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Abstract

Local SGD, a cornerstone algorithm in federated learning, is widely used in train-
ing deep neural networks and shown to have strong empirical performance. A
theoretical understanding of such performance on nonconvex loss landscapes is
currently lacking. Analysis of the global convergence of SGD is challenging, as
the noise depends on the model parameters. Indeed, many works narrow their
focus to GD and rely on injecting noise to enable convergence to the local or
global optimum. When expanding the focus to local SGD, existing analyses in
the nonconvex case can only guarantee finding stationary points or assume the
neural network is overparameterized so as to guarantee convergence to the global
minimum through neural tangent kernel analysis. In this work, we provide the first
global convergence analysis of the vanilla local SGD for two-layer neural networks
without overparameterization and without injecting noise, when the input data is
Gaussian. The main technical ingredients of our proof are a self-correction mecha-
nism and a new exact recursive characterization of the direction of global model
parameters. The self-correction mechanism guarantees the algorithm reaches a
good region even if the initialization is in a bad region. A good (bad) region means
updating the model by gradient descent will move closer to (away from) the optimal
solution. The main difficulty in establishing a self-correction mechanism is to cope
with the gradient dependency between two layers. To address this challenge, we
divide the landscape of the objective into several regions to carefully control the
interference of two layers during the correction process. As a result, we show that
local SGD can correct the two layers and enter the good region in polynomial time.
After that, we establish a new exact recursive characterization of the direction of
global parameters, which is the key to showing convergence to the global minimum
with linear speedup in the number of machines and reduced communication rounds.
Experiments on synthetic data confirm theoretical results.

1 Introduction

Federated learning is a prevalent framework in distributed learning to significantly reduce the
communication cost and effectively preserve the privacy of local clients [43, 27]. As the most
popular algorithm in federated learning, local SGD has shown great empirical success in training deep
neural networks (DNNs) [43, 39]. However, existing literature has not been able to fully explain or
characterize the convergence of local SGD in training DNNs. Recently, extensive works are devoted
to analyzing the convergence of local SGD and its variants in nonconvex optimization [39, 56, 20, 28,
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32, 40]. However, traditional nonconvex analysis only guarantees convergence to a stationary point,
and convergence to the global minimum is in general NP-hard [21].

Despite the NP-hardness results for nonconvex optimization, an increasing body of research tries
to address structured nonconvex optimization by first-order methods with noise injection. For
instance, Ge et al. [17] considered strict-saddle functions and showed that SGD with isotropic
noise can find local minima in polynomial time. This motivated several ensuing works [25, 33,
26, 55, 1] on designing different first-order algorithms to improve convergence to local minima
by injecting noise. Noise-injecting schemes and their variants (such as, for instance, broadening
from isotropic to anisotropic noise [64]) were shown to help convergence to global minima for
many problems that satisfy one of two conditions: (i) local minima are global minima, as in matrix
completion [18], dictionary learning [48], and certain deep linear networks [29]; or (ii) neural
networks with distributional assumption, such as two-layer neural networks with the Gaussian
input [63]. It is worth noting that there is also a rich history on noisy GD based on Langevin
dynamics (LD) [30, 44, 52, 8, 41, 9]. For instance, recent work [6] proposes Exponential Family
Langevin Dynamics (EFLD) to relax the Gaussian noise assumption and include noisy sign-SGD
and variants of drop-out as special cases. When assuming the neural network is overparameterized,
neural tangent kernel (NTK) analysis [23] guarantees convergence to the global minimum for local
SGD [23, 22, 58, 10]. However, the NTK theory is far from sufficient, since neural networks
outperform their NTK counterpart in practice [4] and in theory [38].

Despite existing global convergence analyses of first-order methods for solving nonconvex opti-
mization problems such as neural networks, they either require explicitly injecting noise or assume
overparameterization such that NTK analysis can apply. Practical federated learning algorithms such
as local SGD do not inject any noise and do not belong to the NTK regime, but they can still converge
to global minima. For example, McMahan et al. [43] shows that the local SGD algorithm can achieve
around 99% accuracy when training neural networks for an image classification task. This motivates
us to study the following question in this paper:

Is it possible to formally prove that the local SGD algorithm can find global minima for two-layer
neural networks without injecting noise and without overparameterization?

In this paper, we give a positive answer to this question under Gaussian input. We are inspired by a
line of work on neural network learning theory with Gaussian input [7, 49, 15, 37, 61, 13] and, in
particular address the distributed version of the setting in [13]. Suppose N local machines share the
following network:

f(Z,w,a) =

k∑
j=1

ajσ(Z
⊤
i w),

where Z = (Z1, · · · ,Zk) ∈ Rd×k is the input matrix, w ∈ Rd is the weight, a ∈ Rk is the output
weight, and σ(x) = max{x, 0} denotes the ReLU activation function. A good property of this
network is positive homogeneity, i.e., f(Z, cw,a/c) = f(Z,w,a) holds for any c > 0. We assume
each entry of the input Z is independently sampled from a standard Gaussian distribution. Then the
response is generated by a noiseless teacher network: y = f(Z,w∗,a∗). Without loss of generality,
we further assume ∥w∗∥ = 1. We hope to learn a student network by collaboratively minimizing the
following mean square loss among N local machines:

L(w,a) =
1

2
E
[
(y − f(Z,w,a))

2
]
=

1

2
E
[
(f(Z,w∗,a∗)− f(Z,w,a))

2
]
. (1)

Obviously, (w∗,a∗) is the global minimum of the objective (1) with zero loss. In particular, the loss
function also has a spurious local minimum; hence, minimizing loss is a nonconvex optimization
problem. Please refer to work in [13] for further details on the landscape of L(w,a).

Despite the special input distribution, to the best of our knowledge, there is currently no work demon-
strating the global convergence of vanilla SGD or vanilla local SGD without overparameterization.
Work in [13] proved that randomly initialized GD can converge to the global minimum or the local
minimum with a constant probability. The initial region where GD can converge to the global
minimum is also called the attraction basin, where the gradients of two layers both point in the correct
directions to the ground truth. To obtain the global convergence with arbitrary initialization in the
same initial region, Zhou et al. [63] proposed a new perturbed GD algorithm by carefully injecting
noise to the weights in two layers. Although the convergence of vanilla SGD has not been explored
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theoretically, the simulation results in [13, 63] show that vanilla SGD with random initialization can
converge to the global minimum with probability 1 when the ratio |1⊤a∗|/∥a∗∥ is large. This result
motivates us to investigate the global convergence of local SGD without injecting additional noise to
escape the local minimum.

In this paper, we analyze the global convergence of the vanilla local SGD for training a two-layer
neural network with Gaussian input, whose initialization starts from the same initial region as
in [13, 63]. Formally, our main contributions are summarized as follows:

1. We introduce a new self-correction mechanism of local SGD under a condition on a∗ (see
Assumption 1): the signals from two layers can be corrected in polynomial time even though
the initial point comes from a bad region where the gradients point to the wrong direction
of (w∗,a∗). The condition also explains the simulation results in [13]. The self-correction
process is very difficult to analyze due to the mutual influence effect of two layers. To
address this challenge, we utilize a novel technique by carefully dividing the landscape of
the objective (1) into several regions. In each region, the negative effect from one layer to
another layer can be controlled to a negligible scale. We notice that Li and Yuan [37] also
showed the self-correction phase of SGD for the two-layer network under Gaussian input.
However, the network’s structure in [37] is different from the network studied in this paper.
In addition, Li and Yuan [37] also required bounding the noise of stochastic gradient and so
cannot handle the vanilla SGD with Gaussian noise as in our case.

2. We show the global convergence of local SGD with linear speedup, which indicates that
the iteration complexity is divided by the number of machines N . In addition, we also
show that the communication complexity of local SGD is reduced compared with the naive
parallel version of SGD which needs to communicate at every iteration. The analysis in
the convergence stage is very different from the GD in Du et al. [13]. We establish a
new recursive dynamic to characterize the direction of the global weight in the first layer.
Moreover, the objective is not smooth, since the gradients incorporate the angle between the
first layer’s weight and the ground truth. Therefore, conventional analysis of local SGD for
a general smooth objective [47, 54] cannot be applied in the convergence stage. Due to the
inner structure of gradients under Gaussian input, we find that the discrepancy caused by
the local updates can shrink as the angle decreases, which enables us to refine the bound of
discrepancy to be dominated by the statistical bound of noise.

3. We conduct several simulations on the two-layer neural network to verify the theoretical
results. The experiments demonstrate that local SGD indeed corrects the wrong signals from
the initial point and exhibits speedup in the convergence stage, corroborating our theoretical
results. The simulation results also verify that the condition imposed on |1⊤a∗|/∥a∗∥ is
almost necessary to show the convergence with almost arbitrary initialization.

2 Related Work

Federated Optimization There is a wave of studies on federated optimization in different settings.
In the convex optimization setting with homogeneous data, one-shot averaging was studied [65, 42,
60], where each machine solves a local optimization problem and the average happens only at the
last iterate. Local SGD skips communication rounds, and the convergence analysis is shown for
convex [47, 11, 34, 28, 54, 53, 32, 31] and nonconvex optimization problems [62, 24, 51, 39, 20,
56, 34, 28, 45, 59, 32]. There is a line of work which tried to compare minibatch SGD and local
SGD in federated learning [54, 53]. However, these optimization algorithms only work for black-box
functions and do not utilize the property of neural networks. As neural network loss landscapes are
typically nonconvex, these federated optimization algorithm can only guarantee to find a stationary
point instead of a global minimum.

Optimization Theory for Neural Networks There is a line of work studying two layer neural
networks with Gaussian input [49, 12, 37, 61, 7, 19, 5]. Li and Liang [36] studied two layer neural
networks with cross-entropy loss and showed that SGD can find the global minimum when the neural
network is overparameterized. Du et al. [16] proved that GD can find the global minimum for two
layer overparameterized neural networks under ℓ2 loss. These results are later extended to deep neural
networks by [14, 3, 66, 2] but are not directly applicable to analyzing local SGD in the distributed
setting.
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Algorithm 1 Local SGD for training two-layer neural network with Gaussian input

Initialize v0 ∈ Sd−1 and a0 ∈ Bk
(

|1⊤a∗|√
k

)
.

for r = 0, . . . , R− 1 do
for i = 1, . . . , N do

Synchronization: aitr ← atr and vitr ← vtr .
for t = tr, . . . , tr+1 − 1 do

Sample Zit from the standard Gaussian distribution and generate the response yit.
Update ait+1 = ait − η∇aℓ(v

i
t,a

i
t;Z

i
t, y

i
t).

Update vit+1 = vit − η∇vℓ(v
i
t,a

i
t;Z

i
t, y

i
t).

end for
end for
Update atr+1

= 1
N

∑N
i=1 a

i
tr+1

and vtr+1
= 1

N

∑N
i=1 v

i
tr+1

.
end for

Federated Learning on Neural Networks There is a line of work which studied federated learning
algorithms on overparameterized neural networks under the NTK regime [35, 22, 10, 58, 57]. In
contrast, our analysis does not fall in the NTK regime: we directly study the dynamics of local SGD
over neural networks without overparametrization.

3 Notations and Problem Setup

Denote ∥ · ∥ the Euclidean norm and ⟨·, ·⟩ by the inner product. Sd−1 denotes the d-dimensional
unit sphere and Bk(ρ) denotes the k-dimensional ball with center zero and radius ρ. For two vectors
v,w ∈ Rd, denote ∠(v,w) ∈ [0, π] the angle between v and w. The uniform distribution is denoted
by Unif(·). Moreover, we use Õ to hide logarithmic factors.

We adopt the weight-normalization technique [46] to the first layer by re-parametrizing w = v/∥v∥,
which leads to the following prediction model:

f(Z,v,a) =

k∑
j=1

aj
σ(Z⊤

i v)

∥v∥
. (2)

Given any sample (Z, y), we denote the empirical loss by

ℓ(v,a;Z, y) =
1

2
(y − f(Z,v,a))2 =

1

2
(f(Z,w∗,a∗)− f(Z,v,a))

2
. (3)

In the distributed environment, suppose there are N local machines sharing the same teacher model
f(Z,w∗,a∗). It means that given any local input Zi, the response is yi = f(Zi,w∗,a∗). Let
I = {t0, ..., tR} be the set of synchronization time, where t0 = 0, tR = T and tr+1− tr = I for any
r. The detailed procedure of local SGD is presented in Algorithm 1, where the initial point is from
the same region in Du et al. [13] and Zhou et al. [63]: v0 ∈ Sd−1 and a0 ∈ Bk(|1⊤a∗|/

√
k). In each

round, the i-th machine runs I steps of SGD using the stochastic gradients ∇vℓ(v
i
t,a

i
t;Z

i
t, y

i
t) and

∇aℓ(v
i
t,a

i
t;Z

i
t, y

i
t) computed by the local input (Zit, y

i
t). At the end of a round, the server aggregates

local weights to obtain the global weight and then synchronizes the global weight to each machine.

4 Theoretical Analysis

We first introduce two auxiliary sequences vt =
∑N
i=1 v

i
t/N and at =

∑N
i=1 a

i
t/N , which often

appears in the analysis of local SGD [47, 53, 28]. Notice that (vt,at) = (vit,a
i
t) for i ∈ [N ] if t is

the synchronization time, i.e., t ∈ I. Denote wi
t = vit/∥vit∥ the local normalized weight and Pi

t =
(I−wi

t(w
i
t)

⊤)/∥vit∥ the respective projection matrix. Now let L(w,a;Z) be the empirical version
of the loss function L(w,a) defined in (1), that is L(w,a;Z) = 1

2 (f(Z,w
∗,a∗) − f(Z,w,a))2.

Since y = f(Z,w∗,a∗), we will hide y and write ℓ(v,a;Z) ≡ ℓ(v,a;Z, y) hereafter. Notice that
L(w,a;Z) = ℓ(v,a;Z) for w = v/∥v∥. By recalling the normalized model (2), we have

∇vℓ(v
i
t,a

i
t;Z

i
t) = Pi

t∇wL(wi
t,a

i
t;Z

i
t), ∇aℓ(v

i
t,a

i
t;Z

i
t) = ∇aL(w

i
t,a

i
t;Z

i
t).
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According to Algorithm 1, the updates of auxiliary sequences can be written as

vt+1 = vt − η
1

N

N∑
i=1

Pi
t∇wL(wi

t,a
i
t;Z

i
t), at+1 = at − η

1

N

N∑
i=1

∇aL(w
i
t,a

i
t;Z

i
t).

