
Labeling Neural Representations with Inverse
Recognition

Kirill Bykov∗
UMI Lab

ATB Potsdam
Potsdam, Germany

kbykov@atb-potsdam.de

Laura Kopf
UMI Lab

ATB Potsdam
Potsdam, Germany

lkopf@atb-potsdam.de

Shinichi Nakajima
Machine Learning Group

TU Berlin
Berlin, Germany

nakajima@tu-berlin.de

Marius Kloft
Machine Learning Group

RPTU Kaiserslautern-Landau
Kaiserslautern, Germany
kloft@cs.uni-kl.de

Marina M.-C. Höhne
UMI Lab

ATB Potsdam
University of Potsdam, Germany

mhoehne@atb-potsdam.de

Abstract

Deep Neural Networks (DNNs) demonstrate remarkable capabilities in learning
complex hierarchical data representations, but the nature of these representations
remains largely unknown. Existing global explainability methods, such as Network
Dissection, face limitations such as reliance on segmentation masks, lack of statis-
tical significance testing, and high computational demands. We propose Inverse
Recognition (INVERT), a scalable approach for connecting learned representations
with human-understandable concepts by leveraging their capacity to discriminate
between these concepts. In contrast to prior work, INVERT is capable of handling
diverse types of neurons, exhibits less computational complexity, and does not
rely on the availability of segmentation masks. Moreover, INVERT provides an
interpretable metric assessing the alignment between the representation and its
corresponding explanation and delivering a measure of statistical significance. We
demonstrate the applicability of INVERT in various scenarios, including the identi-
fication of representations affected by spurious correlations, and the interpretation
of the hierarchical structure of decision-making within the models.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated exceptional performance across a broad spectrum
of domains due to their ability to learn complex, high-dimensional representations from vast volumes
of data [1]. Nevertheless, despite these impressive accomplishments, our comprehension of the
concepts encoded within these representations remains limited. The "black-box" nature of representa-
tions, combined with the known susceptibility of networks to learn spurious correlations [2, 3, 4],
biases [5] and harmful stereotypes [6] poses significant risks for the application of DNN systems,
particularly in safety-critical domains [7].

To tackle the problem of the inherent opacity of DNNs, the field of Explainable AI (XAI) has
emerged [8, 9, 10]. The global explanation methods aim to explain the concepts and abstractions
learned within the DNNs representations. This is often achieved by establishing associations between
neurons and human-understandable concepts [11, 12, 13, 14], or by visualizing the stimuli responsible
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for provoking high neural activation levels [15, 16, 17, 18]. Such methods demonstrated themselves
to be capable of detecting the malicious behavior and identifying the specific neurons responsible [19,
20].

In this work, we introduce the Inverse Recognition (INVERT) 2 method for labeling neural representa-
tions within DNNs. Given a specific neuron, INVERT provides an explanation of the function of the
neuron in the form of a composition of concepts, selected based on the ability of the neuron to detect
data points within the compositional class. Unlike previous methods, the proposed approach does not
rely on segmentation masks and only necessitates labeled data, is not constrained by the specific type
of neurons, and demands fewer computational resources. Furthermore, INVERT offers a statistical
significance test to confirm that the provided explanation is not merely a random occurrence. We
evaluate the performance of the proposed approach across various datasets and models, and illustrate
its practical use through multiple examples.

2 Related work

Post-hoc interpretability, a subfield within Explainable AI, focuses on explaining the decision-making
strategies of Deep Neural Networks (DNNs) without interfering with the original training process
[21, 22]. Within the realm of post-hoc methods, a fundamental categorization arises concerning the
scope of explanations they provide. Local explanation methods aim to explain the decision-making
process for individual data points, often presented in the form of attribution maps [23, 24, 25]. On the
other hand, global explanation methods aim to explain the prediction strategy learned by the machine
across the population and investigate the purpose of its individual components [26, 27].

Inspired by principles from neuroscience [28, 29, 30], global explainability directs attention towards
the in-depth examination of individual model components and their functional purpose [31]. Often,
global explainability is referred to as mechanistic interpretability, particularly in the context of
Natural Language Processing (NLP) [32, 33, 34, 35]. Global approach to interpretability allows
for the exploration of concepts learned by the model [36, 37, 38, 39] and explanation of circuits —
computational subgraphs within the model that learn the transformation of various features [40, 41].
Various methods were proposed to interpret the learned features, including Activation-Maximisation
(AM) methods [15]. These methods aim to explain what individual neurons or groups of neurons
have learned by visualizing inputs that elicit strong activation responses. Such input signals can
either be found in an existing dataset [16] or generated synthetically [42, 17, 18]. AM methods
demonstrated their utility in detecting undesired concepts learned by the model [19, 43, 20]. However,
these methods require substantial user input to identify the concepts embodied in the Activation-
Maximization signals. Recent research has demonstrated that such explanations can be manipulated
while maintaining the behavior of the original model [44, 45, 46].

Another group of global explainability methods aim to explain the abstraction learned by the neuron
within the model, by associating it with the human-understandable concepts. The Network Dissection
(NetDissect) method [11, 47] was developed to provide explanations by linking neurons to concepts,
based on the overlap between the activation maps of neurons and concept segmentation masks,
quantified using the Intersection over Union (IoU) metric. Addressing the limitation that neurons
could only be explained with a single concept, the subsequent Compositional Explanations of
Neurons (CompExp) method was introduced, enabling the labeling of neurons with compositional
concepts [12]. Despite their utility, these methods generally have limitations, as they are primarily
applicable to convolutional neurons and necessitate a dataset with segmentation masks, which
significantly restricts their scalability (a more comprehensive discussion of these methods can be
found in Appendix A.2). Other notable methods include CLIP-Dissect [13], MILAN [48], and
FALCON [49]. However, these methods utilize an additional model to produce explanations, thereby
introducing a new source of potential unexplainability stemming from the explainer model.

3 INVERT: Interpreting Neural Representations with Inverse Recognition

In the following, we introduce a method called Inverse Recognition (INVERT). This method aims to
explain the abstractions learned by a neural representation by identifying what compositional concept
representation is most effective at detecting in a binary classification scenario. Unlike the general

2The code can be accessed via the following link: https://github.com/lapalap/invert.
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objective of Supervised Learning (SL) [50], which is to learn representations that can detect given
concepts, the central idea behind INVERT is to learn a compositional concept that explains a given
representation the best.

