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Abstract

We identify incremental learning dynamics in transformers, where the difference
between trained and initial weights progressively increases in rank. We rigorously
prove this occurs under the simplifying assumptions of diagonal weight matrices
and small initialization. Our experiments support the theory and also show that
phenomenon can occur in practice without the simplifying assumptions.

1 Introduction

The transformer architecture achieves state of the art performance in various domains, yet we still lack
a solid theoretical understanding of its training dynamics [VSP+17, DCLT19, LOG+19, DBK+20].
Nevertheless, the theoretical toolbox has matured over the last years and there are promising new
approaches. One important line of work examines the role that initialization scale plays on the
trajectory taken by gradient descent [JGH18, COB18, GSJW19, MGW+20, JGS+21, SS21, KC22].
When the weights are initialized small, it has been shown for simple networks that an incremental
learning behaviour occurs, where functions of increasing complexity are learned in stages. This
regime is known to be richer than the large-initialization regime1, but the incremental learning
dynamics are difficult to analyze, and are so far understood only for extremely simple architectures.
Can we apply this analysis to transformers? Namely:

Are there incremental learning dynamics when training a transformer architecture?

An obstacle is that past work on incremental learning has mainly studied linear networks
[Ber22, ACHL19, MKAA21, LLL20, WGL+19, JGS+21, GSSD19, SKZ+23, PF23], with one
paper studying nonlinear 2-layer fully-connected networks [BPVF22]. In contrast, transformers have
nonlinear attention heads that do not fall under previous analyses: given X ∈ Rn×d, an attention
head computes

attention(X;WK ,WQ,WV ,WO) = smax(XWKW
⊤
QX

⊤)XWVW
⊤
O (1)

whereWK ,WQ,WV ,WO ∈ Rd×d′
are trainable matrices, and the softmax is applied row-wise. A

transformer is even more complex, since it is formed by stacking alternating layers of attention heads
and feedforward networks, along with residual connections.

Main finding Our main finding is that transformers exhibit incremental learning dynamics, where
the difference between the trained and initial weights incrementally increases in rank. Our results
have a theoretical component and an experimental component.

1In the large-initialization regime, deep learning behaves as a kernel method [JGH18, COB18]. Various
separations with kernels are known for smaller initialization: e.g., [GMMM19, ABM22, MKAS21].
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Figure 1: For an attention head in
ViT trained on (a) CIFAR-10, and
(b) ImageNet, we plot the normal-
ized spectra of WKW

⊤
Q at initial-

ization (in red), and of the learned
perturbations to WKW

⊤
Q at differ-

ent iterations (in green).

Theoretical contributions For our theory, we study a simplification of the transformer architec-
ture, where the attention head weights are diagonal matrices: i.e., in each attention head we have
WK = diag(wK), where wK ∈ Rd are trainable weights, and similarly for WQ,WV and WO.
We rigorously establish the training dynamics of this architecture under gradient flow when the
initialization is small. We prove that dynamics occur in discrete stages: (1) during most of each stage,
the loss plateaus because the weights remain close to a saddle point, and (2) at the end, the saddle
point is quickly escaped and the rank of the weights increases by at most one.

This theoretical result on transformers follows from a general theorem characterizing the learning
dynamics of networks fNN that depend on the product of parameters u,v ∈ Rp as

fNN(x;u,v) = h(x;u⊙ v) , (2)

where x is the input, ⊙ denotes the elementwise product, and h is a smooth function.

Theorem 1.1 (Informal statement of incremental learning dynamics). Let fNN be a network of
the form (2), and suppose that the weights are initialized very small: i.e., the entries of u,v are
initialized on the order Θ(α) for some small α > 0. Then the dynamics of gradient flow training
effectively proceeds in discrete stages, each one lasting time Θ(log(1/α)). In each stage, the number
of nonnegligible entries of u⊙ v increases by at most one.

A transformer with diagonal weight matrices falls under this result when we only train the attention
head weights. For example, if the transformer has one attention head, then we can take u =
[wK ,wV ] ∈ R2d and v = [wQ,wO] ∈ R2d to be concatenations of the diagonal entries of the
weights of the head; see Example 3.2 for more details and the extension to transformers with many
heads. Then, using Theorem 1.1, we see that in each stage eitherWKW

⊤
Q = diag(wK)diag(wQ)

orWVW
⊤
O = diag(wV )diag(wO) increases in effective rank by at most one.2

Experimental contributions In our experiments, we first validate our theoretical results, which
require the simplifying assumptions of small initialization and diagonal weight matrices.

Then, we conduct experiments on vision and language transformers in settings closer to practice,
without any of the assumptions required by our theoretical analysis. Perhaps surprisingly, we again
observe incremental learning dynamics, even though the assumptions of the theory are not met. The
difference between trained and initial weights has low rank, and the rank of this difference grows
gradually during training; see Figure 1. The incremental nature of the dynamics is easier to see for
ImageNet, since for CIFAR-10 the rank of the weight difference does not grow as much.

1.1 Related work

Relation to LoRA We note an intriguing connection to the LoRA algorithm, where a pretrained
base model is cheaply fine-tuned by training a low-rank perturbation of the weights [LFLY18,
AZG20, HSW+21]. The method is surprisingly powerful, and recently LoRA has been fundamental
to allowing the open-source community to inexpensively fine-tune language models [PA23, TGZ+23].
On the other hand, in our work we observe that the trained weights are a low-rank perturbation of the
initial weights due to the training dynamics, without having to apply an explicit rank constraint as in
LoRA. This raises an exciting open question for future work: can we explain and improve algorithms
like LoRA by better understanding and quantifying the incremental dynamics of large transformers?

2We also remark that Theorem 1.1 is interesting in its own right and may have other applications beyond
transformers. It qualitatively recovers the incremental dynamics result of [Ber22, PF23] when specialized to
linear diagonal networks, i.e., when fNN(x;u,v) =

∑p
i=1 uivixi.
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Low-rank bias in nonlinear networks For 2-layer networks, it is known that low-rank bias in
the weights emerges if the target function depends on a low-dimensional subspace of the input
[ABM22, ABM23, DLS22, BBSS22, MHPG+22]. The results of [ABM22, ABM23] are especially
relevant, since they show that the rank of the weights increases in a sequential manner, determined
by the “leap complexity” of the target function, which is reminiscent of our empirical observations
on transformers. See also [FVB+22, TVS23] for more investigations of low-rank bias in 2-layer
networks under different assumptions. For transformers, [YW23] report that empirically the trained
weights (using default initialization) are not low-rank. This is consistent with our claim that the
difference between initial and trained weights is low-rank, since the initial weights might not be
low-rank.

Incremental learning dynamics Several works prove incremental learning behaviour in deep
linear networks when the initialization is small. [GBLJ19] has shown that gradient descent dynamics
on a 2-layer linear network with L2 loss effectively solve a reduced-rank regression problem with
gradually increasing rank. [GSSD19] prove a dynamical depth separation result, allowing for
milder assumptions on initialization scale. [ACHL19, MKAA21] show implicit bias towards low
rank in deep matrix and tensor factorization. [LLL20] show deep matrix factorization dynamics
with small initialization are equivalent to a greedy low-rank learning (GLRL) algorithm. And
[JGS+21] independently provides a similar description of the dynamics, but without requiring
balanced initialization. Finally, [Ber22, JLL+23, PF23] overcome a technical hurdle from previous
analyses by proving incremental learning for the entire training trajectory, rather than just the first
stage. In contrast to our result, these prior works apply only to linear networks with certain convex
losses, whereas our result applies to nonlinear networks. In order to make our extension to nonlinear
networks possible, we must make stronger assumptions on the training trajectory, which we verify
hold empirically. As far as we are aware, one other work on incremental learning handles nonlinear
networks: [BPVF22] proves that a 2-layer network learns with a two-stage incremental dynamic; but
that result needs the stylized assumption that all data points are orthogonal.

1.2 Paper organization

Sections 2, 3, and 4 contain theoretical preliminaries, definitions of the models to which our theory
applies, and our main theoretical result on incremental dynamics. Section 5 provides experiments
which verify and extend the theory. Section 6 discusses limitations and future directions.

2 Preliminaries

We consider training a network fNN(·;θ) parametrized by a vector of weights θ, to minimize a loss

L(θ) = Ex,y[ℓ(y, fNN(x;θ))] ,

where the expectation is over samples (x,y) ∈ Rdx × Rdy from a training data distribution, and
ℓ : Rdy × Rdout → R. Consider a solution θ(t) to the gradient flow3

θ(0) = αθ0,
dθ

dt
= −∇θL(θ) (3)

where α > 0 is a parameter governing the initialization scale, that we will take small. For our theory,
we henceforth require the following mild regularity assumption on the loss and data.

Assumption 2.1 (Regularity of data distribution and loss). The function ℓ(y, ζ) is continuously
twice-differentiable in the arguments [y, ζ] ∈ Rdy+dout . There exists C > 0 such that almost surely
the data is bounded by ∥x∥, ∥y∥ ≤ C.

The assumption on ℓ is satisfied in typical cases such as the square and the cross-entropy losses. The
data boundedness is often satisfied in practice (e.g., if the data is normalized).

We also use the notation supp(a) := {i : ai ̸= 0} to denote the support of a vector a.