For ease of technical presentation, we denote the averaged noise terms by ξt =
1
N

∑N
i=1 P

i
tξ
i
t and

ϵt = 1
N

∑N
i=1 ϵ

i
t, where ξit = ∇wL(wi

t,a
i
t;Z

i
t) − ∇wL(wi

t,a
i
t) and ϵit = ∇aL(w

i
t,a

i
t;Z

i
t) −

∇aL(w
i
t,a

i
t) are the local noises in stochastic gradients. In addition, for the iterates vit and vt, we

write ϕit = ∠(vit,w
∗) and ϕt = ∠(vt,w∗), respectively.

4.1 Exact Dynamic of Each Layer

In this subsection, we will give the exact dynamic of each layer in the training process of local SGD,
which is the starting point of our analysis. Denote Pt =

1
∥vt∥ (I−wtw

⊤
t ) by the global projection

matrix, where wt = vt/∥vt∥. The proofs of this subsection are deferred to Appendix A.1.

Lemma 1. Let v̌t+1 = vt − η
(
Pt

1
N

∑N
i=1∇wL(wi

t,a
i
t) + ξt

)
and ϕ̌t = ∠(v̌t,w∗). The first

layer in local SGD satisfies that

∥vt+1∥2 sin2 ϕt+1 = (1− ηλt cosϕt)
2 ∥vt∥2 sin2 ϕt − 2ηM1,t + η2M2,t +Ht, (4)

where λt =
1
N

∑N
i=1

π−ϕit
2π

(ait)
⊤a∗

∥vt∥2 , Ht = ∥vt+1∥2 sin2 ϕt+1 − ∥v̌t+1∥2 sin2 ϕ̌t+1 and

M1,t =

(
vt − ηPt

1

N

N∑
i=1

∇wL(wi
t,a

i
t)

)⊤ (
I−w∗(w∗)⊤

)
ξt, M2,t = ξ⊤t

(
I−w∗(w∗)⊤

)
ξt.

Lemma 1 is crucial to control the angle and show the linear speedup in further analysis. For each
local machine, Lemma 5.5 in [13] provides the dynamic of sin2 ϕit, which cannot characterize the
dynamic of global quantity sinϕt due to the nonlinearity. Here we introduce a new intermediate
variable v̌t+1 and find an equality (4) to show the recursive relation between ∥vt+1∥2 sin2 ϕt+1 and
∥vt∥2 sin2 ϕt through the global quantities, such as M1,t and M2,t. It is worthwhile noticing that
M1,t is the averaged noise in local SGD, whose variance is divided by the number of clients N ,
namely linear speedup term. In fact, we can control the dynamic of sinϕt by upper bounding the
discrepancy term Ht. Let us assume the last three terms in (4) are negligible and (ait)

⊤a∗ > 0 for
any i ∈ [N ]:

(1) When ϕt > π/2, ∥vt∥2 sin2 ϕt will continuously increase since λt cosϕt < 0. It indicates
that ϕt can decrease to π/2 if ∥vt∥ is upper bounded by a constant, which also means the
first layer can be corrected and avoided converging to the spurious local minima.

(2) When ϕt < π/2, ∥vt∥2 sin2 ϕt will continuously decrease to zero. It indicates that ϕt can
converge to zero if ∥vt∥ is lower bounded by a constant. The initial region with ϕ0 < π/2
and a⊤

0 a
∗ > 0 is also called the attraction basin in [13].

Through the remarks above, we can see that the positive signal of the second layer is crucial to both
the self-correction of the first layer and global convergence. Next lemma presents an exact dynamic
of the averaged weight in the second layer.
Lemma 2. Let A0 = |1⊤a∗|2 − (1⊤a∗)(1⊤a0) and g(ϕ) = (π − ϕ) cosϕ+ sinϕ. For local SGD
algorithm started with the initial point (v0,a0), the second layer satisfies that

a⊤
t a

∗ =

(
1− η

π − 1

2π

)t
a⊤
0 a

∗ +
1−

(
2π−η(k+π−1)
2π−η(π−1)

)t
k

(
1− η

π − 1

2π

)t
A0

+
η∥a∗∥2

2π

t−1∑
s=0

(
1− η

π − 1

2π

)t−1−s
1

N

N∑
i=1

Bi
s + S(ϵ0:t−1), (5)

where S(ϵ0:t−1) (defined in Appendix A) is the noise term involving ϵ0, · · · , ϵt−1 and

Bi
s = g(ϕis)− 1 +

η

2π

|1⊤a∗|2

∥a∗∥2
s−1∑
l=0

(
1− η

π + k − 1

2π

)s−1−l

(π − g(ϕil)).
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α 1/64 1/32 1/16 1/8 1/4 1/2

Local SGD 0.61 0.62 0.69 0.93 1.00 1.00

Minibatch SGD 0.60 0.62 0.69 0.91 1.00 1.00

Table 1: Success probabilities of converging to the global minima under different values of α =
|1⊤a∗|2/(k∥a∗∥2). The simulation setting is given in Section 5.

Notice that the first term g(ϕis)− 1 in Bi
s is negative whenever ϕis < π/2, but the second term in Bi

s
is always positive for ϕis ∈ (0, π]. In particular, π − g(ϕil) tends to be larger when ϕil gets closer to
π (i.e., wi

t drifts away from w∗). This insight provides a possibility that local SGD can correct the
signal of the second layer by itself, instead of injecting additional noise like [63].

Through carefully inspecting the ingredients of dynamics, we have the following roadmap to show the
global convergence of local SGD: (1) For arbitrary initialization (v0,a0) except for a measure zero
set, where the angle of the first layer between initialization and the global minimum is π, show that
a⊤
t a

∗ can turn to the positive signal in polynomial time; (2) Show that a⊤
t a

∗ can be lower bounded
by a positive constant value and ϕt will decrease below π/2. (3) After entering the attraction basin,
show that (wt,at) will converge to the ground truth with a linear speedup guarantee.

4.2 Self-correction of Signals in Two Layers

In this subsection, we will show the iterates of local SGD can enter the attraction basin such that
a⊤
t a

∗ > 0 and ϕt < π/2 after Õ(η−1) steps. Before that, we introduce an assumption on a∗.

Assumption 1. Define α = |1⊤a∗|2/(k∥a∗∥2). We assume k ≥ 320(π − 1)2 and the ground truth
satisfies |1⊤a∗|2 ≤ k(π+k−1)

720π log(4+k2) and

α >
π + k − 1

(π − 1)k

(
1− 32(π − 1)

k

)−1

. (6)

The conditions on k and |1⊤a∗|2 are imposed for technical reasons. We believe that a constant
lower bound (the right-hand side of (6)) for α is necessary to show the global convergence with
almost arbitrary initialization, which is also verified by our simulation results in Table 1. We compute
convergence probabilities of local SGD and minibatch SGD under different values of α. The initial
points are randomly selected by v0 ∼ Unif(Sd−1) and a0 ∼ Unif(Bk(|1⊤a∗|/

√
k)) in each trial. If

the convergence probability reaches 1, it means that local SGD or minibatch SGD can converge to
the global minima with arbitrary initialization except for a measure zero set. When α ≤ 1/8, both
minibatch SGD and local SGD cannot converge to the global minima with probability 1.
Theorem 1 (Self-correction of the second layer). For any initial point (v0,a0) with ϕ0 ∈ [0, π), we
denote τa = inf{t ≥ 0 : a⊤

t a
∗ ≥ γa} the first time, where γa = 16(π−1)|1⊤a∗|2

k(π+k−1) . Under Assumption
1, if

ck2
√
log(Ndk/δ)max

{
η(
√
Ik + I), η(

√
Id+ I),

√
ηk

N

}
∥a∗∥2

|1⊤a∗|2
< 1, (7)

for a sufficiently large constant c, then τa ≤ O(η−1 log k) with probability at least 1− δ.

This theorem completes the first step of the roadmap, the self-correction of the signal in the second
layer, whose proof is given in Appendix D.1. If |1⊤a∗|2/∥a∗∥2 ≤ 1/poly(p), Du et al. [13] proved
GD can converge to the spurious local minima with the initial condition a⊤

0 a
∗ < 0 and ϕ0 > π/2.

Therefore, our results do not contradict theirs because we assume |1⊤a∗|2/∥a∗∥2 is large. The
simulations of [13, 63] show that the success probability of converging to the global optimum of SGD
increases as the ratio |1⊤a∗|/∥a∗∥ increasing. Theorem 1 can potentially explain this phenomenon
since the condition (6) will be satisfied eventually when |1⊤a∗|/∥a∗∥ keeps increasing.

Proof sketch of Theorem 1. The proof is very technical since the angle ϕit will affect the sign of Bi
s

in the dynamic (5) of a⊤
t a

∗, while controlling ϕit also requires bounding the scale and controlling

6



the sign of a⊤
t a

∗. To tackle this challenge: (1) We divide the initial region of ϕ0 into four regions:
(0, ϕ̃o), [ϕ̃o, π/2), [π/2, ϕ̃u) and [ϕ̃u, π); (2) For each of the first three initial regions, we prove that
either a⊤

t a
∗ ≥ γa in Õ(1/η) steps or enter the next region in Õ(1/η) steps; (3) In the last region

[ϕ̃u, π), we use the condition (6) to show a⊤
t a

∗ will turn positive in Õ(1/η) steps. The dividing
technique enables us to control the individual angle ϕit in four “nice” regions where a⊤

t a
∗ can be

corrected with negligible disturbance. Here ϕ̃o = arccos(1/5) is chosen for convenience to avoid
dependence on the initial value sinϕ0 if ϕ0 < π/2, and ϕ̃u is carefully chosen for technical reasons.

Lemma 3. Denote ϕ̃u = arccos
(
− 144π
π+k−1

|1⊤a∗|2
k log(4 + k2)

)
and

ϖ = min
{
sin ϕ̃u1ϕ0≤ϕ̃u + sinϕ01ϕ0>ϕ̃u

, sin
[
π −

{
(20∥a∗∥2)−1 ∧ 1

}]}
,

Under the same conditions of Theorem 1. If the learning rate satisfies

c∥a∗∥2
√
log(Ndk/δ)max

{
η(
√
Id+ I),

√
η

N

}
≤ ϖ2

16k
, (8)

for a large absolute constant c > 0, we have sinϕτa ≥ ϖ
15

√
k

with probability at least 1− δ.

Recalling the dynamic (4), we know sinϕt tends to decrease to 0 when ϕt > π/2 and a⊤
t a

∗ < 0. It
means that the first layer moves in the direction of spurious local minima during the self-correction
process of the second layer. Lemma 3 provides a lower bound for sinϕτa to guarantee the first layer
will not converge to the local minima. The proof of Lemma 3 is deferred to Appendix D.2.
Theorem 2 (Self-correction of the first layer). For the initial point (v0,a0) with a⊤

0 a
∗ ≥ γa

(defined in Theorem 1) and sinϕ0 > 0, we denote τv = inf{t ≥ 0 : ϕv ≤ ϕ̃l}, where cos ϕ̃l =
144π
π+k−1

|1⊤a∗|2
k log(4 + k2). If the learning rate satisfies

c∥a∗∥2
√
log(Ndk/δ)max

{
η(
√
Id+ I),

√
η

N

}
≤ sin2 ϕ0, (9)

for a large absolute constant c > 0, it holds that τv ≤ O
(

1
η

k2

sin3 ϕ0

)
and a⊤

τva
∗ ≥ γa/32 with

probability at least 1− δ.

This theorem finishes the second step of the roadmap to convergence. The detailed proof is deferred
to Appendix D.3. Now we give the iteration complexity spent for self-correction for the worst
initialization: a⊤

0 a
∗ < 0 and ϕ0 > max{ϕ̃u, π− (∥a∗∥−2/20∧1)}. Since sin ϕ̃u = O(1), plugging

the lower bound of sinϕτa in Lemma 3, we can get

τa + τv ≤ O

(
1

η

k7/2

sin3 ϕ0

)
. (10)

Proof sketch of Theorem 2. We divide the initial region into three regions: (ϕ̃f , π), [ϕ̃f , ϕ̃l) and
[0, ϕ̃l], where ϕ̃f is adapted to the choices for ϕ̃l and ϕ̃u. For the first two regions, we show that ϕt
will enter the next region in polynomial time, while the last region is our target. The difficult part
to show the correction of ϕt falls in how to guarantee a⊤

t a
∗ will be lower bounded by O(γa) for

any t ≥ 0, which is divided and conquered by considering the intermediate quantities such as ϕ̃l, ϕ̃f

and ϕ̃u. To better understand the choices for these quantities and γa, we rearrange Bi
s and have the

following decomposition

Bi
s =

π − 1

π + k − 1

|1⊤a∗|2

∥a∗∥2
− 1︸ ︷︷ ︸

ζa

− π − 1

π + k − 1

|1⊤a∗|2

∥a∗∥2

(
1− η(π + k − 1)

2π

)s
︸ ︷︷ ︸

ϱa

+ g(ϕis)−
η

2π

|1⊤a∗|2

∥a∗∥2
s−1∑
l=0

(
1− η

π + k − 1

2π

)s−1−l

(1− g(ϕil))︸ ︷︷ ︸
ϑa

.

Due to the condition (6) in Assumption 1, ζa is positive and used to correct the sign of a⊤
t a

∗ and
keep it positive. Since ϱa is still not negligible when s is small, we use γa to compensate −ϱa after
enrolled summation. The uncertain part ϑa will be positive whenever ϕ̃l ≤ ϕil ≤ ϕ̃u for l ≤ s.
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4.3 Convergence with Linear Speedup

With the correction guarantees in the previous subsection, we are ready to proceed with the conver-
gence analysis of local SGD.

Theorem 3. Suppose the initial point (v0,a0) satisfies a⊤
0 a

∗ ≥ γa/32 and ϕ0 ≤ ϕ̃l. For
any ϵ > 0, we choose η = 1

ck2∥a∗∥2
Nϵ

d log(dN/ϵδ) for some absolute constant c > 0. If

I ≲ d
ϵN min

{
1, k

2d1/2

N1/2 , k
4d

N2ϵ

}
and ϵ < min{d−1, dk−2}, then ℓ(vT ,aT ) ≲ ϵ holds with proba-

bility at least 1− δ where T = Õ
(
dk4

Nϵ

)
.