Let D ⊂ Rm, where m ∈ N is the number of dimensions of data, be the input (data) space. We use the
term neural representations to refer to a sub-function of a network that represents the computational
graph from the input of the model to the scalar output (activation) of a specific neuron, or any
combination of neurons, that results in a scalar function.
Definition 1 (Neural representation). A neural representation f ∈ F is defined as a real-valued
function f : D → R, which maps the data domain D to the real numbers R. Here, F represents the
space of real-valued functions on D.

Frequently, in DNNs, particular neurons, like convolutional neurons, produce multidimensional
outputs. Depending on the specific needs of the application, these multidimensional functions can be
interpreted either as a set of individual scalar representations or the neuron’s output can be aggregated
to yield a single scalar output, e.g. with pooling operations, such as average- or max-pooling. Unless
stated otherwise, we utilize average-pooling as the standard aggregation measure.

We define a concept as a mapping that represents the human process of attributing characteristics to
data.
Definition 2 (Concepts). A concept c ∈ C is defined as a binary function: c : D −→ {0, 1}, which
maps the data domain D to the set of binary numbers. A value of 1 indicates the presence of the
concept in the input, and 0 indicates its absence. Here, C corresponds to the space of all concepts,
that could be defined on D.

In practice, given the dataset D ⊂ D, concepts are usually defined by labels, which reflect the
judgments made by human experts. We define C = {c1, ..., cd} ⊂ C as a set of d ∈ N atomic
concepts, that are induced by labels of the dataset (also referred to as primitive concepts or primitives).
Within the context of this work, we permit concepts to be non-disjoint, signifying that each data point
may have multiple concepts attributed to it. Additionally, we define a vector C = [c1, . . . , cd] ∈ Cd.

A key step for explaining the abstractions learned by neural representations relies on the choice of the
similarity measure between the concept and the representation. INVERT evaluates the relationship
between representation and concepts by employing the non-parametric Area Under the Receiver
Operating Characteristic (AUC) metric, measuring the representation’s ability to distinguish between
the presence and absence of a concept.
Definition 3 (AUC similarity). Let f ∈ F be a neural representation, dataset D ⊂ D and concept
c ∈ C. We define a similarity measure d : F× C −→ [0, 1] as

d(f, c) =

∑
{ x | x∈D,c(x)=0 }

∑
{ y | y∈D,c(y)=1 } 1 [f(x) < f(y)]

| { x | x ∈ D, c(x) = 0 } | · | { y | y ∈ D, c(y) = 1 } |
, (1)

where 1 [f(x) < f(y)] is an indicator function that yields 1 if f(x) < f(y) and 0 otherwise.

AUC provides an interpretable measure to assess the ability of the representation to systematically
output higher activations for the datapoints, where the concept is present. An AUC of 1 denotes a
perfect classifier, while an AUC of 0.5 suggests that the classifier’s performance is no better than
random chance.

Given that various concepts have different numbers of data points associated with them, for concept
c ∈ C we can compute concept fraction, corresponding to the ratio of data points that are positively
labeled by the concept:

T (c) =
| { x | x ∈ D, c(x) = 1 } |

| { x | x ∈ D } |
. (2)

3.1 Finding Optimal Compositional Explanations

Given a representation f ∈ F, the INVERT’s objective is to identify the concept, that maximizes the
AUC similarity with the representation, or, in other words finding the concept that representation
is detecting the best. Due to the ability of representations to detect shared features across various
concepts explaining a representation with a single atomic concept from C may not provide a com-
prehensive explanation. To surmount this challenge, we adopt the existing compositional concepts
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Figure 1: Demonstration of the INVERT method (B = 1, α = 0.35%) for the neuron f33 from
ResNet18, AvgPool layer (Neuron 33), using ImageNet 2012 validation dataset. The resulting
explanations can be observed in the bottom part of the figure, where three steps of the iterative process
are demonstrated from L = 1 to L = 3. It can be observed that INVERT explanations align with the
neurons high-activating images, illustrated in the top right figure.

approach [12], and we augment the set of atomic concepts C by introducing new generic concepts, as
a logical combination of existing ones. These logical forms involve the composition of AND, OR,
and NOT operators, and they are based on the atomic concepts from C.

Definition 4 (Compositional concept). Given a vector of atomic concepts C, a compositional concept
ϕ is a higher-order interpretable function that maps C to a new, compositional concept:

ϕ : Cd −→ C. (3)

For example, let C = {c1, c2} be a set of atomic concepts with corresponding vector C. Let c1 be a
concept for “dog”, and c2 a concept for “llama”. Then ϕ(C) = c1 OR c2 = “dog” OR “llama” is a
compositional concept with the length L = 2. The ϕ(C) is a concept in itself (i.e. ϕ(C) ∈ C) and
corresponds to a concept that is positive for all images of dogs or llamas in the dataset.

Evaluating the performance of all conceivable logical forms across all of the d concepts from C is
generally computationally infeasible. Consequently, the set of potential compositional concepts ΦL

is restricted to a form of predetermined length L ∈ N, where L is a parameter of the method. The
objective of INVERT, in this context, can be reformulated as:

ϕ∗ = argmax
ϕ∈ΦL

d (f, ϕ(C)) . (4)

To determine the optimal compositional concept that maximizes AUC, we employ an approach
similar to that used in [12], utilizing Beam-Search optimization. Parameters of the proposed method
include predetermined length L ∈ N, the beam size B ∈ N. Additionally, during the search process
explanations could be constrained to the condition T (ϕ(C)) ∈ [α, β], where 0 ≤ α < β ≤ 0.5.
In Section 4.1, we further demonstrate that by imposing a such constraint on the concept fraction
resulting explanations could be made more comprehensive. We refer to the standard approach when
α = 0, β = 0.5. In our experiments, unless otherwise specified, the parameter β is set to 0.5.
Additional details and a description of the algorithm can be found in Appendix A.3.