3Gradient flow training can be obtained as a limit of SGD or GD training as the learning rate tends to 0 (see,
e.g., [Bac20]). It is a popular testbed for studying learning dynamics (see e.g., [SMG13, ACH18, RC20]), since
is generally simpler to analyze than SGD.
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3 Neural networks with diagonal weights

Our theory analyzes the training dynamics of networks that depend on products of diagonal weight
matrices. We use ⊙ to denote elementwise vector product.
Definition 3.1. A network fNN is smooth with diagonal weights θ = (u,v) ∈ R2p if it is of the form

fNN(x;θ) = h(x;u⊙ v)

where h : Rdx × Rp → Rdout is continuously twice-differentiable in its arguments in Rdx+p.

The assumption on h precludes the use of the ReLU function since it is not continuously-differentiable.
Otherwise the assumption is fairly mild since any h can be used to express an architecture of any
depth as long as the nonlinearities are twice-differentiable, which includes for example GeLUs (as
used in ViT). We describe how to express a transformer with diagonal weights.
Example 3.2 (Transformer with diagonal weights). A transformer with L layers and H attention
heads on each layer is defined inductively by Z0 =X ∈ Rn×d and

• (Attention layer) Z̃ℓ = Zℓ−1 +
∑H

i=1 attention(Zℓ−1;W
ℓ,i
K ,W ℓ,i

Q ,W ℓ,i
V ,W ℓ,i

O )

• (Feedforward layer) Zℓ = Z̃ℓ + σ(Z̃ℓW
ℓ
A)(W

ℓ
B)

⊤ ,

where W ℓ,i
K ,W ℓ,i

Q ,W ℓ,i
V ,W ℓ,i

O ∈ Rd×d′
are attention parameters, and W ℓ

A,W
ℓ
B ∈ Rd×d′

are the
feedforward parameters, and σ is a continuously twice-differentiable activation. Suppose that the
attention parameters are diagonal matrices: i.e.,W ℓ,i

K = diag(wℓ,i
K ) ∈ Rd×d, and similarly for the

W ℓ,i
Q ,W ℓ,i

V ,W ℓ,i
O matrices. Then by the definition of the attention layer (1), the final output of

the transformer ZL only depends on the attention parameters through the elementwise products
wℓ,i

K ⊙w
ℓ,i
Q and wℓ,i

V ⊙w
ℓ,i
O . In other words, we can write

ZL = h(X;u⊙ v) ,

for vectors u = [wℓ,i
K ,wℓ,i

V ](ℓ,i)∈[L]×[H] ∈ R2dHL and v = [wℓ,i
Q ,wℓ,i

O ](ℓ,i)∈[L]×[H] ∈ R2dHL, and
some smooth model h. Thus, if only the attention layers are trained, the diagonal transformer fits
under Definition 3.1.

4 Incremental learning in networks with diagonal weights

We prove that if the initialization scale α is small, then learning proceeds in incremental stages, where
in each stage the effective sparsity of the weights increases by at most one. These stages are implicitly
defined by Algorithm 1 below, which constructs a sequence of times 0 = T0 < T1 < · · · < Tk < · · ·
and weight vectors θ0,θ1, . . . ,θk, . . . ∈ R2p that define the stages. We prove the following:
Theorem 4.1 (Incremental dynamics at small initialization). Let fNN be a model with diagonal
weights as in Definition 3.1. For any stage k and time t ∈ (Tk, Tk+1) the following holds under
Assumptions 2.1, 4.3, 4.4 and 4.5. There is α0(t) > 0 such that for all α < α0, there exists a unique
solution θ : [0, t log(1/α)]→ Rp to the gradient flow (3) and

lim
α→0

θ(t · log(1/α))→ θk ,

and at each stage the sparsity increases by at most one: supp(θk+1) \ supp(θk) ⊆ {ik}.4

Application: transformer with diagonal weights Before giving the intuition for this theorem and
stating the assumptions formally, let us discuss its application to the diagonal transformer model
from Example 3.2. As a corollary of Theorem 4.1, the gradient flow on a diagonal transformer with
small initialization will learn in stages, where in each stage there will be at most one head i ∈ [H]

in one layer ℓ ∈ [L] such that either the rank ofW ℓ,i
K (W ℓ,i

Q )⊤ = diag(wℓ,i
K )diag(wℓ,i

Q ) or the rank
ofW ℓ,i

V (W ℓ,i
O )⊤ = diag(wℓ,i

V )diag(wℓ,i
O ) increases by at most one. In Figure 2, we illustrate these

dynamics in the toy case of a single attention head trained in a student-teacher setup.
4Abusing notation, for θ = (u,v) ∈ Rp × Rp, we write supp(θ) = supp(u) ∪ supp(v).
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Algorithm 1 Incremental learning in networks with diagonal weights
1: b0, θ0 ← 0 ∈ Rp, T0 ← 0
2: for stage number k = 0, 1, 2, . . . do
3: # (A) Pick new coordinate ik ∈ [p] to activate.
4: For each i, define time ∆k(i) until active using (10).
5: Pick winning coordinate ik using (11)
6: Calculate time Tk+1 using (11) and break if∞
7: Update logarithmic weight approximation bk+1 using (12)
8: # (B) Train activated coordinates to stationarity.
9: θk+1 ← limiting dynamics point from (13)

10: end for
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Figure 2: (a) Loss versus rescaled time in the toy task of learning an attention head with diagonal
weights, for various initialization scales α. The loss curves converge as α → 0 to a curve with
stagewise loss plateaus and sharp decreases, as predicted by the theory; some stagewise learning
behavior is already clear with α = 0.01. (b) Each line shows the evolution of one of the entries
of diag(wQ)diag(wK) and diag(wV )diag(wO) over rescaled time, demonstrating that the rank of
these matrices increases incrementally; see Appendix A for experimental details and further results.

4.1 Intuition for incremental learning dynamics

We develop an informal intuition for Theorem 4.1 and fill out the definition of Algorithm 1. A model
fNN with diagonal weights θ = (u,v) as in Definition 3.1 evolves under the gradient flow (3) as

du

dt
= v ⊙ g(θ), dv

dt
= u⊙ g(θ) where (4)

g(θ) = −Ex,y[Dℓ(y, h(x;u⊙ v))⊤Dh(x;u⊙ v)⊤] .

Here Dℓ(y, ·) ∈ R1×dout is the derivative of ℓ in the second argument and Dh(x, ·) ∈ Rdout×p is the
derivative of h in the second argument. The first key observation is a conservation law that simplifies
the dynamics. It can be viewed as the balancedness property for networks with linear activations
[ACH18, DHL18], specialized to the case of diagonal layers.
Lemma 4.2 (Conservation law). For any i ∈ [p] and any time t, we have

u2i (t)− v2i (t) = u2i (0)− v2i (0) . (5)

Proof. This follows from d
dt (u

2
i − v2i ) = uivigi(θ)− uivigi(θ) = 0.
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The conservation law reduces the degrees of freedom and means that we need only keep track of
p parameters in total. Specifically, if we define wi(t) := ui(t) + vi(t), then the vector w(t) =
u(t) + v(t) evolves by

dw

dt
= w ⊙ g(θ) . (6)

Using the conservation law (5), we can keep track of the weights in terms of the initialization and
w(t):

θ(t) =

(
1

2
(w(t) +

u⊙2(0)− v⊙2(0)

w(t)
),
1

2
(w(t)− u

⊙2(0)− v⊙2(0)

w(t)
)

)
(7)

Therefore it suffices to analyze the dynamics of w(t).

4.1.1 Stage 1 of dynamics

Stage 1A of dynamics: loss plateau for time Θ(log(1/α)) At initialization, θ(0) ≈ 0 because
the weights are initialized on the order of α which is small. This motivates the approximation
g(θ(t)) ≈ g(0), under which the dynamics solve to:

w(t) ≈ w(0)⊙ eg(0)t. (8)

Of course, this approximation is valid only while the weights are still close to the small initialization.
The approximation breaks once one of the entries of θ(t) reaches constant size. By combining (7)
and (8), this happens at time t ≈ T1 · log(1/α) for

T1 = min
i∈[p]

1/|gi(0)| .

Until this time, the network remains close to its initialization, and so we observe a loss plateau.

Stage 1B of dynamics: nonlinear dynamics for time O(1) Subsequently, the loss decreases
nonlinearly during a O(1) time-scale, which is vanishingly short relative to the time-scale of the loss
plateau. To prove this, we make the non-degeneracy assumption that there is a unique coordinate
i0 such that 1/|gi0(0)| = T1. Under this assumption, in stage 1A all weights except for those at
coordinate i0 remain vanishingly small, on the order of oα(1). Concretely, for any small ϵ > 0, there
is a time t1(ϵ) ≈ T1 · log(1/α) and sign s ∈ {+1,−1} such that5

ui0(t1) ≈ ϵ, vi0(t1) ≈ sϵ and |ui(t1)|, |vi(t1)| = oα(1) for all i ̸= i0.

Because all coordinates except for i0 have vanishingly small oα(1) weights after stage 1A, we may
perform the following approximation of the dynamics. Zero out the weights at coordinates except
for i0, and consider the training dynamics starting at θ̃ = (ϵei0 , sϵei0). After O(1) time, we should
expect these dynamics to approach a stationary point. Although the evolution is nonlinear, all entries
remain zero except for the i0 entries, so the stationary point is also sparse. Mathematically, there is a
time t̄1 = t1 +O(1) ≈ T1 · log(1/α) such that

θ(t̄1) ≈ (aei0 , saei0) := θ
1 ,

for some a ∈ R>0, where θ1 is a stationary point of the loss.6 Despite the nonlinearity of the
dynamics, the approximation can be proved using Grönwall’s inequality since t̄1 − t1 = O(1) is a
constant time-scale.