We have the following implications about the result in Theorem 3:

(1) To the best of our knowledge, this is the first convergence result with linear speedup on the
number of machines N for two-layer neural networks. Besides, our convergence analysis
does not rely on the overparameterization of the width of the second layer (i.e., k).

(2) The dependency on ϵ matches the best-known results of local SGD for strongly convex
objective in Woodworth et al. [53]. In fact, the size of the first layer d resembles the
variance of stochastic gradients σ2 in the traditional optimization literature. We can show
⟨∇aL(wt,at),at − a∗⟩ ≥ π−1

2π ∥at−a∗∥2−O(ϕt)∥a∗∥2. Therefore, when the first layer
converges has converged (ϕt ≈ 0), at can converge to a∗ like the strongly convex regime.

(3) According to the condition on I , we can obtain the communication complexity in the
convergence stage as

Rconv =
T

I
= Õ

(
max

{
k4, k2

√
N

d
,
N2ϵ

d

})
. (11)

When N ≲ min{dk4, ϵ−1}, the communication complexity in this stage can be Rconv =

Õ(k4), which is significantly reduced compared with the iteration complexity.

We show local SGD’s convergence layer by layer. Next lemma ensures that the weight of the first
layer can converge to the ground truth in polynomial time.
Lemma 4 (Convergence of the first layer). Under the settings in Theorem 3. Suppose the initial
point satisfies ϕ0 ≤ ϕ̃l and a⊤

0 a
∗ ≥ γa/32. With probability at least 1− δ, we can guarantee that

sin2 ϕt ≲ ϵ holds for any Õ
(
k2η−1

)
≤ t ≤ Õ(η−2).

It is worthwhile noticing that (vτv ,aτv ) in Theorem 2 satisfies the conditions for initial point in
Lemma 4. Therefore, local SGD enters the attraction basin after finishing the self-correction process.
In fact, showing the complexity Õ(ϵ−1) is not trivial based on the traditional analysis of local SGD
[47, 54]. The issue comes from the inner-product noise term M1,t and the discrepancy term Ht

in Lemma 1, whose enrolled summations can only be bounded by O(
√

ϵ/d) and O{(
√
Id+ I)ϵ}

respectively at the beginning of convergence stage. Thanks to the special structure of gradient, we
find that the scales of M1,t and Ht can shrink as sinϕt decreases. In light of this, we can continuously
refine the bound by the following contraction: for (K + 1)Tv ≤ t ≤ Õ(η−2) it holds that

sin2 ϕt ≲ max

{(√
ϵ

d
+ (
√
Id+ I)ϵ

)1+K
2

, ϵ

}
.

By taking K = O(log(1/ϵ)), we can obtain the target convergence sin2 ϕt ≲ ϵ with high probability.
More details can be found in Appendix E.1.
Lemma 5 (Convergence of the second layer). Under the choice for η and conditions for ϵ in Theorem
3. Suppose sin2 ϕt ≤ ϵ holds for any 0 ≤ t ≤ Õ(η−2). With probability at least 1 − δ, we can
guarantee that ∥at − a∗∥2 ≲ ϵ holds for any Õ

(
η−1

)
≤ t ≤ Õ(η−2).

The lemma stated above guarantees the convergence of the second layer after that of the first layer,
whose proof is deferred to Appendix E.2. Equipped with Lemmas 4 and 5, we can prove Theorem 3
by leveraging the closed form of the objective L(w,a) (see Lemma 6).
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Figure 1: Converged trajectories of local SGD and minibatch SGD with different bad initial points.
The dimensions of the two layers are k = 10 and d = 25. The number of skipped communication is
I = 8. The batch size is 4. The two algorithms’ learning rates are η = 0.1.

The perturbed GD method in Zhou et al. [63] requires manually adjusting the scale of injected noises
and the learning rate between the transition of two phases. In local SGD, we can use a universal
learning rate in the self-correction stage and convergence stage. Considering an initial point that
is closer to spurious local minima (ϕ0 > ϕ̃u) defined in Lemma 3, conditions (7), (8) and (9) on
the learning rate can be satisfied if we choose I = O {d/(ϵN)}. Together with (10) and (11), if
N ≲ min{dk4, ϵ−1}, we can get the total communication complexity

Rtotal = Õ

(
k11/2

sin3 ϕ0

)
.

Therefore, our theory shows that local SGD can correct the signals and converge to the global minima
with almost arbitrary initialization except for the case of initializing at the local minima (ϕ0 = π).

5 Experiments

We now report some simulation results on synthetic data. We also compare the performance of
two algorithms: local SGD and minibatch SGD. At each round, minibatch SGD updates the model
weights by using the stochastic gradients with batch size NI in total to update the model, where each
local machine computes I gradients and communicates with other machines. Minibatch SGD and
local SGD have the same computation and communication structure [54].

In our first simulation, we set ∥w∗∥ = ∥a∗∥ = 1 and |1⊤a∗| =
√
k. The results starting from three

bad initial regions (i.e., ϕ0 > π/2 or a⊤
0 a

∗ ≤ 0) are reported in Figure 1. As we can see, the signals
of two layers can be both corrected to a good region (i.e., both cos(ϕt) and a⊤

t a
∗ go to 1 and the loss

goes to 0 when t increases) even in the worst case when a0 = −a∗ and ϕ0 > π/2. An interesting
phenomenon is that local SGD can correct the signals faster than minibatch SGD. The reason is that
the statistical error of stochastic gradients is not dominating in the self-correction process, so the
effect of large batch size in minibatch SGD (i.e., with batch size NI for 1 iteration) is not as useful
as smaller batch size in local SGD with more iterations (i.e., batch size 1 for I iterations on each
machine with N machines in total). These results corroborate our theoretical analysis.
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Figure 2: Trajectories of local SGD and minibatch SGD under different values of α. The dimensions
of the two layers are k = 64 and d = 25. The number of skipped communication is I = 8. The batch
size is 16. The two algorithms’ learning rates are η = 0.1.

In the second simulation, we plot the trajectories of local SGD and minibatch SGD under different
values of α in Figure 2. Here we set w∗ = 1d/

√
d and a∗ = (1αk, 0, . . . , 0)/

√
αk. The bad initial

point is fixed as v0 = (−1, 0, . . . , 0) and a0 = (−
√
α, 0, . . . , 0), where ϕ0 > π/2 and a⊤

0 a
∗ < 0.

When α = 1/32, 1/16, we can see that minibatch SGD and local SGD converge to the local minima.
When α = 1/4, they can converge to the global minima with the same initial point. In this case, as
we can see from Figure 2(c), the signals of two layers can be both corrected to a good region.

In the third simulation, we calculate the probabilities that local SGD and minibatch SGD converge to
the global minimum under different values of α. The averaged results are taken over 100 independent
repeated simulations. In each trial, we generate initial points by v0 ∼ Unif(Sd−1) and a0 ∼
Unif(Bk(|1⊤a∗|/

√
k)). The results are given in Table 1.

6 Conclusion

We theoretically investigate the convergence of local SGD, a cornerstone algorithm in federated
learning with strong empirical performance. We demonstrate convergence to the global minimum
for two-layer neural networks without overparameterization, without injecting noise, and when the
input data is Gaussian. A new self-correction mechanism guarantees the algorithm reaches a good
region even if the initialization is in a bad region. The landscape of the objective is divided into
several regions to carefully control the interference of the two layers during the correction process. A
new exact recursive characterization of the direction of global parameter provides the key to show
convergence to the global minimum with linear speedup in the number of machines and reduced
communication rounds. Experiments on simulated data corroborate the theoretical results. To the
best of our knowledge, this work is the first to theoretically demonstrate the global convergence of
the vanilla local SGD for neural networks without overparameterization.
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A Preliminaries for Analysis

We write 0 = (0, . . . , 0)⊤, 1 = (1, . . . , 1)⊤ and denote I by the identity matrix. The following
lemma gives the closed forms of the objective and gradients.

Lemma 6 (Du et al. [13]). If every entry of Z is i.i.d. sampled from a Gaussian distribution with
mean 0 and variance 1, and ∥w∗∥ = 1, then the population loss is

L(w,a) =
1

2

[
π − 1

2π
∥a∥2 + π − 1

2π
∥a∗∥2 − g(ϕ)− 1

π
a⊤a∗

+
1

2π
(1⊤a∗)2 +

1

2π
(1⊤a)2 − 1

π
(1⊤a)(1⊤a)

]
, (A.1)

where g(ϕ) = (π − ϕ) cosϕ+ sinϕ. And the the expected gradient of w and a are

∇wL(w,a) = −π − ϕ

2π
(a⊤a∗) ·w∗, (A.2)

∇aL(w,a) =
1

2π

[
(11⊤ + (π − 1)I)a− (11⊤ + (g(ϕ)− 1)I)a∗] . (A.3)

Denote the noises of stochastic gradients in each local machine i ∈ [N ] by

ξit = ∇wL(wi
t,a

i
t;Z

i
t)−∇wL(wi

t,a
i
t), ϵit = ∇aL(w

i
t,a

i
t;Z

i
t)−∇aL(w

i
t,a

i
t).

Then we write the averaged noises as

ξt =
1

N

N∑
i=1

Pi
tξ
i
t, ϵt =

1

N

N∑
i=1

ϵit.

Let Pt =
1

∥vt∥ (I−wtw
⊤
t ). We introduce an auxiliary sequence v̌t, which updates by

v̌t+1 = vt − η

(
Pt

1

N

N∑
i=1

∇wL(wi
t;a

i
t) + ξt

)
. (A.4)

Then it holds that

v̌t+1 = vt+1 − η
1

N

N∑
i=1

(Pi
t −Pt)∇wL(wi

t,a
i
t)

=: vt+1 − ηht. (A.5)

We define the σ-filtration in the training process: F0 is the trivial filtration and

Ft = σ
(
{ξis, ϵis : i ∈ [N ]}t−1

s=0

)
, for t ≥ 1.

We also write Et[·] = E[· | Ft].

A.1 Dynamic of the First Layer

Lemma 1 restated. The first layer in local SGD satisfies that

∥vt+1∥2 sin2 ϕt+1 = (1− ηλt cosϕt)
2 ∥vt∥2 sin2 ϕt − 2ηM1,t + η2M2,t +Ht, (A.6)

where λt =
1
N

∑N
i=1

π−ϕit
2π

(ait)
⊤a∗

∥vt∥2 , Ht = ∥vt+1∥2 sin2 ϕt+1 − ∥v̌t+1∥2 sin2 ϕ̌t+1 and

M1,t = (vt − ηPt
1

N

N∑
i=1

∇wL(wi
t,a

i
t))

⊤ (I−w∗(w∗)⊤
)
ξt, M2,t = ξ⊤t

(
I−w∗(w∗)⊤

)
ξt.
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Proof. Let ṽt = vt − ηPt
1
N

∑N
i=1∇wL(wi

t,a
i
t), then we have v̌t+1 = ṽt − ηξt. If follows that

∥v̌t+1∥2 sin2 ϕ̌t+1 = ∥v̌t+1∥2 −
(
v̌⊤
t+1w

∗)2
= ∥ṽt − ηξt∥2 −

[
(ṽ⊤
t w

∗)2 − 2η(ξ⊤t w
∗)(ṽ⊤

t w
∗) + η2(ξ⊤t w

∗)2
]

= ∥ṽt∥2 − (ṽ⊤
t w

∗)2 − 2ηṽ⊤
t (I−w∗(w∗)⊤)ξt + η2ξ⊤t (I−w∗(w∗)⊤)ξt

= ∥ṽt∥2 − (ṽ⊤
t w

∗)2 − 2ηM1,t + η2M2,t. (A.7)

From the definition λt =
1
N

∑N
i=1

π−ϕit
2π

(ait)
⊤a∗

∥vt∥2 and (A.2), we can write

ṽ⊤
t w

∗ = v⊤
t w

∗ − η(w∗)⊤Pt
1

N

N∑
i=1

∇wL(wi
t,a

i
t)

= v⊤
t w

∗ + η(w∗)⊤
(
I−wtw

⊤
t

)
w∗ 1

N

N∑
i=1

π − ϕit
2π

(ait)
⊤a∗

∥vt∥

= ∥vt∥ cosϕt + η∥vt∥
(
1− cos2 ϕt

) 1

N

N∑
i=1

π − ϕit
2π

(ait)
⊤a∗

∥vt∥2

= ∥vt∥
(
cosϕt + ηλt sin

2 ϕt
)
, (A.8)

and

∥ṽt∥2 =

∥∥∥∥∥vt − ηPt
1

N

N∑
i=1

∇wL(wi
t,a

i
t)

∥∥∥∥∥
2

(i)
= ∥vt∥2 +

(
1

N

N∑
i=1

η

2π

π − ϕit
∥vt∥

(ait)
⊤a∗

)2

(w∗)⊤
(
I−wtw

⊤
t

)2
w∗

(ii)
= ∥vt∥2 +

(
1

N

N∑
i=1

η

2π

π − ϕit
∥vt∥

(ait)
⊤a∗

)2

(1− cos2 ϕt)

(iii)
= ∥vt∥2

(
1 + η2λ2

t sin
2 ϕt
)
, (A.9)

where (i) holds since Ptvt = 0, (ii) is true due to I − wtw
⊤
t is an idempotent matrix, and (iii)

comes from ∥w∗∥ = 1. Combining (A.8) and (A.9), we can get

∥ṽt∥2 −
(
ṽ⊤
t w

∗)2 =
[
1 + η2λ2

t sin
2 ϕt −

(
cosϕt + ηλt sin

2 ϕt
)2] ∥vt∥2

=
[
sin2 ϕt − 2ηλt cosϕt sin

2 ϕt + η2λ2
t (sin

2 ϕt − sin4 ϕt)
]
∥vt∥2

=
(
sin2 ϕt − 2ηλt cosϕt sin

2 ϕt + η2λ2
t sin

2 ϕt cos
2 ϕt
)
∥vt∥2

=
(
1− 2ηλt cosϕt + η2λ2

t cos
2 ϕt
)
∥vt∥2 sin2 ϕt

= (1− ηλt cosϕt)
2 ∥vt∥2 sin2 ϕt. (A.10)

Plugging (A.10) into (A.7) gives

∥v̌t+1∥2 sin2 ϕ̌t+1 = (1− ηλt cosϕt)
2 ∥vt∥2 sin2 ϕt − 2ηM1,t + η2M2,t,

where Et[M1,t] = 0 since Pt, ṽt ∈ Ft and Et[ξt] = 0, and M2,t ≥ 0 because Pt and I−w∗(w∗)⊤

are both semi positive definite. The result follows from the definition of Ht.