Figure 1 illustrates the INVERT pipeline for explaining the neuron from ResNet18 Average Pooling
layer [51]. For this, we employed the validation set of ImageNet2012 [52] as the dataset DI in
the INVERT process. This subset contains 50,000 images from 1,000 distinct, non-overlapping
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Figure 2: The figure illustrates the contrast between a poor explanation (on the left) and INVERT
explanations with L = 1 and varying parameter α, for neuron 592 in the ViT B 16 feature-extractor
layer. The INVERT explanations were computed over the ImageNet 2012 validation set. The figure
demonstrates that as the parameter α increases, the concept fraction T also increases, indicating
that more data points belong to the positive class. Furthermore, this figure showcases the proposed
methods ability to evaluate the statistical significance of the result. The poor explanation fails the
statistical significance test (double-sided alternative) with a p-value of 0.35, while all explanations
provided by INVERT exhibit a p < 0.005.

classes, each represented by 50 images. Notably, since ImageNet classes are intrinsically linked to
WordNet [53], we extracted an additional 473 hypernyms, or higher-level categories, and assigned
labels for these overarching classes. In Figure 1 and subsequent figures, we use beige color to
represent individual ImageNet classes and orange color to represent hypernyms. In the density plot
graphs, the orange density illustrates the distribution of data point activations that belong to the
explanation concept, while blue represents the distribution of activations of data points corresponding
to the negation of the explanation.

3.2 Statistical significance

IoU-based explanations, such as those provided by the Network Dissection method [11], often
report small positive IoU scores for the resulting explanations. This raises concerns about the
potential randomness of the explanation. The AUC value is equivalent to the Wilcoxon-Mann-
Whitney statistic [54] and can be interpreted as a measure based on pairwise comparisons between
classifications of the two classes. Essentially, it estimates the probability that the classifier will rank a
randomly chosen positive example higher than a negative example [55].

Given the concept c ∈ C, this connection to the MannWhitney U test allows us to test if the distri-
bution of the representations activations on the data points where concept c is positive significantly
differs from the distribution of activations on points where the concept is negative. We can then
report the corresponding p-value (against a double- or one-sided alternative), which helps avoid
misinterpretations due to randomness, thereby improving the reliability of the explanation process, as
shown in Figure 2. In all subsequent figures, the explanations provided by INVERT achieve statistical
significance (against double-sided alternative) with a standard significance level (0.05).

4 Analysis

In this section, we provide additional analysis of the proposed method, including the effect of
constraining the concept fraction of explanations and comparison of the INVERT to the prior
methods.

4.1 Simplicity-Precision tradeoff

The INVERT method is designed to identify the compositional concept that has the highest AUC
similarity to a given representation. However, the standard approach neglects to account for the class
imbalance between datapoints that belong and do not belong to a particular concept, often leading
to precise but narrowly applicable explanations due to the small concept fraction. To mitigate this
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Figure 4: Impact of the parameter α and formula length L on the resulting explanations. The first
row of the figure shows the average AUC of optimal explanations for 50 randomly sampled neurons
from the feature-extractor part of each one of the four ImageNet pre-trained models, conditioned by
different values of parameter α in different colors. These graphs indicate that neurons generally tend
to achieve the highest AUC for one individual class with L = 1 and α = 0. The second row presents
the distribution of AUC scores alongside the distribution of concept fractions T for the INVERT
explanations of length L = 5, for each model. Here, we can observe a clear trade-off between the
precision of the explanation in terms of AUC measure and concept size T.

issue, we can modify the INVERT process to work exclusively with compositional concepts where
the fraction equals or exceeds a specific threshold, represented as α.

Figure 3: Three different INVERT explana-
tions, computed by adjusting the parameter
α for the Neuron 88 in ResNet18 AvgPool
layer. Higher values of this parameter lead
to broader explanations, albeit at the cost of
precision, thus resulting in a lower AUC. The
visualization of the WordNet taxonomy for
the hypernyms is provided in the Appendix 3.

For this experiment, the INVERT method was uti-
lized on the feature extractors of four different mod-
els trained on ImageNet. These models include
ResNet18 [51], GoogleNet [56], EfficientNet B0 [57],
and ViT B 16 [58]. In this experiment, we exam-
ined 50 randomly chosen neurons from the feature-
extractor layer of each model. We utilized the Im-
ageNet 2012 validation dataset DI , which was out-
lined in the previous section, to generate INVERT
explanations with B = 3 varying the explanation
length L between 1 and 5, and parameter α, re-
sponsible for the constraining the concept fraction,
α ∈ {0, 0.002, 0.005, 0.01}.
The experiments results are depicted in Figure 4. For
all models, we can see an effect that we call the
simplicity-precision tradeoff : the explanations with
the highest AUC typically involve just one individ-
ual class with a low concept fraction, achieved in an
unrestricted mode with parameter α set to 0. By con-
straining the concept fraction α and increasing the
explanation length L, we can improve AUC scores
while still maintaining the desired concept fraction.
Still, this indicates that more generalized, broader
explanations come at the cost of a loss in precision
in terms of the AUC measure. Figure 3 demonstrates
how the change of parameter α affects the resulting
explanation.

4.2 Evaluating the Accuracy of Explanations

While it is generally challenging to obtain ground-truth explanations for the latent representations
in Deep Neural Networks (DNNs), in Supervised Learning, the concepts of the output neurons are
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Table 1: A comparison of explanation accuracy between NetDissect and INVERT. The accuracy is
computed by matching identified classes with the ground truth labels.

Model Dataset NetDissect INVERT

MaskRCNN ResNet50 FPN MS COCO 95.06% 98.77%
FCN ResNet50 MS COCO 95.24% 95.24%

ResNet18 ImageNet 19.2% 73.2%
GoogleNet ImageNet 19.7% 82.2%
DenseNet161 ImageNet 19.1% 86.9%

defined by the specific task. In the subsequent experiment, we compared the performance of INVERT
and Network Dissection in accurately explaining neurons when the ground truth is known.

For this experiment, we employed 5 different models: 2 segmentation models and 3 classification
models. For image segmentation, we employed MaskRCNN ResNet50 FPN model [59], pre-trained
on MS COCO dataset [60] and evaluated on a subset of 24,237 images of MS COCO train2017,
containing 80 distinct classes, and FCN ResNet50 model [61], pre-trained on MS COCO, and
evaluated on a subset of MS COCO val2017, limited to the 20 categories found in the Pascal
VOC dataset [62]. For classification models we employed ImageNet pre-trained ResNet18 [51]
DenseNet161 [63], and GoogleNet [64], with 1,000 output neurons, each neuron corresponding to
the individual class in the ImageNet dataset.

