be
elaborated in Section 5.
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Figure 3: The intrinsic dimension of bag repre-
sentations for different MIL methods and retrieval
models. CLAM uses the original feature and the
rest use merged feature from retrieval. RAM-MIL
is the most effective method at reducing intrinsic
dimension of feature space.

The figure shows that our proposed retrieval
methods indeed lower the intrinsic dimensions
of bag representations in both in-domain and
out-of-domain settings. As shown in (2), the ap-
proximation performance of a ground-truth set
scoring function is theoretically constrained by
the intrinsic dimension of the distribution, when
measured under the Wasserstein distance. RAM-
MIL delivers the lowest intrinsic dimensions
among the methods compared, thus validating
its superior performance in classification and
aligns with our theoretical analysis (2). We offer
more detailed discussion of intrinsic dimension
in Section 5.2.

4 Related works
Attention-based multiple instance learning
ABMIL [3] first introduced the attention mech-
anism for MIL to an interpretation of importance for instances. Building on this, DSMIL [9] used
contrastive learning for feature extraction and established global connections between instance atten-
tions. TransMIL [5] took this a step further and developed a correlated MIL, employing multi-head
self-attention and spatial information encoding for thorough global correlation. CLAM [4] extends
ABMIL to the case of multiple classes and builds an integrated toolbox for visualizing the uncertainty.
DTFD-MIL [23] proposes a two-stage feature distillation MIL framework for enhancing the perfor-
mance. Bayes-MIL [11] studies the fundamental interpretability problem in the attention based MIL
framework and proposed to address it with a probabilistic method. In our RAM-MIL, the attention
weight is utilized as a measure of the probability density, indicating the amount of “mass” being
moved from the source bag to the target bag. Greater attention weights in RAM-MIL indicate more
significant relationships between instances in the bags being compared.

Domain adaptation for medical imaging There have been a large volume of research studying
the domain adaptation in medical imaging [24, 25, 26]. However, most of the preceding studies on
whole slide images domain generalization have primarily focused on instance-level classification [27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], rather than tackling the more complex challenge of
weakly-supervised bag-level classification (MIL). In contrast, our approach seeks to address this
more complex problem of unsupervised domain adaptation for MIL. We review these methods in
details and make extensive comparisons in the supplemental.

Retrieval method for whole slide images Recent works also study how to efficiently retrieve relative
WSI from database. Yottixel [40] builds a search engine for indexing WSIs at scale. SISH [41] uses a
tree structure for fast search of WSI followed by an uncertainty-based ranking algorithm for retrieval.
In experiment, we integrate the open-sourced SISH as a search engine into our RAM-MIL pipeline
for comparisons (See supplemental). HHOT [42] proposes to use optimal transport (OT) as a distance
measure to compare different WSIs, or different WSI datasets. Our paper, focusing on classification
tasks, studies the principle why OT is suitable for WSI classification and propose a retrieval-based
classification process. We compare RAM-MIL and HHOT in our experiments.

5 Experiments
The proposed methodology is evaluated on whole slide image (WSI) datasets (Camelyon16 [43, 13],
Camelyon17 [12], TCGA-NSCLC, CPTAC-UCEC and CPTAC-LSCC) and general MIL datasets
(See results in supplemental). The evaluation is divided into in-domain and UDA settings. For the
in-domain setting, the retrieval set Hr is the union of training and validation set of Ho. For the UDA
setting, the retrieval set is a held-out dataset with no labels involved in training or inference.
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Table 1: Results on CAMELYON16 and CAMELYON17 for in-domain classification and unsuper-
vised domain adaptation, for comparisons with related methods.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

ABMIL 0.9010±0.026 0.8750±0.020 0.7287±0.035 0.7190±0.049
DSMIL 0.8944±0.051 0.8682±0.060 - -
CLAM 0.9177±0.044 0.8650±0.060 0.7613±0.054 0.7214±0.044

TransMIL 0.9307±0.024 0.8837±0.041 0.5697±0.118 0.6451±0.100
Bayes-MIL 0.9432±0.049 0.8875±0.052 0.7839±0.044 0.7435±0.058

HHOT-kNN (k=1) 0.7007±0.035 0.7318±0.051 0.6939±0.076 0.7173±0.061
HHOT-kNN (k=3) 0.7618±0.026 0.7544±0.055 0.7263±0.048 0.7523±0.076

Mixup RetrI 0.9260±0.051 0.8825±0.051 - -
Mixup RetrIO 0.9271±0.048 0.8850±0.046 0.7658±0.052 0.7594±0.044
Mixup RetrO 0.9271±0.045 0.8825±0.048 0.7641±0.056 0.7593±0.058

l2 RetrI 0.9281±0.047 0.8800±0.055 - -
l2 RetrIO 0.9241±0.048 0.8950±0.048 0.7627±0.055 0.7353±0.051
l2 RetrO 0.9398±0.045 0.8950±0.055 0.7738±0.050 0.7493±0.050