A.2 Dynamic of the Second Layer

Lemma 2 restated. Let A0 = (1⊤a∗)2 − (1⊤a∗)(1⊤a0). For local SGD algorithm started with the
initial point (v0,a0), the second layer satisfies that

a⊤
t a

∗ =

(
1− η

π − 1

2π

)t
a⊤
0 a

∗ +
1−

(
2π−η(k+π−1)
2π−η(π−1)

)t
k

(
1− η

π − 1

2π

)t
A0
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+
η∥a∗∥2

2π

t−1∑
s=0

(
1− η

π − 1

2π

)t−1−s
1

N

N∑
i=1

Bi
s + S(ϵ0:t−1), (A.11)

where

S(ϵ0:t−1) =
η2

2π

t−1∑
s=0

(
1− η

π − 1

2π

)t−1−s s−1∑
l=0

(
1− η

π + k − 1

2π

)s−1−l

(1⊤a∗)(1⊤ϵl)

− η

t−1∑
s=0

(
1− η

π − 1

2π

)t−1−s

ϵ⊤s a
∗.

and

Bi
s = (g(ϕis)− 1) +

η

2π

(1⊤a∗)2

∥a∗∥2
s−1∑
l=0

(
1− η

π + k − 1

2π

)s−1−l

(π − g(ϕil)).

Proof. From (A.3), we have

1

N

N∑
i=1

∇La(w
i
t,a

i
t) =

1

2π

(
11⊤ + (π − 1)I

)( 1

N

N∑
i=1

ait

)
− 1

2π

[
11⊤ +

(
1

N

N∑
i=1

g(ϕit)− 1

)
I

]
a∗

=
1

2π

(
11⊤ + (π − 1)I

)
at −

1

2π

[
11⊤ +

(
1

N

N∑
i=1

g(ϕit)− 1

)
I

]
a∗.

Let At = (1⊤a∗)2 − (1⊤a∗)(1⊤at). By the definition of at+1, we know

a⊤
t+1a

∗ =
1

N

N∑
i=1

(ait+1)
⊤a∗ = a⊤

t a
∗ − η

1

N

N∑
i=1

∇aL(w
i
t,a

i
t)

⊤a∗ − ηϵ⊤t a
∗

=

(
1− η

π − 1

2π

)
a⊤
t a

∗ +
η

2π

(
1

N

N∑
i=1

g(ϕt)− 1

)
∥a∗∥2 + η

2π
At − ηϵ⊤t a

∗, (A.12)

For t ≥ 0, we also have

At+1 = (1⊤a∗)2 −
(
1− η

π + k − 1

2π

)
(1⊤a∗)(1⊤at)

− η
k + 1

N

∑N
i=1 g(ϕ

i
t)− 1

2π
(1⊤a∗)2 + η(1⊤a∗)(1⊤ϵt)

=

(
1− η

π + k − 1

2π

)
At + η

π − 1
N

∑N
i=1 g(ϕ

i
t)

2π
(1⊤a∗)2 + η(1⊤a∗)(1⊤ϵt)

=

(
1− η

π + k − 1

2π

)t+1

A0 +
η(1⊤a∗)2

2π

t∑
s=0

(
1− η

π + k − 1

2π

)t−s(
π − 1

N

N∑
i=1

g(ϕis)

)

+ η

t∑
s=0

(
1− η

π + k − 1

2π

)t−s
(1⊤a∗)(1⊤ϵs). (A.13)

Plugging (A.13) into (A.12), then enrolling (A.12) from timestamp 0 to t gives that

a⊤
t+1a

∗ =

(
1− η

π − 1

2π

)t+1

a⊤
0 a

∗ +
η∥a∗∥2

2π

t∑
s=0

(
1− η

π − 1

2π

)t−s(
1

N

N∑
i=1

g(ϕis)− 1

)

+

(
η|1⊤a∗|

2π

)2 t∑
s=0

(
1− η

π − 1

2π

)t−s s−1∑
l=0

(
1− η

π + k − 1

2π

)s−1−l
(
π − 1

N

N∑
i=1

g(ϕil)

)

+
η2

2π

t∑
s=0

(
1− η

π − 1

2π

)t−s s−1∑
l=0

(
1− η

π + k − 1

2π

)s−1−l

(1⊤a∗)(1⊤ϵl)
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− η

t∑
s=0

(
1− η

π − 1

2π

)t−s
ϵ⊤s a

∗ +
1−

(
2π−η(k+π−1)
2π−η(π−1)

)t
k

(
1− η

π − 1

2π

)t+1

A0

=

(
1− η

π − 1

2π

)t
a⊤
0 a

∗ +
1−

(
2π−η(k+π−1)
2π−η(π−1)

)t
k

(
1− η

π − 1

2π

)t
A0

+
η∥a∗∥2

2π

t−1∑
s=0

(
1− η

π − 1

2π

)t−1−s
1

N

N∑
i=1

Bi
s + S(ϵ0:t−1).

In fact, we also used the following summation result in the first equality

η

2π

t∑
s=0

(
1− η

π − 1

2π

)t−s(
1− η

π + k − 1

2π

)s

=
η

2π

(
1− η

π − 1

2π

)t t∑
s=0

(
1− η π+k−1

2π

1− η π−1
2π

)s

=
η

2π

(
1− η

π − 1

2π

)t
2π − η(π − 1)

ηk

[
1−

(
2π − η(k + π − 1)

2π − η(π − 1)

)t+1
]

=
1−

(
2π−η(k+π−1)
2π−η(π−1)

)t+1

k

(
1− η

π − 1

2π

)t+1

.

A.3 Concentration Inequalities for the Noises

A.3.1 Sub-exponential Martingale Difference

Definition A.1 (Sub-exponential and sub-gaussian random variable). The random variable x ∈ R is
called sub-exponential with norm ∥x∥ψ1

if

∥x∥ψ1 = inf
{
s ≥ 0 : E

[
e|x|/s

]
≤ 2
}
.

In addition, the random variable x ∈ R is called sub-gaussian with norm ∥x∥ψ2
if

∥x∥ψ2
= inf

{
s ≥ 0 : E

[
ex

2/s
]
≤ 2
}
.

Lemma 7 (Proposition 2.6.1 in [50]). Let x1, ...,xn be independent mean-zero sub-gaussian random
variables. Then

∑N
i=1 xi is also a sub-gaussian random variable with∥∥∥∥∥

N∑
i=1

xi

∥∥∥∥∥
2

ψ2

≲
N∑
i=1

∥xi∥2ψ2
.

Lemma 8 (Lemma 2.6.8 in [50]). If x is a sub-gaussian random variable, then x − E[x] is sub-
gaussian too and

∥x− E[x]∥ψ2
≲ ∥x∥ψ2

.

Lemma 9 (Lemma 2.7.7 in [50]). Let x and y be sub-gaussian random variables. Then xy is
sub-exponential and

∥xy∥ψ1 ≤ ∥x∥ψ2∥y∥ψ2 .

Lemma 10. Suppose {xt}t≥1 ⊆ R are sub-exponential martingale difference sequence with norm
{∥xt∥ψ1

}t≥1 adapted to the filtration {Ft}t≥1, that is E[xt|Ft] = 0 and ∥xt∥ψ1
= inf{s ≥ 0 :

E[e|xt|/s|Ft] ≤ 2}. Then we have

P

∣∣∣∣∣
t∑

s=1

xs

∣∣∣∣∣ ≥ 1

c

√√√√log(1/δ)

t∑
s=1

∥xs∥2ψ1
+ c log(1/δ) max

1≤s≤t
∥xs∥ψ1

 ≤ 2δ,

where c > 0 is an absolute constant.
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Proof. Invoking Proposition 2.7.1 in [50], we know

E [exp(λxt) | Ft] ≤ exp
(
c−2λ2∥xt∥2ψ1

)
, if |λ| ≤ c

∥xt∥ψ1

. (A.14)

Define

Mt = exp

{
λ

t∑
s=1

xs − c−2λ2
t∑

s=1

∥xs∥2ψ1

}
.

It follows from (A.14) that for any t ≥ 1,

E [Mt | Ft] = Mt−1E
[
exp

{
λxt − c−2λ2∥xt∥2ψ1

}
| Ft

]
≤Mt−1.

It further implies that

E [Mt] = E [E [Mt | Ft]] ≤ E [Mt−1] ≤ · · · ≤ E [M1] ≤ 1.

Using Markov’s inequality, for 0 < λ ≤ c
max1≤s≤t ∥xt∥ψ1

, we have

P

(
t∑

s=1

xs ≥ c−2λ

t∑
s=1

∥xs∥2ψ1
+

1

λ
log(1/δ)

)
= P

(
Mt ≥

1

δ

)
≤ δ. (A.15)

Now taking

λ = min

{√
c2 log(1/δ)∑t
s=1 ∥xs∥2ψ1

,
c

max1≤s≤t ∥xs∥ψ1

}
,

and plugging it into (A.15) gives

P

 t∑
s=1

xs ≥
1

c

√√√√log(1/δ)

t∑
s=1

∥xs∥2ψ1
+ c log(1/δ) max

1≤s≤t
∥xs∥ψ1

 ≤ δ.

Similarly, we can also prove

P

 t∑
s=1

xs ≤ −
1

c

√√√√log(1/δ)

t∑
s=1

∥xs∥2ψ1
− c log(1/δ) max

1≤s≤t
∥xs∥ψ1

 ≤ δ.

Then the proof is finished.

A.3.2 Scales of Sub-exponential Norm for Noises in Stochastic Gradients

For any (v,a) with w = v/∥v∥, we denote

ξ(1) =

(
k∑
i=1

a∗i σ(Z
⊤
i w)

)(
k∑
i=1

aiZi1
{
Z⊤
i w ≥ 0

})

− E

[(
k∑
i=1

a∗i σ(Z
⊤
i v)

)(
k∑
i=1

aiZi1
{
Z⊤
i w ≥ 0

})]
,

ξ(2) =

(
k∑
i=1

a∗i σ(Z
⊤
i w

∗)

)(
k∑
i=1

aiZi1
{
Z⊤
i w ≥ 0

})

− E

[(
k∑
i=1

a∗i σ(Z
⊤
i w

∗)

)(
k∑
i=1

aiZi1
{
Z⊤
i w ≥ 0

})]
,

ϵ(1) = σ(Zw)(a)⊤σ(Zw)− E
[
σ(Zw)(a)⊤σ(Zw)

]
,

ϵ(2) = σ(Zw) (a∗)
⊤
σ(Zw∗)− E

[
σ(Zw) (a∗)

⊤
σ(Zw∗)

]
.

Lemma 11. Let P = 1
∥v∥

(
I−ww⊤). The following noise terms satisfy: for ℓ = 1, 2
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(1) For any fixed vector u ∈ Rk, u⊤ϵ(ℓ) is sub-exponential with maxℓ=1,2 ∥u⊤ϵ(ℓ)∥ψ1 ≤
c∥u∥max{∥a∥, ∥a∗∥}.

(2) For any fixed vector u ∈ Rd, u⊤Pξ(ℓ) is sub-exponential with maxℓ=1,2 ∥u⊤Pξ(ℓ)∥ψ1
≤

c∥a∥∥a∗∥/∥v∥.

Proof. Recall the definition of ϵ(1), then we have

(ϵ(1))
⊤u = u⊤σ(Zw)(a)⊤σ(Zw)− E

[
u⊤σ(Zw)(a)⊤σ(Zw)

]
.

Applying Lemma 7 yields

∥∥u⊤σ(Zw)− E
[
u⊤σ(Zw)

]∥∥2
ψ2

=

∥∥∥∥∥∥
k∑
j=1

uj
(
σ(Z⊤

j w)− E
[
σ(Z⊤

j w)
])∥∥∥∥∥∥

2

ψ2

(i)

≲
k∑
j=1

∥∥uj (σ(Z⊤
j w)− E

[
σ(Z⊤

j w)
])∥∥2

ψ2

(ii)

≲
k∑
j=1

∥∥ujσ(Z⊤
j w)

∥∥2
ψ2

(iii)

≲ ∥u∥2∥w∥2

(iv)
= ∥u∥2, (A.16)

where (i) and (ii) comes from Lemma 7 and 8 respectively, (iii) holds since σ(Z⊤
j w) is a half-

normal random variable with variance ∥w∥2/2, and (iv) holds due to ∥w∥ = 1. Combining (A.16)
and Lemma 8, we can verify that∥∥u⊤σ(Zw)

∥∥
ψ2

≲ ∥u∥,
∥∥a⊤σ(Zw)

∥∥
ψ2

≲ ∥a∥,
∥∥(a∗)⊤σ(Zw)

∥∥
ψ2

≲ ∥a∗∥.

Applying Lemma 9 gives∥∥u⊤σ(Zw)(a)⊤σ(Zw)
∥∥
ψ1

≲
∥∥u⊤σ(Zw)

∥∥
ψ2

∥∥a⊤σ(Zw)
∥∥
ψ2

≲ ∥u∥∥a∥∥∥u⊤σ(Zw)(a∗)⊤σ(Zw)
∥∥
ψ1

≲
∥∥u⊤σ(Zw)

∥∥
ψ2

∥∥(a∗)⊤σ(Zw)
∥∥
ψ2

≲ ∥u∥∥a∗∥.

Invoking Lemma 8, we prove conclusion (1) immediately.

Recall the definitions P = 1
∥v∥ (I−ww⊤). Notice that, for any fixed vector u ∈ Rd,

u⊤Pξ(1) =

(
k∑
i=1

a∗i σ(Z
⊤
i w)

)(
k∑
i=1

aiu
⊤PZi1

{
Z⊤
i w ≥ 0

})

− E

[(
k∑
i=1

a∗i σ(Z
⊤
i w)

)(
k∑
i=1

aiu
⊤PZi1

{
Z⊤
i w ≥ 0

})]
.

