
Joint Feature and Differentiable k-NN Graph
Learning using Dirichlet Energy

Lei Xu
School of Computer Science &
School of Artificial Intelligence,
OPtics and ElectroNics (iOPEN)

Northwestern Polytechnical University
Xi’an 710072, P.R. China
solerxl1998@gmail.com

Lei Chen
School of Computer Science

Nanjing University of Posts and Telecommunications
Nanjing 210003, P.R. China
chenlei@njupt.edu.cn

Rong Wang
School of Artificial Intelligence,
OPtics and ElectroNics (iOPEN)

Northwestern Polytechnical University
Xi’an 710072, P.R. China

wangrong07@tsinghua.org.cn

Feiping Nie∗
School of Artificial Intelligence,

OPtics and ElectroNics (iOPEN) &
School of Computer Science

Northwestern Polytechnical University
Xi’an 710072, P.R. China
feipingnie@gmail.com

Xuelong Li
School of Artificial Intelligence,
OPtics and ElectroNics (iOPEN)

Northwestern Polytechnical University
Xi’an 710072, P.R. China

li@nwpu.edu.cn

Abstract

Feature selection (FS) plays an important role in machine learning, which extracts
important features and accelerates the learning process. In this paper, we propose a
deep FS method that simultaneously conducts feature selection and differentiable
k-NN graph learning based on the Dirichlet Energy. The Dirichlet Energy identifies
important features by measuring their smoothness on the graph structure, and facil-
itates the learning of a new graph that reflects the inherent structure in new feature
subspace. We employ Optimal Transport theory to address the non-differentiability
issue of learning k-NN graphs in neural networks, which theoretically makes our
method applicable to other graph neural networks for dynamic graph learning.
Furthermore, the proposed framework is interpretable, since all modules are de-
signed algorithmically. We validate the effectiveness of our model with extensive
experiments on both synthetic and real-world datasets.

1 Introduction

Feature selection (FS) is a critical technique in machine learning that identifies informative features
within the original high-dimensional data. By removing irrelevant features, FS speeds up the
learning process and enhances computational efficiency. In many real-world applications such as

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

image processing, bioinformatics, and text mining [1–3], FS techniques are widely used to identify
important features, thereby providing some explanations about the results and boosting the learning
performance [4–7].

While numerous FS methods have been proposed in both supervised and unsupervised settings, as
several studies highlighted [8, 9], the nature of FS is more unsupervised due to the unavailability of
task-specific labels in advance. The selected features should be versatile to arbitrary downstream
tasks, which motivates us to focus on the unsupervised FS in this study. Related works have recently
resorted to neural networks to exploit the nonlinear information within feature space. For example,
AEFS [9] uses the group Lasso to regularize the parameters in the first layer of the autoencoder, so as
to reconstruct original features based on the restricted use of original features. Another well-known
method is CAE [8], which selects features by learning a concrete distribution over the input features.
However, most unsupervised deep methods rely on the reconstruction performance to select useful
features. On the one hand, if there exists noise in the dataset, the reconstruction performance will
be terrible even if useful features are selected, since the noise cannot be reconstructed with these
informative features (see our reconstruction experiments on Madelon in Section 4.3). On the other
hand, it is difficult to explain why selected features reconstruct the original data well. These issues
prompt us to seek a new target for unsupervised deep FS.

As the saying goes, “birds of a feather flock together”, the homophily principle [10] suggests that
similar samples tend to be connected in a natural graph structure within real-world data. This graph
structure is useful for describing the intrinsic structure of the feature space, and is commonly used in
machine learning studies [11, 12]. Building upon this graph structure, He et al. [13] introduce the
Dirichlet Energy, which they call “locality preserving power”, as a powerful tool for unsupervised FS
that is able to identify informative features reflecting the intrinsic structure of the feature space.

In many practical applications, the graph structure is not naturally defined and needs to be constructed
manually based on the input features using some similarity measurements. The quality of features
affects the quality of the constructed graph. As highlighted in [14], the useless features increase the
amount of unstructured information, which hinders the exploration of inherent manifold structure
within data points and deteriorates the quality of constructed graph. Therefore, the reference [14]
proposes the UDFS method to discard such nuisance features and constructs a k-nearest-neighbor
(NN) graph on the selected features using the heat kernel. Despite the good performance of UDFS,
constructing graphs using the heat kernel may not reflect the intrinsic structure of the feature space.
Besides, the sorting algorithms in learning the k-NN graph in UDFS is non-differentiable in neural
networks, which restricts its application in downstream networks.

In this paper: (1) We propose a deep unsupervised FS network that performs simultaneous feature
selection and graph learning by minimizing the Dirichlet Energy, thereby revealing and harnessing the
intrinsic structure in the dataset. (2) Within the network, a Unique Feature Selector (UFS) is devised
to approximate discrete and distinct feature selection using the Gumbel Softmax technique combined
with decomposition algorithms. (3) Moreover, a Differentiable Graph Learner (DGL) is devised
based on the Optimal Transport theory, which is capable of obtaining a differentiable k-NN graph that
more accurately reflects the intrinsic structure of the data than traditional graph constructing methods.
Due to the differentiability, DGL is also theoretically capable of serving as a learnable graph module
for other graph-based networks. (4) The entire framework is developed algorithmically. Unlike most
deep learning networks with complex components that are tough to decipher, each core module in our
framework has an algorithmic and physically interpretable design, which greatly facilitates observing
and understanding the network’s internal operations during the learning process. (5) Experimental
results on both synthetic datasets and real-world datasets demonstrate the effectiveness of our method.

Notations. For an arbitrary matrix M ∈Ra×b, mi, mi, and mi,j denote the i-th row, the i-th column,
and the (i, j)-th entry of M , respectively. Given a vector m ∈ Rb, its ℓ2-norm is defined as ∥m∥2=√∑b

i=1 m
2
i . Based on this, the Frobenius norm of M is defined as ∥M∥F =

√∑a
i=1 ∥mi∥22. When

a = b, the trace of M is defined as tr(M) =
∑a

i=1 mi,i. Given two matrices M ,N ∈ Ra×b, we
define their inner product as ⟨M ,N⟩ =

∑a
i=1

∑b
j=1 mi,jni,j . 1b denotes a b-dimensional column

vector with all entries being 1, and Ib denotes a b-order identity matrix. Bool(cond) is a boolean
operator that equals 1 if cond is true, otherwise it equals 0. Moreover, given a vector m ∈ Rb, we
define its sorting permutation in ascending order as σ ∈ Rb, namely, mσ1

≤ mσ2
≤ · · · ≤ mσb

.

2

(a) (b) (c)

Figure 1: Illustration of the Dirichlet Energy on various graph structures and graph signals. Blue
points, black edges, and red bars represent nodes, connections, and signal values on nodes, respec-
tively. Upside bars represent positive values, and downside bars represent negative values.

2 Dirichlet Energy

Let X ∈ Rn×d be the data matrix with the n samples and d-dimensional features. In this paper,
we assume that the features have zero means and normalized variances,2 namely, 1⊤

nxi = 0 and
x⊤
i xi = 1 for i ∈ {1, . . . , d}. According to the homophily assumption [10], we assume that data X

forms an inherent graph structure G with nodes standing for samples and edges standing for their
correlations. In G, similar samples are more likely to connect to each other than dissimilar ones.
Graph G can be represented with a similarity matrix S ∈ Rn×n

+ , where si,j denotes the similarity
between xi and xj . If si,j = 0, it means that there is no connection between xi and xj in G, which
is common in k-NN graphs since we only consider the local structure of the data space. Given an
adjacency matrix S,3 we define the Laplacian matrix [15] as LS = D − S, where D is a diagonal
matrix whose diagonal entries represent the degrees of data points, namely, di,i =

∑n
j=1 si,j .

Based on the Laplacian matrix LS , we introduce the Dirichlet Energy [16] as a powerful tool to
identify important features. Specifically, given the Laplacian matrix LS , the Dirichlet Energy of a
graph signal v is defined as

Ldir(v) =
1

2

n∑
i=1

n∑
j=1

si,j(vi − vj)
2 = v⊤LSv. (1)

In graph theory, each dimensional feature xi ∈ Rn can be seen as a graph signal on G. The Dirichlet
Energy in Eq. (1) provides a measure of the local smoothness [11] of each feature on graph G, which
is small when the nodes that are close to each other on G have similar feature values. Hence, the
Dirichlet Energy can be used to identify informative features by evaluating the consistency of the
distribution of feature values with the inherent data structure. To demonstrate this, we provide an
example in Fig. 1, where we generate a 2-NN graph G including two bubbles, and compose the data
X using the two-dimensional coordinates of the graph nodes. Then we set the graph signal v as the
first coordinate x1 and visualize it on G in Fig. 1(a). In Fig. 1(b) we change v to a random noise
vector. While in Fig. 1(c), we change the graph structure to a random 2-NN graph. We compute the
Laplacian matrix LS of each figure and present the corresponding Dirichlet Energy in the figures.
We can see that Fig. 1(a) achieves the best smoothness, whereas both Fig. 1(b) and Fig. 1(c) have
poor smoothness due to a mismatch between the graph signal and the graph structure.