To summarize, we have argued that the network approximately reaches stationary point that is
1-sparse, where only the weights at coordinate i0 are nonzero.

5Without loss of generality, we can ensure that at initialization u(0) and u(0) + v(0) are nonnegative. This
implies u(t) is nonnegative. The fact that ui0 and vi0 are roughly equal in magnitude but might differ in sign is
due to the conservation law (5). See Appendix C.3 for details.

6The entries of u and v are close in magnitude (but may differ in sign) because of the conservation law (5).
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4.1.2 Later stages

We inductively extend the argument to any number of stages k, where each stage has a Θ(log(1/α))-
time plateau, and then a O(1)-time nonlinear evolution, with the sparsity of the weights increasing
by at most one. The argument to analyze multiple stages is analogous, but we must also keep
track of the magnitude of the weights on the logarithmic scale, since these determine how much
longer . Inductively on k, suppose that there is some Tk ∈ R, bk ∈ Rp and θk ∈ R2p and a time
t̄k ≈ Tk · log(1/α) such that

logα(w(t̄k)) ≈ bk and θ(t̄k) ≈ θk,

where θk is a stationary point of the loss. Our inductive step shows that there is Tk+1 ∈ R such that
during times t ∈ (t̄k, Tk+1 · log(1/α)− Ω(1)) the weights remain close to the stationary point from
the previous stage, i.e., θ(t) ≈ θk. And at a time t̄k+1 ≈ Tk+1 · log(1/α) we have

logα(w(t̄k+1)) ≈ bk+1 and θ(t̄k+1) ≈ θk+1,

where θk+1 and bk+1 are defined below (summarized in Algorithm 1). Most notably, θk+1 is a
stationary point of the loss whose support grows by at most one compared to θk.

Stage (k + 1)A, loss plateau for time Θ(log(1/α)) At the beginning of stage k + 1, the weights
are close to the stationary point θk, and so, similarly to stage 1A, linear dynamics are valid.

w(t) ≈ w(t̄k)⊙ eg(θ
k)(t−t̄k) . (9)

Using the conservation law (7), we derive a “time until active” for each coordinate i ∈ [p], which
corresponds to the time for the weight at that coordinate to grow from oα(1) to Θ(1) magnitude:

∆k(i) =

{
(bki − 1 + sgn(gi(θ

k)))/gi(θ
k), if gi(θk) ̸= 0

∞, if gi(θk) = 0
(10)

The linear dynamics approximation (9) breaks down at a time t ≈ Tk+1 · log(1/α), where

Tk+1 = Tk +∆k(ik), ik = argmin
i∈[p]

∆k(i) , (11)

which corresponds to the first time at the weights at a coordinate grow from oα(1) to Θ(1) magnitude.
And at times t ≈ Tk+1 · log(1/α), on the logarithmic scale w is given by

logα(w(t)) ≈ bk+1 := bk − g(θk)∆k(ik) , (12)

Stage (k + 1)B of dynamics: nonlinear dynamics for time O(1) Subsequently, the weights
evolve nonlinearly during O(1) time. In a similar way to the analysis of Stage 1B, we show that at a
time t̄k+1 = tk+1 +O(1) ≈ Tk+1 · log(1/α), we have

θ(t̄k+1) ≈ θk+1 := lim
ϵ→0

lim
t→∞

ψk(t, ϵ) , (13)

where the dynamics ψk(t, ϵ) ∈ R2p are initialized at ψk(0, ϵ) = θk + (ϵeik , sgn(gi(θ
k))ϵeik) and

evolve according to the gradient flow dψk(t,ϵ)
dt = −∇θL(ψk). This concludes the inductive step.

4.2 Assumptions for incremental dynamics

To make this intuition rigorous, we formalize below the assumptions required for Theorem 4.1. In
Figure 3 and Appendix A, we provide experiments validating these assumptions on the toy model.

The first assumption is that the dynamics are non-degenerate, in the sense that two coordinates do
not have weights that grow from oα(1) to Θ(1) size at the same rescaled time. We also place a
technical condition to handle the corner case when a coordinate leaves the support of the current
stage’s stationary point.
Assumption 4.3 (Nondegeneracy of dynamics in part (A)). The initialization satisfies |ui(0)| ≠
|vi(0)| for all i. For stage k, either Tk+1 =∞ or there is a unique minimizer ik to mini ∆k(ik) in
(11). Finally, for all i ∈ supp(θk−1) \ supp(θk) we have gi(θk) ̸= 0.
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Figure 3: Validation of assumptions on the toy model of learning a single attention head. (a)
Assumption 4.4: weights perturbed at a random time during training (solid lines) tend back to the
near-stationary point (dashed lines). (b) Assumption 4.5: weights perturbed at the beginning of a
stage (solid lines) have same nonlinear evolution as without perturbation (dashed lines). Details of
these experiments and further validations are provided in Appendix A.

Next, we require that very small perturbations of the coordinates outside of supp(θk) do not change
the dynamics. For this, it suffices that θk be a strict local minimum.
Assumption 4.4 (Stationary points are strict local minima). For stage k, there exist δk > 0 and
ck > 0 such that for ũ ∈ B(uk, δ) supported on supp(uk), we have

L(ũ, sk ⊙ ũ) ≥ ck∥uk − ũ∥2

Finally, we require a robust version of the assumption that the limit (13) exists, asking for convergence
to a neighborhood of θk+1 even when the initialization is slightly noisy.
Assumption 4.5 (Noise-robustness of dynamics in part (B)). For any stage k with Tk+1 <∞ and any
ϵ > 0, there are δ > 0 and τ : R>0 → R such that the following holds. For any ũ ∈ B(uk, δ)∩Rp

≥0

supported on supp(ũ) ⊆ supp(uk) ∪ {ik}, there exists a unique solution ψ : [0,∞)→ Rp of the
gradient flow dψ

dt = −∇θL(ψ) initialized at ψ(0) = (ũ, sk+1 ⊙ ũ), and at times t ≥ τ(ψ̃ik),

∥ψ(t)− θk+1∥ < ϵ .

5 Experimental results

We run experiments that go beyond the toy diagonal attention head model (see Figures 2 and 3) to
test the extent to which low-rank incremental learning occurs in popular models used in practice. We
conduct experiments with vision transformers (ViT) [DBK+20] trained on the CIFAR-10/100 and
ImageNet datasets, and with the GPT-2 language transformer [BMR+20] trained on the Wikitext-103
dataset. Full experiments are deferred to Appendix B.

Gradual rank increase in vision and language models We train practical transformer architectures
on vision and language tasks using Adam and the cross-entropy loss. We train all layers (including
the feedforward layers). To capture the low-rank bias with a non-vanishing initialization scale, we
study the spectrum of the difference ∆WKW

⊤
Q and ∆WVW

⊤
O between the weights post-training

and their initial values. Specifically, in Figure 4, we plot the stable rank of the differences ∆WKW
⊤
Q

and ∆WVW
⊤
O . The weight perturbation learned during the training process gradually increases in

stable rank during training, and is ultimately low-rank when compared to the initial spectrum. Finally,
for CIFAR-10, we plot the spectrum of ∆WKW

⊤
Q against that of its initialized state in Figure 5

for different self-attention heads, illustrating that the weight perturbation learned during the training
process is extremely low-rank when compared to the initial spectrum. In Appendix B, we also study
optimization with SGD, which shows similar gradual rank increase behavior.

Effect of initialization scale We probe the effect of initialization scale on gradual rank increase
dynamics for a ViT trained on CIFAR-10. We use a ViT of depth 6, with 8 self-attention heads per
layer (with layer normalization). We use an embedding and MLP dimension of demb = 512, and
a head dimension of dh = 128 (i.e WK ,WQ,WV ,WO ∈ Rdemb×dh). We train the transformer
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Figure 4: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O (orange) on an arbitrary chosen layer

throughout training for four different pairs of networks and tasks. The stable rank of a matrix W
is defined as ∥W ∥2F /∥W ∥22, and gives a smooth approximation of the rank. Mean and standard
deviation (shaded area) are computed across all heads in each attention layer. Full details and results
are in Appendix B.

(a) (b) (c)

(d) (e) (f)

Figure 5: Spectrum of the weight perturbation ∆WKW
⊤
Q vs. initialization in a vision transformer

trained on CIFAR-10, using Adam and default initialization scale, in random self-attention heads in
different layers. The learned perturbation exhibits extreme low-rank bias post-training even in default
initialization scales. Analogous plots for CIFAR-100 and ImageNet are in Appendix B.

using Adam with the cross-entropy loss. We train all layers (including the feedforward layers) while
varying the initialization scale of all layers by multiplying their initial values by a scale factor (we fix
the scale of the initial token mapper). Figure 6 shows the evolution of the principal components of
∆WKW

⊤
Q and ∆WVW

⊤
O for a randomly-chosen self-attention head and layer throughout training,

exhibiting incremental learning dynamics and a low-rank bias. Note that incremental learning and
low-rank bias are increasingly evident with smaller initialization scales, as further demonstrated in
Figure 7.

6 Discussion

We have identified incremental learning dynamics in transformers, proved them rigorously in a
simplified setting, and shown them experimentally in networks trained with practical hyperparameters.

Limitations There are clear limitations to our theory: the diagonal weights and small initialization
assumptions. More subtly, the theory does not apply to losses with exponential-like tails because the
weights may not converge to a finite value and so Assumption 4.4 is not met (this could possibly be
addressed by adding regularization). Also, the architecture must be smooth, which precludes ReLUs –
but allows for smoothed ReLUs such as the GeLUs used in ViT [DBK+20]. Finally, the theory is for
training with gradient flow, while other optimizers such as Adam are used in practice instead [KB14].
Nevertheless, our experiments on ViTs indicate that the incremental learning dynamics occur even
when training with Adam.