It follows that∥∥u⊤Pξ(1)
∥∥2
ψ1

≲

∥∥∥∥∥
(

k∑
i=1

a∗i σ(Z
⊤
i w)

)(
k∑
i=1

aiu
⊤PZi1

{
Z⊤
i w ≥ 0

})∥∥∥∥∥
2

ψ1

≲

∥∥∥∥∥
k∑
i=1

a∗i σ(Z
⊤
i w)

∥∥∥∥∥
2

ψ2

∥∥∥∥∥
k∑
i=1

aiu
⊤PZi1

{
Z⊤
i w ≥ 0

}∥∥∥∥∥
2

ψ2

≲ ∥a∗∥2∥w∥2∥a∥2∥Pu∥2

≤ ∥a∗∥2∥a∥2/∥v∥2,

where we used ∥w∥ = 1 and ∥P∥ ≤ 1/∥v∥. The counterpart for u⊤Pξ(2) follows from similar
arguments.
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A.3.3 Corollaries of Lemma 11.

Let {αl}l≥0 be a sequence of real numbers. Recall that ξt = 1
N

∑N
i=1 P

i
tξ
i
t and ϵt =

∑N
i=1 ϵ

i
t/N ,

where {ξit}i∈[N ] and {ϵit}i∈[N ] are independent random variables given Ft. Applying Lemma 10 and
Lemma 11(1), we can directly get the following results∣∣∣∣∣

s−1∑
l=0

αla
⊤
l ϵl

∣∣∣∣∣ ≤ c

N

√√√√log(2/δ)

s−1∑
l=0

α2
l

N∑
i=1

∥al∥2(∥a∗∥ ∨ ∥ail∥)2

+
c log(2/δ)

N
max

l≤s−1,i∈[N ]

{
αl∥al∥

(
∥a∗∥ ∨ ∥ail∥

)}
, (A.17)

and ∣∣∣∣∣
s−1∑
l=0

αl1
⊤ϵl

∣∣∣∣∣ ≤ c

N

√√√√k log(2/δ)

s−1∑
l=0

α2
l (∥a∗∥ ∨ ∥al∥)2

+
c
√
k log(2/δ)

N
max

l≤s−1,i∈[N ]

{
αl
(
∥a∗∥ ∨ ∥ail∥

)}
. (A.18)

Specially, choosing u = ej for j ∈ [k], we also have

∥ϵs∥2 ≤ kmax
j∈[k]
|e⊤j ϵs|2 ≤

ck log(k/δ)

N
max
i∈[N ]

{(
∥a∗∥ ∨ ∥ais∥

)2}
, (A.19)

hold with probability at least 1− δ.

Similarly, using Lemma 11(2), we also have∣∣∣∣∣
s−1∑
l=0

ξ⊤l w
∗

∣∣∣∣∣ ≤ c∥a∗∥
N∥v∥

√√√√log(2/δ)

s−1∑
l=0

N∑
i=1

∥ais∥2 +
c log(2/δ)

N∥v∥
∥a∗∥max

i∈[N ]
∥ais∥, (A.20)

and

∥ξs∥2 ≤
cd log(d/δ)

N∥v∥
∥a∗∥2 max

i∈[N ]
∥ais∥2, (A.21)

hold with probability at least 1− δ.

B Bound the Weight’s Norm during Training Process

B.1 The Scale of the Second Layer’s Weight

Lemma 12 (The scale of the second layer’s weight). Suppose the learning rate satisfies that

cmax

{
η(k ∨ I) log(k/ηδ),

√
ηk log(k/ηδ)

N

}
< 1, (B.1)

for a large absolute constant c. Then for any 0 ≤ t ≤ (η∥a∗∥2)−2, we are guaranteed that

max
i∈[N ]

∥ait∥ ≤ Ka := 5∥a∗∥, At ≥ −cKa

√
η log(1/ηδ)

N
,

with probability at least 1− δ.

Proof. Recall the definition at =
1
N

∑N
i=1 a

i
t, ϵt =

1
N

∑N
i=1 ϵ

i
t and

∇aL(w
i
t,a

i
t) =

1

2π

(
11⊤ + (π − 1)I

)
ait −

1

2π
(11⊤ + (g(ϕit)− 1)I)a∗.
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Then notice that∥∥∥∥∥ 1

N

N∑
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∇aL(w
i
t,a

i
t; ξ

i
t)

∥∥∥∥∥
2
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where the last inequality holds since ∥11⊤ + (π − 1)I∥ ≤ π + k − 1 and g(ϕit) ≤ π. Denote
At = (1⊤at)

2 − (1⊤at)(1
⊤a∗). Together with the definition of at+1, we have
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(B.2)
Denote the event

Et =
{
∀s ≤ t : max

i∈[N ]
∥ais∥ ≤ 5∥a∗∥

}
.

Let αl =
(
1− η π−1

2π

)l
, then it holds that

∑s−1
l=0 α2

l ≤
∑s−1
l=0 αl ≤ 2π

η(π−1) . Using concentration
(A.17), we have

1Etη
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√

η log(1/δ)

N
, (B.3)

holds with probability at least 1− δ. Applying the concentration inequality (A.19) gives

1Etη
2
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≤ 1Et ·
50ckη log(tk/δ)

N
∥a∗∥2, (B.4)

holds with probability at least 1− δ. In addition, from (A.13), we know
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√
η log(1/δ)

N
, (B.5)

holds with probability at least 1−δ. Plugging (B.3), (B.4) and (B.5) into (B.2), together with t ≤ η−2,
we can get

∥at+1∥21Et ≤ ∥a0∥2 + 5∥a∗∥2 + 5c∥a∗∥2
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N
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N
∥a∗∥2

≤ 9∥a∗∥2, (B.6)
where the last inequality holds due to our assumption (B.1) and ∥a0∥ ≤ ∥a∗∥. By setting T = t+ 1
and Ka = 5∥a∗∥ in conclusion (1) of Lemma 15, we have

1Et∥ait+1 − at+1∥ ≤ 1Et
1

N

N∑
j=1

∥ait+1 − ajt+1∥

≤ 1Et · 10∥a∗∥
(
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√
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)
≤ 1Et · 4∥a∗∥, (B.7)

where we used the assumption (B.1). In conjunction with (B.6), we can verify that
P (Et ∩ {∥at+1∥ > 5∥a∗∥}) ≤ P (One of (B.3), (B.4), (B.5), and (B.7) does not hold)

≤ 4δ.

Therefore, we have
P (Et+1) = P (Et ∩ {∥at+1∥ ≤ 5∥a∗∥})

≥ P (Et)− P (Et ∩ {∥at+1∥ > 5∥a∗∥})
≥ P (Et)− 4δ.

Hence by induction, we can verify that P (Et) ≥ 1 − 4tδ for any t ≤ (ηK2
a)

−2. By adjusting the
level of δ and P(E0) = 1 due to ∥a0∥ ≤ ∥a∗∥, we can finish the proof.

B.2 The Scale of the First Layer’s weight

Lemma 13 (The scale of the first layer’s weight). Under the conditions of Lemma 12. Let Ka =
5∥a∗∥, we assume the learning rate satisfies

cη

(
1 +

√
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d

)√
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a < 1,

for a large absolute constant c. Then for any 0 ≤ t ≤ (800cη2(
√
Id+ I)

√
log(Nd/δ)K4

a)
−1, we

are guaranteed that 1/2 ≤ ∥vt∥ ≤ 3 with probability at least 1− δ.
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Proof. In this proof, we suppose the event Lemma 12 holds and hide the indicator function every-
where. To facilitate the technical presentation, denote ṽit = vit − ηPi

t∇wL(wi
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(B.8)

where the inequality follows from dropping positive terms and the inductive assumption ∥vt−1∥ ≥
1/2. With probability at least 1− δ, it holds that
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where (i) holds due to ∥wi
t−1∥ = ∥wt−1∥ = 1; (ii) and (iii) hold due to the inductive assumption

∥vt−1∥ ≥ 1/2; (iv) follows from the conclusion (1) in Lemma 14; and (v) is true because 6cη(
√
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I)
√
log(Nd/δ) ≤ 1/4. Substituting (B.9) into (B.8), with probability at least 1− 2δ, we have
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ṽis, ξs

〉∣∣∣∣∣
− 1000η3(

√
Id+ I)

√
log(Nd/δ)K6

a

t−1∑
s=0

(
1− 800cη2(

√
Id+ I)

√
log(Nd/δ)K4

a

)t−s}
(iii)

≥ 1Ut−1

{
0.36− 5

4
ηK2

a − 2η

∣∣∣∣∣
t−1∑
s=0

(
1− 800cη2(

√
Id+ I)

√
log(Nd/δ)K4

a

)t−s〈 1

N

N∑
i=1
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(B.10)

where (i) holds because ∥∇wL(wi
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Recall that ξs = 1
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s. Invoking Lemmas 11 and 10, we have
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holds with probability at least 1− δ. Plugging (B.12) into (B.10), we get
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where the first inequality holds since
√
Id log(Nd/δ) ≥ c.

Step 2: show ∥vt∥ ≤ 3 under the event Ut−1. From the update rule of vit and vt =
1
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where (i) comes from Pt−1vt−1 = 0 and ∥vt−1∥ ≤ 3 under Ut−1; (ii) comes from ∥Pt−1∥ ≤
1/∥vt−1∥ ≤ 2 under Ut−1; and (iii) holds due to (B.9). With probability at least 1− δ, we have the
following concentration
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where we used the assumption t ≤ (400cη2(d ∨ I)
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−1. Similar to (B.12), we can

also guarantee
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Plugging (B.15) and (B.16) into (B.14) gives that

1Ut−1
∥vt∥2 ≤ 1Ut−1

{
e+ 10eηK2

a +
2ce log(1/ηδ)

N
+ 2

(
ce
(
3 + 5ηK2

a

)√
(I ∨ d)N

+
cηK2

a log(2/δ)

N

)}
≤ 1Ut−1

· 9,
holds with probability at least 1− 3δ. Together with (B.13), we have showed that
P (Ut−1 ∩ {1/2 ≤ ∥vt∥ ≤ 3}) ≥ P (Ut−1)− P (Ut−1 ∩ {∥vt∥ ≤ 1/2})− P (Ut−1 ∩ {∥vt∥ > 3})

≥ P (Ut−1)− P (One of (B.9), (B.10), (B.13), and Lemma 12 does not hold)
− P (One of (B.14), (B.15), (B.16), and Lemma 12 does not hold)

≥ P (Ut−1)− 8δ.

Using induction and P (U0) = 1 due to ∥v0∥ = 1, we can prove the desired conclusion by adjusting
the level of δ.

Remark. In the following proofs, we use c to denote the absolute constant, which does not depend
on any variables of the model or training process. For conciseness, we do not distinguish the specific
value of c in some contexts.

C Bound the Discrepancy during Training Process

C.1 The Discrepancy in the First Layer

Lemma 14 (The discrepancy in the first layer). Denote Oi,j
r,T = maxtr≤t≤T ∥vit − vjt ∥ for

tr ≤ T ≤ tr+1 − 1. Suppose the learning rate satisfies the conditions in Lemmas 12 and 13.
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If maxi∈[N ],tr≤t≤T−1 ∥ait∥ ≤ Ka holds, with probability at least 1− δ, we have
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Since ∥w∗∥ = 1 and ∥ait∥ ≤ 5Ka in Lemma 12, we can bound hi,jt as
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where we also used the fact maxi∈[N ] ∥I−wi
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From the definition of Bi
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s in Lemma 2, we know for any i, j ∈ [N ],

∣∣Bi
s −Bj

s

∣∣ ≤ ∣∣g(ϕjs)− g(ϕis)
∣∣+ η

2π

(1⊤a∗)2

∥a∗∥2
s−1∑
l=tr

(
1− η

π + k − 1

2π

)s−1−l ∣∣∣g(ϕjl )− g(ϕil)
∣∣∣

≤ π +
ηI

2

(1⊤a∗)2

∥a∗∥2
,

where the last inequality holds due to g(ϕ) ∈ [0, π] for ϕ ∈ [0, π]. Using concentration (A.18) and
t ≤ kη−1, with probability at least 1− δ, we can guarantee

|S(ϵtr:s−1)| =
η2|1⊤a∗|

2π

∣∣∣∣∣
s−1∑
l=tr

(
1− 2η(π − 1)

π

)s−l−1 l−1∑
m=tr

(
1− η

π + k − 1

2π

)l−1−m

(1⊤ϵm)

∣∣∣∣∣
+ η

∣∣∣∣∣∣
s−1∑
j=tr

(
1− 2η(π − 1)

π

)s−1−j

ϵ⊤j a
∗

∣∣∣∣∣∣
≤ cηI

√
log(2t/δ)

N
K2
a ·

(
η
|1⊤a∗|
∥a∗∥

s−1∑
l=tr

(
1− 2η(π − 1)

π

)s−l−1

+ 1

)

≤ 2cηI

√
k log(2t/δ)

N
K2
a . (C.3)

29



Using the dynamic of a⊤
t a

∗ in Lemma 2, with probability at least 1− δ, we also have∣∣∣(ajt−1 − ait−1)
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where the second last inequality holds due to the concentration (C.3). Plugging (C.4) into (C.2) gives
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where we used the following concentration
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where we also used the assumption η(I +
√
kI) < 1.

C.2 The Discrepancy in the Second Layer

Lemma 15 (The discrepancy in the second layer). Let Ξi,jr,T = maxtr≤t≤T ∥ait − ajt∥ for
tr ≤ T ≤ tr+1 − 1. Suppose the learning rate satisfies the conditions in Lemmas 12 and 13.
If maxi∈[N ],tr≤t≤T−1 ∥ait∥ ≤ Ka holds for Ka > ∥a∗∥ and cηkI < 1, with probability at least
1− δ, we have
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where the last inequality holds due to Lemma 11(1). Taking maximum on the both sides over
tr ≤ t ≤ T , we get
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D Self-correction of Signals

Recalling the dynamic in Lemma 2,
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Using concentration (A.18), with probability at least 1− δ, we can guarantee
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For any 0 ≤ s ≤ Õ(η−2) and any i ∈ [N ], with probability at least 1− δ, it holds that
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where (i) follows from ∥w∗∥ = 1 and the triangle inequality; and (ii) holds due to Lemma 14.
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Egood = ∩4ℓ=0Eℓ, (D.5)

where

E0 =

{
max
t≥0
|S(ϵ0:t−1)| ≤ 2c

√
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N
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a

}
,
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a

}
,
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∣∣∣∣∣ ≤ cKa
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η−1 log(1/ηδ)
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}
,

E3 =

{
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i∈[N ],s≤Õ(η−2)
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√
Id+ I)

√
log(Nd/δ)

}
,

E4 =

{
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0≤τ≤Õ(η−2)
∥aτ∥ ≤ Ka, min

0≤τ≤τ1,1
Aτ ≥ −cη

√
η log(1/ηδ)

N

}
.