RAM-MIL RetrI 0.9451±0.036 0.8925±0.050 - -
RAM-MIL RetrIO 0.9365±0.052 0.9200±0.050 0.7974±0.054 0.7433±0.073
RAM-MIL RetrO 0.9419±0.048 0.9175±0.051 0.7681±0.058 0.7795±0.021

We compare our OT-based retrieval with Euclidean distance retrieval, Hausdorff distance retrieval
and Manifold MixUp as baselines. The Euclidean (l2 norm) distance dl2(·, ·) and Hausdorff distance
based retrieval are implemented in the following ways:

• Direct bag representation retrieval. As a baseline method, we propose an approach to augment
bag features by directly retrieving the nearest neighbor. The setup follows the initial steps of
Algo. 1, from line 1 to line 3. Instead of computing the instance correlations, we directly com-
pute the l2 distance between bag representations, formulated as dl2(Hn, H̃m) = ||zn − z̃m||22.
For the n-th bag representation, we select the nearest neighbor from the retrieval set: H̃m∗ =
argminH̃m∈Hr

dl2(Hn, H̃m). The merged bag representation ẑn = π(zn, zm∗) is subsequently
employed for bag classification, where m∗ = getIndex(H̃m∗).

• Approximate OT retrieval. Recall that prior to applying the Sinkhorn’s algorithm to solve
OT, it is necessary to compute the cost matrix C = [c(hi, h̃j)]ij = ∥hi − h̃j∥22, where
each element is the squared l2 distance between instance representations. To highlight the
significance of solving the OT problem, we introduce three simple approximations of OT
by directly employing the minimum, average and maximum values of the cost matrix. The
dCmin(Hn, H̃m) = minij [c(hi, h̃j)]ij focuses on the closest and most similar instances between
bags. The dCavg(Hn, H̃m) = averageij [c(hi, h̃j)]ij offers a holistic measure of bag similarity
but might lose some finer details. The dCmax(Hn, H̃m) = maxij [c(hi, h̃j)]ij focuses on the
most dissimilar instances between the two bags. These three measures can be considered as OT
approximations that use information from the squared l2 cost matrix.

• Hausdorff distance retrieval. The symmetric Hausdorff distance is employed for retrieval,
computed as dH(Hn, H̃m) = max{dh(Hn, H̃m), dh(H̃m,Hn)}. Here, dh(Hn, H̃m) =

maxhi∈Hn
minh̃j∈H̃m

∥hi − h̃j∥22 is the directed Hausdorff distance. The Hausdorff distance
is an appropriate retrieval metric when assessing the maximum dissimilarity between two sets,
emphasizing the instances that differ the most between the sets. In comparison, OT provides a
more comprehensive and versatile choice for retrieval tasks, given its ability to consider all possible
matchings between elements in the sets and finds an optimal one.

5.1 Classification of Whole Slide Image
Experimental setup: In this section, we validate the methodology within both in-domain and
out-of-domain contexts. In both contexts, the training set is from Camelyon16. In the in-domain
setting, we evaluate our models using the Camelyon16 dataset, where the combination of training
and validation sets is treated as Dr, which is denoted as RetrI. For the out-of-domain context, we
use Camelyon16 as Do. As for Dr, we consider two configurations: 1) retrieval from the training
and validation sets of both Camelyon16 and Camelyon17, and 2) retrieval solely from the training
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Table 2: Results on CPTAC-UCEC in domain classification, domain adaptation from CPTAC-LSCC
to CPTAC-UCEC.

In Domain Out-of-Domain
AUC Accuracy AUC Accuracy

CLAM 0.9500 0.9285 0.4986 0.6521
RAM-MIL 0.9667 0.9382 0.6056 0.6526

Table 3: Results on TCGA-NSCLC (subtyping).

Method AUC Accuracy

CLAM 0.9420 0.8640
Scaling ViT 0.9516 0.8821
TransMIL 0.9603 0.8835

Bayes-MIL 0.9451 0.8965

RAM-MIL 0.9457 0.8988

Table 4: Tumor stage classification results on
CAMELYON17.

Method AUC Accuracy

CLAM 0.7803 0.60
Bayes-MIL 0.8070 0.64

RAM-MIL 0.8139 0.65

and validation sets of Camelyon17, referred to as RetrIO and RetrO, respectively. In the Camelyon17
challenge, each slide is labeled as either isolated tumour cells (ITC), micro-met, macro-met, or
negative. ITC are strictly defined as single tumor cells or clusters smaller than 0.2 mm or less
than 200 cells [44]. Following the principles of MIL, we treated ITC as the positive class. More
results about treating ITC as the negative class are shown in the supplemental. To ensure robustness
and avoid the influence of outliers, each experiment is executed 10 times on randomly partitioned
train/validation/test sets.

