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Abstract

To ensure secure and dependable mobility in environments shared by humans
and robots, social navigation robots should possess the capability to accurately
perceive and predict the trajectories of nearby pedestrians. In this paper, we
present a novel dataset of pedestrian trajectories, referred to as Social Interactive
Pedestrian Trajectory (SiT) dataset, which can be used to train pedestrian detection,
tracking, and trajectory prediction models needed to design social navigation robots.
Our dataset includes sequential raw data captured by two 3D LiDARs and five
cameras covering a 360-degree view, two inertial measurement units (IMUs), and
real-time kinematic positioning (RTK), as well as annotations including 2D &
3D boxes, object classes, and object IDs. Thus far, various human trajectory
datasets have been introduced to support the development of pedestrian motion
forecasting models. Our SiT dataset differs from these datasets in the following
three respects. First, whereas the pedestrian trajectory data in other datasets were
obtained from static scenes, our data was collected while the robot navigated in
a crowded environment, capturing human-robot interactive scenarios in motion.
Second, unlike many autonomous driving datasets where pedestrians are usually
at a distance from vehicles and found on pedestrian paths, our dataset offers a
distinctive view of navigation robots interacting closely with humans in crowded
settings. Third, our dataset has been carefully organized to facilitate the training
and evaluation of end-to-end prediction models encompassing 3D detection, 3D
multi-object tracking, and trajectory prediction. This design allows for an end-to-
end unified modular approach across different tasks. We introduce a comprehensive
benchmark for assessing models across all aforementioned tasks and present the
performance of multiple baseline models as part of our evaluation. Our dataset
provides a strong foundation for future research in pedestrian trajectory prediction,
which could expedite the development of safe and agile social navigation robots.
The SiT dataset, development kit, and trained models are publicly available at:
https://spalaboratory.github.io/SiT/

1 Introduction

With advances in technology in a variety of fields, social navigation robots are emerging as versatile
vehicles that can provide a variety of services, including last-mile delivery, street cleaning, manufac-
turing, and security patrols. These mobile robots need to move safely and smoothly while interacting
with humans in shared ways without collisions. A popular method of collision avoidance is to create
an occupancy grid map and represent the location of obstacles on the map. In complex and crowded
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Figure 1: Visualization of pedestrian trajectory data collected from diverse social interactive envi-
ronments in an outdoor scene (Cafe_Street_3). The first row showcases five different cameras,
collectively capturing a full 360-degree view. In the lower section, point clouds, the mobile robot’s
trajectory, individual object trajectories, and their respective bounding boxes are displayed.

settings, traditional mobile robots often move at a slow pace and behave passively because they
perceive people as obstacles and adopt conservative planning strategies to ensure a safe distance. For
agile and safe navigation, robots need to perceive humans as individual entities in three-dimensional
space, predict their movements, and utilize these predictions to avoid collisions, plan optimal paths,
and navigate smoothly.

Recent advances in deep learning have led to significant improvements in performance for perceiving
and predicting the motions of dynamic objects in diverse contexts. Several datasets have been made
available to develop models designed specifically for predicting future human trajectories. While
Argoverse [5, 32], nuScenes [4], and Waymo Open [27] datasets provide large-scale trajectory data
capturing dynamic and interactive behaviors among agents, they were primarily designed within
the context of autonomous driving scenarios, rather than for social navigation robots. ETH [22],
UCY [16], and SDD [24] provide trajectories of pedestrians, mainly utilized for benchmarks as
human trajectory prediction tasks. However, these trajectory datasets were collected only from static
top-view scenes captured by cameras positioned at high vantage points such as rooftops, buildings,
or drones hovering in the sky. Consequently, these datasets do not capture human-robot interactive
scenarios. Furthermore, they do not provide raw sensor data with annotations required to train models
for upstream tasks such as 3D object detection and multi-object tracking. STCrowd data [9] was
collected from the sensors from a person-view perspective: however, the location of sensors also
remained at a fixed position throughout the data collection process, resulting in a lack of variation
in the scenes across different samples. Consequently, these datasets fail to capture the dynamic
nature of human-robot interaction. JRDB [20] provides the trajectory data collected in interactive
scenarios, but the data were not arranged in a trajectory form, and the multiple sensor data were not
fully synchronized in time, limiting the potential of multi-sensor fusion.