Based on the Dirichlet Energy, a well-known FS method called Laplacian Score (LS) 4 is proposed
in [13]. However, the Laplacian matrix in LS is precomputed and fixed. If X contains too many
irrelevant features, the quality of the graph G will be poor and not reflect the underlying structure. As
illustrated in Fig. 1(c), a poor-quality graph will lead to the poor smoothness even if the right feature
is selected, this insight motivates us to learn graph and features jointly during the learning process.

3 Proposed Method

In this paper, we devise a collaborative neural network driven by the Dirichlet Energy for joint feature
and graph learning, as illustrated in Fig. 2. Generally, the proposed framework consists of two

2Note that constant features (if any) will be removed during the feature preprocessing stage.
3Note that the similarity matrix S of a k-NN graph is not symmetric. When calculating the objective in Eq.

(3), we obtain the Laplacian matrix LS using the symmetrized similarity matrix Ŝ = (S + S⊤)/2.
4LS considers both the smoothness and the variance of each feature. However, as we assume that each feature

has unit variance according to 1⊤
nxi = 0 and x⊤

i xi = 1, minimizing LS is equivalent to minimizing Eq. (1).

3

𝝃𝝃𝑖𝑖
(1) 𝝃𝝃𝑖𝑖

(2) 𝝃𝝃𝑖𝑖
(𝑘𝑘+1)

… 𝝃𝝃𝑖𝑖
(𝑘𝑘)

1𝑠𝑠𝑠𝑠

2𝑛𝑛𝑑𝑑

3𝑟𝑟𝑑𝑑
4𝑠𝑠𝑡

𝒆𝒆𝒊𝒊

𝒔𝒔𝑖𝑖

Differentiable k-NN Selector

Dirichlet
Energy

𝜹𝜹𝑖𝑖
(𝑘𝑘)

−𝟏𝟏

…

…

…

…

𝜖𝜖𝑰𝑰

𝒙𝒙1

𝒙𝒙𝑑𝑑

𝒙𝒙4

𝒙𝒙3

𝒙𝒙2 �𝒙𝒙2

�𝒙𝒙1

�𝒙𝒙𝑚𝑚

�𝑿𝑿 𝑬𝑬

Feature Selection

Distance
Measuring

DGL

𝒔𝒔1

𝒔𝒔2

𝒔𝒔3

𝒔𝒔𝑛𝑛

…

…

…

…

…

…

…

…

…

…

…

𝑤𝑤11𝑤𝑤21𝑤𝑤31𝑤𝑤41 𝑤𝑤𝑑𝑑1

𝑤𝑤12𝑤𝑤22𝑤𝑤32𝑤𝑤42 𝑤𝑤𝑑𝑑2

𝑤𝑤1𝑚𝑚𝑤𝑤2𝑚𝑚𝑤𝑤3𝑚𝑚𝑤𝑤4𝑚𝑚 𝑤𝑤𝑑𝑑𝑚𝑚

…

Gumbel
softmax

Gumbel
softmax

Gumbel
softmax

𝑓𝑓11 𝑓𝑓21 𝑓𝑓31 𝑓𝑓41 𝑓𝑓𝑑𝑑1

𝑓𝑓12 𝑓𝑓22 𝑓𝑓32 𝑓𝑓42 𝑓𝑓𝑑𝑑2

𝑓𝑓1𝑚𝑚𝑓𝑓2𝑚𝑚𝑓𝑓3𝑚𝑚𝑓𝑓4𝑚𝑚 𝑓𝑓𝑑𝑑𝑚𝑚

�𝑭𝑭

𝑓𝑓11 𝑓𝑓21 𝑓𝑓31 𝑓𝑓41 𝑓𝑓𝑑𝑑1

𝑓𝑓12 𝑓𝑓22 𝑓𝑓32 𝑓𝑓42 𝑓𝑓𝑑𝑑2

𝑓𝑓1𝑚𝑚𝑓𝑓2𝑚𝑚𝑓𝑓3𝑚𝑚𝑓𝑓4𝑚𝑚 𝑓𝑓𝑑𝑑𝑚𝑚

…

𝑭𝑭

UFS

…

…

…

…

…

… … … …

… ⊤
: Matrix Multiplication

: Addition

: Matrix Transposition

: Cholesky Decomposition

𝑺𝑺 𝑳𝑳𝑆𝑆

𝒆𝒆1

𝒆𝒆2

𝒆𝒆3

𝒆𝒆𝑛𝑛

Selecting
�𝒙𝒙1

Selecting
�𝒙𝒙2

…

Selecting
�𝒙𝒙𝑚𝑚

Dirichlet Energy

: Eigendecomposition

⊤ ⊤−𝟏𝟏

: Inverse

Figure 2: (1) Top Panel: Overview of the proposed framework, where smiley faces denote the value
1 representing that the feature is selected, while sad faces denote the value 0 representing that the
feature is unused. (2) Bottom Left Panel: Illustration of the Unique Feature Selector (UFS), where
green bars denote the value distributions of different vectors. (3) Bottom Right Panel: Illustration of
the Differentiable k-NN Graph Learner (DGL), where the “Differentiable k-NN Selector” in deep
blue shows how to learn k nearest neighbors with the Optimal Transport theory.

modules: the Unique Feature Selector (UFS) and the Differentiable k-NN Graph Learner (DGL). At
the beginning, the input features X are selected with the learnable feature mask F generated by UFS,
which is carefully designed to avoid the duplicate feature selection. Based on the selected data X̂ ,
we measure the distances between different samples, and feed the resulting distance vectors of each
sample into DGL to learn their k nearest neighbors. The adaptive graph structure and informative
features are learned jointly under the Dirichlet Energy, so as to identify the optimal feature subset
that effectively captures the underlying data structure.

3.1 Unique Feature Selector

Based on the original data X , the goal of FS is to identify a feature subset X̂ ∈ Rn×m from the
original features by minimizing a prespecified target Lobj(X̂):

min
F

Lobj(X̂) s.t. X̂ = XF ,F ∈ {0, 1}d×m,F⊤F = Im, (2)

where m ≤ d denotes the number of selected features, and F ∈ Rd×m denotes the selection matrix
selecting m features from X . Different from existing methods that use the reconstruction error as
Lobj(X̂), in this paper, we utilize the Dirichlet Energy in Eq. (1) for FS as follows:

Lobj(X̂) =

m∑
i=1

Ldir(x̂i) = tr(X̂
⊤
LSX̂). (3)

Given the selection number m, Lobj updates the network parameters by minimizing the Dirichlet
Energy, thereby selecting m features that best reflect the intrinsic structure.

The constraints in problem (2) indicate that an ideal result F should be exact and unique. Exact
means the result should exactly be the original features, instead of their linear combinations. Unique
means each feature should be selected only once under a given number m. These two properties
require F to be a binary and column-full-rank matrix including m orthogonal one-hot column vectors.

4

3.1.1 Approximating Discrete Feature Selection

It is difficult to learn a discrete F in neural networks due to its non-differentiable property. Inspired
by [8], we propose to learn the discrete distribution using the Gumbel Softmax [17, 18] technique:

f̂ i = softmax((log wi + gi)/T) with gi,j = −log(−log ui,j), ui,j ∼ Uniform(0, 1), (4)

where W = [w1,w2, . . . ,wm] denotes a learnable parameter. The random vector gi consists of d
Gumbel-distributed variables gi,j , which is generated with ui,j sampled from Uniform distribution.
Based on wi and gi, we obtain the approximated FS vector f̂ i that represents the i-th selected feature.
The distribution of f̂ i is controlled by a non-negative temperature parameter T . A smaller value of
parameter T will generate a better approximation of the one-hot vector, but will be more likely to
be stuck in a poor local minimum. As suggested in [8], we employ the annealing schedule on T by
initializing it with a high value and then gradually decreasing it during the learning process.