9



(a) (b) (c)

(d) (e) (f)

Figure 6: Training a vision transformer on CIFAR-10 using Adam, while varying the initialization
scale (unit scale indicates default initialization). Plotted are the evolution of the eigenvalues of
∆WKW

⊤
Q (a) - (c) and ∆WVW

⊤
O (d) - (f) in a random self-attention head in the second layer

throughout training. Incremental learning dynamics and a low-rank bias are evident for all scales,
albeit more pronounced at smaller initialization scales.

(a) (b) (c)

Figure 7: Stable rank of ∆WKW
⊤
Q per initialization scale (Unit scale refers to the default initializa-

tion) in different self-attention heads post-training, at layers 1, 3, 5. At each layer, the stable rank
mean and standard deviation are computed across 8 heads per layer, for each initialization scale. All
models were trained on CIFAR-10 using the Adam optimizer. Smaller initialization scales lead to
lower-rank attention heads.

Future directions An interesting avenue of future research is to develop a theoretical understanding
of the implicit bias in function space of transformers whose weights are a low-rank perturbation of
randomly initialized weights. Another promising direction is to examine the connection between our
results on incremental dynamics and the LoRA method [HSW+21], with the goal of explaining and
improving on this algorithm; see also the discussion in Section 1.1. Along this vein, a concurrent
work [ZZC+23] independently observes gradual rank increase dynamics during transformer training
and this inspires a low-rank training algorithm that obtains runtime and memory improvements
over regular training. The results of [ZZC+23] are complementary to ours, since they study the
feedforward layers of the transformer, and their theory applies to linear networks in the standard
initialization scale; in contrast, we study the attention layers, and our theory applies to nonlinear
networks with small initialization scale.
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A Experimental validation of the assumptions in Theorem 4.1

In Figures 2, 8, and 9, we plot the evolution of the losses, of the entries of WKW
⊤
Q =

diag(wK)diag(wQ), and of the entries of WVW
⊤
O = diag(wV )diag(wO) in the toy task of

training an attention head (1) with diagonal weights. The model is trained with SGD on the mean-
squared error loss on 1000 random samples (X,y). Each random sample hasX ∈ R10×50, which a
sequence of 10 tokens, each of dimension 50, which is distributed as isotropic Gaussian. The label y is
given by a randomly-generated teacher model that is also an attention head (1) with diagonal weights.
In Figures 2, 8, and 9, for α ∈ {0.1, 0.01, 0.0001, 10−8, 10−16, 10−32} we plot the evolution of the
loss and of the weights when initialized at θ(0) = αθ0, for some random Gaussian θ0. Qualitatively,
as α→ 0 we observe that the loss curve and the trajectories of the weights appear to converge to a
limiting stagewise dynamics, where there are plateaus followed by movement on short time-scales, as
predicted by the theory.

Validation of Assumption 4.3 (non-degeneracy of dynamics) As α→ 0, notice that the stages
appear to separate and happen at distinct times. Furthermore, the extra technical condition on
coordinates i ∈ supp(θk) \ supp(θk−1) in Assumption 4.3 is satisfied since no coordinates ever
leave the support of θk.

Validation of Assumption 4.4 (stationary points are strict local minima) In Figure 10 we
consider the α = 10−32 trajectory, since this is closest to the dynamics in the α → 0 limit. We
randomly select several epochs. Since the transitions between stages are a vanishing fraction of the
total training time, each of these randomly-selected epochs is likely during a plateau, as we see in
the figure. For each epoch perform the following experiment. For each nonnegligible coordinate
of the weights (those where the weight is of magnitude greater than the threshold τ = 10−5), we
perturb the weights by adding noise of standard deviation 0.05. We then run the training dynamics
starting at this perturbed initialization for 1000 epochs. We observe that the training dynamics quickly
converge to the original unperturbed initialization, indicating that the weights were close to a strict
local minimum of the loss.

Validation of Assumption 4.5 (noise-robustness of dynamics) In Figure 11 we perform the same
experiment as in Figure 10, except that the epochs we select to perturb the weights are those where
there is a newly-nonnegligible coordinate (less than 10−5 in magnitude in the previous epoch, and
more than 10−5 in magnitude in this epoch). We find that the nonlinear dynamics are robust and tend
to the limiting endpoint even under a random Gaussian perturbation of standard deviation 10−2 on
each of the nonnegligible coordinates, supporting Assumption 4.5.
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Figure 8: Evolution of diag(wQ)diag(wK) entries over rescaled time initializing at various scalings
α. Notice that as α→ 0, the training trajectories tend to a limiting trajectory. Each line corresponds
to a diagonal entry of diag(wQ)diag(wK).
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Figure 9: Evolution of diag(wV )diag(wO) entries in the toy task of learning an attention head with
diagonal weights. Each line corresponds to the evolution of an entry of diag(wV )diag(wO) over
rescaled time. Each plot corresponds to a different initialization magnitude α. Notice that as α→ 0,
the training trajectories tend to a limiting trajectory.
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Figure 10: Evolution of weights of toy attention model under perturbation, validating Assumption 4.4.
At 5 different random times during training, we perturb the nonnegligible weight coordinates and
continue to train with SGD. The evolution of each of the weights under the initial perturbation (solid
line) is compared to the original evolution without perturbation (dashed line). Observe that the
training dynamics quickly brings each weight back to the unperturbed weight trajectory, indicating
that the weights are originally close to a strict local minimum.
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Figure 11: Validating Assumption 4.5 with the same experiment as in Figure 10, except that the epochs
for the perturbation chosen are those where there is a newly nonnegligible coordinate. Perturbed
dynamics (solid lines) are again robust to perturbation and track the original dynamics (dashed lines).
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B Further experiments on vision and language transformers

The practice of training transformer models often deviates substantially from the assumptions made
in our theoretical analysis, and it is a priori unclear to what extent gradual rank increase behaviour
and a low rank bias are manifested in setups more common in practical applications. To gauge the
relevancy of our findings we conduct experiments on popular vision and language benchmarks, using
algorithms and hyperparameters common in the literature. We use the stable rank of a matrix W
given by ∥W ∥2

F

∥W ∥2
2

as a smooth approximation of rank. We track the value of the stable rank for the
different attention matrices throughout training. Although we do not expect our theoretical results to
to hold precisely in practice, we find evidence of gradual increase in stable rank, leading to a low rank
bias in Figures 12, 13, 15, 17 and 19. In these experiments we use off-the-shelf vision transformers
(ViT) [DBK+20] trained on popular vision benchmarks, as well as off-the-shelf GPT-2 trained on a
popular language benchmark. We use no weight decay or dropout in our experiments. All models
were initialized using the default initialization scale.

B.1 SGD-trained transformers

CIFAR-10/100 We trained a 6-layer ViT with 8 heads per layer, embedding dimension 512, head
dimension 128, and MLP dimension 512 and patch-size 4 for 500 epochs on CIFAR10/CIFAR100
with SGD and learning rate 3e-1 and warmup. See Figures 12 and 13. Each run took 2 hours on one
A100 GPU.
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Figure 12: CIFAR-10, ViT trained with SGD: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O

(orange) throughout training. Mean and standard deviation (shaded area) are computed across 8 heads
per attention layer.
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Figure 13: CIFAR-100, ViT trained with SGD: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O

(orange) throughout training. Mean and standard deviation (shaded area) are computed across 8 heads
per attention layer.

B.2 Adam-trained transformers

CIFAR-10/100 For the CIFAR-10/100 datasets we use a VIT with 6 layers, patchsize of 4, 8 heads
per self attention layer, an embedding and MLP dimension of 512, and a head dimension of 128. We
train the model using the Adam optimizer for 500 epochs with a base learning rate of 1e-4, a cyclic
learning rate decay with a linear warmup schedule for 15 epochs and a batchsize of 512. Our results
are summarized in Figures 14 and 15 for CIFAR-10, and Figures 16 and 17 for CIFAR-100.

(a) (b) (c)

(d) (e) (f)

Figure 14: CIFAR-10, ViT trained with Adam: normalized spectrum at different stages of training. (a)
- (c) Normalized spectrum ofWKW

⊤
Q at initialization and ∆WKW

⊤
Q during training for different

attention heads at different layers. (d) - (e) equivalent figures forWVW
⊤
O .

ImageNet For ImageNet, we use the VIT-Base/16 from [DBK+20] trained with Adam for 360
epochs with a base learning rate of 3e-3, a cyclic learning rate decay with a linear warmup schedule
for 15 epochs and a batchsize of 4096. Our results are summarized in Figures 18 and 19 for ImageNet.
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(a) (b) (c)

(d) (e) (f)

Figure 15: CIFAR-10, ViT trained with Adam: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O

(red) throughout training. Mean and standard deviation (shaded area) are computed across 8 heads
per attention layer.

(a) (b) (c)

(d) (e) (f)

Figure 16: CIFAR-100, ViT trained with Adam: normalized spectrum at different stages of training.
(a) - (c) Normalized spectrum of WKW

⊤
Q at initialization and ∆WKW

⊤
Q during training for

different attention heads at different layers. (d) - (e) equivalent figures forWVW
⊤
O .