Multiple studies in the field of human-robot interaction (HRI) have presented evidence revealing the
impact of a robot’s actions on pedestrians’ walking behaviors [6, 7, 21, 29, 39]. We aim to expand
the research area for pedestrian perception by introducing the HRI-included dataset that reflects
the interactive behaviors between pedestrians and a mobile robot in the real world. In this paper,
we present the Social Interactive Pedestrian Trajectory (SiT) dataset, which offers trajectories of
pedestrians collected by a robot navigating in a diverse range of socially interactive scenarios as
shown in Figure 1.

2



Dataset Platform Sensor Data Task Sync. Map E2E Location
UCY [16] Fixed Top-view Cam T, P - Outdoor
ETH [22] Fixed Top-view Cam T, P - Outdoor
SDD [24] Fixed Top-view Cam T, P - Outdoor

CITR-DUT [35] Fixed Top-view Cam T, P - Outdoor
nuScenes [4] Vehicle 360-view Cam, LiDAR, IMU, RTK D, T, P ✓ ✓† Outdoor

Waymo Open [27] Vehicle multi-view Cam, LiDAR, IMU, RTK D, T, P ✓ ✓ Outdoor
Argoverse [5, 32] Vehicle 360-view Cam, LiDAR, IMU, RTK D, T, P ✓ ✓† ✓ Outdoor

JRDB [20] Robot 360-view Cam, LiDAR, IMU D, T Indoor&Outdoor
STCrowd [9] Fixed Front-view Stereo Cam, LiDAR D, T, P ✓ Outdoor
SiT(Ours) Robot 360-view Cam, LiDAR, IMU, RTK D, T, P ✓ ✓† ✓ Indoor&Outdoor

Table 1: Comparison of several pedestrian trajectory datasets. Dashes "-" represent attributes that are
either inapplicable or unavailable. Sync. stands for Multi-Sensors synchronization. D, T, and P mean
detection, tracking, and prediction, respectively. E2E indicates whether the dataset supports the joint
design of upstream tasks. (†) includes multi-layered map information.

The SiT dataset consists of

1. Raw data acquired by two 3D scanning LiDARs, five cameras covering a 360-degree view,
two inertial measurement units (IMUs), and real-time kinematic positioning (RTK)

2. 20 seconds of sequential data sampled at 10 Hz with indoor and outdoor scenes obtained
from a mobile robot,

3. 9 seconds of trajectory data represented by vectors of poses, namely (x, y, z)

4. Annotations for 2D & 3D bounding boxes and object IDs

5. Ego-motion of the robot obtained by RTK (for outdoor settings) and the simultaneous
localization and mapping (SLAM) algorithm (for indoor settings)

6. Multi-layered semantic maps obtained from LiDAR point clouds using the SLAM algorithm.

Our entire dataset comprises 60 scenes, totaling 60K images and 12K point cloud frames. This
encompasses approximately 470K 2D annotations and 320K 3D annotations.

Table 1 highlights the distinctive features of the SiT dataset compared to existing human trajectory
datasets. The main contributions of our dataset are summarized as follows.

• Our SiT dataset provides large-scale real-world pedestrian trajectory data obtained through
a robot’s navigation in densely populated indoor and outdoor environments, including the
interiors of buildings, campuses, crosswalks, public pedestrian roads, and more.

• SiT dataset offers the flexibility to design trajectory prediction models using various con-
textual information including appearance features and ego-motion of a robot, and semantic
map data, which could not be supported in the existing datasets.