The baseline model we use for comparison is CLAM, an extension of attention-based Multiple
Instance Learning (MIL) that incorporates an instance clustering loss. In our case, the pre-trained
model is a CLAM model for binary classification. We also make comparisons with other models
such as ABMIL, DSMIL, TransMIL, Bayes-MIL, HHOT, and Mixup. For the ablation study, we add
our proposed l2 retrieval method with direct bag representation retrieval. For both the Mixup and
l2 retrieval models, we ensure that the source of the augmented data aligns with our in-domain and
out-of-domain settings. For the OT-based pathology work, HHOT focuses on comparing whole slide
images using uniform weight-based OT and employs kNN as a discriminative method. Note that
Mixup and our proposed methods use CLAM as the MIL method. Furthermore, Mixup shares the
same merging function with our retrieval method, which is a simple addition or a convex combination,
in the reported experiments. Our method does not need the ground-truth label information for retrieval
set while Mixup uses that for the in-domain experiments. More results about the merging function is
shown in the supplemental.

When we compute the RAM-MIL, we often deal with very large WSIs that can contain over 100,000
instances. This makes the calculation of OT time-consuming. To speed things up, we first perform
pre-selection of potentially important instances. Instead of using all the instances in a bag Hn, we
pick the top 20% of instances based on their attention scores and normalized the attention scores. We
provide more detailed comparisons in percentage of instances used, in the supplemental. In this way,
we are focusing on the most important instances and making the whole process more efficient.

In-domain comparisons: Table 1 presents the in-domain results. Simply using a uniform weight-
based Optimal Transport (OT) in HHOT-KNN fails to deliver satisfactory performance. Mixup, l2
retrieval, and RAM-MIL all enhance the classification performance for in-domain data beyond the
CLAM baseline. The straightforward l2 retrieval-based MIL outpaces Mixup, demonstrating that
selecting the nearest neighbor using a basic metric offers superior augmentation compared to random
data selection. Using OT as a distance metric, the retrieval-based MIL method surpasses all the other
compared methods for the in-domain dataset. Notably, the RetrIO configuration, which employs the
most extensive data set for retrieval (CAMELYON16 and CAMELYON17), offers the most significant
boost in in-domain classification accuracy. Table 2 shows RAM-MIL consistently presents higher
AUC and accuracy on CPTAC-UCEC. We also explore the performance of subtypes classification in
Table 3, showing that RAM-MIL outperforms existing methods in accuracy, while providing AUC
higher than the CLAM baseline. Compared with the results on tumor stage classification, our method
enhances the model performance as shown in Table 4.

Out-of-domain comparisons: The right-hand side of Table 1 showcases the results for the out-of-
domain setting. Notably, all retrieval methods, including ours, enhance the classification performance
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Table 5: Ablation study evaluated on CAMELYON16 and CAMELYON17.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

Approx-OT-min RetrI 0.9301±0.033 0.8800±0.043 - -
Approx-OT-min RetrIO 0.8601±0.080 0.8000±0.062 0.7640±0.058 0.7353±0.043
Approx-OT-min RetrO 0.9196±0.063 0.8750±0.056 0.7680±0.065 0.7274±0.046

Approx-OT-avg RetrI 0.9227±0.038 0.8600±0.036 - -
Approx-OT-avg RetrIO 0.8865±0.063 0.8425±0.061 0.7625±0.060 0.7174±0.041
Approx-OT-avg RetrO 0.9195±0.063 0.8750±0.056 0.7641±0.054 0.7374±0.061

Approx-OT-max RetrI 0.9174±0.049 0.8625±0.044 - -
Approx-OT-max RetrIO 0.9182±0.047 0.8650±0.048 0.7576±0.060 0.7214±0.062
Approx-OT-max RetrO 0.9195±0.063 0.8750±0.056 0.7681±0.065 0.7414±0.038

l2 RetrI 0.9281±0.047 0.8800±0.055 - -
l2 RetrIO 0.9241±0.048 0.8950±0.048 0.7627±0.055 0.7353±0.051
l2 RetrO 0.9398±0.045 0.8950±0.055 0.7738±0.050 0.7493±0.050

Hausdorff RetrI 0.9273±0.057 0.8850±0.049 - -
Hausdorff RetrIO 0.9226±0.055 0.8725±0.060 0.7651±0.054 0.7434±0.051
Hausdorff RetrO 0.9322±0.046 0.8950±0.048 0.7695±0.056 0.7513±0.051

RAM-MIL RetrI 0.9451±0.036 0.8925±0.050 - -
RAM-MIL RetrIO 0.9365±0.052 0.9200±0.050 0.7974±0.054 0.7433±0.073
RAM-MIL RetrO 0.9419±0.048 0.9175±0.051 0.7681±0.058 0.7795±0.021

for out-of-domain data, without accessing its labels. This suggests that retrieval benefits from the
transfer of representative information from the source to the target domain via the merging of bag
features. The l2 retrieval, while trailing Mixup in terms of accuracy, surpasses it in terms of AUC.
Our OT-based retrieval achieves the highest performance across both AUC and accuracy metrics.
Table 2 presents the results on domain adaptation from CPTAC-UCEC to CPTAC-LSCC. RAM-MIL
demonstrates a notable improvement of 0.1065 in AUC compared to CLAM. The underlying reason
for the good performance might be it could consider all possible matchings between elements in the
sets and finds an optimal one.