Figure 5: Comparing the computational
cost of INVERT with Compositional Ex-
planations of Neurons method (Com-
pExp) in hours with varying formula
lengths.

The outputs from the segmentation models were converted
into pixel-wise confidence scores. These scores were ar-
ranged in the format [NB , Nc,H,W ], where NB repre-
sents the number of images in a batch, and Nc signifies the
number of classes. Each value indicates the likelihood of a
specific pixel belonging to a particular class. To aggregate
multidimensional activations, the INVERT method used
a max-pool operation.

All the classification models that were used had 1,000 one-
dimensional output neurons. The evaluation process for
both explanation methods was carried out using a subset of
20,000 images from the ImageNet-2012 validation dataset.
For the Network Dissection method, which necessitates
segmentation masks, these masks were generated from the
bounding boxes included in the dataset. Both Network
Dissection and INVERT methods were implemented using
standard parameters.

Table 1 presents the outcomes of the evaluation process.
It is noteworthy that INVERT exhibits superior or equiv-
alent performance to Network Dissection across all tasks.
Importantly, INVERT can accurately identify concepts
in image segmentation networks using only the labels of
images, in comparison to the Network Dissection method
that uses segmentation masks.

Computational cost comparison

Methods such as Network Dissection and Compositional Explanations (CompExp) of neurons
have been observed to exhibit computational challenges mainly due to the operations on high-
dimensional masks. While CompExp and INVERT share a beam-search optimization mechanism,
the proposed approach allows for less computational resources since logical operations are performed
on binary labels, instead of masks. Figure 5 showcases the running time of applying INVERT and
Compositional Explanations for explaining 2048 neurons in layer 4 of the FCOS-ResNet50-FPN
model [65] pre-trained on the MS COCO dataset [60] on a singe Tesla V100S-PCIE-32GB GPU.
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The time comparison of varying formula lengths demonstrates the advantage of INVERT being more
effective computationally, which leads to reduced running time and computational costs.

5 Applications

In this section, we outline some specific uses of INVERT, including auditing models for spurious
correlations, explaining circuits within the models, and manually creating circuits with desired
characteristics.

5.1 Finding Spurious Correlations by Integrating New Concepts

Figure 6: Difference of INVERT (L = 1, α =
0) explanations of Neuron 154 in Average
Pooling layer of ImageNet-trained ResNet18
model before (top) and after (bottom) integra-
tion of new concepts to the dataset.

Due to the widespread use of Deep Neural Networks
across various domains, it is crucial to investigate
whether these models display spurious correlations,
backdoors, or base their decisions on undesired con-
cepts. Using the known spurious dependency of
ImageNet-trained models on watermarks written in
Chinese [19, 66, 67] we illustrate that INVERT pro-
vides a straightforward method to test existing hy-
potheses regarding the models dependency on spe-
cific features and allows for identification of the par-
ticular neurons accountable for undesirable behavior.

To illustrate this, we augmented the ImageNet dataset
DI , with an additional dataset, DT , comprising 100
images. This new dataset contains 50 images for
each of two distinct concepts: Chinese textual water-
marks and Latin textual watermarks (see Appendix
A.4). We created examples of these classes by ran-
domly selecting images from the ImageNet dataset
and overlaying them with randomly generated textual
watermarks. Figure 6 depicts the change in the expla-
nation process conducted on the original dataset and
its expanded version. Since the original dataset didn’t include the concept of watermarked images,
the label “African chameleon” was attributed to the representation. However, after augmenting the
dataset with two new classes, the explanation shifted to the “Chinese text” concept, with the AUC
measure increasing to 0.99. This demonstrates the capability of INVERT to pinpoint sources of
spurious behavior within the latent representations of the neural network.

5.2 Explaining Circuits

INVERT could be employed for explaining circuits – computational subgraphs within the model,
demonstrating the information flow within the model [41]. The analysis of circuits enables us to
understand complex global decision-making strategies by examining how features transform from
one layer to another. Furthermore, this approach can be employed for glocal explanations [68] –
local explanation of a particular data point can be deconstructed into local explanations for individual
neurons in the preceding layers, explained by INVERT.

To illustrate this, we computed INVERT explanations (L = 3, α = 0.002) for all neurons in the
average pooling layer of ResNet18. This was based on the augmented dataset from the preceding
section. In ResNet18, the neurons in the Average Pooling layer have a linear connection to the output
class logits. Figure 7 (left) illustrates the circuit of the three most significant neurons (based on
the weight of linear connection) linked to the “carton” output logit. It could be observed that this
class depends on Neuron 296, a “box” detector, and Neuron 154, which identifies the “Chinese text”
concept. Furthermore, the right side of Figure 7 depicts the decomposition of local explanations:
given an image of a carton box, we can dissect the GradCam [69] local explanation of a “carton”
class-logit into the composition of local explanations from individual neurons. It is noticeable how
Neuron 296 assigns relevance to the box, while Neuron 154 assigns relevance solely to the watermark
present in the image. More illustrations of different circuits can be found in Appendix A.8.
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Figure 7: The figure illustrates the “carton” circuit within the ResNet18 model. The left part of the
figure showcases the three most significant neurons (in terms of the weight of linear connection) and
their corresponding INVERT explanation linked to the class logit “carton”. The right part of the
figure demonstrates how the local explanation from the class logit can be decomposed into individual
explanations of individual neurons from the preceding layer.

5.3 Handcrafting Circuits

In this section, we demonstrate that its somewhat feasible to use the knowledge of what concepts are
detected by neurons to combine them into manually designed circuits that can detect novel concepts.
Just as compositional concepts are formed using logical operators, we employed fuzzy logic operators
between neurons to construct meaningful handcrafted circuits with desired properties.

In contrast to conventional logic, fuzzy logic operators allow for the degree of membership to vary
from 0 to 1 [70]. For this experiment, we employed the Gödel norm that demonstrated the best
performance among other fuzzy logic operators (see Appendix A.5 for details). For the two functions
f, g : D −→ [0, 1], the Gödel AND (T-norm) operator is defined as min(f, g) and the OR (T-conorm)
is defined as max(f, g). Negation is performed by the 1− f operation.