According to Lemmas 14, 12 and relations (D.3), (D.4), (A.20), we know P (Ecℓ ) ≤ δ for 0 ≤ ℓ ≤ 4.

D.1 Self-correction of the Second Layer

Theorem 1 restated. For any initial point (v0,a0) with ϕ0 ∈ [0, π), we denote τa = inf{t ≥ 0 :

a⊤
t a

∗ ≥ γa} the first time, where γa = 16(π−1)|1⊤a∗|2
k(π+k−1) . Under Assumption 1, if

ck2
√
log(Ndk/δ)max

{
η(
√
Ik + I), η(

√
Id+ I),

√
ηk

N

}
∥a∗∥2

|1⊤a∗|2
< 1, (D.6)

for a sufficiently large constant c, then τa ≤ Õ(η−2) with probability at least 1− δ.

Proof. We first define a sequence of events as

At :=
{
∀s ≤ t : a⊤

s a
∗ ≤ γa

}
, where γa =

16(π − 1)(1⊤a∗)2

k(π + k − 1)
.

Notice that once we show for some τ > 0,

P
(
Aτ−1 ∩

{
a⊤
τ a

∗ < γa
})
≤ δ,

then we can conclude that P (Aτ ) ≤ δ. According to the definition of τa, we can guarantee τa ≤ τ
with probability at least 1− δ.

For simplicity, we introduce the following stopping time w.r.t. the angle ϕ during the training process,

τ−(ϕ) = inf
t≥0
{t : ϕt ≥ ϕ} for ϕ ∈ [0, π].

Define ϕ̃l and ϕ̃u such that

cos ϕ̃l =
144π

π + k − 1

(1⊤a∗)2

k
log(4 + k2), cos ϕ̃u = − cos ϕ̃l.

Choose ϕ̃o = arccos(1/5) such that cos ϕ̃l ≤ 1/5 = cos ϕ̃o due to Assumption 1 such that

(1⊤a∗)2 ≤ k(π + k − 1)

720π log(4 + k2)
. (D.7)
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The correction condition (6) is equivalent to(
1− 32(π − 1)

k

)
π − 1

π + k − 1

(1⊤a∗)2

∥a∗∥2
> 1. (D.8)

We denote

Z1 =
{
τ−(ϕ̃0) > τ1,1 − 1

}
,

Z2 =
{
τ−(π/2) > τ−(ϕ̃

o) + τ1,2 − 1
}
,

Z3 =
{
τ−(ϕ̃

u) > τ−(π/2) + τ1,3 − 1
}
,

where τ1,1, τ1,2 and τ1,3 are deterministic and will be defined later.

Initial region: (0, ϕ̃o). For any s ≤ min
{
τ−(ϕ̃

o), Õ(η−2)
}

, under the event Egood, it holds that

cosϕis ≥ cosϕs − | cosϕis − cosϕs|

≥ cos ϕ̃o − 12cηK2
a(
√
Id+ I)

√
log(Nd/δ)

≥ cos ϕ̃o

2
=

1

10
> arccos(0.46π).

Since g(·) ∈ [0, π] is decreasing in [0, π], plugging it into (D.2), we can get the following lower
bound

1
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N∑
i=1

Bi
s ≥
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N
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Under the event Egood, using the lower bound of A0 in (B.5), for t ≤ min
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Here we take
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1

η

π − 1
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log

(
4 +

4(π − 1)

g(0.46π)− 1

)
≤ 1

η

π − 1

2π
log (4 + 20(π − 1)) , (D.9)

where we used the fact g(0.46π) − 1 ≥ 0.2. Since τ1,1 − 1 ≤ Õ(η−2), under the event{
τ1,1 − 1 < τ−(ϕ̃

o)
}
∩ Egood, it holds that

a⊤
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∗ ≥ (g(0.46π)− 1)∥a∗∥2
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a
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(ii)
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√
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(iii)

≥ 16(π − 1)(1⊤a∗)2

k(π + k − 1)
= γa,

where (i) holds due to ∥a∗∥ ≥ |1⊤a∗|/
√
k; (ii) follows from k ≥ 320(π − 1)2; and (iii) holds due

to the assumption (D.6). We can conclude that
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where the second last inequality holds since{
τ1,1 − 1 < τ−(ϕ̃

o) ≤ Õ(η−2)
}
∩ Egood ⊆ {a⊤

τ1,1a
∗ ≥ γa},

such that {
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o)
}
∩
{
a⊤
τ1,1a

∗ ≤ γa

}
⊆
{
τ1,1 − 1 < τ−(ϕ̃

o)
}
∩ Ecgood.

If τ1,1 ≥ τ−(ϕ̃
o), we regard (vτ−(ϕ̃o),aτ−(ϕ̃o)) as the new initial point and step into the analysis of

the next region.

Initial region: [ϕ̃o, π/2). Denote t0 = τ−(ϕ̃
o). From now on, we assume the event Zc1 happens

and hide the indicator. Recalling the definition of ht, we have
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where (i) holds due to (B.9) and (ii) is true because ∥∇wL(wi
t,a

i
t)∥ ≤ |(ait)⊤a∗| ≤ K2

a . In
addition, we also have
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Here we take

τ1,2 =
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For any t0 ≤ s ≤ t− 1 ≤ t0 + τ1,2, under the event At−1 ∩ Egood, invoking (D.12) guarantees that,
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}
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log(4 + k2) ≤ 3 cos ϕ̃o, (D.14)

where (i) holds due to ∥vs∥ ≥ 1/2, ∥vt0∥ ≥ 1/2 and the definition of At−1; (ii) comes from
t0 ≤ τ1,1 and E1; (iii) follows from ϕt0 ≥ ϕ̃l, and E2; and (iv) holds due to the assumption (D.6).
Further, under the event At−1 ∩ Egood, we have for any i ∈ [N ] and t0 ≤ s ≤ t− 1 ≤ t0 + τ1,2 − 1

cosϕis ≤ 3 cos ϕ̃o + 12cηK2
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≤ cos(π/5).

Under the event At−1 ∩ Egood ∩ {τ−(π/2)− t0 ≥ τ1,2}, it implies that for any t0 ≤ s ≤ t− 1 ≤
t0 + τ1,2 − 1,
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Together with (D.1) and (D.3), we can guarantee that
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Choosing t = t0 + τ1,2, it holds that
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≥ 16(π − 1)(1⊤a∗)2

k(π + k − 1)
= γa,

where we used the assumptions (D.6) and k ≥ 320(π − 1)2.

Recalling that Z2 =
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τ−(π/2) ≥ τ−(ϕ̃
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, hence we have verified that
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If τ1,2 ≥ τ−(π/2), we regard (vτ−(π/2),aτ−(π/2)) as the new initial point and step into the analysis
of the next region.

Initial region: [π/2, ϕ̃u). From now on, we assign t0 = τ−(π/2) and consider the case{
τ−(ϕ̃

o) ≤ τ1,1

}
∩
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}
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where the inequality holds due to our assumptions k ≥ 320(π − 1)2 and (D.8). Similar to (D.14), for
any t0 ≤ s ≤ t− 1 ≤ Õ(η−2), under the event At−1 ∩ Egood, we have
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where (i) holds due to ϕt0 ≥ π/2 and the definition ofAt−1; and (ii) holds due to s−1−τ ≤ Õ(η−2).
Under the event At−1 ∩ Egood, we can guarantee that
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where we used the assumption (D.6). It implies that mini ϕ
i
s ≥ ϕ̃l under the event At−1 ∩ Egood. In

addition, we notice that cos ϕ̃l = − cos ϕ̃u, which implies ϕ̃l + ϕ̃u = π and sin ϕ̃l = sin ϕ̃u. Under
the event At−1 ∩ Egood ∩ {t− 1 ≤ min{τ−(ϕ̃u), Õ(η−2)}}, for any s ≤ t− 1, we have
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where the last inequality holds due to the condition (D.7). Together with the definition of Bi
s, we have
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We know ζa > 0 due to the condition (D.8). UnderAt−1∩Egood∩{t−1 ≤ min{τ−(ϕ̃u), Õ(η−2)}},
we can guarantee

a⊤
t a

∗ ≥ ζa∥a∗∥2

π − 1

[
1−

(
1− η(π − 1)

2π

)t]
− 5K2

a

(
1− η(π − 1)

2π

)t

− 2cK2
a

√
η log(1/ηδ)

N
−

1−
(

2π−η(k+π−1)
2π−η(π−1)

)t
k

(
1− η

π − 1

2π

)t
(π − 1)(1⊤a∗)2

π + k − 1

≥ ζa∥a∗∥2

π − 1
−
(
1− η(π − 1)

2π

)t(
6∥a∗∥2 + ζa∥a∗∥2

π − 1

)
− 2cK2

a

√
ηk log(1/ηδ)

N
,

where we used |a⊤
t0a

∗| ≤ ∥a∗∥ ·Ka = 5∥a∗∥2. Now let t = t0 + τ1,3, under At−1 ∩ Egood ∩ {t0 +
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where we used the assumption (D.8) and (D.6). Since Z3 = t0 + τ1,3 − 1 ≤ τ−(ϕ̃
u), we have

P (Zc1 ∩ Zc2 ∩ Z3 ∩ {τa > τ1,1 + τ1,2 + τ1,3}) ≤ 5δ. (D.20)

If τ−(ϕ̃u) < τ−(π/2) + τ1,3 (that is Zc3), we regard (vτ−(ϕ̃u),aτ−(ϕ̃u)) as the new initial point and
step into the analysis of the next region.
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Initial region: [ϕ̃u, π). Now we assign t0 = τ−(ϕ̃
u) and choose τ1,4 = τ1,3. Recall that cos ϕ̃u =
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k log(4 + k2). Similar to what we showed in (D.17), for any t0 ≤ s ≤ t − 1 ≤
t0 + τ1,4 − 1, under the event At−1 ∩ Egood, we have,

cosϕs =
1

∥vs∥

{
v⊤
t0w

∗ +
η

2π

1

N

N∑
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π − ϕim
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(h⊤
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}
(i)

≤ 1
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{
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3
+ τ1,4ηγa + cτ1,4η

2(I +
√
kI)
√

log(k/ηδ)K2
a + η

∣∣∣∣∣
s−1∑
m=t0

(ξ⊤mw∗ + h⊤
mw∗)

∣∣∣∣∣
}

≤ 1

∥vs∥

{
cos ϕ̃u

3
+

36π

π + k − 1

(1⊤a∗)2

k
log(4 + k2)

}
(ii)

≤ − 4π

π + k − 1

(1⊤a∗)2

k
log(4 + k2). (D.21)

where (i) holds due to ∥vm∥ ≤ 3, ϕ0 > π/2 and the definition of At−1; and (ii) holds due to
∥vs∥ ≤ 3. Applying the bound | cosϕs − cosϕis| in (D.4) and the assumption D.6, we have

max
i

cosϕis ≤ cosϕs +max
i

∣∣cosϕs − cosϕis
∣∣

≤ − 4π

π + k − 1

(1⊤a∗)2

k
log(4 + k2) + 12cηK2

a(
√
Id+ I)

√
log(Nd/δ) ≤ 0,

which means mini ϕ
i
s ≥ π

2 . It follows that for any s ≤ t− 1,

1

N

N∑
i=1

Bi
s =

1

N

N∑
i=1

{
(g(ϕis)− 1) +

η

2π

(1⊤a∗)2

∥a∗∥2
s−1∑
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(
1− η
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2π

)s−1−l

(π − g(ϕil))

}

≥ 1

N

N∑
i=1

{
−1 + η

2π

(1⊤a∗)2

∥a∗∥2
s−1∑
l=t0

(
1− η

π + k − 1

2π

)s−1−l

(π − 1)

}

= ζa −
π − 1

π + k − 1

(1⊤a∗)2

∥a∗∥2

(
1− η

π + k − 1

2π

)s
. (D.22)

Plugging (D.22) and (D.3) into (D.1), under the event At−1 ∩ Egood, we can get

a⊤
t a

∗ ≥ ζa∥a∗∥2

π − 1

[
1−

(
1− η(π − 1)

2π

)t]
− |a⊤

0 a
∗|
(
1− η(π − 1)

2π

)t

−
1−

(
2π−η(k+π−1)
2π−η(π−1)

)t
k

(
1− η

π − 1

2π

)t
(π − 1)(1⊤a∗)2

π + k − 1

− 2cK2
a

√
Mη log(1/ηδ)

N
. (D.23)

Plugging t = t0 + τ1,4, according to (D.23) and (D.19), we can guarantee that ϕτa ≥ π/2 and

P

(
Zc1 ∩ Zc2 ∩ Zc3 ∩

{
τa >

4∑
q=1

τ1,q

})
≤ 5δ. (D.24)

Conclusion. Combining (D.10), (D.15), (D.20) and (D.24), we have

P

(
τa >

4∑
q=1

τ1,q

)
≤ P ({τa > τ1,1} ∩ Z1) + P

({
τa >

4∑
q=1

τ1,q

}
∩ Zc1

)

≤ 4δ + P

({
τa >

4∑
q=1

τ1,q

}
∩ Zc1 ∩ Z2

)
+ P

({
τa >

2∑
q=1

τ1,q

}
∩ Zc1 ∩ Zc2

)
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≤ 9δ + P

({
τa >

3∑
q=1

τ1,q

}
∩ Zc1 ∩ Zc2 ∩ Z3

)
+ P

({
τa >

4∑
q=1

τ1,q

}
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)

≤ 14δ + P
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τa >

4∑
q=1

τ1,q

}
∩ Zc1 ∩ Zc2 ∩ Zc3

)
≤ 19δ.