Ablation study Table 5 presents the ablation study using different retrieval methods, which shows
that even l2 retrieval, which operates without considering instance-level distances, surpasses the
performance of the three OT approximation methods in both in-domain and out-of-domain settings.
Among these, only the Approx-OT-min, when used for in-domain data retrieval, achieves a perfor-
mance comparable to that of l2 retrieval. This underscores the fact that relying on simple statistics of
the cost matrix cannot provide a robust and consistent approximation of the optimal transport. This
outcome reinforces the necessity of solving the complete optimal transport problem, using Sinkhorn’s
algorithm, to attain reliable results.

5.2 Dimensionality Reduction
We next show that retrieval-based methods can effectively reduce the intrinsic dimension. Figure 3
shows the intrinsic dimension for various methods. The proposed RAM-MIL based on optimal
transport delivers the lowest intrinsic dimension, among all methods, both retrieval and vanilla
models. Interestingly, Mixup seems to increase the intrinsic dimension, suggesting that random
selection and merging of bag representations do not necessarily lead to a more compact representation.
This could explain why Mixup only offers marginal improvements.

Figure 3 shows that while the CLAM model has an intrinsic dimension between 5-7, RAM-MIL
achieves a dimension between 2-4. Based on these observations, we choose dimension 5 to guide
manual dimensionality reduction. The objectives of this exercise are two-fold: firstly, to validate
that intrinsic dimension can accurately explain performance, and secondly, to illustrate that simple
methods like SVD are not necessarily beneficial for dimensionality reduction of bag representations.

In our experiment, we employ SVD to reduce each bag representation of CLAM and each merged
bag representation of RAM-MIL to a 5-dimensional vector. Then, we use these vectors and the bag
labels to train a single logistic regression classifier. The results indicate that RAM-MIL significantly
outperforms CLAM in classification accuracy. This experiment shows that a simple dimensionality
reduction method like SVD does not significantly improve the performance of the CLAM baseline.
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Table 6: Classification on CAMELYON16 with bag representations of reduced dimensions (5-dim).

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

CLAM 0.9216±0.057 0.6625±0.177 0.7486±0.040 0.4991±0.105
RAM-MIL 0.9273±0.072 0.8475±0.157 0.7509±0.074 0.7053±0.113

However, RAM-MIL, which organizes the latent space by merging nearest neighbor features and
then applies SVD, can achieve a commendable performance.

5.3 Interpretability with OT for MIL

We show that by using optimal transport retrieval, a novel method for highlighting the important
instances could be derived. For a pair of source bag H and target bag H̃ , solving the optimal
transport problem generates the transport matrix T = [Tij ]ij . Suppose that we are interested in the
instance labels of the source bag, and suppose that the instance labels of the target bag are known.
The positive instances in the source bag are simply the instances transported to the positive instances
in the target bag, i.e., ŷi = ỹj∗=argmaxj Tij . Here, ŷ is the predicted instance label for the source bag,
and and ỹ is the true instance label in the target bag. Figure 4 shows this method could provide a
good coverage of the positive area, without model training or accessing the bag label. In contrast to
OT, retrieval-based methods utilizing other distance metrics do not possess this specific property.

Ground-truth RAM-MIL

Precision: 0.7530
FROC:     0.4964

Ground-truth RAM-MIL

Precision: 0.7222
FROC:     0.7303

Figure 4: The visualization of predicted positive instances (red regions) in whole slide images for
RAM-MIL. FROC is defined as the average sensitivity (recall) at 6 predefined false positive (FP)
rates: 1/4, 1/2, 1, 2, 4 and 8 FPs. For reference, the averaged precision and FROC in Bayes-MIL [11]
(one of the SOTA method designed for instance-level performance) are 0.8107 and 0.4919.