3.1.2 Selecting Unique Features
Algorithm 1 UFS

1: procedure UFS(F̂ , ϵ)
2: PΛP⊤ = F̂

⊤
F̂ + ϵIm

3: LL⊤ = F̂
⊤
F̂ + ϵIm

4: F =

[
Λ1/2P⊤

0̂

]
(L−1)⊤

5: return F
6: end procedure

Despite having obtained the approximated FS vectors in neural
networks, Eq. (4) does not consider the uniqueness requirement
of FS. This is because Eq. (4) learns each selected feature
separately, and does not consider the orthogonal constraint
between columns in F̂ , which is prone to result in the repeated
selection of the same features. To address this issue, we develop
a unique feature selector (UFS) in Algorithm 1, where 0̂ ∈
R(d−m)×m denotes the zero matrix. First, we add a small
enough perturbation ϵIm(ϵ > 0) on F̂

⊤
F̂ . Next, we perform

the eigendecomposition (line 2) and the Cholesky decomposition (line 3) on the perturbed result
respectively, and correspondingly obtain the diagonal matrix Λ ∈ Rm×m, the orthogonal matrix
P ∈ Rm×m, and the lower triangle matrix L ∈ Rm×m. Based on Λ, P , and L, we obtain the
selection matrix F in line 4 and have the following conclusion:

Proposition 3.1. Given any real matrix F̂ ∈ Rd×m, one can always generate a column-orthogonal
matrix F through Algorithm 1.

The proof of Proposition 3.1 is provided in Appendix S1. On the one hand, the small perturbation
ϵIm guarantees the column-full-rank property of F , thereby avoiding the duplicate selection results.
On the other hand, the orthogonality property in Proposition 3.1 facilitates the approximation of
discrete FS based on the matrix F̂ .5 We verify the efficacy of UFS in Section 4.2.

3.2 Differentiable k-NN Graph Learner

The existence of noise and irrelevant features may negatively affect the quality of the constructed
graph. As depicted in Fig. 1, a low-quality graph structure can significantly perturb the smoothness of
features and undermine the performance of feature selection. Hence, we propose to learn an adaptive
graph during the learning process using the selected features.

3.2.1 Learning an Adaptive k-NN Graph Using Dirichlet Energy

Considering the objective function in Eq. (3), a natural way is to learn the similarity matrix S based
on the Dirichlet Energy in Lobj . However, this may yield a trivial solution where, for sample xi, only
the nearest data point can serve as its neighbour with probability 1, while all the other data points
will not be its neighbours. To avoid this trivial solution, we propose to learn an adaptive graph by
incorporating the Tikhonov regularization [19] of S into the Dirichlet Energy:

min
S

tr(X̂
⊤
LSX̂) +

α

2
∥S∥2F s.t. S1n = 1n, si,j ≥ 0, si,i = 0, (5)

where α denotes the trade-off parameter between the Dirichlet Energy and the Tikhonov regularization.
Note that each row si in S can be solved separately, instead of tuning α manually, we model α as

5In practice, we calculate F with F = F̂ (L−1)⊤ without eigendecomposition to achieve discrete FS vectors.
We provide a discussion in Appendix S2 to explain this treatment.

5

a sample-specific parameter αi and determine it algorithmically, which plays an important role in
learning k nearest neighbors for each sample. Based on problem (5), we define the distance matrix E
with its entries being ei,j = ∥(x̂i − x̂j)∥22, then we solve each row si in problem (5) separately as

min
si

1

2
∥si + ei

2αi
∥22 s.t. si1n = 1, si,j ≥ 0, si,i = 0. (6)

Problem (6) can be solved easily by constructing the Lagrangian function and then using the Karush-
Kuhn-Tucker(KKT) conditions [20]. By doing so, we obtain the solution of si,j as

si,j = (
1

k
+

1

k

eiδ
(k)
i

2αi
− ei,j

2αi
)+ with δ

(k)
i,j = Bool(ei,j ≤ ei,σk

), (7)

where σ = [σ1, . . . , σn] denotes the sorting permutation over ei, i.e. ei,σ1
≤ · · · ≤ ei,σn

and δ
(k)
i

denotes the selection vector identifying the k minimal values in ei.

Recall that we aim to learn k nearest neighbors for each sample, which implies that there are only
k nonzero elements in si corresponding to the nearest neighbors. To this end, we determine the
trade-off parameters αi such that si,σk

> 0 and si,σk+1
≤ 0. Then we have:

1

2
(keiξ

(k)
i − eiδ

(k)
i) < αi ≤

1

2
(keiξ

(k+1)
i − eiδ

(k)
i) with ξ

(k)
i,j = Bool(ei,j = ei,σk

), (8)

where ξ
(k)
i denotes an indicator vector identifying the k-th minimal value in ei. Setting αi as the

maximum and substituting it into Eq. (7), we obtain the final solution as:

si,σj
=

eiξ
(k+1)
i − ei,σj

keiξ
(k+1)
i − eiδ

(k)
i

· Bool(1 ≤ j ≤ k). (9)

The detailed derivation of solution (9) can be found in Appendix S3. We note that the formulation in
problem (6) bears similarity to CLR proposed in [21]. In Appendix S4, we discuss the connection
between our method and CLR, and highlight the differences between the two w.r.t. the feature
utilization and the sorting operation. Remarkably, the k-NN can be obtained easily in CLR using off-
the-shelf sorting algorithms, which is not the case for neural networks due to the non-differentiability
of sorting algorithms. To address this issue, we propose to transform the k-NN selection into a
differentiable operator utilizing the Optimal Transport (OT) [22] technique as follows.

3.2.2 Differentiable k-NN Selector

Let µ = [µ1, µ2, · · · , µn1
]⊤ and ν = [ν1, ν2, · · · , νn2

]⊤ be two discrete probability distributions
defined on the supports A = {ai}n1

i=1 and B = {bj}n2
j=1 respectively . The goal of OT is to find an

optimal transport plan Γ ∈ Rn1×n2 between A and B by minimizing the following transport cost:

min
Γ

⟨C,Γ⟩, s.t. Γ1n2
= µ,Γ⊤1n1

= ν,Γi,j ≥ 0, (10)

where C ∈ Rn1×n2 denotes the cost matrix with ci,j = h(ai − bj) > 0 being the transport cost
from ai to bj . It is widely known that the solution of the OT problem between two discrete univariate
measures boils down to the sorting permutation [23–25]. As stated in [25], if h is convex, the optimal
assignment can be achieved by assigning the smallest element in A to b1, the second smallest to b2,
and so forth, which eventually yields the sorting permutation of A.

Given a distance vector e, to learn selection vectors δ(k) and ξ(k+1), we set A = e, and B =
[0, 1, . . . , k + 1], and define µ, ν, and cij as

µi =
1

n
, νj =

{
1/n, 1 ≤ j ≤ k + 1

(n− k − 1)/n, j = k + 2
, cij = (ai − bj)

2 = (ei − j + 1)2. (11)

The optimal transport plan of problem (10) assigns the i-th smallest value eσi to bi if 1 ≤ i ≤ k + 1,
and assigns the remaining n− k − 1 values in e to bk+2. Namely,

Γσi,j =

{
1/n, if (1 ≤ i ≤ k + 1 and j = i) or (k + 1 < i ≤ n and j = k + 2)

0, if (1 ≤ i ≤ k + 1 and j ̸= i) or (k + 1 < i ≤ n and j ̸= k + 2)
. (12)

6

Table 1: Details of real-world data.
Type Dataset #Samples #Features #Classes Type Dataset #Samples #Features #Classes

Text PCMAC [28] 1943 3289 2 Artificial Madelon [29] 2600 500 2

Biological

GLIOMA [30] 50 4434 4

Image

COIL-20 [31] 1440 1024 20

LUNG [32] 203 3312 5 Yale [33] 165 1024 15

PROSTATE [34] 102 5966 2 Jaffe [35] 213 676 10

SRBCT [36] 83 2308 4 PIX10 [14] 100 10000 10

SMK [37] 187 19993 2 warpPIE10P [38] 210 2420 10

Given a sample p, once we obtain the optimal transport assignment Γ based on ep, we calculate the
variables δ(k)p and ξ(k+1)

p as follows:

δ(k)p = n

k∑
i=1

Γi, ξ(k+1)
p = nΓk+1, (13)

where Γi and Γk+1 denote the i-th and the (k + 1)-th column of Γ, respectively. However, problem
(10) is still non-differentiable. To address this issue, we consider the following entropy regularized
OT problem:

min
Γ

⟨C,Γ⟩+ γ
∑
i,j

Γi,j log Γi,j s.t. Γ1k+2 = µ,Γ⊤1n = ν,Γi,j ≥ 0, (14)

where γ is a hyperparameter. The differentiability of problem (14) has been proven using the implicit
function theorem (see [26, Theorem 1]). Note that a smaller γ yields a better approximation to the
original solution in problem (10), but may compromise the differentiability of problem (14) [25].
Problem (14) can be solved efficiently using the iterative Bregman projections algorithm [27], the
details of which are provided in Appendix S5.