We utilized the ImageNet-trained ViT L 16 model [58], specifically 1024 representations from the
feature-extractor layer. The output of each of these representations was mapped to the range [0, 1]
by first normalizing the output based on their respective mean and standard deviation across the
ImageNet 2012 validation dataset, and then applying the Sigmoid transformation. In this experiment,
for each of the 1473 ImageNet atomic concepts (which includes 1000 classes and 473 hypernyms),
we identified a neuron from the feature-extractor layer that showed the highest AUC similarity. For
instance, for the concept “boat”, Neuron 61 exhibited the highest AUC similarity (denoted as fboat),
for the concept “house”, Neuron 899 showed the highest AUC similarity (denoted as fhouse), and for
the concept “lakeside”, Neuron 575 showed the highest AUC similarity (denoted as flakeside).

Further, we manually constructed six different compositional formulas using concepts from ImageNet
that were designed to resemble different concepts from the Places365 [71] dataset. For example,
for the “boathouse” class from Places365, we assumed that images from this class would likely
include “boat”, “house”, and water, represented by the concept “lakeside”. As such, we constructed a
compositional formula “boat” AND “house” AND “lakeside” using concepts from the ImageNet
dataset. Finally, using the neurons, that detect these concepts (e.g. fboat, fhouse, flakeside) we manually
constructed the circuits using Gödel fuzzy logic operators. That is, for “boathouse” example, final
circuit was formed as g(x) = min(fboat(x), fhouse(x), flakeside(x)) using the Gödel AND operator.
The performance of the resulting circuits was evaluated on the Places365 dataset in terms of AUC
similarity with the concept. In essence, by labeling representations using the ImageNet dataset and
manually building a circuit guided by intuition, we evaluated how this newly created function can
perform in detecting a class in the binary classification task on a different dataset.

Figure 8 illustrates the “boathouse” example and three other handcrafted circuits derived from ViT
representations (the other two circuits can be found in Appendix 16). We found that after performing
this manipulation, the AUC performance in detecting the Places365 class improved compared to the
performance of each individual neuron. This example shows that by understanding the abstractions
behind previously opaque latent representations, we can potentially construct meaningful circuits and
utilize the symbolic properties of latent representations. In Appendix A.6, we further demonstrate that
when labels of the target dataset overlap or are similar to the dataset used for explanation, fine-tuning
of the model can be achieved by simply employing representations with explanations matching the
target labels.
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Figure 8: The figure presents four distinct handcrafted circuits, created from the latent representations
from the ImageNet-trained ViT L 16 feature-extractor layer to detect classes from the Places365
dataset. For each neuron, or combination of neurons, we provide the Area Under the Receiver
Operating Characteristic (AUROC) score for the Places365 concept in a binary classification task,
distinguishing between the presence and absence of this concept.

6 Disscussion and Conclusion

In our work, we introduced the Inverse Recognition (INVERT) method, a novel approach for
interpreting latent representations in Deep Neural Networks. INVERT efficiently links neurons with
compositional concepts using an interpretable similarity metric and offers a statistical significance
test to gauge the confidence of the resulting explanation. We demonstrated the wide-ranging utility of
our method, including its capability for model auditing to identify spurious correlations, explaining
circuits within models, and revealing symbolic-like properties in connectionist representations.

While INVERT mitigates the need for image segmentation masks, it still relies on a labeled dataset
for explanations. In future research, we plan to address this dependency. Additionally, we will
explore different similarity measures between neurons and explanations, and investigate new ways to
compose human-understandable concepts.

The widespread use of Deep Neural Networks across various fields underscores the importance of
developing reliable and transparent intelligent systems. We believe that INVERT will contribute to
advancements in Explainable AI, promoting more understandable AI systems.
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A Appendix

A.1 Broader Impact

Our proposed INVERT method contributes to enhancing the transparency and safety of Deep Neu-
ral Networks. By providing human understandable and interpretable explanations for neurons in
black-box models, our approach offers valuable insights into their internal operations, improving
understanding. Moreover, our method is able to identify potentially spurious representations. An
important advantage of our method is its notable reduction in computational cost compared to
previous approaches. This reduction not only improves efficiency but also minimizes the harmful
environmental impact associated with excessive GPU usage.

It is important to note that we cannot make definitive claims regarding specific groups of people
benefiting from or being disadvantaged by our method. The general applicability and potential
implications of our approach should be explored further and with caution.

A.2 Prior work

Let’s consider a function, g : D → Rk×k, that represents a convolutional neuron within a model that
produces activation maps of dimensions k× k, along with a concept c ∈ C. Both Network Dissection
[11] and Compositional Explanations of Neurons [12] methods make use of the Intersection over
Union (IoU) similarity metric to measure the degree of correlation between a function and a concept.
A prerequisite for these methodologies are segmentation masks of concepts, meaning for every
concept c ∈ C, there exists a corresponding function Mc : D → {0, 1}h×w, which generates a binary
mask for the specific concept, of the same size as the original input.

To evaluate the similarity between function g and concept c, the multi-dimensional outputs from g are
subjected to thresholding based on neuron-specific percentiles (i.e., values above chosen percentiles
are converted to 1 and the remaining to 0), and upscaled to match the dimensions of the original
image. We can define the resulting function that produces binary masks of the same size as the input
as G : D → {0, 1}h×w. The final similarity (IoU) score between g and c can be computed as the
Intersection over Union score between concept masks M and function G :

dIoU(g, c) =

∑
x∈D 1 (Mc(x) ∩G(x))∑
x∈D 1 (Mc(x) ∪G(x))

. (5)

In section 4.2, the method of Compositional Explanations of neurons was applied using a 7x7 input
map for each feature. Conversely, the INVERT approach uses a strategy that computes a scalar value
by calculating the average of the input map.

A.3 INVERT algorithm

Given a neural representation f : D −→ R, a dataset D ⊂ D, a set of atomic concepts C ∈ C, and a
vector C ∈ Cd the INVERT approach seeks to identify a compositional concept ϕ∗, which is formed
as a logical operation on the concepts, to optimize AUC similarity d(f, ϕ∗(C). For this purpose, we
utilized an optimization process similar to that of the CompExpl methodology [12], employing Beam
search to find the optimal compositional concept.

This method requires the configuration of certain parameters, namely the predetermined formula
length L ∈ N, the beam size B ∈ N, and additionally, the parameters α, β. Beam search intends
to iteratively combine concepts, starting with the atomic concepts (primitives) from C. At every
iteration of the process, the top B best-performing compositional concepts are selected, and all
feasible formulas are computed with primitives (i.e. atomic concepts). Subsequently, only the top
B best-performing concepts are selected, and the process continues until the formula reaches the
predetermined length.