(a) (b) (c)

(d) (e) (f)

Figure 17: CIFAR-100, ViT trained with Adam: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O

(red) throughout training. Mean and standard deviation (shaded area) are computed across 8 heads
per attention layer.
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(a) (b) (c)

(d) (e) (f)

Figure 18: ImageNet, ViT trained with Adam: normalized spectrum at different stages of training. (a)
- (c) Normalized spectrum ofWKW

⊤
Q at initialization and ∆WKW

⊤
Q during training for different

attention heads at different layers. (d) - (e) equivalent figures forWVW
⊤
O .

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 19: ImageNet, ViT trained with Adam: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O (red)

throughout training. Mean and standard deviation (shaded area) are computed across 12 heads per
attention layer.
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Wikitext-103 The gradual rank increase phenomenon also occurs in the NLP setting with language
transformers. We trained GPT-2 on Wikitext-103 using the HuggingFace training script with Adam
learning rate 3e-4, per-GPU batch-size 8, and block-length 256. We trained for 3 epochs on 2 A100
GPUs, which took 12 hours. See Figure 20.
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Figure 20: Wikitext-103, GPT-2 trained with Adam: Stable rank of ∆WVW
⊤
O and ∆WQW

⊤
K ,

versus training iteration. Stable rank of the perturbation increases gradually, but remains small
throughout training.
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C Proof for dynamics of networks with diagonal parametrization
(Theorem 4.1)

C.1 Assumptions

Recall we have defined θ0, . . . ,θk, . . . ∈ R2p as the sequence of weights such that θ0 = 0 and θk+1

is defined inductively as follows. Consider the dynamics of ψk(t, ϵ) ∈ R2p initialized at ψk(0, ϵ) =

θk + (ϵeik , sgn(gi(θ
k))ϵeik) and evolving according to the gradient flow dψk(t,ϵ)

dt = −∇θL(ψk).
We assume that there is a limiting point θk+1 of these dynamics as ϵ is taken small and the time is
taken large:

lim
ϵ→0

lim
t→∞

ψk(t, ϵ) = θk+1 .

Under the above assumption that this sequence θ0, . . . ,θk, . . . is well-defined, we can derive a useful
property of it for free. Namely, the conservation law (5) implies that u⊙ u− v ⊙ v is preserved. It
follows that for each k we have that θk = (uk,vk) satisfies |uk| = |vk| entrywise. In other words,
there is sk ∈ {+1,−1}p satisfying

θk = (uk, sk ⊙ uk) ∈ R2p .

We also abuse notation and write supp(θk) := supp(uk) ⊆ [p], since the support of θk on the first p
coordinates matches its support on the last p coordinates.

Having fixed this notation, we now recall the main assumptions of the theorem.
Assumption C.1 (Nondegeneracy of dynamics in part (A); Assumption 4.3). The initialization
satisfies |ui(0)| ≠ |vi(0)| for all i. For stage k, either Tk+1 =∞ or there is a unique minimizer ik to
mini ∆k(ik) in (11). Finally, for all i ∈ supp(θk−1) \ supp(θk) we have gi(θk) ̸= 0.
Assumption C.2 (Stationary points are strict local minima; Assumption 4.4). For stage k, there exist
δk > 0 and ck > 0 such that for ũ ∈ B(uk, δ) supported on supp(uk), we have

L(ũ, sk ⊙ ũ) ≥ ck∥uk − ũ∥2 .
Assumption C.3 (Noise-robustness of dynamics in part (B); Assumption 4.5). For stage k, either
Tk+1 = ∞ or the following holds. For any ϵ > 0, there are δ > 0 and τ : R>0 → R such that
the following holds. For any ũ ∈ B(uk, δ) ∩ Rp

≥0 supported on supp(ũ) ⊆ supp(uk) ∪ {ik},
there exists a unique solution ψ : [0,∞)→ Rp of the gradient flow dψ

dt = −∇θL(ψ) initialized at
ψ(0) = (ũ, sk+1 ⊙ ũ), and at times t ≥ τ(ũik),

∥ψ(t)− θk+1∥ < ϵ .

C.2 Rescaling time for notational convenience

For ease of notation, we rescale time
uα(0) = αu(0), vα(0) = αv(0)

duα

dt
= log(1/α)vα ⊙ g(uα,vα),

dvα
dt

= log(1/α)uα ⊙ g(uα,vα). (14)

We also define
θα(t) = (uα(t),vα(t)) ∈ R2p .

Because of this time-rescaling, we equivalently state Theorem 4.1 as:
Theorem C.4 (Restatement of Theorem 4.1). Let K ∈ Z≥0 be such that Assumptions 4.3 4.4 hold
for all k ≤ K and Assumption 4.5 holds for all k < K. Then for any k ≤ K and time t ∈ (Tk, Tk+1)
the following holds. There is α0(t) > 0 such that for all α < α0, there exists a unique solution
θα : [0, t]→ Rp to the gradient flow (14) and

lim
α→0

θα(t)→ θk ,

where at each stage |supp(uk) \ supp(uk−1)| ≤ 1.

For shorthand, we also write
Sk = supp(uk) and Sc

k = [p] \ supp(uk) .
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C.3 Simplifying problem without loss of generality

For each coordinate i ∈ [p] we have |uα,i(0)| ̸= |vα,i(0)| by the non-degeneracy Assumption 4.3.
So we can assume |uα,i(0)| > |vα,i(0)| without loss of generality. Furthermore, we can assume the
entrywise inequality

uα(0) > 0

by otherwise training weights ũα(t), ṽα(t) initialized at ũα(0) = sgn(uα(0))uα(0) and ṽα(0) =
sgn(vα(0))vα(0), as ũα(t)⊙ ṽα(t) = uα(t)⊙ vα(t) at all times.

Since u2α,i(t) − v2α,i(t) = u2α,i(0) − v2α,i(0) by the conservation law (5), it holds that |uα,i(t)| >
|vα,i(t)| throughout. So by continuity

uα(t) > 0

throughout training.

C.4 Tracking the sum of the weights

We define
wα(t) = uα(t) + vα(t) .

The reason for this definition is that during training we have
dwα

dt
= log(1/α)wα ⊙ g(θα) , (15)

Notice that since that we have assumed uα,i(0) > |vα,i(0)| for each i ∈ [p] we have wα(0) > 0
entrywise. So, by (15) for all t > 0 ,

wα(t) > 0 .

It suffices to track wα(t) because we can relate the log-scale magnitude of wα(t) to the magnitudes
of the corresponding coordinates in uα(t) and vα(t) – see technical Lemmas D.1 D.2 and D.3.

C.5 Claimed invariants in proof of Theorem C.4

In order to prove Theorem C.4, we consider any gradient flow θα : [0, T ∗]→ Rp solving (14) where
T ∗ ∈ (TK , TK+1). For now, we focus only on proving properties of this gradient flow, and defer its
existence and uniqueness to Section C.8.

We show the following invariants inductively on the stage k. For any ϵ > 0, any stage k ≤ K, there
is αk := αk(ϵ) > 0 such that for all α < αk the following holds. There are times t̄k := t̄k(α, ϵ) and
tk+1 := tk+1(α, ϵ), such that

t̄k ∈ [Tk − ϵ, Tk + ϵ] , (16)

tk+1 ∈
{
[Tk+1 − ϵ, Tk+1 + ϵ] , if Tk+1 <∞
{T ∗}, if Tk+1 =∞ . (17)

and the weights approximate the greedy limit for all times t ∈ [t̄k, tk+1]

∥θα(t)− θk∥ < ϵ , (18)
and the weights at times t̄k and tk+1 are correctly estimated by the incremental learning dynamics on
the logarithmic-scale

∥ logα(wα(t̄k))− bk∥ < ϵ (19)
and if Tk+1 <∞ then

∥ logα(wα(tk+1))− bk+1∥ < ϵ . (20)

Base case k = 0: Take t̄0(α, ϵ) = 0. Then statement (16) holds since T0 = 0. Notice that as α→ 0
we have that uα(0),vα(0)→ 0 = u0, and also logαwα(0)→ 1 = b0. So statement (19) follows if
we take α0 small enough. In Section C.6 we show how to construct time t1 such that (18) and (20)
hold.

Inductive step: Suppose that (16), (18), (19) and (20) hold for some iteration k < K. We prove them
for iteration k + 1. In Section C.7 we construct time t̄k. In Section C.6 we construct time tk+1.
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C.6 Dynamics from time t̄k to time tk+1 (Linear dynamics for O(log(1/α)) unrescaled time)

Let k ≤ K, and suppose that we know that for any ϵ̄k > 0, there is ᾱk(ϵ̄k) > 0 such that for all
0 < α < ᾱk, there is a time t̄k = t̄k(α, ϵ̄k) satisfying

|Tk − t̄k| < ϵ̄k

∥θα(t̄k)− θk∥ < ϵ̄k

∥ logα(wα(t̄k))− bk∥ < ϵ̄k .

C.6.1 Analysis in case where Tk+1 <∞

Consider first the case where Tk+1 <∞. We show that, for any ϵk+1 > 0, there is ρk+1(ϵk+1) > 0
such that for all 0 < ρ < ρk+1(ϵ̄k+1) there is αk+1(ρ, ϵk+1) > 0 such that for all α < αk+1, there
is a time tk+1 = tk+1(α, ρ, ϵk+1) satisfying

|Tk+1 − tk+1| < ϵk+1 (21)

∥θα(t)− θk∥ < ϵk+1 for all t ∈ [t̄k, tk+1] (22)

∥ logα(wα(tk+1))− bk+1∥ < ϵk+1 (23)
uα,ik(tk+1) ∈ [ρ, 3ρ] , (24)

sgn(vα,ik(tk+1)) = sk+1
ik

. (25)

For any ρ, α, let ϵ̄k = ρϵk+1/(4p) and choose t̄k = t̄k(α, ϵ̄k). Then define

tk+1 = tk+1(α, ρ, ϵk+1) (26)
= inf{t ∈ [t̄k,∞) : ∥uα,Sc

k
(t)− uα,Sc

k
(t̄k)∥+ ∥vα,Sc

k
(t)− vα,Sc

k
(t̄k)∥ > 4ρ} .