• SiT dataset supports precise time synchronization between multi-modal sensors using a
centralized sensor triggering method. This facilitates the development of efficient sensor
fusion models tailored for perception and localization tasks.

• SiT dataset provides semantic map data for both indoor and outdoor scenes, encompassing
multi-layered scene information. This comprehensive semantic map data can enhance the
capability of motion prediction models that use static scene contexts around the robot.

• SiT dataset offers sequential raw data accompanied by 2D and 3D box annotations to support
a joint modular design approach [12]. We have curated a benchmark for 3D object detection
task, 3D multi-object tracking (MOT) task, and trajectory prediction task as well as an
end-to-end prediction task that covers perception to motion forecasting.

• SiT dataset is publicly available. The SiT dataset has the potential to open up research
opportunities in the development of learning-based 3D detection, 3D MOT, and trajectory
prediction models in the context of social navigation robots.
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Figure 2: The Husky UGV platform [25] equipped with five cameras providing 360-view coverage,
two 16-channel LiDARs, two IMUs, and RTK.

2 Related Work

ETH [22], UCY [16], and SDD [24] are popular pedestrian trajectory datasets that have been
extensively utilized for developing pedestrian trajectory prediction models. These datasets were
collected using static cameras positioned at elevated locations, capturing the (x, y) coordinates that
represent the spatial locations of pedestrians. Hence, these datasets do not specifically cater to the
development of perception and motion prediction models for social navigation robots. Recently,
STCrowd [9] has been introduced to facilitate the development of pedestrian perception models by
providing camera and LiDAR sensor data. However, the viewpoint of these sensors was also fixed,
which led to a limited variation in the scenes captured across different samples. Consequently, the
aforementioned datasets fail to capture the dynamic nature of human-robot interaction. Argoverse
[5, 32], nuScenes [4], and Waymo Open [27] datasets provide trajectories of vehicles and pedestrians
collected using sensors installed on moving vehicles. These datasets primarily emphasize capturing
vehicle-to-vehicle and vehicle-to-pedestrian interactions in driving scenarios. As a result, they may
not be best suited to address the problems of social navigation robots. JRDB [20] offers camera
and LiDAR sensor data collected from a mobile robot. However, it does not provide a benchmark
specifically for the trajectory prediction task. Additionally, precise temporal synchronization between
the camera and LiDAR data was not achieved in this dataset.

Table 1 provides a summary of the distinctive features offered by our SiT dataset in comparison to
existing trajectory datasets. Our trajectory data is collected in scenarios where a robot navigates
through crowded indoor and outdoor areas, actively interacting with pedestrians. The SiT dataset
provides raw sensor data accompanied by annotations necessary for developing the models spanning
from pedestrian perception to motion prediction. Furthermore, the SiT dataset achieves accurate time
synchronization between different sensor modalities and provides semantic maps that describe the
various scenes.

3 SiT Dataset

3.1 Robot Setup

We remotely operated Clearpath’s Husky unmanned ground vehicle (UGV) platform [25] to collect
different scenes of robot driving data. The robot has four large wheels that allow it to operate in a
variety of environments. As shown in Figure 2, the robot was equipped with the following sensors:

• 2 x Velodyne VLP-16 rotating 3D LiDARs with 16 channels, 0.09 degree angular resolution,
30 degree vertical field of view, 2 cm distance accuracy, generating approximately 1.3
million points per second, and operating at 10 Hz.
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Figure 3: We have collected data from a variety of locations, both indoor and outdoor, that are densely
populated with pedestrians.

• 5 x Basler a2A1920-51gc PRO GigE cameras capturing images at a high resolution of 1920
x 1200, a field of view of 54.3 degree (vertical) x 79 degree (horizontal), and covering the
entire 360-degree area at 10 Hz.

• 1 x MTi-680G IMU & RTK offering pose and global positioning data at 20 Hz in 10 mm +1
ppm circular error probability (CEP), 0.5 degree RMS error of yaw, and 0.2 degree RMS
error of roll and pitch.