4 Experiments

Our experiments fall into three parts: (1) Toy Experiments: First, we verify the FS ability and the
graph learning ability of the proposed method on synthetic datasets. (2) Quantitative Analysis: Next,
we compare the performance of selected features in various downstream tasks on real-world datasets
and compare our method with other unsupervised FS methods. (3) Ablation Study: Finally, we verify
the effect of UFS and DGL by testing the performance of the corresponding ablated variants. We also
provide the sensitivity analysis in Appendix S6.6. The implementation details of all experiments can
be found in Appendix S6.1.

4.1 Datasets

For the toy experiments, we generate three 20-dimensional datasets named Blobs, Moons, and Circles
(see Appendix S6.1.1 for generation details). On top of that, we evaluate the proposed method on
twelve real-world datasets that include text, biological, image, and artificial data. Table 1 exhibits the
details of these datasets, which include many high-dimensional datasets to test the performance of our
method. We standardize all features to zero means and normalize them with the standard deviation.

4.2 Toy Experiments

In this section, we consider three synthetic binary datasets with increasing difficulty in separating
different classes. The first two dimensions in each dataset contain useful features that indicate the
underlying structure, while the remaining 18 dimensions are random noise sampled from N (0, 1).
The presence of noise obscures the inherent structure of the data, which makes the graph learning
process highly challenging. To see this, we generate 3-D plots of each dataset using the useful
features and one noise feature, along with their 2-D projections on each plane, which are shown in
Fig. 3(a). We can see that the noise blurs the boundary of different classes, especially in Moons and
Circles. In addition, we used a heat kernel (abbreviated as Heat) with σ = 1 to learn the 5-NN graph
on 20-dimensional features, as shown in Fig. 3(b). We can see that the heavy noise obscures the
underlying structure of data points, resulting in a chaotic graph outcome.

7

X1

2
1

0
1

2

X2
1

0
1

2

X n
oi

se

4
3
2
1
0
1
2
3

2 1 0 1 2

1

0

1

2

2 1 0 1 2

1

0

1

2

0 5 10 15 200.00

0.25

0.50

0.75

1.00

2 1 0 1 2

1

0

1

2

0 5 10 15 200.0

0.5

1.0

1.5

2.0

X1

2
1

0
1

X2
1

0
1

2

X n
oi

se

4

3

2

1

0

1

2

1 0 1

1

0

1

1 0 1

1

0

1

0 5 10 15 200.00

0.25

0.50

0.75

1.00

1 0 1

1

0

1

0 5 10 15 200.0

0.5

1.0

1.5

2.0

X1

2
1

0
1

2

X2

2
1

0
1

2

X n
oi

se

4
3
2
1

0

1

2

3

2 1 0 1 22

1

0

1

2

2 1 0 1 22

1

0

1

2

0 5 10 15 200.00

0.25

0.50

0.75

1.00

2 1 0 1 22

1

0

1

2

0 5 10 15 200.0

0.5

1.0

1.5

2.0

Circles. In addition, we used a heat kernel (abbreviated as Heat) with σ = 1 to learn the 5-NN graph226

on 20-dimensional features, as shown in Fig. 3(b). We can see that the heavy noise obscures the227

underlying structure of data points, resulting in a chaotic graph outcome.228

Results: We test our method on toy datasets for selecting m = 2 target features. The results are229

presented in Fig. 3(c) and Fig. 3(d), which demonstrate the success of our method in learning target230

features and intrinsic structures simultaneously. Moreover, it can be seen from Fig. 3(d) that the231

proposed network obtains the approximately discrete FS vectors.232

Learning Without Unique Feature Selector: In addition, we conduct an ablation study by removing233

the UFS module from the network and only using Eq. (4) for FS. The results are shown in Fig. 3(e)234

and Fig. 3(f), where we can see that the ablated model repeatedly selects the same feature on all235

datasets, which verifies the efficacy of UFS. It is also noteworthy that the nodes in the graph are236

mostly connected either horizontally or vertically, indicating that DGL is able to learn the local237

structure relying only on the single selected feature.238

4.3 Quantitive Analysis239

Experimental Settings: In this section, we evaluate our method on real-world data. We partition240

each dataset into training data and testing data using an 8:2 ratio and identify useful features using241

training data. We then evaluate the performance of selected features on three downstream tasks:242

(1) Classification Accuracy: We train a random forest (RF) [29] classifier with 1000 trees using243

selected features and evaluate the prediction accuracy on the testing data. (2) Clustering Accuracy:244

7

C
ir

cl
es

M
oo

ns
B

lo
bs

(a) 3D Plot (b) k-NN by Heat (d) FS by Ours(c) k-NN by Ours (e) k-NN w/o UFS (f) FS w/o UFS

Figure 3: Toy results on synthetic datasets, where higher similarities are presented with thicker
connections in k-NN graphs, and we only present the connections to 5-NN for each sample. Blue
bars and orange bars represent the distribution of f1 and f2 in the FS matrix F , respectively.

Results. We test our method on toy datasets for selecting m = 2 target features. The results are
presented in Fig. 3(c) and Fig. 3(d), which demonstrate the success of our method in learning target
features and intrinsic structures simultaneously. Moreover, it can be seen from Fig. 3(d) that the
proposed network obtains the approximately discrete FS vectors.

Learning Without Unique Feature Selector. In addition, we conduct an ablation study by removing
the UFS module from the network and updating F using Eq. (4) only. The results are shown in Fig.
3(e) and Fig. 3(f), where we can see that, without UFS, the ablated model repeatedly selects the same
feature on all datasets. It is also noteworthy that the nodes in the graph are mostly connected either
horizontally or vertically, indicating the effectiveness of DGL in learning the local structure solely
based on the single selected feature.

4.3 Quantitive Analysis

Experimental Settings. In this section, we evaluate our method on real-world data. We partition
each dataset into training data and testing data using an 8:2 ratio and identify useful features using
training data. We then evaluate the performance of selected features on three downstream tasks: (1)
Classification Accuracy: We train a random forest (RF) [39] classifier with 1000 trees using selected
features and evaluate the prediction accuracy on the testing data. (2) Clustering Accuracy: We cluster
the testing set with selected features using k-means [40], where the cluster number is set to #Classes.
Then we align the results with true labels and calculate the accuracy. (3) Reconstruction RMSE: We
build a 1-hidden-layer network with ReLU activation to reconstruct the original data using selected
features. The hidden dimension is set to 3m/2 except for AllFea, where the hidden size is set to d.
The network is learned on the training set with selected features, and evaluated on the testing set
using root mean square error (RMSE) normalized by d.

Competing methods. We compare our methods with four deep methods (CAE [8], DUFS [14],
WAST [41], AEFS [9]) and three classical methods (LS [13], RSR [42], UDFS [43]). Besides,
we use all features (AllFea) as the baseline. To evaluate the performance of each FS method on
downstream tasks, we average the results over 10 random runs with the feature number m varied
in {25, 50, 75, 100, 150, 200, 300} except for Madelon, where m is varied in {5, 10, 15, 20} since
Madelon consists of only 20 useful features [29]. Appendix S6.1 provides details of the overall
evaluation workflow, including the implementation and the parameter selection of each method.

Results. Similar to [14], we present the best result w.r.t. m in Table 2, the standard deviations is
provided in Appendix S6.2. We also present some reconstruction results on PIX10 by our method in
Appendix S6.3. From Table 2, we find that: (1) Our method generally achieves the best performance
in all three tasks, indicating that our method selects more useful features. (2) In particular, we beat
DUFS in all Classification and Clustering tasks, as well as most cases of the Reconstruction tasks.
Recall that DUFS also selects features based on the Dirichlet Energy, this result shows that the model
(5) in our method explores a superior graph structure compared to the traditional Heat method. (3)

8

Table 2: Results in downstream tasks over 10 runs on optimal m that is shown in the bracket. “Cla.”,
“Clu.” and “Rec.” are short for classification, clustering, and reconstruction, respectively.