6 Conclusion
In this work, we investigate the out-of-domain performance of multiple instance learning model, which
is crucial for the ML-assisted medical diagnosis with the whole slide images. An optimal transport
based retrieval method is proposed based on the understanding that there exists a negative correlation
between MIL performance and input data dimension. The proposed RAM-MIL framework works
for both in-domain and out-of-domain, meanwhile outperforms state-of-the-art MIL methods. We
hypothesize that OT-based retrieval could reduce the intrinsic dimension therefore improves the MIL
performance and validate the hypothesis by computing the intrinsic dimension of bag representations.
The transportation matrix of OT distance provides a tool to visualize the correspondence between
original and retrieval instances and makes our retrieval method interpretable. A limitation is the
efficiency of optimal transport solver is constrained by the number of instances within a bag. Although
we have mitigated this problem by selecting partial instances based on high attention values, we
anticipate that a more principled method will be sought in future works.
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A Proof

Proof. Since the bag of instances X is sampled from the probability distribution µ(x), we have the
upper bound for Wasserstein distance between X and µ [45],

E[Wp(X, µ)] ≤ K
− 1

dµ , (6)
where K is the number of samples. Next we define the function σ(x) as a small perturbation function
σ(x) = x+ δ and let X̃ = {σ(x) : x ∈ X}. Using the triangle inequality, we have

E[Wp(X, X̃)] ≤ E[Wp(X, µ)] + E[Wp(X̃, µ)] ≤ 2K
− 1

dµ + C, (7)
where C is a constant as a result of the perturbation. As the function S(·) is Lipschitz continuous, we
have

|S(X)− S(X̃)| ≤ L · E[Wp(X, X̃)] ≤ O(L ·K− 1
dµ ). (8)

Similar to TransMIL [5], let Φ : X → Rn be any invertible map, where its inverse mapping is
expressed as Φ−1 : Rd → X . Then we have:

S(Φ−1(ΦX∈X ({σ(x) : x ∈ X}))) = S(Φ−1(ΦX̃∈X (X̃))) = S(X̃). (9)

Let γ = S ◦ Φ−1. As |S(X)− S(X̃)| ≤ O(L ·K− 1
dµ ), we have

|S(X)− γ(ΦX∈X {σ(x) : x ∈ X})| ≤ O(L ·K− 1
dµ ). (10)

In this proof, the transformation Φ(·) = A(·). This proof could be easily extended to the represen-
tations H by assuming a probability measure over the instance representations h and replacing X

with H . In this case, the transformation Φ(H) =
∑K

k=1 akhk.

Table 7: Results on general MIL datasets. Experiments were run 5 times and the average classification
accuracy (± a standard error of a mean) is reported.

Method MUSK1 MUSK2 FOX TIGER ELEPHANT

Attention 0.892±0.090 0.858±0.106 0.615±0.096 0.839±0.054 0.868±0.054
Attention-Gated 0.900±0.088 0.863±0.094 0.603±0.068 0.845±0.046 0.857±0.064

CLAM 0.900±0.136 0.860±0.128 0.610±0.128 0.805±0.052 0.860±0.080
RAM-MIL 0.911±0.130 0.870±0.142 0.645±0.117 0.820±0.040 0.879±0.096

B General MIL dataset

Table 7 presents the performance of RAM-MIL on general MIL datasets [46, 47], offering a com-
parison with baseline methods. The results indicate that OT-based retrieval generally enhances
the classification performance. The sole exception is observed with the TIGER dataset, where
both CLAM and RAM-MIL are outperformed. This discrepancy might be attributed to CLAM, as
RAM-MIL uses CLAM as a pretrained model for attention weights and bag representation extraction.
Nonetheless, RAM-MIL still improves over its CLAM baseline on TIGER. Note that our primary
focus lies on the more challenging WSI datasets, hence our models are not extensively optimized for
general datasets. The data in these general datasets are typically of lower dimensionality and present
less challenging conditions. Therefore, any potential underperformance in these contexts should not
detract from the strength of our models in handling the WSI data.

C Experiment Details of WSI Classification

We present the experimental details, ablation studies and analysis step-by-step.

MIL Pre-training. For the backbone MIL model we use the the same parameter setup as CLAM.
The model parameters are updated via the Adam optimizer with an L2 weight decay of 1e-5 and a
learning rate of 2e-4. Each result is obtained with 10-fold splits of training/validation/testing sets.
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Table 8: Ablation study for the percentage of instances used on CAMELYON16 and CAMELYON17.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

10% attention RetrI 0.9440±0.037 0.8975±0.052 - -
10% attention RetrIO 0.9365±0.052 0.9200±0.050 0.7974±0.054 0.7433±0.073
10% attention RetrO 0.9414±0.046 0.8975±0.056 0.7775±0.050 0.7392±0.063

20% attention RetrI 0.9451±0.036 0.8925±0.050 - -
20% attention RetrIO 0.9341±0.051 0.8925±0.053 0.7651±0.056 0.7714±0.030
20% attention RetrO 0.9419±0.048 0.9175±0.051 0.7681±0.058 0.7795±0.021

Neighbor Selection. After pre-training the MIL model, we obtain the slide-level feature and the
attention scores predicted by the network. As computing the optimal transport distance based on all
instances is time-consuming, we approximate the distance with a part of samples in a bag.

dOT(µ, ν) = min
T∈T (α,α̃)

|α|∑
i=1

|α̃|∑
j=1

c(hi, h̃j)Tij + β ·
∑
ij

Tij log Tij (11)

s.t.,T⊤1K = α,T1K̃ = α̃,T ≥ 0

where α and α̃ are the new attention vector obtained by selecting top η% from a and ã. In other
words, we approximate a bag with η% of instances with the highest attention values generated by
pretrained MIL model. As shown in Table 8, we set η = 10 and η = 20 for the ablation study. In this
experiment, we use Regularization term of 0.5 and Max number of iterations 1000.