• 1 x VectorNav VN-100 IMU providing pose data at 200 Hz with 1.0 degree RMS error of
pitch and roll, and 2.0 degree RMS error of yaw.
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Figure 4: An example of a 12-layered semantic map from the
outdoor scene. Distinct colors are used to represent different
layers.

Our mobile robot runs on Ubuntu
18.04 and robot operating system
(ROS) Melodic. The data captured
by the aforementioned sensors were
recorded in the rosbag file format. The
sensor data is available in both rosbag
and raw data formats. Additionally,
both intrinsic and extrinsic calibration
parameters are included.

Previous studies have demonstrated
that 3D object detection models based
on multiple sensors produce more
robust detection results than single
sensor-based methods [2, 8, 17, 28,
33, 37]. Sensor fusion achieves max-
imum benefits when the camera and
LiDAR sensors are precisely synchro-
nized in time. To ensure this synchro-
nization, we employed a pulse per sec-
ond (PPS) signal generator to trigger two 3D LiDARs and five cameras. This method enables us to
obtain accurately synchronized data from multiple cameras and LiDARs.

3.2 Data Collection

The data was collected in the downtown area of Seoul, South Korea. We selected a variety of indoor
and outdoor locations including hallways, cafeterias, university buildings, streets, and crosswalks, as
shown in the examples in Figure 3. Our dataset contains a diverse and representative set of real-world
driving scenarios. We manually operated a robot platform throughout densely populated areas. We
directed the robot to adhere to social norms when interacting with pedestrians, ensuring it avoided
collisions and respected personal space.

3.3 Robot Localization

The robot’s pose needs to be determined to compensate ego-motion for trajectory generation and
utilize semantic maps for the motion prediction task. We used different localization methods for
indoor and outdoor scenes. We used RTK to estimate the pose of the robot in outdoor scenes.
We implemented the LiDAR-inertial SLAM algorithm as described in [26] for indoor scenes. By
leveraging these localization techniques, we obtained accurate absolute location information for
pedestrians, facilitating object tracking and prediction tasks.
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3.4 Semantic Map

Using scene context information has been proven beneficial in enhancing trajectory prediction models
[13, 15, 19]. To facilitate this, the SiT dataset offers multi-layered semantic maps that encompass
a wide range of scene information. The semantic maps were generated through a two-step process.
Initially, point cloud maps were constructed, followed by manual segmentation using the ASSURE
mapping tools [10]. As shown in Figure 4, these maps use a twelve-layer hierarchical structure
categorized by varying levels of detail.

3.5 Annotations
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Figure 5: Histogram of 3D
cuboids annotated for each
class of objects present in the
SiT Dataset.

The SiT dataset contains annotations consisting of 2D bounding
boxes of images captured by multi-view cameras covering 360-
degree, and 3D cuboids expressed in 3D world coordinates. The
2D boxes were generated based on the existing 3D cuboids sharing
object IDs. While our primary focus is to offer a pedestrian trajec-
tory dataset, we have broadened the annotated classes to include
car, bus, truck, cyclist, and motorcyclist. The distribution of class
categories in our dataset is presented in Figure 5. To maintain a high
standard of annotations, frames taken at a 5Hz sampling rate were
manually labeled by expert annotators. Subsequently, the labels
were interpolated to a higher frequency of 10Hz. This detailed gran-
ularity is crucial to meet the real-time requirements of perception
and prediction in navigation robots.

Trajectory samples were produced by compensating for the ego-
motion in the pedestrian tracks observed over a certain duration.

3.6 Structure of Dataset
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Figure 6: Distribution of distance and velocity for Training-
Valid and Test subsets.

The SiT dataset was split into training,
validation, and test subsets. We split
the dataset so that each subset encom-
passes different scenes. The distribu-
tion of pedestrian distances from the
robot and their velocities are shown
in Figure 6. Consistent pedestrian be-
haviors can be seen across the differ-
ent subsets. Our dataset has been pro-
cessed to facilitate the training of com-
prehensive end-to-end models cover-
ing multiple tasks [12].