In detail, firstly, we define a set of primitives Φ̄ — a set of compositional concepts that correspond to
the set of concepts C and their negation. The set Φ̄ comprises 2k compositional concepts, with each
concept corresponding to either the base concept or its negation. Next, all 2k concepts are evaluated
in terms of AUC similarity with a given function, and the top B best performing compositional
concepts, that satisfy α ≤ T (ϕ(C)) ≤ β are selected, leading to the formation of the set Φ∗ where
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|Φ∗| = B, referred to as a Beam. These are the top B best-performing compositional concepts with a
length of 1, satisfying the requisite condition on their positive fraction in the dataset. Subsequently,
the following operations are iteratively performed until the predetermined formula length L is met:

1. Each of the B compositional concepts in the beam Φ∗ is combined with all primitives
(concepts from Φ̄) using either the AND or OR operation, thereby augmenting the formula
length by 1, resulting in a total of 4Bk new formulas.

2. All newly generated formulas are evaluated based on their similarity to the representation,
and the beam Φ∗ is updated to include the top B performing formulas, which satisfy the
condition α ≤ T (ϕ(C)) ≤ β.

Upon reaching the predetermined formula length L, the Beam-Search procedure concludes by
identifying the compositional concept ϕ∗ with the highest observed AUC.

A.4 Integrating Datasets from Different Sources

Let D1 and D2 be two separate datasets. Each of these datasets is linked to its unique set of concepts,
represented as C1 and C2 respectively. By merging these datasets, we can form a consolidated dataset,
symbolized as D̃ = D1 ∪ D2. This unified dataset will encompass a combined set of concepts,
denoted as C̃ = C1 ∪ C2.

The key requirement for this integration is the mutual definition: the concepts in C1 should be defined
within the dataset D2, and conversely, the concepts in C2 should be defined within the dataset D1.
While this does necessitate supplementary labeling, it becomes straightforward when it is evident
that the concepts from both datasets do not overlap semantically. For instance, flower concepts from
the Oxford Flowers102 [72] and faces from the CelebA [73] can be effortlessly combined. This is
accomplished by designating the output of concepts within the non-native dataset as negative.

A.5 Comparing Fuzzy Logic operators

Fuzzy logic operators [70] serve as essential instruments within the domain of fuzzy logic, a mathe-
matical construct designed for modeling and handling data that is imprecise or vague. This contrasts
with conventional logic where an element strictly either belongs to a set or not; fuzzy logic allows for
the degree of membership to vary from 0 to 1, thereby allowing for partial membership.

In this experiment, our objective was to compare different fuzzy logic operators and examine their
behavior concerning the proposed AUC metric. To fulfill this aim, we employed four distinct pre-
trained deep learning image classification models: AlexNet [74], DenseNet161 [63], EfficientNet
B4 [57], and ViT 16 L [58]. We focused on 1000 neural representations corresponding to the
ImageNet classes in the output logit (pre-SoftMax) layer for each model, for which we recognized the
’ground-truth’ concept — the corresponding ImageNet class. For fuzzy logic operators’ testing, we
mapped the output of each representation to the set [0, 1] by normalizing each representation’s output
using their corresponding mean and standard deviation across the ImageNet dataset and applied a
Sigmoid transformation. We tested four different Fuzzy logic operators, specifically Gödel, Product,
ukasiewicz, and Yager with parameter p = 2, as illustrated in Table 3.

For performance evaluation, we generated random compositional concepts of a given length and
computed the AUC similarity between fuzzy logic norms applied to functions corresponding to
these concepts. For instance, given the random compositional concept ϕ = ci OR cj , we derive
compositional representations as per each of the four examined methods (e.g., the Gödel operator
produces a function hG = max(fi, fj)). These compositional representations are then evaluated in
terms of AUC similarity with the compositional concept — d(hG, ϕ).

We conducted the evaluation in two modes, that is, assessing the performance of the OR (T-conorm)
operator and the performance of the AND (T-norm) operator. For each mode, we assembled 1000
random compositional concepts by sampling L random concepts without replacement and calculated
the AUC between compositional concepts and corresponding function. Note that for the second mode,
AND (T-norm), random compositional concepts were assembled using the AND NOT operation,
given the mutual exclusivity of ImageNet labels.
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Figure 9: Average AUC similarity between random compositional OR concepts and corresponding
compositional representations employing various Fuzzy logic operators (Higher is better) evaluated
across four distinct models.

Figure 10: Average AUC similarity between random compositional AND NOT concepts and
corresponding compositional representations employing various Fuzzy logic operators (Higher is
better) evaluated across four distinct models.

Figures 9 and 10 depict the mean AUC similarity between random compositional concepts of varying
lengths and the corresponding compositional representations, which were assembled using four
distinct fuzzy logic operators. From these figures, it becomes evident that Gödel fuzzy logic operators
demonstrate the most significant robustness to the length of the formula, consistently attaining
superior AUC in contrast to other operators. Consequently, we can infer that Gödel’s operator
emerges as the optimal choice for implementing fuzzy logic operations on neural representations.

A.6 Finetuning without training

In this section, we investigate whether it is feasible to perform model fine-tuning without having
access to the target dataset, relying solely on the explanations of the latent representations and
target class descriptions. In simple terms, the idea was to directly use the latent representation from
ImageNet-trained models as a classificator for a class in another dataset that has a similar meaning to
the explanation of the representation.

For this purpose, we utilized four different ImageNet deep learning image classification models,
specifically AlexNet [74], DenseNet161 [63], EfficientNet B4 [57], and ViT 16 L [58], all of which
were pre-trained on the ImageNet dataset. The feature-extractor layer that precedes the final output
logit layer was used in all these models for our experiments. We computed the AUC similarity scores
for all representations in each of the feature extractors in relation to ImageNet concepts.