It is observed from Table 8, improving the percentage of data improves the performance on RetrI and
RetrO. On RetrIO, the performance is saturated when using only 10% of all patches. Differentiating
in-domain and out-of-domain data for retrieval could be easily accomplished by representing a bag
by a few amount of instances.

Table 9: Ablation study for different merge functions on CAMELYON16 and CAMELYON17.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

Mergeadd(2-feats) RetrI 0.9409±0.038 0.9000±0.049 - -
Mergeadd(2-feats) RetrIO 0.9341±0.051 0.8925±0.053 0.7651±0.056 0.7714±0.030
Mergeadd(2-feats) RetrO 0.9414±0.046 0.8975±0.056 0.7775±0.050 0.7392±0.063

Mergeadd(3-feats) RetrI 0.9383±0.050 0.9175±0.051 - -
Mergeadd(3-feats) RetrIO 0.9313±0.044 0.9000±0.045 0.7641±0.059 0.7553±0.043
Mergeadd(3-feats) RetrO 0.9391±0.051 0.9175±0.045 0.7644±0.059 0.7754±0.022

Mergeconvex(2-feats) RetrI 0.9451±0.036 0.8925±0.050 - -
Mergeconvex(2-feats) RetrIO 0.9365±0.052 0.9200±0.050 0.7974±0.054 0.7433±0.073
Mergeconvex(2-feats) RetrO 0.9419±0.048 0.9175±0.051 0.7681±0.058 0.7795±0.021

Mergeconvex(3-feats) RetrI 0.9398±0.043 0.8975±0.052 - -
Mergeconvex(3-feats) RetrIO 0.9435±0.038 0.8975±0.052 0.7652±0.052 0.7714±0.030
Mergeconvex(3-feats) RetrO 0.9417±0.048 0.9050±0.050 0.7690±0.056 0.7755±0.021

Merge Function. Table 9 presents the results using different merge functions. To generate the
bag representations, we employ two merge functions: 1) simple addition, referred to as Mergeadd;
2) convex combination, referred to as Mergeconvex. Additionally, ‘2-feats’ and ‘3-feats’ refer to
bag representation that are merged with 1 nearest neighbor or 2 nearest neighbors, respectively.
For convex combination, ‘2-feats’ uses coefficients of 0.6 and 0.4, while ‘3-feats’ uses coefficients
of 0.6, 0.2 and 0.2, where the greatest coefficient corresponds to the original representation. This
experiment is done with η = 10.

It is derived from Table 9 that using 1 nearest neighbor and convex combination presents the best
performance. Using 2 nearest neighbors and addition presents the similar results.
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Classification Training. Finally, we train a single logistic regression classifier using the merged
representation. The Adam optimizer is used to update the model parameters, with a L2 weight
decay of 1e-4 and a learning rate of 2e-4. The models are trained for a minimum of 40 epochs and
up to a maximum of 200 epochs if the early stopping criterion is not met. This criterion involves
monitoring the validation loss each epoch and if it has not decreased from the previous low for over
15 consecutive epochs, early stopping is used.

D Patch-level results on tumor slides of CAMELYON16.

Table 10: Patch-level results on tumor slides of CAMELYON16.

P-Prec.(↑) FROC(↑)

DSMIL 0.1030 0.4443
CLAM 0.6068 0.4792

TransMIL 0.1726 0.4797
Bayes-MIL 0.8107 0.4919
RAM-MIL 0.6114 0.5281

The Tumor-Precision is calculated by the precision of classifying the tumor patches. The Patch-
Precision is calculated by averaging the precision of classifying both normal and tumor patches. The
Patch-FROC is defined as the average sensitivity (recall) at 6 predefined false positive rates: 1/4, 1/2,
1, 2, 4 and 8 FPs per WSI.

In Table 17, RAM-MIL presents the second best precision and the best FROC on the patch-level
segmentation. This indicates that using transport matrix for interpreting the patch-level classification
achieves the best overall performance in the trade-off of false positive rate and recall. By contrast,
Bayes-MIL could only obtain a high precision, which reduces the number of false alarm. However,
for the application of medical WSI, reducing false negative (better recall and FROC) is supposed to
be more important as classifying a positive instance to be negative is unacceptable in the application
of medical pregnosis or diagnosis.