Therefore, we have proved τa ≤
∑4
q=1 τ1,q with high probability for ϕ0 ∈ [0, ϕ̃o). The conclusion

for other initial regions can be obtained in similar arguments. From the definitions in (D.9), (D.13)
and (D.16), we have

4∑
q=1

τ1,q ≲ η−1 log k.

D.2 Proof of Lemma 3

Lemma 3 restated. Denote ϕ̃u = arccos
(
− 144π
π+k−1

(1⊤a∗)2

k log(4 + k2)
)

and

ϖ = min
{
sin ϕ̃u1ϕ0≤ϕ̃u + sinϕ01ϕ0>ϕ̃u

, sin
(
π −

(
(20∥a∗∥2)−1 ∧ 1

))}
,

Under the same conditions of Theorem 1. If the learning rate satisfies

c∥a∗∥2
√
log(Ndk/δ)max

{
η(
√
Id+ I),

√
η

N

}
≤ ϖ2

16k
, (D.25)

for a large absolute constant c > 0, we have sinϕτa ≥ ϖ
15

√
k

with probability at least 1− δ.

Proof. If ϕτa ≤ ϕ̃u, the lower bound trivially holds. Next we prove the lower bound for sinϕτa
starting from the last initial region, that is ϕ0 ∈ [ϕ̃u, π). From (D.16) and |1⊤a∗| ≥ ∥a∗∥, we know
that

τ1,4 =
1

η
log

(
4 +

16(π − 1)

ζa

)
≤ 1

η
log

4 +
16(π − 1)

32(π−1)2(1⊤a∗)2

k(π+k−1)∥a∗∥2

 ≤ 1

η
log(4 + k2).

Let C = log(1+2k2)
4 , then e2C ≤ (1 + 2k2)

1
2 ≤ 2k. Denote ϖ0 = sin ϕ̃u1ϕ0<ϕ̃u

+ sinϕ01ϕ0≥ϕ̃u .

From the definition of ht and (B.9), we know

∥ht∥ ≤
1

N

N∑
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∥Pi
t −Pt∥∥∇wL(wi

t,a
i
t)∥ ≤ 50cη(

√
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√
log(Nd/δ)K4

a , (D.26)

where we also used ∥∇wL(wi
t,a

i
t)∥ ≤ 5K2

a . Recall that v̌t − vt = ηht−1, then it follows that∣∣∥v̌t∥2 sin2 ϕ̌t − ∥vt∥2 sin2 ϕt∣∣
=
∣∣∥v̌t∥2 − ∥vt∥2 − ((v̌⊤
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∣∣(v̌t − vt)

⊤w∗∣∣2
≤ 14η∥ht−1∥, (D.27)

where we used ∥vt∥ ≤ 3 in Lemma 13 and ∥v̌t∥ ≤ ∥vt∥ + η∥ht∥ < 4. For any t, we define a
variable

τt(Ka) = sup
0≤s≤t−1

{
min
i∈[N ]

ϕis ≤ π −
(

1

20K2
a

∧ 1

)}
. (D.28)
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If τt(Ka) does not exist, that is mini∈[N ] ϕ
i
s > π −

(
(20K2

a)
−1 ∧ 1

)
holds for any 0 ≤ s ≤ t− 1,

we let τt(Ka) = 0. Then for any τt(Ka) ≤ s ≤ t − 1, we always have mini∈[N ] ϕ
i
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(20K2
a)

−1 ∧ 1
)

such that
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8
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Without loss of generality, we assume argmini∈[N ] ϕ
i
τt(Ka)

= 1. It follows that

sin2 ϕτt(Ka) ≥ sin2 ϕ1
τt(Ka)

−
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Notice that if t ≤ 4C/η, we have(
1− η

8

)2t
≥
(
1− η

8

) 8
η ·C ≥ 2−2C ≥ e−2C ≥ 1

2k
. (D.31)

It holds because η/8 ≤ 1
2 and f(x) = (1 − x)1/x is decreasing in [0, 1]. Invoking Lemma 1, we

know
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25k

,

where (i) holds due to (D.27) and (D.29); (ii) follows from (D.30) and (D.26); (iii) comes from
(D.31) and Lemma 11; and (iv) holds due to the assumption D.25. Plugging the choice of C =
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log(1 + 2k2)/4, together with ∥vt∥ ≤ 3, we can prove the conclusion

sin2 ϕτa ≥
min

{
sin2

[
π −

(
(20K2

a)
−1 ∧ 1

)]
, ϖ2

0

}
225k

≥ ϖ2

225k
.

D.3 Self-correction of the First Layer

Theorem 2 restated. For the initial point (v0,a0) with a⊤
0 a

∗ ≥ γa and sinϕ0 > 0, we denote
τv = inf{t ≥ 0 : ϕv ≤ ϕ̃l}, where cos ϕ̃l = 144π

π+k−1
(1⊤a∗)2

k log(4 + k2). If the learning rate satisfies
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for a large absolute constant c > 0, it holds that τv ≤ O
(

1
η

k2

sin3 ϕ0

)
and a⊤

τva
∗ ≥ γa/32 with

probability at least 1− δ.

Proof. Find ϕ̃f ∈ (π/2, π) such that cos ϕ̃f = − π
π+k−1

(1⊤a∗)2

k log(4 + k2). We introduce the
following stopping time w.r.t. the angle ϕ during the training process,

τ+(ϕ) = inf
t≥0
{t : ϕt ≤ ϕ} for ϕ ∈ [0, π].

Initial angle: ϕ0 ∈ (ϕ̃f , π). For any s ≤ τ+(ϕ̃
f ), under the event Egood, we have

cosϕis ≤ cosϕs +
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It means that ϕis ≥ π/2 holds for any 0 ≤ s ≤ min{τ+(ϕ̃f ), Õ(η−2)}. As a consequence, we have
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because (1− x)1/x ≤ e−1 for x ∈ [0, 1]. Together with the dynamic (D.1) and a⊤
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∗ ≥ γa, under
the event Egood, we have
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(ii)
=
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2

+
1
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√
ηk log(1/ηδ)
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(iii)

≥ γa
4
, (D.33)

where (i) holds due to (D.8); (ii) holds since γa = 16(π−1)
k(π+k−1) and (iii) follows from the condition

(D.6). Under the event Egood, we know for any s ≤ min{τ+(ϕ̃f ), Õ(η−2)}
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, (D.34)

holds with probability at least 1− δ. Recall that v̌t − vt = ηht−1, then it follows that∣∣∥v̌t∥2 sin2 ϕ̌t − ∥vt∥2 sin2 ϕt∣∣ = ∣∣∥v̌t∥2 − ∥vt∥2 − ((v̌⊤
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where (i) holds due to I − w∗(w∗)⊤ is idempotent; and (ii) holds due to ∥w∗∥ = 1. Invoking
Lemma 1 and (D.26), for any s ≤ t− 1 ≤ min{τ+(ϕ̃f ), Õ(η−2)}, under the event Egood, we can get
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,

where (i) holds due to (D.34) and cosϕs < 0 for s ≤ τ+(ϕ̃
f ); (ii) follows from assumption (D.32).

It implies that sin2 ϕs ≥ sin2 ϕ0/54 for any s ≤ t−1 ≤ min{τ+(ϕ̃f ), Õ(η−2)}. Then we can lower
bound sin2 ϕis by
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.
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Together with the dynamic (D.12) and lower bound (D.34), we can guarantee
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Now we take

τ2,1 =
1

η
· 5429
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1
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,

where the inequality holds since arcsin(sinϕ0/6) − arcsin(0) ≥ sinϕ0/6 due to arcsin′(x) =
1√

1−x2
. Plugging it into (D.36), we have
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Initial angle: ϕ0 ∈ (ϕ̃l, ϕ̃f ]. Now assign t0 = τ+(ϕ̃
f ). Denote
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It means that ϕ̃l ≤ ϕℓ ≤ ϕ̃f for any ℓ ≤ s ≤ min{τ+(ϕ̃l), Õ(η−2)} under the event Ãs ∩ Egood.
Hence we know (D.18) holds. Consequently, the lower bound (D.22) also holds for 1

N

∑N
i=1 B

i
s.

Therefore, similar to (D.33), we can further verify that

a⊤
s+1a

∗ ≥ ζa∥a∗∥2

2(π − 1)

[
1−

(
1− η(π − 1)

2π

)s]
− 3c

√
ηk log(1/ηδ)

N
K2
a

+

(
γa
4
− (π − 1)(1⊤a∗)2

k(π + k − 1)

)(
1− η(π − 1)

2π

)s
≥ γa

16
,

where we used a⊤
t0a

∗ ≥ γa/4. This yields that for any t0 ≤ s ≤ t− 1,

Ãs ∩ Egood ∩
{
t− 1 ≤ τ+(ϕ̃

l)
}
⊆
{
a⊤
s+1a

∗ ≥ γa
16

}
,
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which implies that

Ãs ∩ Egood ∩
{
t− 1 ≤ τ+(ϕ̃

l)
}
⊆ Ãs+1.

It follows that

P
(
Ãct ∩

{
t− 1 ≤ τ+(ϕ̃

l)
})

= P
(
Ãct−1 ∩

{
t− 1 ≤ τ+(ϕ̃

l)
})

+ P
(
Ãt−1 ∩

{
t− 1 ≤ τ+(ϕ̃

l)
}
∩
{
a⊤
s+1a

∗ <
γa
16

})
≤ P

(
Ãct−1 ∩

{
t− 1 ≤ τ+(ϕ̃

l)
})

+ 5δ

≤ P
(
Ãct0 ∩

{
t− 1 ≤ τ+(ϕ̃

l)
})

+ 5δ(t− t0)

≤ P
(
Ãct0
)
− 5δ(t− t0)

≤ 7δ + 5δ(t− t0). (D.38)

Similar to (D.34), we can guarantee that mini∈[N ](a
i
s)

⊤a∗ ≥ γa/64 holds for any s ≤ t − 1 ≤
min{τ+(ϕ̃l), Õ(η−2)} under the event Ãt ∩ Egood. It follows that

cosϕt =
1

∥vt∥

{
v⊤
0 w

∗ + η

ℓ−1∑
m=t0

1

N

N∑
i=1

π − ϕim
2π

(aim)⊤a∗

∥vm∥
sin2 ϕm − η

t−1∑
m=t0

(ξ⊤mw∗ + h⊤
mw∗)

}

≥ 1

∥vt∥

{
∥v0∥ cosϕ0 +

ηt

3
· γa sin

2 ϕ̃u

64
· π − ϕ̃u

2π

− 2cηK2
a(
√
Id+ I)

√
log(Nd/δ)− 2cKa

√
η log(Nd/ηδ)

N

}
. (D.39)

Taking

τ2,2 =
9 cos ϕ̃l

η

384π

γa sin
2 ϕ̃u

1

π − ϕ̃u
.

Plugging t = t0 + τ2,2 into (D.39), under
{
t0 + τ2,2 − 1 ≤ τ+(ϕ̃

l)
}
∩ Ãt0+τ2,2 ∩ Egood, we can get

cosϕt0+τ2,2 ≥ 6 cos ϕ̃f + 3 cos ϕ̃l − 2cηK2
a(
√
Id+ I)

√
log(Nd/δ)− 2cKa

√
η log(Nd/ηδ)

N

≥ 2 cos ϕ̃l − 2cηK2
a(
√
Id+ I)

√
log(Nd/δ)− 2cKa

√
η log(Nd/ηδ)

N
≥ cos ϕ̃l,

where we used the condition (D.6). Invoking (D.38), we can have

P
(
τ+(ϕ̃

l) ≥ t0 + τ2,2

)
= P

({
τ+(ϕ̃

l) ≥ t0 + τ2,2 − 1
}
∩
{
cosϕt0+τ2,2 ≤ cos ϕ̃l

})
= P

({
τ+(ϕ̃

l) ≥ t0 + τ2,2 − 1
}
∩ Ãt0+τ2,2 ∩

{
cosϕt0+τ2,2 ≤ cos ϕ̃l

})
+ P

({
τ+(ϕ̃

l) ≥ t0 + τ2,2 − 1
}
∩ Ãct0+τ2,2 ∩

{
cosϕt0+τ2,2 ≤ cos ϕ̃l

})
≤ 5δ + P

({
τ+(ϕ̃

l) ≥ t0 + τ2,2 − 1
}
∩ Ãct0+τ2,2

)
≤ 12δ + 5δ · τ2,2.

Recalling t0 = τ+(ϕ̃
f ) and (D.37), we have

P
(
τ+(ϕ̃

l) ≥ τ2,1 + τ2,2

)
≤ P

({
τ+(ϕ̃

l) ≥ τ+(ϕ̃
f ) + τ2,2

}
∩
{
τ+(ϕ̃

f ) ≤ τ2,1

})
+ P

({
τ+(ϕ̃

l) ≥ τ+(ϕ̃
f ) + τ2,2

}
∩
{
τ+(ϕ̃

f ) ≥ τ2,1

})
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≤ P
(
τ+(ϕ̃

l) ≥ τ+(ϕ̃
f ) + τ2,2

)
+ P

(
τ+(ϕ̃

f ) ≥ τ2,1

)
≤ 17δ + 5δ · τ2,2.

By adjusting the level of δ, we can verify that τv ≤ τ2,1+τ2,2 such that ϕτv ≤ ϕ̃l and a⊤
τva

∗ ≥ γa/32
with high probability. Now recalling that

γa =
16(π − 1)(1⊤a∗)2

k(π + k − 1)
, sin2 ϕ̃u =

√
1−

(
144π

π + k − 1

(1⊤a∗)2

k
log(4 + k2)

)2

≥ 1

2
,

we have

τ2,1 + τ2,2 =
1

ηγa

(
40000

sin3 ϕ0

+
1

sin2 ϕ̃u
3465π cos ϕ̃l

π − ϕ̃u

)

≲
1

η

(
k2

sin3 ϕ0

+ log(k)

)
≲

1

η

k2

sin3 ϕ0

,

where the last inequality holds due to (D.8).

E Convergence with Linear Speedup

E.1 Convergence of the First Layer

Lemma 4 restated. Under the settings in Theorem 3. Suppose the initial point satisfies ϕ0 ≤ ϕ̃l

and a⊤
0 a

∗ ≥ γa/32. With probability at least 1− δ, we can guarantee that sin2 ϕt ≲ ϵ holds for any
Õ
(
k2η−1

)
≤ t ≤ Õ(η−2).