3.7 Privacy

To prioritize privacy, all images have been processed to blur pedestrian faces and license plates.
This careful curating ensures the responsible use of the data while maintaining the integrity of the
information for research purposes. Detailed information on privacy concerns can be found in the
Supplementary Material.

4 Data Analysis

In this section, we analyze the characteristics exhibited by the trajectory data in the SiT dataset.
Figure 7 shows the distribution of pedestrians’ locations surrounding the robot in our dataset, where
(0, 0) denotes the location of the robot or ego-vehicles. To provide a basis for comparison, the
distributions from two widely used self-driving datasets, Waymo Open [27] and nuScenes [4] datasets
are also included. In the SiT dataset, pedestrians are predominantly located closer to the robot
compared to other autonomous driving datasets. This can be attributed to the fact that both the robot
and pedestrians share the same path or area. In contrast, in the Waymo Open and nuScenes datasets,

6



30

20

10

0
Dense

10

20

30

Sparse

30 20 10 0 10 20 30

Horizontal Distance from Robot [m]

F
o
r
w
a
r
d
D
is
t
a
n
c
e
fr
o
m
R
o
b
o
t
[
m
]

(a) SiT (ours)

30

20

10

0
Dense

10

20

30

Sparse

30 20 10 0 10 20 30
Horizontal Distance from Robot [m]

F
o

rw
a

rd
D

is
ta

n
c

e
fr

o
m

R
o

b
o

t
[m

]

(b) Waymo Open

30

20

10

0
Dense

10

20

30

Sparse

30 20 10 0 10 20 30
Horizontal Distance from Robot [m]

F
o

rw
a

rd
D

is
ta

n
c

e
fr

o
m

R
o

b
o

t
[m

]

(c) nuScenes

Figure 7: Comparison of the spatial distribution of pedestrians relative to the ego-vehicle across the
SiT, Waymo Open, and nuScenes datasets using kernel density estimates (KDEs). The red cross mark
on the origin point (0, 0) in each plot is designated as the center of the robot or ego-vehicle.
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Figure 8: Comparison with other autonomous vehicle datasets. (a) represents the normalized density
graph of the distance between the robot (or ego-vehicle) and surrounding pedestrians, while (b)
illustrates the number of instances that satisfy some criteria. Space sharing condition refers to
instances where the robot and pedestrians occupy the same semantic space, Proximity condition
indicates cases where the distance between the robot and pedestrian is within 2 meters, and Sharing
& Proxi. indicates cases that fulfill both conditions.

ego-vehicles and pedestrians typically occupy separate roads, resulting in fewer close interactions.
We observe that pedestrians are often positioned alongside ego-vehicles, rather than directly in front
or behind them. Conversely, in our dataset, pedestrians can be found surrounding the robot from all
angles.

Figure 8 demonstrates other attributes of the SiT dataset. Figure 8a shows the distribution of the
distance of pedestrians from the robot. This confirms that in our dataset, the robot engaged in
close-distance interactions with pedestrians. Figure 8b compares the number of trajectory instances
that satisfy two conditions; 1) space sharing and 2) proximity. Space sharing condition indicates
cases where the robot and pedestrian occupy the same semantic domain. We check this condition
by examining the areas of the semantic map where the robot and pedestrians are located. Typically,
when the robot traverses a roadway while a pedestrian walks along a sidewalk, their behaviors tend
to remain unaffected by each other due to the physical separation of their paths. On the other hand,
interactive scenarios arise when they occupy the same semantic space. Proximity condition refers
to cases where the distance between the robot and pedestrian is within 2 meters, indicating close
physical proximity. Figure 8b shows that the SiT dataset exhibits a significantly higher number of
instances that satisfy these two conditions compared to the other three autonomous driving datasets.
This indicates that trajectory datasets designed for autonomous driving may not adequately represent
the human-robot interactions for social navigation robots.
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Methods Modality mAP ↑ AP(0.25) ↑ AP(0.5) ↑ AP(1.0) ↑ AP(2.0) ↑
FCOS3D [30] Camera 0.244 0.024 0.159 0.329 0.463