Table 2: List of different fuzzy operators

NOT(a) AND(a, b) (T-norm) OR(a, b) (T-conorm)

Gödel 1− a min(a, b) max(a, b)
Product a · b a+ b− a · b

ukasiewicz max(a+ b− 1, 0) min(a+ b, 1)

Yager, p = 2 max(1− ((1− a)2 + (1− b)2)
1
2 , 0) min((a2 + b2)

1
2 , 1)
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Table 3: A comparison of the accuracy achieved by the proposed finetuning method, which includes
finetuning with a single representation (L=1), and multiple representations (L=2,5,10) combined with
a fuzzy AND operator, against traditional and random finetuning baselines.

AlexNet DenseNet161 EfficientNet B4 ViT L 16

Random 2.21% 2.21% 2.21% 2.21%
L =1 43.91% 62.50% 39.96% 47.12%
L = 2 42.95% 70.51% 69.23% 60.79%
L = 5 40.17% 75.00% 80.88% 78.31%

L = 10 30.88% 69.12% 86.11% 79.49%
Finetuned 91.67% 97.76% 94.76% 98.29%

The target dataset employed for this study was the Caltech101 dataset [75], which comprises of 101
image classification categories. Specifically, we utilized a subset of this dataset that includes 46
classes, each of which has an exact or very similar equivalent in ImageNet classes.

We aimed to create a model for classifying Caltech classes by selecting suitable latent representations
from the feature extractor layers of ImageNet models, and directly linking them to Caltech class
logits. For each model, we chose a representation with the highest AUC similarity to the ImageNet
concept closest to the Caltech concepts. This resulted in a subset of 46 neurons per model, each
neuron having the highest AUC for an ImageNet concept similar to a Caltech concept. These neurons
were normalized by the ImageNet validation dataset’s mean and standard deviation, and a Sigmoid
activation function was applied to constrain outputs between 0 and 1. Neuron selection was solely
based on ImageNet explanations, with no Caltech101 data utilized.

We also hypothesized that individual signals from feature extractor layers could be further enhanced
by executing a continuous AND operation with other neurons that share a high AUC towards the
concept. Table 3 presents the results of this procedure in terms of the accuracy achieved on the target
dataset. For this task, the random accuracy stands at approximately 2%, while the conventional
fine-tuning approachwhich freezes the feature extractor layer and trains a linear classification layer
atop the feature extractorsachieves an accuracy of up to 98.29% (last row of the table). Remarkably,
by simply linking the representation with the highest AUC towards the ImageNet concept from the
latent layer to the CalTech101 output class logit using our approach (L = 1), we were able to attain a
substantial non-random accuracy, peaking at 69.50% in the case of DenseNet161. Furthermore, by
selecting top L neurons that have the highest AUC towards ImageNet concepts and employing Gödel
AND operator between representations, we observed that this typically improved the results, with the
only exception being the AlexNet model where this strategy slightly reduced the accuracy.

A.7 Comparison between IoU and AUC metrics

In our supplementary experiments comparing different models, we further investigate the correlation
between AUC and IoU. Table 4 demonstrates the performance of our method INVERT (AUC) in
comparison to NetDissect and Compexp (IoU) performed on different models and layers including
varying formula lengths (N). Our analysis employs ResNet18 and DenseNet161 PyTorch models
trained on the Places365 dataset [71], accessible through the Compositional Explanations of Neurons
implementation3. Following their approach we apply the methods on the ADE20k subset of the
Broden dataset on formula lengths of 1 to 3. The IoU and AUC scores are summarized as the average
and standard deviation across all neurons in each selected model layer. From these results, we can
observe, that optimal explanations from AUC (INVERT) and IoU (NetDissect, CompExpl) based
methods do not necessarily maximize each other objective functions.

The results in Table 5 reveal a correlation between IoU and AUC scores in non-zero IoU cases across
multiple models and layers. The metrics differ in their applications and are not as strongly aligned.
The correlation scores represent the average and standard deviation of the Pearson and Spearman
correlation statistics. For each neuron and each available concept, correlations were calculated
between the IoU and AUC scores. The “Normal” scenario corresponds to the standard case, whereas
the “Log” case refers to when a logarithmic transformation was applied to the IoU values, with an

3https://github.com/jayelm/compexp/tree/master
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Table 4: Comparison of IoU and AUC performed on different models and layers including varying
formula lengths (N). All models are trained on the Places365 dataset and the explanations were
constructed based on the ADE20k subset of the Broden dataset. The table presents the average and
standard deviation scores IoU and AUC scores across all neurons in the selected model layer.

N = 1

INVERT NetDissect
Model - Layer IoU AUC IoU AUC

ResNet18 - Layer 4 0.0062±0.0123 0.8959±0.0691 0.0581±0.0318 0.8367±0.1155
ResNet18 - Layer 3 0.0007±0.0022 0.8834±0.0780 0.0121±0.0012 0.5549±0.1660
DenseNet161 - Features 0.0016±0.0066 0.8928±0.0733 0.0364±0.0279 0.7448±0.1547
DenseNet161 - Dense Block 4 0.0007±0.0017 0.9014±0.0655 0.0150±0.0034 0.6877±0.1582

N = 2

INVERT CompExp
Model - Layer IoU AUC IoU AUC
ResNet18 - Layer 4 0.0021±0.0062 0.9972±0.0037 0.0756±0.0369 0.8310±0.1016
ResNet18 - Layer 3 0.0023±0.0042 0.9955±0.0077 0.0185±0.0014 0.5726±0.1332
DenseNet161 - Features 0.0042±0.0124 0.9958±0.0056 0.0455±0.0313 0.7248±0.1424
DenseNet161 - Dense Block 4 0.0029±0.0059 0.9961±0.0058 0.0222±0.0040 0.6930±0.1127

N = 3

INVERT CompExp
Model - Layer IoU AUC IoU AUC
ResNet18 - Layer 4 0.0026±0.0079 0.9977±0.0030 0.0849±0.0391 0.8184±0.0995
ResNet18 - Layer 3 0.0021±0.0038 0.9966±0.0057 0.0235±0.0016 0.5714±0.1084
DenseNet161 - Features 0.0035±0.0104 0.9967±0.0046 0.0497±0.0330 0.7132±0.1356
DenseNet161 - Dense Block 4 0.0026±0.0054 0.9969±0.0048 0.0361±0.0231 0.6846±0.1045

Table 5: Correlation between IoU and AUC based on the score for each class per neuron. The models
were pre-trained using the Places365 dataset and their performance was assessed on the ADE20k
subset of the Broden dataset. The table presents the average and standard deviation of the Pearson
and Spearman correlation statistics.