Task Dataset CAE DUFS WAST AEFS LS RSR UDFS Our AllFea

Cla.
(ACC ↑)

Madelon 0.65 (15) 0.52 (20) 0.87 (15) 0.87 (10) 0.51 (20) 0.83 (10) 0.74 (20) 0.90 (20) 0.73
PCMAC 0.79 (50) 0.77 (300) 0.83 (300) 0.71 (300) 0.68 (300) 0.91 (300) 0.87 (300) 0.79 (300) 0.93
COIL-20 1.00 (300) 1.00 (300) 1.00 (200) 1.00 (300) 0.98 (300) 1.00 (200) 1.00 (300) 1.00 (200) 1.00
Yale 0.72 (300) 0.72 (300) 0.70 (200) 0.70 (150) 0.67 (300) 0.72 (200) 0.71 (200) 0.81 (300) 0.75
Jaffe 0.97 (50) 0.97 (50) 0.97 (25) 0.97 (100) 0.97 (300) 0.98 (300) 0.98 (75) 1.00 (150) 0.98
PIX10 0.99 (25) 0.98 (50) 0.99 (150) 0.98 (100) 0.97 (100) 0.97 (50) 0.97 (100) 1.00 (25) 0.97
warpPIE10P 0.96 (100) 0.96 (200) 0.95 (300) 0.98 (75) 0.96 (300) 0.98 (300) 0.97 (200) 0.99 (300) 0.98
GLIOMA 0.68 (200) 0.66 (300) 0.72 (100) 0.63 (300) 0.67 (200) 0.67 (300) 0.68 (75) 0.81 (300) 0.72
LUNG 0.86 (100) 0.87 (150) 0.87 (300) 0.87 (300) 0.92 (300) 0.93 (300) 0.91 (300) 0.94 (50) 0.90
PROSTATE 0.88 (300) 0.81 (150) 0.81 (300) 0.81 (150) 0.88 (300) 0.90 (150) 0.90 (300) 0.89 (300) 0.89
SRBCT 0.99 (300) 0.94 (150) 0.98 (300) 0.95 (200) 0.98 (300) 1.00 (200) 1.00 (150) 0.98 (150) 0.99
SMK 0.67 (200) 0.66 (50) 0.65 (50) 0.66 (150) 0.72 (300) 0.72 (75) 0.73 (100) 0.75 (200) 0.68

Average ranking 4.7 5.9 4.9 5.5 6.3 2.8 3.3 1.8 3.2

Top-1 1 1 1 1 0 3 3 9 2

Clu.
(ACC ↑)

Madelon 0.60 (15) 0.52 (15) 0.52 (15) 0.55 (5) 0.52 (20) 0.61 (15) 0.57 (20) 0.60 (20) 0.58
PCMAC 0.52 (150) 0.51 (25) 0.51 (25) 0.51 (100) 0.52 (75) 0.51 (25) 0.51 (150) 0.53 (200) 0.51
COIL-20 0.69 (100) 0.59 (150) 0.65 (200) 0.60 (300) 0.53 (300) 0.59 (300) 0.6 (300) 0.66 (200) 0.63
Yale 0.55 (100) 0.55 (150) 0.56 (100) 0.54 (300) 0.58 (300) 0.60 (300) 0.58 (200) 0.62 (300) 0.61
Jaffe 0.85 (300) 0.80 (300) 0.83 (300) 0.80 (300) 0.76 (300) 0.83 (150) 0.83 (200) 0.87 (200) 0.82
PIX10 0.86 (200) 0.79 (150) 0.85 (150) 0.79 (300) 0.85 (75) 0.72 (300) 0.81 (200) 0.87 (300) 0.78
warpPIE10P 0.55 (75) 0.42 (300) 0.44 (50) 0.53 (25) 0.55 (200) 0.57 (75) 0.49 (25) 0.51 (25) 0.45
GLIOMA 0.69 (50) 0.65 (50) 0.65 (25) 0.62 (300) 0.63 (300) 0.65 (150) 0.68 (75) 0.75 (75) 0.62
LUNG 0.64 (150) 0.64 (100) 0.62 (75) 0.66 (150) 0.65 (200) 0.69 (300) 0.61 (300) 0.72 (150) 0.69
PROSTATE 0.64 (25) 0.59 (150) 0.58 (300) 0.59 (25) 0.71 (25) 0.63 (25) 0.69 (25) 0.68 (50) 0.64
SRBCT 0.76 (150) 0.54 (75) 0.56 (200) 0.57 (200) 0.56 (200) 0.60 (150) 0.59 (150) 0.63 (50) 0.52
SMK 0.60 (300) 0.58 (25) 0.58 (25) 0.58 (50) 0.59 (50) 0.59 (50) 0.61 (200) 0.64 (25) 0.60

Average ranking 2.8 6.6 5.7 6 5 4 4.3 1.8 5.1

Top-1 2 0 0 0 1 2 0 7 0

Rec.
(RMSE ↓)

Madelon 0.99 (20) 0.99 (20) 0.98 (20) 0.98 (20) 0.99 (20) 0.98 (20) 0.98 (20) 0.98 (10) 0.28
PCMAC 1.14 (25) 1.03 (25) 1.05 (25) 1.05 (25) 1.04 (25) 1.17 (50) 1.07 (25) 1.30 (25) 0.78
COIL-20 0.48 (300) 0.41 (300) 0.43 (300) 0.41 (300) 0.48 (300) 0.45 (300) 0.41 (300) 0.38 (300) 0.27
Yale 0.63 (300) 0.56 (300) 0.56 (300) 0.56 (300) 0.78 (300) 0.57 (300) 0.60 (200) 0.54 (300) 0.50
Jaffe 0.31 (300) 0.25 (300) 0.26 (300) 0.25 (300) 0.33 (300) 0.26 (300) 0.25 (300) 0.22 (300) 0.23
PIX10 0.49 (300) 0.43 (300) 0.46 (300) 0.43 (300) 0.63 (50) 0.46 (300) 0.47 (300) 0.39 (300) 1.20
warpPIE10P 0.30 (300) 0.26 (300) 0.27 (300) 0.26 (300) 0.45 (300) 0.27 (300) 0.26 (300) 0.25 (300) 0.25
GLIOMA 0.74 (300) 0.71 (300) 0.71 (300) 0.72 (300) 0.71 (300) 0.72 (300) 0.72 (300) 0.69 (300) 1.86
LUNG 0.94 (300) 0.77 (300) 0.77 (300) 0.78 (300) 0.82 (300) 0.81 (300) 0.79 (300) 0.80 (300) 0.82
PROSTATE 1.00 (300) 0.78 (300) 0.77 (300) 0.77 (300) 0.72 (300) 0.74 (300) 0.71 (300) 0.73 (300) 1.48
SRBCT 0.84 (300) 0.77 (300) 0.77 (300) 0.78 (300) 0.80 (300) 0.79 (300) 0.78 (300) 0.75 (300) 0.83
SMK 0.98 (25) 0.68 (300) 0.68 (300) 0.68 (300) 0.78 (300) 0.78 (300) 0.73 (300) 0.69 (300) 4.32

Average ranking 7.9 3 3.5 3.2 6.4 5.5 4.1 2.7 4.8

Top-1 0 2 2 1 0 0 1 5 5

Table 3: Results in ablation studies, where “w/o” is short for “without”.
Task Method Madelon PCMAC Jaffe PIX10 GLIOMA PROSTATE

Effect of FS
(Clu. with SC)

Heat 0.54±0.01 0.51±0.00 0.60±0.13 0.41±0.06 0.48±0.05 0.55±0.02
DGL only 0.50±0.00 0.50±0.00 0.57±0.05 0.76±0.09 0.55±0.04 0.56±0.07
Our 0.58±0.01 0.51±0.00 0.80±0.07 0.77±0.04 0.59±0.04 0.65±0.02

Effect of DGL
(Cla. with RF)

w/o DGL 0.51±0.02 0.72±0.02 0.97±0.01 0.98±0.03 0.66±0.10 0.81±0.04
Our 0.90±0.01 0.79±0.01 1.00±0.01 1.00±0.00 0.81±0.09 0.89±0.05

In classification and clustering, the best performance is mostly achieved by FS methods with fewer
features, which verifies the necessity of FS. (4) AllFea achieves five optimums in Reconstruction,
which is not surprising since, theoretically, AllFea can be projected to original features with an identity
matrix. However, in biological data, the best reconstruction results are achieved by FS methods,
probably because the high-dimensional data leads to overfitting in networks. (5) It is noteworthy that
the reconstruction of Madelon poses a significant challenge for FS methods, indicating the difficulty
of reconstructing noise even using useful features. This observation supports our claim regarding the
lack of reasonability in selecting features based on the reconstruction performance in Section 1.

4.4 Ablation Study

In this experiment, we demonstrate the efficacy of the UFS and the DGL modules through ablation
studies on six datasets: Madelon, PCMAC, Jaffe, PIX10, GLIOMA, and PROSTATE.

Effect of FS. Recall that we have demonstrated the efficacy of UFS in Fig. 3. To further verify the
efficacy of FS in graph learning, we remove the entire FS module from the framework and learn the
graph using all features based on DGL. We also compare the graph learning result using Heat. We

9

cluster the obtained graphs with the spectral clustering (SC) method to verify their qualities. We
tune the parameter σ of Heat in {1, 2, . . . , 5}, and fix k = 5 for our method and the variant. The
results are shown in Table 3, which shows that FS has a positive effect on graph learning compared
with “DGL only”. Besides, in Appendix S6.4, we visualize the learned graph on COIL-20 and Jaffe
using t-SNE, which shows that using fewer features, we achieve separable graphs that contain fewer
inter-class connections than other methods.