Now we show that the weights θα(t) cannot move much from time t̄k to tk+1. The argument uses the
local Lipschitzness of the loss L (from technical Lemma D.7), and the strictness of θk as a stationary
point (from Assumption 4.4).
Lemma C.5 (Stability of active variables during part (A) of dynamics). There is ρk+1 small enough
and αk+1(ρ) small enough depending on ρ,such that for all ρ < ρk+1 and α < αk+1 and all
t ∈ [t̄k, tk+1),

∥θα(t)− θk∥ < ρ′ := max(24ρ, 18
√
ρKRk

/ck) . (27)

where ck is the strict-minimum constant from Assumption 4.4 and KRk
is the Lipschitzness constant

from Lemma D.7 for the ball of radius Rk = ∥θk∥+ 1.

Proof. Assume by contradiction that (27) is violated at some time t < tk+1. Let us choose the first
such time

t∗ = inf{t ∈ [t̄k, tk+1) : ∥uα(t
∗)− uk∥+ ∥vα(t∗)− sk ⊙ uk∥ ≥ ρ′} .

Define θ̃ = (ũ, ṽ) by

ũi =

{
uα,i(t

∗), i ∈ Sk

0, i ̸∈ Sk
and ṽi =

{
vα,i(t

∗), i ∈ Sk

0, i ̸∈ Sk
.

By the definition of tk+1, this satisfies

∥ũ− uα(t
∗)∥ = ∥uα,Sc

k
(t∗)∥ ≤ 4ρ+ ∥uα,Sc

k
(t̄k)∥ ≤ 4ρ+ ϵk < 5ρ ,

∥ṽ − vα(t∗)∥ = ∥vα,Sc
k
(t∗)∥ ≤ 4ρ+ ∥vα,Sc

k
(t̄k)∥ ≤ 4ρ+ ϵk < 5ρ .

Also

∥ũ− uk∥+ ∥ṽ − sk ⊙ uk∥ = ∥uα,Sk
(t∗)− zkSk

∥+ ∥vα,Sk
(t∗)− skSk

⊙ zkSk
∥ ≥ ρ′ − 10ρ ≥ ρ′/2 .

27



Using (a) the strict minimum Assumption 4.4 with constant ck, since ∥θ̃ − θk∥ ≤ ρ′ and we take ρ′
small enough,

L(θα(t∗)) ≥ L(θ̃)− 4ρKRk

(a)

≥ L(θk)− 4ρKRk
+
ck(ρ

′)2

16

≥ L(θα(t̄k))− (4ρ+ ϵ̄k)KRk
+
ck(ρ

′)2

16
> L(θα(t̄k)) .

This is a contradiction because L is nondecreasing along the gradient flow.

Lemma C.6 (Log-scale approximation is correct during part (A)). There are functions ρk+1(ϵk+1) >
0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1, and for all t ∈ (t̄k, tk+1) we
have for a constant C depending on k,

∥ logα(wα(t))− bk + (t− t̄k)g(θk)∥ < ρϵk+1 + Cρ′(t− t̄k) . (28)

Furthermore, for all i ∈ Sc
k and t ∈ (t̄k, tk+1) we have

sgn(gi(θα(t))) = sgn(gi(θ
k)). (29)

Proof. By Lemma C.5 and Lemma D.7, there is a constant C depending on θk such that for all
t ∈ (t̄k, tk+1),

∥g(θα(t))− g(θk)∥ ≤ Cρ′ .

For shorthand, write ḡ(θk) = g(θk) + Cρ′1 and g(θk) = g(θk) − Cρ′1. Since wα(t) > 0
entrywise as we have assumed without loss of generality (see Section C.3), we have the following
entrywise inequalities

g(θk)⊙wα(t) < g(θα(t))⊙wα(t) < ḡ(θ
k)⊙wα(t) . (30)

Since the dynamics are given by dwα

dt = log(1/α)g(wα)⊙wα,

wα(t̄k)e
(t−t̄k) log(1/α)g(θ

k) ≤ wα(t) ≤ wα(t̄k)e
(t−t̄k) log(1/α)ḡ(θ

k) .

Taking the logarithms with base α ∈ (0, 1),

(t− t̄k)g(uk) ≤ logα(wα(t̄k))− logα(wα(t)) ≤ (t− t̄k)ḡ(uk) .

The bound (28) follows since ∥ logα(wα(t̄k))− bk∥ < ϵ̄k < ρϵk+1.

Finally, the claim (29) follows from (30) since sgn(ḡ(θk)) = sgn(g(θk)) = sgn(g(θk)) if we take
ρ small enough.

First, we show that the weights must move significantly by time roughly Tk+1. This is because of the
contribution of coordinate ik.
Lemma C.7 (tk+1 is not much larger than Tk+1). Suppose that Tk+1 < ∞. Then there are
ρk+1(ϵk+1) > 0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1, the following
holds.

tk+1 < Tk+1 + ϵk+1 .

Proof. Assume by contradiction that tk+1 < Tk+1 + ϵk+1. For all times t ∈ [t̄k,min(tk+1, Tk+1 +
ϵk+1)], by Lemma C.6,

| logα(wα,ik(t))− btik + (t− t̄k)gik(θk)| < O(
√
ρ) .

Since we know |∆k(ik)− (Tk+1 − t̄k)| < ϵ̄k and bki −∆k(ik)gik(θ
k) ∈ {0, 2}, it follows that

logα(wα,ik(Tk+1 + ϵk+1)) ̸∈ (−|gik(θk)|(ϵk+1 − ϵ̄k+1), 2 + |gik(θk)|(ϵk+1 − ϵ̄k+1)) +O(
√
ρ).

By taking ρ small enough, we see that |gik(θk)|(ϵk+1 − ϵ̄k+1) + O(
√
ρ) > δ > 0 for some δ > 0

that is independent of α, so

logα(wα,ik(Tk+1 + ϵk+1)) ̸∈ (−δ, 2 + δ) .

So |uα,ik(Tk+1 + ϵk+1)| > 1 by Lemma D.2. But by the construction of tk+1 this means that
tk+1 < Tk+1 + ϵk+1.
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Next, we show that until time tk+1, none of the coordinates in Sc
k move significantly, with the possible

exception of coordinate ik.

Lemma C.8 (No coordinates in Sc
k \ {ik} move significantly during part (A)). Suppose Tk+1 <∞.

Then there are ρk+1(ϵk+1) > 0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1,
the following holds. There is a constant c > 0 depending on k such that for all i ∈ Sc

k \ {ik} and
t ∈ [t̄k, tk+1],

|uα,i(t)− uα,i(t̄k)|, |vα,i(t)− vα,i(t̄k)| < αc + ϵ̄k .

Proof. The previous lemma combined with the inductive hypothesis gives

tk+1 − t̄k < ∆k(ik) + 2ϵk+1 \ {ik}.

We analyze the movement of each coordinate i ∈ Sc
k \ {ik} by breaking into two cases:

• Coordinate i ̸= ik such that bki ∈ (0, 2). By Assumption 4.3, there is a unique winning
coordinate so bki − τgi(θk) ∈ (c, 2− c) for some constant c > 0 for all τ ∈ [0, tk+1− t̄k] ⊆
[0,∆k(ik) + 2ϵk+1]. By Lemma C.6, logα(wα,i(t)) ∈ (−c/2, 2 − c/2) for all times
t ∈ [t̄k, tk+1]. So by Lemma D.1, |uα,i(t)|, |vα,i(t)| ≤ αc/4.

• Coordinate i ̸= ik such that bki = 0. By Lemma D.4, we must be in the corner case where
i ∈ Sk−1 ∩ Sc

k (i.e., the coordinate was active in the previous stage but was dropped from
the support in this stage).

By Lemma D.4, since bki = 0 we have gi(θ
k) < 0. By Lemma C.6, this means

sgn(gi(θα(t))) = sgn(gi(θ
k)) < 0 for all t ∈ (t̄k, tk+1).

We break the analysis into two parts. Since bki = 0, the sign is ski = +1. The inductive
hypothesis ∥θα(t̄k)− θk∥ < ϵ̄k implies that |uα,i(t̄k)− zki | < ϵ̄k and |vα,i(t̄k)− zki | < ϵ̄k.
For small enough ϵ̄k this means that sgn(uα,i(t̄k)) = sgn(vα,i(t̄k)) = +1. Now let
t∗ = min(tk+1, inf{t > t̄k : vα,i(t) = 0}). Since uα,i(t) > vα,i(t) without loss of
generality (see Section C.3), we have sgn(uα,i(t)) = sgn(vα,i(t)) = +1 for all t ∈ [t̄k, t

∗].
So duα,i(t)

dt ,
dvα,i(t)

dt < 0 for all t ∈ [t̄k, t
∗]. So, for any t ∈ [t̄k, t

∗],

|uα,i(t)− uα,i(t̄k)|, |vα,i(t)− vα,i(t̄k)| < ϵ̄k

Also, since logα(wα,i(t
∗)) ≈ 1, by Lemma C.6 we have t∗ > c > 0 for some constant c

independent of α. So for all t ∈ [t∗, tk+1] we have bki − τgi(θk) ∈ (c, 2 − c) for some
constant c > 0. So |uα,i(t)|, |vα,i(t)| ≤ αc/4 for all t ∈ [t∗, tk+1]. The conclusion follows
by triangle inequality.