E Results on CAMELYON17.

A general setting is to treat ITC as the negative class in the CAMELYON17 dataset.

Table 11: Results on CAMELYON16 and CAMELYON17 for in-domain classification and unsuper-
vised domain adaptation, for comparisons with related methods.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

CLAM 0.9177±0.044 0.8650±0.060 0.8399±0.059 0.7796±0.099

Mixup RetrI 0.9260±0.051 0.8825±0.051 - -
Mixup RetrIO 0.9271±0.048 0.8850±0.046 0.8418±0.054 0.8016±0.059
Mixup RetrO 0.9271±0.045 0.8825±0.048 0.8397±0.057 0.8095±0.063

l2 RetrI 0.9281±0.047 0.8800±0.055 - -
l2 RetrIO 0.9241±0.048 0.8950±0.048 0.8403±0.049 0.7914±0.052
l2 RetrO 0.9398±0.045 0.8950±0.055 0.8412±0.055 0.7998±0.056

RAM-MIL RetrI 0.9451±0.036 0.8925±0.050 - -
RAM-MIL RetrIO 0.9365±0.052 0.9200±0.050 0.8475±0.055 0.8236±0.051
RAM-MIL RetrO 0.9419±0.048 0.9175±0.051 0.8413±0.053 0.8457±0.027
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Table 12: Ablation study evaluated on CAMELYON16 and CAMELYON17.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

Approx-OT-min RetrI 0.9301±0.033 0.8800±0.043 - -
Approx-OT-min RetrIO 0.8601±0.080 0.8000±0.062 0.8380±0.056 0.7935±0.065
Approx-OT-min RetrO 0.9196±0.063 0.8750±0.056 0.8397±0.056 0.7915±0.048

Approx-OT-avg RetrI 0.9227±0.038 0.8600±0.036 - -
Approx-OT-avg RetrIO 0.8865±0.063 0.8425±0.061 0.8401±0.056 0.7902±0.051
Approx-OT-avg RetrO 0.9195±0.063 0.8750±0.056 0.8412±0.053 0.7823±0.063

Approx-OT-max RetrI 0.9174±0.049 0.8625±0.044 - -
Approx-OT-max RetrIO 0.9182±0.047 0.8650±0.048 0.8406±0.056 0.7854±0.052
Approx-OT-max RetrO 0.9195±0.063 0.8750±0.056 0.8412±0.063 0.7925±0.058

l2 RetrI 0.9281±0.047 0.8800±0.055 - -
l2 RetrIO 0.9241±0.048 0.8950±0.048 0.8403±0.049 0.7914±0.052
l2 RetrO 0.9398±0.045 0.8950±0.055 0.8412±0.055 0.7998±0.056

Hausdorff RetrI 0.9273±0.057 0.8850±0.049 - -
Hausdorff RetrIO 0.9226±0.055 0.8725±0.060 0.8403±0.056 0.7932±0.053
Hausdorff RetrO 0.9322±0.046 0.8950±0.048 0.8395±0.063 0.8000±0.061

RAM-MIL RetrI 0.9451±0.036 0.8925±0.050 - -
RAM-MIL RetrIO 0.9365±0.052 0.9200±0.050 0.8475±0.055 0.8236±0.051
RAM-MIL RetrO 0.9419±0.048 0.9175±0.051 0.8413±0.053 0.8457±0.027

Table 13: Ablation study for the percentage of instances used on CAMELYON16 and CAMELYON17.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

10% attention RetrI 0.9440±0.037 0.8975±0.052 - -
10% attention RetrIO 0.9365±0.052 0.9200±0.050 0.8475±0.055 0.8236±0.051
10% attention RetrO 0.9414±0.046 0.8975±0.056 0.8466±0.047 0.8037±0.062

20% attention RetrI 0.9451±0.036 0.8925±0.050 - -
20% attention RetrIO 0.9341±0.051 0.8925±0.053 0.8473±0.052 0.8216±0.030
20% attention RetrO 0.9419±0.048 0.9175±0.051 0.8413±0.053 0.8457±0.027

Table 14: Ablation study for different merge functions on CAMELYON16 and CAMELYON17.