Effect of DGL. To verify the efficacy of DGL, we remove it from the model and learn the ablated
variant with a fixed graph learned by Heat. Similar to Section 4.3, we first learn selected features
using competing method, then evaluate the features in downstream tasks. We present the classification
result in Table 3, and leave the other results in Appendix S6.5 due to limited space. We can see
that our method significant outperforms the ablated variant, especially in Madelon. This is probably
because the noise undermine the graph structure and disrupt the learning of informative features.

5 Discussion

Conclusion. This paper proposes a deep unsupervised FS method that learns informative features and
k-NN graph jointly using the Dirichlet Energy. The network is fully differentiable and all modules are
developed algorithmically to present versatility and interpretability. We demonstrate the performance
of our method with extensive experiments on both synthetic and real-world datasets.

Broader Impact. This paper presents not only an effective deep FS method, but also a differentiable
k-NN graph learning strategy in the context of deep learning. This technique is particularly useful
for end-to-end learning scenarios that require graph learning during the training process. And we
do notice this practical need in existing literature, see [44] for example. We believe our study will
inspire researchers who work on the dimensionality reduction and graph-related researches.

Limitations. The major limitation of the proposed method is the lack of scalability, for which we do
not evaluate our method on large datasets. This is because problem (14) requires an iterative solution,
requiring storage of all intermediate results for back-propagation. While literature [26] proposes
a memory-saving approach by deriving the expression of the derivative of Γ mathematically (see
[26, Section 3]), it still requires at least O(nk) space to update all intermediate variables to learn k
nearest neighbors for a singe sample, which results in a O(n2k) space complexity to learn for all n
samples. This is a huge memory cost on large datasets. Although learning in batch seems to be the
most straightforward solution, in our method, the neighbours of each sample are determined based
on the global information of LS , which has an n× n size. This requires to load the entire batch’s
information during each iteration, for which we cannot employ subgraph sampling as other graph
learning methods did to mitigate memory overhead. Another limitation of the proposed method is the
low computational speed, as it is reported that the OT-based sorting can be slow [45].

The future developments of the proposed method are twofold. First, we will try more differentiable
sorting algorithms to enhance computational speed. For example, reference [45] proposes to construct
differentiable sorting operators as projections onto the permutahedron, which achieves a O(n log n)
forward complexity and a O(n) backward complexity. Second, due to the large cost of the global
relationship in LS , we are considering adopting a bipartite graph [16, 46] to make batch learning
feasible. This graph introduces a small number of anchor points, which are representative of the
entire feature space. By doing this, smoothness can be measured based on the distance between
samples to anchors, for which sample-to-sample relationships are no longer needed and the batch
learning is enabled. It is worth noting that this idea is still in its conceptual stage, and we will explore
its feasibility in upcoming research.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant
62276212 and Grant 61872190, in part by the National Key Research and Development Program of
China under Grant 2022YFB3303800, and in part by the Key Research and Development Program of
Jiangsu Province under Grant BE2021093.

10

References
[1] Y. Li, C. Luo, and S. M. Chung, “Text clustering with feature selection by using statistical data,”

IEEE Trans. Knowl. Data Eng., vol. 20, no. 5, pp. 641–652, 2008.

[2] C. He, K. Li, Y. Zhang, Y. Zhang, Z. Guo, X. Li, M. Danelljan, and F. Yu, “Strategic preys make
acute predators: Enhancing camouflaged object detectors by generating camouflaged objects,”
arXiv preprint arXiv:2308.03166, 2023.

[3] H.-J. Yu and D.-S. Huang, “Normalized feature vectors: A novel alignment-free sequence
comparison method based on the numbers of adjacent amino acids,” IEEE/ACM Trans. Comput.
Biol. Bioinformatics, vol. 10, no. 2, pp. 457–467, 2013.

[4] C. He, K. Li, Y. Zhang, L. Tang, Y. Zhang, Z. Guo, and X. Li, “Camouflaged object detection
with feature decomposition and edge reconstruction,” in Proc. CVPR, 2023, pp. 22 046–22 055.

[5] Z. Sun, G. Bebis, and R. Miller, “Object detection using feature subset selection,” Pattern
Recognit., vol. 37, no. 11, pp. 2165–2176, 2004.

[6] L. Xu, R. Wang, F. Nie, and X. Li, “Efficient top-k feature selection using coordinate descent
method,” in Proc. AAAI, vol. 37, no. 9, 2023, pp. 10 594–10 601.

[7] C. He, K. Li, Y. Zhang, G. Xu, L. Tang, Y. Zhang, Z. Guo, and X. Li, “Weakly-supervised
concealed object segmentation with sam-based pseudo labeling and multi-scale feature grouping,”
arXiv preprint arXiv:2305.11003, 2023.

[8] M. F. Balın, A. Abid, and J. Zou, “Concrete autoencoders: Differentiable feature selection and
reconstruction,” in Proc. ICML, vol. 97, 2019, pp. 444–453.

[9] K. Han, Y. Wang, C. Zhang, C. Li, and C. Xu, “Autoencoder inspired unsupervised feature
selection,” in Proc. ICASSP, 2018, pp. 2941–2945.

[10] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: Homophily in social
networks,” Annu. Rev. Sociol., vol. 27, no. 1, pp. 415–444, 2001.

[11] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[12] R. Wang, P. Wang, D. Wu, Z. Sun, F. Nie, and X. Li, “Multi-view and multi-order structured
graph learning,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–12, 2023.

[13] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in Proc. NIPS, 2005, pp.
507–514.

[14] O. Lindenbaum, U. Shaham, E. Peterfreund, J. Svirsky, N. Casey, and Y. Kluger, “Differentiable
unsupervised feature selection based on a gated laplacian,” in Proc. NIPS, vol. 34, 2021, pp.
1530–1542.

[15] U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, pp. 395–416, 2007.

[16] F. R. Chung, Spectral graph theory. American Mathematical Soc., 1997, vol. 92.

[17] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv
preprint arXiv:1611.01144, 2017.

[18] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous relaxation of
discrete random variables,” in Proc. ICLR, 2017.

[19] A. Tikhonov and V. Arsenin, Solutions of Ill-posed Problems. Winston, 1977.

[20] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2014.

[21] F. Nie, X. Wang, M. Jordan, and H. Huang, “The constrained laplacian rank algorithm for
graph-based clustering,” in Proc. AAAI, vol. 30, no. 1, 2016.

11

[22] L. V. Kantorovich, “Mathematical methods of organizing and planning production,” Manage.
Sci., vol. 6, no. 4, pp. 366–422, 1960.

[23] F. Santambrogio, Optimal Transport for Applied Mathematicians. Birkhäuser, 2015.

[24] G. Peyré and M. Cuturi, “Computational optimal transport,” arXiv preprint arXiv:1803.00567,
2020.

[25] M. Cuturi, O. Teboul, and J.-P. Vert, “Differentiable ranking and sorting using optimal transport,”
in Proc. NIPS, vol. 32, 2019.

[26] Y. Xie, H. Dai, M. Chen, B. Dai, T. Zhao, H. Zha, W. Wei, and T. Pfister, “Differentiable top-k
with optimal transport,” in Proc. NIPS, vol. 33, 2020, pp. 20 520–20 531.

[27] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “Iterative bregman projections for
regularized transportation problems,” SIAM J. Sci. Comput., vol. 37, no. 2, pp. A1111–A1138,
2015.

[28] K. Lang, “Newsweeder: Learning to filter netnews,” in Machine Learning Proceedings 1995.
Morgan Kaufmann, 1995, pp. 331–339.

[29] I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr, “Competitive baseline
methods set new standards for the nips 2003 feature selection benchmark,” Pattern Recognit.
Lett., vol. 28, no. 12, pp. 1438–1444, 2007.

[30] C. L. Nutt, D. R. Mani, R. A. Betensky, P. Tamayo, J. G. Cairncross, C. Ladd, U. Pohl,
C. Hartmann, M. E. McLaughlin, T. T. Batchelor, P. M. Black, A. von Deimling, S. L. Pomeroy,
T. R. Golub, and D. N. Louis, “Gene Expression-based Classification of Malignant Gliomas
Correlates Better with Survival than Histological Classification1,” Cancer Res., vol. 63, no. 7,
pp. 1602–1607, 2003.

[31] S. A. Nene, S. K. Nayar, H. Murase et al., “Columbia object image library (coil-100),” Tech.
Rep. CUCS-005-96, 1996.

[32] H. Peng, F. Long, and C. H. Q. Ding, “Feature selection based on mutual information: Criteria
of max-dependency, max-relevance, and min-redundancy,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 27, no. 8, pp. 1226–1238, 2005.

[33] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-cluster data,” in Proc.
SIGKDD, 2010, pp. 333–342.