• Coordinate i ̸= ik such that bki = 2. The analysis is analogous to the case bki = 0, except
that we have ski = −1 instead and gi(θk) > 0 by Lemma D.4.

Finally, we use this conclude that tk+1 ≈ Tk+1 and that the weights at coordinate ik are the only
weights that change significantly, and by an amount approximately ρ.

Lemma C.9 (Coordinate ik wins the part (A) race at time tk+1 ≈ Tk+1). Suppose that Tk+1 <∞.
Then there are ρk+1(ϵk+1) > 0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1,
the following holds.

|tk+1 − Tk+1| < ϵk+1 ,

uα,ik(tk+1) ∈ [ρ, 3ρ] ,

sgn(vα,ik(tk+1)) = sk+1
ik

.
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Proof. Let us analyze the case that bkik ∈ (0, 2). Notice that bk+1
ik

= bkik −∆k(ik)gik(θ
k) ∈ {0, 2}

and that if bk+1
i = 0 then gik(θ

k) > 0 and if it is 2 then bk+1
ik

= gik(θ
k) < 0. So by Lemma C.6,

for all times t ∈ [t̄k,min(tk+1, Tk+1 − ϵk+1)], we have wα,ik(t) ∈ (c, 2− c) for some c > 0. So for
small enough α by Lemma D.1, |uα,ik(t)|, |vα,ik(t)| ≤ αc/2. Combining this with Lemma C.8, we
see that for t ∈ [t̄k,min(tk+1, Tk+1 − ϵk+1)] we have

∥uα(t)− uα(t̄k)∥+ ∥vα(t)− vα(t̄k)∥ < 2(αc + ϵ̄k)p < ρ ,

for small enough α. So by definition of tk+1 we must have tk+1 > Tk+1 − ϵk+1. Combined
with Lemma C.7, we conclude that |Tk+1 − tk+1| < ϵk+1, which is the first claim of the lemma.
Furthermore, by Lemma C.8,∑

i∈Sc
k\{ik}

|uα,i(tk+1)− uα,i(t̄k)|+ |vα,i(tk+1)− vα,i(t̄k)| ≤ 2p(αc + ϵ̄k)) < ρ/2,

so by definition of tk+1 and triangle inequality we have |uα,ik(tk+1)|+ |vα,ik(tk+1)| ≥ 4ρ− ρ/2 =
7ρ/2. Also, since u2α,ik(tk+1) − v2α,ik(tk+1) = Θ(α2) we have uα,ik(tk+1) ∈ [ρ, 3ρ]. Finally, if
bk+1
ik

= 2, then sk+1
ik

= −1 and logα(wα,ik(tk+1)) > 1.5 so sgn(vα,ik(t)) < 0 by Lemma D.3;
analogously, if bk+1

ik
= 0, we have sk+1

ik
= 1 and logα(wα,ik(tk+1) < 0.5 so sgn(vα,ik(tk+1) > 0.

The case bkik ∈ {0, 2} can be proved similarly to the analysis in Lemma C.8, where one shows that
during the first period of time the magnitudes of |uik(t)| and |vik(t)| decrease, until the sign of vik
flips and they once again increase.

We have shown the claims (21), (22), (23) (24), and (25) for the time tk+1. In fact, if we let
t′k+1 ∈ [t̄k,∞) be the first time t such that uα,ik(t) = ρ we still have (21), (22), (23) and (25) by the
same analysis as above, and (24) can be replaced with the slightly more convenient

uα,ik(t
′
k+1) = ρ .

C.6.2 Analysis in case where Tk+1 =∞

In this case that Tk+1, we just have to show that the weights remain close to θk. We show that for
any ϵk+1 > 0, there is αk+1(ϵk+1) > 0 such that for all α < αk+1 and times t ∈ [Tk + ϵk+1, T

∗],

∥θα(t)− θk∥ < ϵk+1.

We can use Lemmas C.5 and C.6, which were developed for the case of Tk+1 <∞, but still hold for
Tk+1 =∞. Lemma C.5 guarantees that the weights do not move much until time tk+1, and so we
only need to show that tk+1 ≥ T ∗ when we take ρ small enough. For this, observe that gi(θk) = 0
for all i ̸∈ Sk, because otherwise Tk+1 < ∞. Therefore Lemma C.6 guarantees that until time
min(T∗, tk+1) all weights are close to the original on the logarithmic scale. Namely,

∥ logα(wα(t))− bk∥ < ρϵk+1 + Cρ′(T ∗ − t̄k)

Furthermore, by the non-degeneracy Assumption 4.3 we know that bki ∈ (0, 2) for all i ̸∈ Sk by
Lemma D.4. So if we take ρ small enough and αk+1 small enough, we must have that tk+1 ≥ T ∗.

C.7 Dynamics from time tk to time t̄k (Nonlinear evolution for O(1) unrescaled time)

Suppose that we know for some k ≤ K that for any ϵk > 0, there is ρk(ϵk) > 0 such that for all
ρ < ρk there is αk(ρ, ϵk) > 0 such that for all α < αk, there is a time tk = tk(α, ρ, ϵk) satisfying

|Tk − tk| < ϵk (31)

∥θα(tk)− θk−1∥ < ϵk (32)

∥ logα(wα(tk))− bk∥ < ϵk (33)
uα,ik−1

(tk) = ρ , (34)

sgn(vα,ik−1
(tk)) = skik−1

. (35)
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Now we will show that for any ϵ̄k > 0, there is ᾱk = ᾱk(ϵ̄k) > 0 such that for all 0 < α < ᾱk, there
is a time t̄k = t̄k(α, ϵ̄k) satisfying

|Tk − t̄k| < ϵ̄k (36)

∥θα(t̄k)− θk∥ < ϵ̄k (37)

∥ logα(wα(t̄k))− bk∥ < ϵ̄k (38)

We give the construction for t̄k. For any desired accuracy ϵ̄k > 0 in this stage, we will construct an
accuracy ϵk = ϵk(ϵ̄k) = ϵ̄k/3 > 0. We will also construct a ρ = ρ(ϵk) > 0 which is sufficiently small,
and we will construct an cutoff for α equal to ᾱk = ᾱk+1(ϵ̄k) > 0 which satisfies ᾱk < αk(ρ, ϵk).
The values for these parameters ϵk and ρ and ᾱk will be chosen in the following lemma, and will
depend only on ϵ̄k.
Lemma C.10 (New local minimum reached in time O(1/ log(1/α))). For any ϵ̄k > 0, we can
choose ᾱk = ᾱk(ϵ̄k) > 0 small enough so that, for any 0 < α < ᾱk, there is t̄k = t̄k(α, ϵ̄k) for
which conditions (36) to (38) hold.

Furthermore, there is a constant C ′′ independent of α such that |θα(t)|/|θα(tk)| ∈ [1/C ′′, C ′′]2p at
all times t ∈ [tk, t̄k].

Proof. Let tk = tk(α, ρ, ϵk) be given by the induction. Let us compare the dynamics starting at
θα(tk) with the dynamics starting at θ̃(tk) = (ũ(tk), ṽ(tk)) which is given by

ũi(tk) =

{
uα,i(tk), i ∈ Sk−1 ∪ {ik−1}
0, otherwise

and ṽi(tk) =

{
vα,i(tk), i ∈ Sk−1 ∪ {ik−1}
0, otherwise

and run with

dθ̃

dt
= − log(1/α)∇wL(θ̃) .

By Assumption 4.5 we know there exists a unique solution θ̃ : [tk,∞)→ Rp as long as we take ϵk
small enough because supp(θ̃(tk)) = Sk−1 ∪ {ik−1} and ∥θ̃i(tk)− θk−1∥ < ϵk. Furthermore, by
Assumption 4.5 if we take ϵk small enough there must be a time τ := τ(ϵ̄k, ρ) <∞ such that

∥θ̃(t)− θk∥ < ϵ̄k/2 for t ≥ tk + τ/ log(1/α) (39)

Define

t̄k = tk + τ/ log(1/α).

So for α small enough, |Tk − t̄k| < 2ϵk < ϵ̄k, proving (36).

We now compare θα(t̄k) with θ̃(t̄k), and show that if we take α small enough, then the dynamics of θ̃
closely match the dynamics of θα(t) for times tk +O(1/ log(1/α)). The argument uses Gronwall’s
inequality. Let t∗ = inf{t > tk : ∥θ̃(t∗)− θα(t)∥ > 1/3}. For times t ∈ [tk, t

∗) by Lemma D.7 we
have

∥ d
dt
θ̃(t)− d

dt
θα(t)∥ = log(1/α)∥∇θL(θ̃(t))−∇θL(θα(t))∥ ≤ Kθ̃(t) log(1/α)∥θ̃(t)− θα(t)∥,

where Kθ̃(t) is the smoothness constant from Lemma D.7. Note that since ∥θ̃(t)∥ < ∞ for large

enough t by (39), the trajectory of θ̃ must lie in a compact set. Therefore, there must be a finite
set of times s1, . . . , sm ∈ [tk, t

∗) such that ∪t∈[tk,t
∗)B(θ̃(t), 1/2) ⊆ ∪mi=1B(θ̃(si), 3/4). So letting

C = maxmi=1Kθ̃(si) <∞ for all times t ∈ [tk, t
∗) we have

d

dt
∥θ̃(t)− θα(t)∥ ≤ C log(1/α)∥θ̃(t)− θα(t)∥ .