PointPillars [14] LiDAR 0.351 0.260 0.354 0.374 0.418
Centerpoint-P [36] LiDAR 0.414 0.300 0.424 0.446 0.486
Centerpoint-V [36] LiDAR 0.518 0.397 0.531 0.553 0.592
TransFusion-P [2] LiDAR+Camera 0.390 0.248 0.371 0.437 0.507
TransFusion-V [2] LiDAR+Camera 0.531 0.318 0.536 0.607 0.665

Table 2: Evaluation of 3D pedestrian detection baselines. mAP is obtained from the average of AP
(0.25), AP (0.5), AP (1.0), and AP (2.0). ↑ : the higher, the better.

Methods sAMOTA ↑ AMOTA ↑ AMOTP(m) ↓ MOTA ↑ MOTP(m) ↓ IDS ↓
PointPillars [14] + AB3DMOT [31] 0.4110 0.1047 0.3580 0.4086 1.0277 1048

Centerpoint Detector [36] + AB3DMOT [31] 0.4841 0.1398 0.3958 0.4586 0.9836 554
Centerpoint Tracker [36] 0.6070 0.2007 0.2679 0.4760 0.5140 1136

Table 3: Evaluation of 3D pedestrian tracking baselines. ↑ : the higher, the better. ↓: the lower, the
better.

5 Benchmarks and Experiments

In this section, we introduce the benchmarks designed for evaluating various 3D perception and
motion prediction models. We also present the performance results of several baseline models on
these benchmarks.

5.1 Benchmarks

Detailed information on the computation of these performance metrics can be found in the Supple-
mentary Material.

3D Pedestrian Detection. The SiT dataset offers 3D pedestrian detection benchmark. The models
generate 3D cuboids that encompass pedestrians in the scene for a given input frame. To evaluate
the performance of 3D object detectors, mean average precision (mAP) metric is widely used. The
success of detection can be determined based on different criteria. For example, KITTI dataset [11]
used intersection over Union (IoU) metric while nuScenes dataset [4] used the distance between two
cuboid centers. In the SiT dataset, we adopt AP based on the distance metric using the thresholds of
0.25, 0.5, 1.0, and 2.0m.

3D Pedestrian Tracking. The SiT dataset offers the benchmark for evaluating 3D pedestrian tracking
algorithms. Given a sequence of data frames, the 3D pedestrian tracking models generate object
tracks that indicate the pedestrians’ movements over time. We adopt widely used performance
metrics including sAMOTA, AMOTA, AMOTP, MOTA, MOTP, and identity switches (IDS) [3, 31]
to evaluate the performance of tracking models.

Pedestrian Trajectory Prediction. The pedestrian trajectory prediction benchmark is presented
to evaluate the accuracy of trajectory prediction. Average displacement error (ADE) and final
displacement error (FDE) are widely used as evaluation metrics [1, 22]. ADE represents the average
error in predicted trajectories compared to ground truth over all time steps, and FDE quantifies
the deviation between the predicted final position and ground truth at the last time step. Using the
preceding 2-second trajectory as input, the trajectory prediction models generate a set of K 7-second
future trajectories, representing K distinct modes of future trajectory distribution. To evaluate the
prediction accuracy of these K trajectories, we use ADEK and FDEK , which represent the minimum
ADE and FDE values among the K trajectory candidates.