[34] I. Petricoin, Emanuel F., D. K. Ornstein, C. P. Paweletz, A. Ardekani, P. S. Hackett, B. A. Hitt,
A. Velassco, C. Trucco, L. Wiegand, K. Wood, C. B. Simone, P. J. Levine, W. M. Linehan, M. R.
Emmert-Buck, S. M. Steinberg, E. C. Kohn, and L. A. Liotta, “Serum Proteomic Patterns for
Detection of Prostate Cancer,” J. Natl. Cancer Inst., vol. 94, no. 20, pp. 1576–1578, 2002.

[35] M. J. Lyons, J. Budynek, and S. Akamatsu, “Automatic classification of single facial images,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 12, pp. 1357–1362, 1999.

[36] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab,
C. R. Antonescu, C. Peterson et al., “Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks,” Nat. Med., vol. 7, no. 6, pp. 673–679,
2001.

[37] A. Spira, J. E. Beane, V. Shah, K. Steiling, G. Liu, F. Schembri, S. Gilman, Y.-M. Dumas,
P. Calner, P. Sebastiani et al., “Airway epithelial gene expression in the diagnostic evaluation of
smokers with suspect lung cancer,” Nat. Med., vol. 13, no. 3, pp. 361–366, 2007.

[38] T. Sim, S. Baker, and M. Bsat, “The cmu pose, illumination, and expression database,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1615–1618, 2003.

[39] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.

[40] J. MacQueen, “Classification and analysis of multivariate observations,” in 5th Berkeley Symp.
Math. Statist. Probability, 1967, pp. 281–297.

12

[41] G. Sokar, Z. Atashgahi, M. Pechenizkiy, and D. C. Mocanu, “Where to pay attention in sparse
training for feature selection?” in Proc. NIPS, 2022.

[42] P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. Shiu, “Unsupervised feature selection by regularized
self-representation,” Pattern Recognit., vol. 48, no. 2, pp. 438–446, 2015.

[43] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “L2,1-norm regularized discriminative
feature selection for unsupervised learning,” in Proc. IJCAI, 2011, pp. 1589–1594.

[44] S. Miao, Y. Luo, M. Liu, and P. Li, “Interpretable geometric deep learning via learnable
randomness injection,” in Proc. ICLR, 2023.

[45] M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga, “Fast differentiable sorting and ranking,” in
Proc. ICML, vol. 119, 2020, pp. 950–959.

[46] W. Liu, J. He, and S.-F. Chang, “Large graph construction for scalable semi-supervised learning,”
in Proc. ICML, 2010, pp. 679–686.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, 2011.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” Proc. NIPS, vol. 32, 2019.

13

S1 Proof of Proposition 3.1

Proposition 3.1. Given any real matrix F̂ ∈ Rd×m, one can always generate a column-orthogonal
matrix F through Algorithm 1.

Proof. We begin our proof by showing the feasibility of Algorithm 1 for any real matrix F̂ , as the
eigendecomposition, Cholesky decomposition, and inverse mentioned in the algorithm are subject to
specific conditions. For simplicity, we represent A = F̂

⊤
F̂ + ϵIm, with ϵ > 0. Note that for any

nonzero real column vector z ∈ Rm, we have

z⊤Az = z⊤(F̂
⊤
F̂ + ϵIm)z = (F̂ z)⊤(F̂ z) + ϵz⊤z =

d∑
i=1

(f̂
i
z)2 + ϵ

m∑
i=1

z2i > 0. (S1)

Hence, the matrix A is positive-definite and can be eigendecomposed as A = PΛP−1, where
P ∈ Rm×m is the square matrix whose i-th column pi is the eigenvector of A and Λ ∈ Rm×m is
the diagonal matrix whose diagonal entries are the corresponding eigenvalues. Moreover, it is easy
to show that A is symmetric, for which we have P⊤ = P−1. Therefore, we prove that A can be
decomposed as A = PΛP⊤ (line 2 in Algorithm 1).

Since A is symmetric and positive-definite, we will be able to perform Cholesky decomposition on
A as LL⊤ = A (line 3 in Algorithm 1), which yields a lower triangular matrix L ∈ Rm×m whose
diagonal entries are all real and positive. This means that the determinant of L is larger than zero
and L is invertible, which provides the feasibility of L−1 (line 4 in Algorithm 1). Consequently, the
feasibility of Algorithm 1 for any real matrix F̂ is proved.

Next, we show that F is a column-orthogonal matrix. We denote Q =

[
Λ1/2P⊤

0̂

]
and have:

Q⊤Q =
[
PΛ1/2, 0̂

⊤
] [

Λ1/2P⊤

0̂

]
= PΛP⊤ = A = LL⊤. (S2)

Then we prove the orthogonality of the matrix F as follows:

F⊤F =L−1Q⊤Q(L−1)⊤

=L−1LL⊤(L−1)⊤

=L−1LL⊤(L⊤)−1

=Im

(S3)

The proof is completed.

S2 Discussion on Algorithm 1

Although Algorithm 1 theoretically guarantees the orthogonality of the selection matrix F , utilizing
this algorithm directly would bring us back to the problem of how to choose features and how to
obtain discrete results. On one hand, the non-uniqueness of eigendecomposition in line 2 prevents
us from ensuring the discrete properties of matrix F . On the other hand, it is important to note that

in line 4 of Algorithm 1, we aim to construct a column full-rank matrix Q =

[
Λ1/2P⊤

0̂

]
, whereas

the construction of Q is also not unique since we can insert d−m zero rows at any position within
the original matrix Λ1/2P⊤ to achieve the column full-rankness. The placement of these zero rows
directly affects the result of feature selection.

Guided by Algorithm 1, we devise a more empirical approach by calculating F with F = F̂ (L−1)⊤,
which effectively tackles the above two concerns. By doing so, we avoid the non-uniqueness of
eigendecomposition, thereby obtaining a solution that is as discrete as F̂ . Additionally, this approach
ensures that the information of feature selection in F̂ is retained within the column full-rank matrix.

14

Actually, F is an ϵ-approximation of column-orthogonal matrix, since we have:

F⊤F = L−1F̂
⊤
F̂ (L−1)⊤

= L−1(A− ϵIm)(L−1)⊤

= L−1A(L−1)⊤ − ϵL−1(L−1)⊤

= L−1LL⊤(L−1)⊤ − ϵL−1(L−1)⊤

= Im − ϵL−1(L−1)⊤.

(S4)

The experimental results in Section 4.2 verify the effectiveness of this approach in successfully
avoiding duplicate feature selection.

S3 Derivation of the Solution to Problem 5

Recall that we aim to solve the following problem to learn an adaptive k-NN graph:

min
S

tr(X̂
⊤
LSX̂) +

α

2
∥S∥2F , s.t. S1n = 1n, si,j ≥ 0, si,i = 0,

=min
si,j

1

2

n∑
i=1

n∑
j=1

∥(x̂i − x̂j)∥22si,j + αis
2
i,j , s.t.

n∑
j=1

si,j = 1, si,j ≥ 0, si,i = 0.
(S5)

Based on X̂ , we define the quantity ei,j = ∥(x̂i − x̂j)∥22, then we solve each row in problem (S5)
separately as:

min
si,j

1

2

n∑
j=1

ei,jsi,j + αis
2
i,j s.t.

n∑
j=1

si,j = 1, si,j ≥ 0, si,i = 0,

=min
si,j

1

2

n∑
j=1

(si,j +
ei,j
2αi

)2 s.t.

n∑
j=1

si,j = 1, si,j ≥ 0, si,i = 0,

=min
si

1

2
∥si + ei

2αi
∥22 s.t. si1n = 1, si,j ≥ 0, si,i = 0.

(S6)

We first omit the constraint si,i = 0 and consider it later, and solve problem (S6) with the first two
constraints, the Lagrangian function of which is as follows:

L(si, λi,β
i) =

1

2
∥si + ei

2αi
∥2 − λi(s

i1n − 1)−
n∑

j=1

si,jβi,j , (S7)

where λi and βi,j are Lagrange multipliers. The derivative of L(si, λi,β
i) w.r.t. si,j is:

∂L
∂si,j

= si,j +
ei,j
2αi

− λi − βi,j (S8)

Then we have the Karush-Kuhn-Tucker(KKT) conditions [20] of problem (S7) as follows:

si,j +
ei,j
2αi

− λi − βi,j = 0

n∑
j=1

si,j = 1

si,j ≥ 0

βi,j ≥ 0

βi,jsi,j = 0.