In-Domain (CAM16) Out-of-Domain (CAM17)
AUC Accuracy AUC Accuracy

Mergeadd(2-feats) RetrI 0.9409±0.038 0.9000±0.049 - -
Mergeadd(2-feats) RetrIO 0.9341±0.051 0.8925±0.053 0.8473±0.052 0.8216±0.030
Mergeadd(2-feats) RetrO 0.9414±0.046 0.8975±0.056 0.8390±0.056 0.7695±0.056

Mergeadd(3-feats) RetrI 0.9383±0.050 0.9175±0.051 - -
Mergeadd(3-feats) RetrIO 0.9313±0.044 0.9000±0.045 0.8432±0.055 0.8176±0.040
Mergeadd(3-feats) RetrO 0.9391±0.051 0.9175±0.045 0.8402±0.056 0.8457±0.020

Mergeconvex(2-feats) RetrI 0.9451±0.036 0.8925±0.050 - -
Mergeconvex(2-feats) RetrIO 0.9365±0.052 0.9200±0.050 0.8475±0.055 0.8236±0.051
Mergeconvex(2-feats) RetrO 0.9419±0.048 0.9175±0.051 0.8413±0.053 0.8457±0.027

Mergeconvex(3-feats) RetrI 0.9398±0.043 0.8975±0.052 - -
Mergeconvex(3-feats) RetrIO 0.9435±0.038 0.8975±0.052 0.8473±0.049 0.7755±0.067
Mergeconvex(3-feats) RetrO 0.9417±0.048 0.9050±0.050 0.8474±0.047 0.8097±0.057
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F Comparisons with domain adaptation methods

There have been a large volume of research studying the domain adaptation in patch-level models,
categorized as staining transfer and domain adversarial learning.

Patch-level staining transfer: Cho et al. [31], Shaban et al. [32] and Zanjani et al. [33] use generative
adversarial networks (GAN) to learn the staining difference implicitly. Images are transferred to the
target domain, by the trained generators in GAN. A simple neural network is then fit on the generated
images for discriminative tasks.

Patch-level domain adversarial learning: Lafarge et al. [34] and Ciga et al. [35] apply gradient reversal
method for adapting the model for discriminative tasks in medical images. Ren et al. [36] uses
Siamese network in domain adversarial learning. Brieu et al. [37], Kapil et al. [38] and Gadermayr et
al. [39] for transfer images between domains for segmentation tasks. These methods are not directly
comparable with our methods, as they require patch-level labels during training, which is not realistic
in real-world scenario. In experiment, we adapt Shaban et al. [32] with least modification, to compare
with the retrieval based multiple instance learning. We run Shaban et al. [32] in patch-level in the
Camelyon17 domain adaptation setting. For obtaining the WSI features, we use averaged pooling.
For fairness, the same classifier as RAM-MIL is used for Shaban et al. [32]. Here are the results:

Table 15: Comparisons with patch-level domain adaptation methods

AUC(↑) Accuracy(↑)

Shaban et al. [32] 0.6458 0.6889
RAM-MIL 0.8209 0.7667

Slide-level methods: Yang et al. [48] propose a slide-level domain adaptation method that involves
local and global adversarial loss to train a weakly supervised learning model. RAM-MIL outperforms
this method in the domain adaptation evaluation on Camelyon17.

Table 16: Comparisons with slide-level domain adaptation methods

AUC(↑) Accuracy(↑)

Yang et al. [48] 0.5867 0.6786
RAM-MIL 0.7974 0.7795

Other methods: Previous methods in slide-level classification [24] and methods in other fields [25]
also consider the out-of-domain testing performance. However, they did not provide a method for
domain adaptation, while RAM-MIL has. We compare RAM-MIL with several most advanced
baselines in slide-level classification in our experiments.

G Comparisons with other retrieval methods

For the information retrieval works (Yottixel [40] and SISH [41]) of whole slide image, we will add
them into the related works section. However, these two methods are not directly comparable, as they
focus on the retrieval problem while our goal is to use retrieval to enhance the weakly supervised
classification (MIL). An executable way is to replace the OT-retrieval module in RAM-MIL with
these retrieval methods. As there is no available implementation of Yottixel, and SISH is a more
advanced retrieval method, we integrate SISH retrieval into the RAM-MIL process. The experiment
runs on Camelyon17 (including 5 hospitals), with 2 hospitals as the in-domain dataset and the rest
being the out-of-domain dataset. Here are the experimental results:

Table 17: Comparisons with other retrieval methods

AUC(↑) Accuracy(↑)

CLAM-SISH 0.7647 0.7444
RAM-MIL 0.8209 0.7667
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H More results on Dimensionality Reduction.

Directly reducing the normal dimension to the estimated intrinsic dimension is a brute-force method
to improve the performance. To validate if this argument holds, we use a masked auto-encoder
(MAE) with output dimension to be 5 (the estimated intrinsic dimension) to extract the features from
patches. To ensure a good quality of extracted features, we fine-tune the MAE with all patches from
Camelyon16 for 60 epochs. The performance of CLAM fitted on the extracted features is at the
second row of the Table 18:

Table 18: Additional results evaluated on Camelyon16 (in-domain) and Camelyon17 (out-of-domain)

CAMELYON16 CAMELYON17
AUC Accuracy AUC Accuracy

CLAM-SVD-5D 0.9216 0.6625 0.8183 0.4729
CLAM-MAE-5D 0.8285 0.7368 0.7982 0.6987

RAM-MIL-SVD-5D 0.9273 0.8475 0.8199 0.7355
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