Proof. Denote the event Ct = {a⊤
s a

∗ ≥ γa/128 · (∥a∗∥2 ∧ 1) : ∀s ≤ t}. For any s ≤ t− 1, with
probability at least 1− 3δ, we have

1Ct−1
cosϕs =

1Ct−1

∥vs∥

{
v⊤
0 w

∗ + η

s−1∑
l=0

π − ϕl
2π

a⊤
l a

∗

∥vl∥
sin2 ϕl − η

s−1∑
l=0

(ξ⊤l w
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l w
∗)

}

≥
1Ct−1

∥vs∥

{
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3
− 2cηK2

a(
√
Id+ I)

√
log(Nd/δ)− 2cKa

√
η log(Nd/ηδ)

N

}

≥ 1Ct−1 ·
2(1⊤a∗)2

k(π + k − 1)
, (E.1)

where we used the assumption I ≲ d
ϵN min

{
1, k

2d1/2

N1/2 , k
4d

N2ϵ

}
and ϵ < dk−2. Together with (D.4),

we can guarantee cosϕit ≥
(1⊤a∗)2

k(π+k−1) holds for any i ∈ [N ] with probability at least 1− δ. It follows
that for any s ≤ t− 1,

1Ct−1

1

N

N∑
i=1

Bi
s ≥ 1Ct−1

{
1

N

N∑
i=1

g(ϕis)− 1

}
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g

(
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(
(1⊤a∗)2
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− g(π/2)

}
(i)

≥ 1Ct−1

{
g′(π/6)

∣∣∣∣arccos( (1⊤a∗)2
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)
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∣∣∣∣}
(ii)

≥ 1Ct−1
· 5π
12

(1⊤a∗)2

k(π + k − 1)
, (E.2)
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where (i) holds since g′(x) = −(π − x) sinx is decreasing in (0, π/2] and (1⊤a∗)2

k(π+k−1) ≤
√
3
2 due to

Assumption 1; and (ii) holds since arccos′(x) = − 1√
1−x2

. Using the dynamic in Lemma 2, under
the event Ct−1, we can get
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t a
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(
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π − 1

2π

)t
a⊤
0 a
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η∥a∗∥2

2π
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N∑
i=1

Bi
s − |S(ϵ0:t−1)|
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(
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32

+
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(
1− η
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k(π + k − 1)
− 2c

√
ηk log(1/ηδ)

N
K2
a
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4
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{
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32

,
5(1⊤a∗)2

12k(π + k − 1)

}
− 2c

√
ηk log(1/ηδ)

N
K2
a

≥ γa
128
· (∥a∗∥2 ∧ 1).

By adjusting the level of δ, we can guarantee

P
(
CÕ(η−2)

)
= P

(
a⊤
s a

∗ ≥ γa
128
· (∥a∗∥2 ∧ 1) : ∀s ≤ t

)
≥ 1− δ.

Next we assume CÕ(η−2) happens and hide the indicator.

Invoking (E.1), we have for any s ≤ Õ(η−2)

cosϕsλs = cosϕs
1

N

N∑
i=1

π − ϕit
2π

(ait)
⊤a∗

∥vt∥2
≥ 2(1⊤a∗)2
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2π

γa
128
· (∥a∗∥2 ∧ 1)

≥ γa
512
· (∥a∗∥2 ∧ 1) =:

γ̃a
12

, (E.3)

where we used ϕit < π/2. Invoking Lemma 1, we have

∥vt∥2 sin2 ϕt ≤
(
1− ηγ̃a

12

)2

∥vt−1∥2 sin2 ϕt−1 − 2ηM1,t−1 + η2M2,t−1 +Ht
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(
1− ηγ̃a
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)2t
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∣∣∣∣∣
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. (E.4)

Recall the choices

η =
1

ck2∥a∗∥2
Nϵ

d log(dN/ϵδ)
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1

η
log

(
1

ϵ

)
· ck2
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1

∥a∗∥2 ∧ 1
. (E.5)

According to (D.35) and (D.26), with probability at least 1− δ, we have
t−1∑
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(
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12
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where we used ηγ̃a/12 < 1/2. Using Lemma 11 and recalling the definition of M1,t, we have the
following concentration
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(E.7)

holds with probability at least 1− δ. Moreover, it holds that

M2,t = ξ⊤t
(
I−w∗(w∗)⊤

)
ξt ≤ ∥ξt∥2 ≤

cK4
ad log(d/ηδ)

N
,
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24η
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4
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N
≤ ϵ. (E.8)

Plugging (E.6), (E.7) and (E.8) into (E.4), we can guarantee that with probability at least 1− 3δ, for
any Tv ≤ t ≤ Õ(η−2)
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1
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where we used I ≲ d
ϵN min

{
1, k

2d1/2

N1/2 , k
4d
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}
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ϵ

d
+

(
√
Id+ I)Nϵ

d

)
+ 4η2K4

a

≤ 49

(√
ϵ

d
+

(
√
Id+ I)Nϵ

d

)
.

47



With this upper bound, we can improve the concentration (E.7) through

η

∣∣∣∣∣
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(
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Denote H = cηK4
a(
√
Id+ I)

√
log(Nd/δ). Using (E.9), we can further refine the bound (E.6) by∣∣∥vt∥2 sin2 ϕt − ∥v̌t∥2 sin2 ϕ̌t∣∣ ≤ 6η sinϕt∥ht−1∥+ η2∥ht−1∥2
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It follows that
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√
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d
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√
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Combining (E.10), (E.11) and (E.8), we can show that for any 2Tv ≤ t ≤ (ηK2
a)

−2

sin2 ϕt ≤ 4max


(√

ϵ

d
+

(
√
Id+ I)Nϵ

d

)1+ 1
2

, ϵ

 . (E.12)

Repeating (E.10)-(E.12) for K = log(1/ϵ) times, we can guarantee that for any (K + 1)Tv ≤ t ≤
Õ(η−2)

sin2 ϕt ≤ 4max


(√

ϵ

d
+

(
√
Id+ I)Nϵ

d

)1+K
2

, ϵ


= 4ϵ.

E.2 Convergence of the Second Layer

Lemma 5 restated. Under the choice for η and conditions for ϵ in Theorem 3. Suppose sin2 ϕt ≤ ϵ

holds for any 0 ≤ t ≤ Õ(η−2). With probability at least 1− δ, we can guarantee that ∥at−a∗∥2 ≲ ϵ

holds for any Õ
(
η−1

)
≤ t ≤ Õ(η−2).

Proof. Let hit = vit − vt. Similar to (D.35), we can verify that for any i ∈ [N ]∣∣∥vit∥2 sin2 ϕit − ∥vt∥2 sin2 ϕt∣∣ ≤ 2η sinϕt∥vt∥∥hit−1∥+ η2∥hit−1∥2

≤ 2ηϵ · cηK2
a(
√
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√
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√
Id+ I)2 log(Nd/δ)
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where we used Lemma 14 and sin2 ϕt ≤ ϵ. It further implies that

sin2 ϕit ≤
∥vt∥2 sin2 ϕt +

∣∣∥vit∥2 sin2 ϕit − ∥vt∥2 sin2 ϕt∣∣
∥vit∥2

≤ 9ϵ+ 4ηϵ(
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)2
≤ 100ϵ. (E.13)

Further, for any 0 ≤ t ≤ Õ(η−2) and i ∈ [N ] we have

π − g(ϕit) = g(0)− g(ϕit)
(i)

≤ (π − ϕit) sinϕ
i
t · ϕit ≤ 5πϵ1/2 · ϕit

(ii)

≤ 5πϵ, (E.14)

where (i) holds since g′(x) = −(π − x) sinx; and (ii) holds due to arcsin′(x) = 1√
1−x2

. Applying
this bound, we can get
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where the last inequality holds due to Lemma 12 such that ∥at − a∗∥ ≤ 6∥a∗∥. In addition, it holds
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where we used the relation (E.14). Denote ãt = at − a∗ − η 1
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∥a0 − a∗∥2 + 2η

∣∣∣∣∣
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s=0

(
1− η(π − 1)

4π

)s
⟨ãs, ϵs⟩

∣∣∣∣∣
+ η2

t−1∑
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(
1− η(π − 1)

4π

)t−s
∥ϵs∥2

+

t−1∑
s=0

(
1− η(π − 1)

4π

)t−1−s (
6ηϵK2

a + 15η2ϵ2∥a∗∥2
)
. (E.17)
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Using Lemma 12 again, we can verify that

∥ãt∥ ≤ ∥at − a∗∥+ η
1

N

N∑
i=1

∥∇aL(w
i
t,a

i
t)∥

≤ 6Ka +
η

2π

(
∥
(
11⊤ + (π − 1)I

)
(at − a∗)∥+ (π − g(ϕit))∥a∗∥

)
≤ 6Ka +

η(π + k − 1)

2π
· 6∥a∗∥+ η

2
∥a∗∥

≤ 8Ka. (E.18)

Similar to (A.17) with αs =
(
1− η(π−1)

4π

)t−s
, we can guarantee

η

∣∣∣∣∣
t−1∑
s=0

(
1− η(π − 1)

4π

)t−s
ã⊤
s ϵs

∣∣∣∣∣ ≤ cηK2
a

√√√√ log(2/δ)

N

t∑
s=0

(
1− η(π − 1)

4π

)t−s
+

cηK2
a log(2/δ)

N

≤ 4cK2
a

√
η log(2/δ)

N
(E.19)

with probability at least 1− δ. Now take Ta = 1
η

8π
π−1 log

(
1
ϵ

)
. Plugging (E.19) into (E.17), together

with the concentration inequality (A.19), we have for any Ta ≤ t ≤ Õ(η−2)

∥at − a∗∥2 ≤
(
1− η(π − 1)

4π

)t
∥a0 − a∗∥2 + 4cK2

a

√
η log(2/δ)

N

+
2πcηk log(t/δ)

N
K2
a + 12πϵK2

a + 2ηϵ2K2
a

≤ ϵ∥a0 − a∗∥2 +
√
ϵK2

a + ϵ2K2
a + 12πϵK2

a + 2ηϵ2K2
a

≤ 2
√
ϵK2

a . (E.20)
With this upper bound, we can refine (E.18) by

∥ãt∥2 ≤ 2∥at − a∗∥2 + 2η2
1

N

N∑
i=1

∥∇aL(w
i
t,a

i
t)∥2 ≤ 8

√
ϵK2

a .

Consequently, the bound (E.19) can be improved to

η

∣∣∣∣∣
t−1∑
s=0

(
1− η(π − 1)

4π

)t−s
ã⊤
s ϵs

∣∣∣∣∣ ≤ 4cK2
a

√
ηϵ1/2 log(2/δ)

N
.

Then we can guarantee that for any 2Ta ≤ t ≤ Õ(η−2),

∥at − a∗∥2 ≤
(
1− η(π − 1)

4π

)t
∥a0 − a∗∥2 + 4cK2

a

√
ηϵ log(2/δ)

N

+
2πcηk log(t/δ)

N
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a

≤ ϵ∥a0 − a∗∥2 + ϵ3/4K2
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a + 12πϵK2
a + 2ηϵ2K2

a

≲ ϵ4/3K2
a . (E.21)

Repeating the refinement from (E.20) to (E.21) for at most log(1/ϵ) times, we can show finish the
proof.

E.3 Conclusion

Theorem 3 restated. Suppose the initial point (v0,a0) satisfies a⊤
0 a

∗ ≥ γa/32 and ϕ0 ≤ ϕ̃l.
For any ϵ > 0, we choose η = 1

ck2∥a∗∥2
Nϵ

d log(dN/ϵδ) for some absolute constant c > 0. If I ≲

d
ϵN min

{
1, k

2d1/2

N1/2 , k
4d

N2ϵ

}
and ϵ < min{N−1, d−1, dk−2}, then ℓ(vT ,aT ) = O(ϵK2

a) holds with

probability at least 1− δ where T = Õ
(
dk4

Nϵ

)
.
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Proof. According to the dynamic of at, we know

1⊤(at − a∗) =
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)
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1⊤a∗. (E.22)

It follows from (E.14) that∣∣∣∣∣ η2π
t−1∑
s=0

(
1− η(π + k − 1)

2π

)t−1−s
(

1

N

N∑
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g(ϕis)− π

)∣∣∣∣∣ ≤ 5πϵ
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. (E.23)

Using Lemma 11(1), it holds that

η
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2π
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. (E.24)

Plugging (E.23) and (E.24) into (E.22), and taking T1 = 1
η

2π
π+k−1 log

(
1
ϵ

)
, we can have∣∣1⊤(at − a∗)

∣∣ ≤ ϵ
∣∣1⊤(a0 − a∗)

∣∣+√ϵKa +
5πϵ

π + k − 1
|1⊤a∗|

≤ ϵ
√
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√
ϵKa +

5πϵ
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≤ 2
√
ϵKa, (E.25)

where we used |1⊤a0| ≤ |1⊤a∗| and ϵ < 1/k. Invoking Lemma 6 and the normalized network in
(2), we know

ℓ(v,a) = L(w,a) =
1

2

[
π − 1

2π
∥a∗∥2 + π − 1

2π
∥a∥2 − g(ϕ)− 1

π
a⊤a∗

+
1

2π
(1⊤a∗)2 +

1

2π
(1⊤a)2 − 1

π
(1⊤a)(1⊤a)

]

=
1

2

[
π − 1

2π
∥a− a∗∥2 + π − g(ϕ)

π
a⊤a∗ +

1

2π
|1⊤(a− a∗)|2

]
. (E.26)

Similar to (E.14), for any t ≥ Tv , we also have

π − g(ϕt) = g(0)− g(ϕt) ≤ (π − ϕt) sinϕt · ϕt ≤ πϵ · ϕt ≤ πϵ. (E.27)

Invoking Lemma 4 and 5 to (E.26), together with (E.27), we conclude that for T = Õ
(
dk4

Nϵ

)
,

ℓ(vT ,aT ) ≤
1

2

(
15

2
ϵKa + ϵ∥aT ∥∥a∗∥+ 4ϵK2

a

)
≲ ϵ∥a∗∥2,

with probability at least 1− δ.
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