By Gronwall’s inequality, for all times t ∈ [tk, t
∗),

∥θ̃(t)− θα(t)∥ ≤ ∥θ̃(tk)− θα(tk)∥ exp(C log(1/α)(t− tk)) .
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We know from Lemma C.8 that there is a constant c > 0 such that for any small enough 0 < α < αk,
such that

∥θ̃(tk)− θα(tk)∥ < αc

If we take α small enough that αc exp(Cτ) < ϵ̄k/2 < 1/3, we must have t∗ > tk + τ/ log(1/α)
and so we prove (37)

∥θk − θα(t̄k)∥ ≤ ϵ̄k/2 + ∥θ̃(t̄k)− θα(t̄k)∥ < ϵ̄k .

It remains to show that (38) is satisfied. Since ∥θ̃(t)− θα(t)∥ < 1/3 for all t ∈ [tk, t̄k], it holds that
the trajectory of θα(t) lies in a compact set. So by Lemma D.7 we have ∥g(θα(t))∥ < C ′ for some
constant C ′ at all times t ∈ [tk, t̄k]. Since 1

log(1/α) |
dwα,i

dt | = |wα,i(t)||gi(wα(t))| < C ′|wα,i(t)|,
we must have |wα,i(t)|/|wα,i(tk)| ∈ [1/C ′′, C ′′] for some constant C ′′ independent of α and all
t ∈ [tk, t̄k]. Therefore, (38) follows from (33). A similar argument shows that |θα(t)/θα(tk)| ∈
[1/C ′′, C ′′]2p.

C.8 Concluding the proof of Theorem C.4

We have shown that Theorem 4.1 is true for solutions θα : [0, T ∗] → R2p to the gradient flow,
where T∗ ∈ (TK , TK+1). To establish Theorem C.4 it remains only to show that for any T∗ ∈
(TK , TK+1) and small enough α such a solution to the gradient flow exists and is unique. To
see this, note that in the inductive proof of the invariants we construct a sequence of times 0 =
t̄0 ≤ t1 ≤ t̄1 ≤ · · · ≤ t̄K ≤ tK+1 > T∗, where we guarantee that any gradient flow solution
θα : [0, tk+1]→ Rp satisfies θα ∈ ∪k∈{0,...,K}B(θk, 1) for all t ∈ ∪k∈{0,...,K}[t̄k, tk+1]. And also
for t ∈ ∪k∈{0,...,K−1}[tk, t̄k+1], we have θα(t) ∈ B(0, C ′′

kθ
k) for some constant C ′′

k independent
of α by Lemma C.10. So θα(t) ∈ B(0, CK) for some constant CK at all times t ∈ [0, T ∗]. By
Lemma D.7, the loss gradient ∇θL(θ) = (v ⊙ g(θ),u ⊙ g(θ)) is Lipschitz-continuous on the
compact set B(0, CK). So θα : [0, T ∗]→ Rp exists and is unique by the Cauchy-Lipschitz theorem.

D Technical lemmas

D.1 Relating the sum of the weights to the original weights using the conservation law

Lemma D.1. If for some constant 0 < c < 1 we have logα(wα,i(t)) ∈ (c, 2 − c), then for small
enough α

max(|uα,i(t)|, |vα,i(t)|) ≤ αc/2 .

Proof. Let w̃α(t) = uα(t) − vα(t). By the conservation law (5), wα,i(t)w̃α,i(t) =
wα,i(0)w̃α,i(0) = uα,i(0)

2 − vα,i(0)2. By the non-degeneracy of initialization (Assumption 4.3),
the right-hand-side is Θ(α2). So if logα(wα,i(t)) ∈ (c, 2 − c) then for small enough α, we
have logα(|w̃α,i(t)|) ∈ (3c/4, 2 − 3c/4). So |uα,i(t)| ≤ |wα,i(t) + w̃α,i(t)| ≤ αc/2 and
|vα,i(t)| ≤ |wα,i(t)− w̃α,i(t)| ≤ αc/2.

Lemma D.2. If for some constant 0 < c we have logα(wα,i(t)) ̸∈ (−c, 2+ c), then for small enough
α,

|uα,i(t)| > 1 .

Proof. Define w̃α = uα − vα as in the proof of Lemma D.1. If logα(wα,i(t)) < −c then
logα(|w̃α,i(t)|) > 2 − c/2 for small enough α, so ui(t) > α−c − α2−c/2 > 1. Similarly, if
logα(wα,i(t)) > 2 + c then logα(|w̃α,i(t)|) < −c/2 so |ui(α)| > α−c/2 − α2+c > 1.

Lemma D.3. If for some constant c > 0, there is small enough α such that if we have logα(wα,i(t)) >
1 + c then sgn(vα,i(t)) < 0. Otherwise, if logα(wα,i(t)) < 1− c then sgn(vα,i(t)) > 0.
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Proof. Follows from vα = 1
2 (wα − w̃α). Recall that wα(t) > 0 and notice that w̃α(t) > 0.

In the first case, wα,i(t) < α1+c and w̃α,i(t) > α1−c/2. In the latter case wα,i(t) > α1−c and
w̃α,i(t) < α1+c/2.

D.2 Sign of gradients on coordinates that leave support

Lemma D.4. For any k ≥ 1 and i ∈ Sc
k, if bki ∈ {0, 2} then we must have i ∈ supp(uk−1) \

supp(uk), and we must have gi(uk) < 0 if bki = 0 and gi(θk) > 0 if bki = 2. In particular,
∆k(ik) > 0 for all k.

Proof. This is by induction on k and using the non-degeneracy Assumption 4.3.

D.3 Local lipschitzness and smoothness

We provide several technical lemmas on the local Lipschitzness and smoothness of ℓ, h, and g.
Lemma D.5. The function ℓ(y, ·) is locally Lipschitz and smooth in its second argument: for any
R > 0, there exists KR such that for any ζ, ζ′ ∈ B(0, R)

|ℓ(y, ζ)− ℓ(y, ζ′)| ≤ KR∥ζ − ζ′∥
∥Dℓ(y, ζ)−Dℓ(y, ζ′)∥ ≤ KR∥ζ − ζ′∥,

almost surely over y. Here Dℓ(y, ·)⊤ ∈ Rdout is the derivative in the second argument.

Proof. Since ℓ is continuously twice-differentiable, for each y ∈ Rdy , ζ ∈ Rdout there is Ky,ζ <∞
such that for all y ∈ B(y, 1/Ky,ζ) and ζ′ ∈ B(ζ, 1/Ky,ζ) we have

∥Dℓ(y′, ζ′)∥ ≤ Ky,ζ and ∥D2ℓ(y′, ζ′)∥ ≤ Ky,ζ ,
where Dℓ and D2ℓ denote the first and second derivative in the second argument. So for all such
y′ ∈ B(y, 1/Ky,ζ) and ζ′, ζ′′ ∈ B(ζ, 1/Ky,ζ) we have
|ℓ(y′, ζ′)− ℓ(y′, ζ′′)| ≤ Ky,ζ∥ζ′ − ζ′′∥ and |Dℓ(y′, ζ′)−Dℓ(y′, ζ′′)| ≤ Ky,ζ∥ζ′ − ζ′′∥ .

Cover the set {(y, ζ) : ∥y∥ ≤ C, ∥ζ∥ ≤ R} with the balls ∪yB(y, 1/Ky,ζ). By compactness,
there is a finite subcover (y1, ζ1), . . . , (yr, ζr), so we can take KR = maxi∈[r]Kyi,ζi <∞ and the
lemma holds since ∥y∥ ≤ C almost surely by Assumption 2.1.

Lemma D.6. The function h(x; ·) is locally bounded, Lipschitz and smooth in its second argument:
for any R > 0 there exists KR such that for any ψ,ψ′ ∈ B(0, R),

∥h(x;ψ)∥ ≤ KR

∥h(x;ψ)− h(x;ψ′)∥ ≤ KR∥ψ −ψ′∥
∥Dh(x;ψ)−Dh(x;ψ′)∥ ≤ KR∥ψ −ψ′∥ ,

almost surely over x. Here Dh(x, ·) ∈ Rdout ×Rp is the derivative in the second argument.

Proof. Analogous to proof of Lemma D.5, using continuous twice-differentiability of h and bound-
edness of ∥x∥.

Lemma D.7 (Local Lipschitzness of loss and loss derivative). When θ = (u,v) ∈ R2p and
fNN(x;θ) = h(x;u⊙ u) the following holds for g(θ) defined in (4). For any R > 0, there exists
KR <∞ such that for any θ,θ′ ∈ B(0,KR),

∥g(θ)− g(θ′)∥ ≤ KR∥θ − θ′∥
∥∇θL(θ)−∇RL(θ′)∥ ≤ Kθ∥θ − θ′∥

|L(θ)− L(θ′)| ≤ KR∥θ − θ′∥ .

Proof. Let θ = (u,v),θ′ = (u′,v′). This follows immediately from the local Lipschitzness and
smoothness of h and ℓ in Lemmas D.5 and D.6, as well as
∥g(θ)− g(θ′)∥ = ∥Ex,y[Dh(x;u⊙ v)⊤Dℓ(y, h(x;u⊙ v))⊤ −Dh(x;u′ ⊙ v′)⊤Dℓ(y, h(x;u′ ⊙ v′))⊤]∥ .
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