End-to-End Motion Prediction. In the end-to-end motion prediction task, the models take raw
sensor data as input and generate future 3D bounding boxes, accompanied by the corresponding
object trajectories. We consider a 7-second future horizon for trajectory prediction. We use mAPf

metric proposed in FutureDet [23] along with the conventional ADE and FDE as performance metrics.
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Methods Map ADE5 ↓ FDE5 ↓ ADE20 ↓ FDE20 ↓
Social-LSTM [1] 1.638 3.121 1.630 3.103

Y-Net [19] 1.527 2.802 0.836 1.878
Y-Net [19] ✓ 1.361 2.624 0.675 1.547

NSP-SFM [38] 1.346 2.261 0.634 1.087
NSP-SFM [38] ✓ 1.061 1.818 0.517 0.925

Table 4: Evaluation of pedestrian trajectory
prediction baselines based on ADE5, FDE5,
ADE20, and FDE20. ↓: the lower, the better.

Methods mAP ↑ mAPf ↑ ADE5 ↓ FDE5 ↓
FaF [18] 0.490 0.079 1.915 3.273

FutureDet-P [23] 0.209 0.037 2.532 4.537
FutureDet-V [23] 0.408 0.053 2.416 4.409

Table 5: Evaluation of end-to-end motion predic-
tion baselines. ↑ : the higher, the better. ↓: the
lower, the better.

5.2 Performance of Baseline Models

In this section, we present the performance of several baseline models for each benchmark. All
experiments were performed on 4 NVIDIA RTX3090 GPUs with 2 Intel Xeon CPUs. Detailed
configurations of the baseline models can be found in the Supplementary Material.

3D Pedestrian Detection. Table 2 presents the performance of four baseline methods, FCOS3D
[30], PointPillars [14], CenterPoint [36], and TransFusion [2] evaluated in 3D Pedestrian Detection
benchmark. CenterPoint-P and TransFusion-P utilized the PointPillars as encoding backbone, while
CenterPoint-V and TransFusion-V employed SECOND [34] as the voxel encoding backbone. Note
that camera-LiDAR fusion yields better performance compared to models relying on a single modality.

3D Pedestrian Tracking. We considered AB3DMOT [31] and the CenterPoint tracker as the baseline
models for 3D MOT. We applied AB3DMOT to PointPillar and CenterPoint detectors. Table 3
presents the performance of the baselines evaluated on the SiT dataset.

Pedestrian Trajectory Prediction. Table 4 presents the performance of Social-LSTM [1], Y-Net
[19], and NSP-SFM [38]. For Y-Net and NSP-SFM, the scene encoding was conducted utilizing the
semantic maps offered from our dataset. In Table 4, we confirm the benefit of utilizing scene contexts
for trajectory prediction.

End-to-end Motion Prediction. Table 5 presents the performance of two end-to-end motion
prediction baseline models: Fast and Furious [18] and FutureDet [23]. FutureDet-P uses PointPillars
as the encoding backbone while FutureDet-V utilizes SECOND as the voxel encoding backbone.

6 Conclusions

In this paper, we introduced the SiT dataset, a new pedestrian trajectory dataset designed to facilitate
the development of perception and motion prediction models for social navigation robots. The SiT
dataset comprises pedestrian trajectories gathered from a variety of social interaction scenarios that
can be encountered by robots during navigation in the real world. Our analysis revealed that the
SiT dataset effectively captured the behavior of pedestrians in close proximity to the robot within a
shared semantic space on the map. The SiT dataset also offered high-quality annotations for 2D and
3D object detection and tracking, enabling the design of end-to-end motion prediction models in the
upstream pipeline. These features make the SiT dataset unique when compared to existing pedestrian
trajectory datasets. We hope that our proposed dataset and baselines provide a strong foundation for
future research in pedestrian perception and have the potential to accelerate the development of fully
autonomous robots.

One limitation of our dataset is that we were unable to scale the size of the dataset up to hundreds
of thousands of frames due to time constraints. However, we are planning to address this limitation
by adding an additional dataset in the second phase release, called SiT dataset v2, to significantly
expand the scale of our dataset.
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