Normal Log(+eps)

Model - Layer Pearson Spearman Pearson Spearman

ResNet18 - Layer 4 0.3429±0.0682 0.3623±0.0945 0.4116±0.0885 0.3623±0.0945
ResNet18 - Layer 3 0.2377±0.0911 0.2738±0.1121 0.3009±0.1180 0.2738±0.1121
DenseNet161 - Features 0.2681±0.0869 0.2787±0.1041 0.3156±0.1050 0.2787±0.1041
DenseNet161 - Dense Block 4 0.2143±0.1039 0.2691±0.1626 0.2878±0.1573 0.2691±0.1626

additional epsilon value of 1e-4. Correlations were computed exclusively for concepts that showed
non-zero IoU scores. We can observe, that for non-zero IoU scores there exists a small positive
correlation between IoU and AUC scores.

To further comprehend the correlation of these metrics we investigate the case where AUC and IoU
perform differently. In Figure 11, we present a case where explanations yielding 0 IoU scores are
better aligned with the explanation goal. We provide evidence of IoU-based explanations resulting in
low neuron activation, while INVERT achieves notable activation even when IoU scores are 0.

Figure 12 (a) shows a qualitative example of AUC and IoU scores across all concepts of Neuron 269
from layer 4 of ResNet18 trained on the Places365 dataset [71]. Each data point corresponds to one
concept among the 1105 ADE20k atomic concepts sourced from the Broden dataset [76, 11]. This
example illustrates the dependence between AUC and IoU, high IoU scores are correlated with high
AUC scores. In Figure 12 (b) we showcase the top 4 most activating images for Neuron 269 from the
ADE20k dataset to align them with the highest scoring concepts in Figure 12 (a). Comparing the set
of images with the concepts exhibiting the highest AUC scores (e.g., “throne room”, “apse-indoor”,
“fur”), we observe a strong visual alignment. However, when examining the concepts with high IoU
scores (e.g., “nursery”, “cradle”, “attic”), we find a relatively low degree of visual similarity. Those
results demonstrate the limitations of the IoU measure for evaluating explanations.
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Figure 11: Comparison between INVERT and NetDissect. The figure displays three distributions
of activations: one for all datapoints in green, one for datapoints corresponding to the IoU-based
explanation in orange, and one for the AUC-based explanation in blue. These distributions pertain to
the average activation across activation maps of Neuron 205 in ResNet18, layer 3, pre-trained on the
Places365 dataset. The activations were collected across the ADE20k subset of the Broden dataset.
The class labeled as “car” resulted from IoU optimization, while the class labeled as “ocean” resulted
from AUC optimization. Notably, even though the “ocean” class has an IoU score of 0, it comprises
some of the most activating images for the neuron, as evidenced by the top 9 most activated images.

Figure 12: In (a) we compare the distribution of AUC and IoU across all concepts of the ADE20k
atomic concepts from the Broden dataset for Neuron 269 from layer 4 of ResNet18 trained on the
Places365 dataset, where (b) shows the top 4 activating images of the ADE20k dataset. (c) shows the
distribution of maximized IoU, maximized AUC, and random IoU scores for layer 4 of ResNet18
trained on the Places365 dataset with a formula length of 1.
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Table 6: Metric comparison for true label and random explanation evaluation. FasterRCNN ResNet50
FPN (pre-trained on MS COCO for object detection). UPerNet BEiT-B (pre-trained on ADE20k for
semantic segmentation).

FasterRCNN ResNet50 FPN UPerNet BEiT-B

Metric True Random True Random

IoU 0.8355±0.0466 0.0077±0.0046 0.8553±0.0913 0.0007±0.0007
AUC 0.9556±0.0371 0.5005±0.0253 0.8738±0.0929 0.5001±0.0164

Furthermore, we conducted a quantitative evaluation shown in Figure 12 (c), specifically focusing on
layer 4 of the ResNet18 trained on the Places365 dataset. We compared the distribution of IoU scores
of explanations obtained by maximizing IoU and AUC respectively. Additionally, we examined the
mean values of these distributions, which included random IoU scores as baseline reference. Our
findings reveal that maximizing IoU leads to a relatively sparse distribution of IoU scores while
maximizing AUC results in a more densely concentrated accumulation of predominantly low IoU
scores. As anticipated, the performance of random IoU scores was notably poor. We can observe that
maximizing AUC also indirectly maximizes IoU.

Table 6 serves as a sanity check implementing metric comparison for best explanation and random
explanation evaluation. The FasterRCNN ResNet50FPN model was pretrained on the MS COCO
dataset for object detection, while the UPerNet BEiT-B model was pretrained on ADE20k for semantic
segmentation. The former model’s evaluation was conducted on a subset of MS COCO containing
20,000 images, while the latter was assessed on the ADE20k subset of the Broden dataset. The output
layers of both models were utilized to access the “ground truth” label for each neuron. In the table,
the “True” column represents the IoU/AUC scores of the explanation that align with the ground-truth
neuron label. On the other hand, the “Random” column corresponds to the scores of randomly chosen
explanation-concept pairs that differ from the “ground truth”.
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A.8 Figures

Figure 13: The figure displays the WordNet taxonomy, which was used to gather the hierarchical
structure of the labels for the Figure 3.
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Figure 14: The figure illustrates the “safe” circuit within the ResNet18 model. The top part of the
figure showcases the three most significant neurons (in terms of the weight of linear connection)
and their corresponding INVERT explanation linked to the class logit “safe”. The bottom part of
the figure demonstrates how the local explanation from the class logit can be decomposed into
individual explanations of individual neurons from the preceding layer. This allows for a more
detailed understanding of how each neuron contributes to the final classification.
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Figure 15: The figure illustrates the “monitor” circuit within the ResNet18 model. The top part of
the figure showcases the four most significant neurons (in terms of the weight of linear connection)
and their corresponding INVERT explanation linked to the class logit “monitor”. The bottom part
of the figure demonstrates how the local explanation from the class logit can be decomposed into
individual explanations of individual neurons from the preceding layer.

Figure 16: The figure presents two distinct handcrafted circuits. For each neuron, or combination
of neurons, we report the Area Under the Receiver Operating Characteristic (AUROC) score. This
score represents the AUC classification performance towards classifying specific concepts from the
Places365 dataset.
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