(S9)

Then we have:
si,j = (λi −

ei,j
2αi

)+ (S10)

15

Recall that there are only k nonzero elements in si corresponding to the nearest neighbors of sample
i, according to the constraint

∑n
j=1 si,j = 1 on k nonzero entries in si, we have:

k∑
j=1

(λi −
ei,σj

2αi
) = 1 ⇒ λi =

1

k
+

1

k

eiδ
(k)
i

2αi
with δ

(k)
i,j = Bool(ei,j ≤ ei,σk

), (S11)

where δ(k)i denotes the selection vector identifying the k minimal values in ei, and σ = [σ1, . . . , σn]
denotes the sorting permutation over ei, i.e. ei,σ1

≤ · · · ≤ ei,σn
. Without loss of generality, we

assume ei has no duplicates, namely ei,σ1 < · · · < ei,σn . Considering the constraint si,i = 0, since
ei,i = 0 being the minimal value in ei holds for all samples, we replace ei,i with a sufficiently large
value to skip over this trivial solution.

Substituting (S11) into (S10), we have:

si,j = (
1

k
+

1

k

eiδ
(k)
i

2αi
− ei,j

2αi
)+ (S12)

Recall that there are only k nonzero entries in si, we have

1

k
+

1

k

eiδ
(k)
i

2αi
− ei,σk

2αi
> 0,

1

k
+

1

k

eiδ
(k)
i

2αi
−

ei,σk+1

2αi
≤ 0. (S13)

Note that we assume αi > 0, then we have
1

2
(keiξ

(k)
i − eiδ

(k)
i) < αi ≤

1

2
(keiξ

(k+1)
i − eiδ

(k)
i) with ξ

(k)
i,j = Bool(ei,j = ei,σk

), (S14)

where ξ(k)i is an indicator vector identifying the k-th minimal value in ei. According to (S14), we set
αi as its maximal value as follows:

αi =
1

2
(keiξ

(k+1)
i − eiδ

(k)
i). (S15)

Substituting S15 into Eq. S12, we have:

si,j = (
1

k
+

1

k

eiδ
(k)
i

2αi
− ei,j

2αi
)+

= (
2αi + eiδ

(k)
i − kei,j

2kαi
)+

= (
keiξ

(k+1)
i − eiδ

(k)
i + eiδ

(k)
i − kei,j

k(keiξ
(k+1)
i − eiδ

(k)
i)

)+

= (
eiξ

(k+1)
i − ei,j

keiξ
(k+1)
i − eiδ

(k)
i

)+

(S16)

Eq. (S16) is used for implementation in our code. Note that since ei,σ1 < · · · < ei,σk
< ei,σk+1

<
. . . ei,σn , we have

keiξ
(k+1)
i − eiδ

(k)
i = kei,σk+1

−
k∑

p=1

ei,σp
=

k∑
p=1

(ei,σk+1
− ei,σp

) > 0. (S17)

Then we obtain the solution of si,j as

si,σj =

eiξ

(k+1)
i − ei,σj

keiξ
(k+1)
i − eiδ

(k)
i

, 1 ≤ j ≤ k

0, otherwise

, (S18)

which is exactly the solution of Eq. (9) in our main paper:

si,σj =
eiξ

(k+1)
i − ei,σj

keiξ
(k+1)
i − eiδ

(k)
i

· Bool(1 ≤ j ≤ k). (S19)

16

S4 Connection to CLR

We note that a similar formulation to problem 6 has been proposed in [21] (coined CLR), which
expects closer samples to have higher similarity. It aligns with the notion of “smoothness” as we
mentioned in Section 2. However, our method differs from CLR in at least two crucial aspects:
Firstly, CLR measures the distance quantity ei,j across all original features, making it more sensitive
to the noise and irrelevant features in the original data. In contrast, our approach learns the graph
structure using only informative features, resulting in enhanced robustness against noisy features.
Secondly, it is important to note that CLR is proposed in the context of traditional machine learning,
where optimization is straightforward, as δ(k)i and ξ

(k+1)
i can be updated using off-the-shelf sorting

algorithms. Different from CLR, problem 6 is introduced in the realm of deep learning, where
conventional sorting algorithms are non-differentiable and not applicable. This poses a huge challenge
in learning an adaptive k-NN graph in neural networks. To overcome this challenge, we proposed to
transform the top-k selection into a differentiable operator using the Optimal Transport technique.

S5 Iterative Bregman Projections

In this paper, we employ the iterative Bregman projections [27] algorithm to solve the following
problem:

min
Γ

⟨C,Γ⟩+ γ
∑
i,j

Γi,j log Γi,j , s.t. Γ1k+2 = µ,Γ⊤1n = ν,Γi,j ≥ 0. (S20)

We first initialize two variables u ∈ Rk+2 and K ∈ Rn×(k+2) as ui = 1/(k+2) and ki,j = e−ci,j/γ ,
respectively. Then based on the following formulations, we repeatedly updating u and v for ζ
iterations:

v =
µ

Ku
, u =

ν

K⊤v
, (S21)

where the division in Eq. (S21) is element-wise. In this paper, we set ζ as 200. After updating ζ
iteration, we obtain the optimal transport plan Γ as

Γ = diag(v)Kdiag(u). (S22)

S6 Supplementary Experimental Details

S6.1 Implementation Details

All experiments are conducted on a server equipped with an RTX 3090 GPU and an Intel Xeon Gold
6240 (18C36T) @ 2.6GHz x 2 (36 cores in total) CPU.

S6.1.1 Synthetic Datasets

We generate three datasets for toy experiments: (1) Blobs, (2) Moons, and (3) Circles. For each
dataset, we generate the first two features using the scikit-learn library [47] by adding noise sampled
from N (0, 0.1). Additionally, we generate 18-dimensional noise features sampled from N (0, 1).

S6.1.2 Competing Methods

The implementation details of different methods, as well as their corresponding parameter selections
are provided below:

• Our Method: Our method is implemented using the PyTorch framework [48]. We
train our method using the Adam optimizer for 1000 epochs on all datasets, with
the learning rate searched from {10−4, 10−3, 10−2, 10−1, 100, 101}. We search the
parameter γ in {10−3, 10−2, 10−1} and the parameter k in {1, 2, 3, 4, 5}. Note
that the implementation of differentiable top-k selector is based on the code
provided by [26] in https://papers.nips.cc/paper_files/paper/2020/hash/
ec24a54d62ce57ba93a531b460fa8d18-Abstract.html, which provides a more
memory-saving backward implementation compared to directly using the autograd method
in PyTorch.

17

https://papers.nips.cc/paper_files/paper/2020/hash/ec24a54d62ce57ba93a531b460fa8d18-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/ec24a54d62ce57ba93a531b460fa8d18-Abstract.html

• Where to Pay Attention in Sparse Training (WAST) [41]: We use the official code released
in https://github.com/GhadaSokar/WAST. The parameter settings were adopted in
accordance with Appendix A.1 of the original paper. Specifically, we train each dataset for
10 epochs using stochastic gradient descent with a learning rate of 0.1 for all datasets except
for SMK, where the learning rate is set to 0.01. For the parameter λ, we set λ = 0.9 on
Madelon and PCMAC, λ = 0.4 on all image datasets, λ = 0.1 on all biological datasets
except SMK, and λ = 0.01 on SMK. The remaining parameters are kept as they were in the
original paper.

• Differentiable Unsupervised Feature Selection (DUFS) [14]: We use the official code
released in https://github.com/Ofirlin/DUFS and use the parameter-free loss version
of DUFS. For all datasets, we set k = 2, and train the method with SGD with a learning rate
of 1 for 10000 epochs according to Appendix S7 in the original paper. We set the parameter
C = 5 on all datasets except for SRBCT, COIL, and PIX10, where C is set to 2.

• Concrete AutoEncoder (CAE) [8]: We use the official code released in https://github.
com/mfbalin/Concrete-Autoencoders. Since we could not find too much description
about the parameter settings on different datasets in the original paper, we run CAE with
default settings in the code.

• AutoEncoder Feature Selector (AEFS) [9]: The original code provided by the au-
thors is implemented in MATLAB, and it requires a prohibitively long time to run
this method on MATLAB. Therefore, following the treatment in [41], we use the code
provided by the authors of CAE in https://github.com/Ofirlin/DUFS (see ex-
periments/generate_comparison_figures.py in their repository). We search the param-
eter α in {10−9, 10−6, 10−3, 100, 103, 106, 109}, and the size of the hidden layer in
{128, 256, 512, 1024}.

• Laplacian Score (LS) [13]: We use the official code released in http://www.cad.zju.edu.
cn/home/dengcai/Data/ReproduceExp.html#LaplacianScore. We use the heat ker-
nel for graph construction, and fix the size of neighbors k as 5 for all datasets.

• Regularized Self-Representation (RSR) [42]: We use the official code released in
https://github.com/AISKYEYE-TJU/RSR-PR2015. We search the parameter λ in
{10−9, 10−6, 10−3, 100, 103, 106, 109}.

• Unsupervised Discriminative Feature Selection (UDFS) [43]: We use the code provided
in https://guijiejie.github.io/code.html. We use the heat kernel for graph con-
struction, and fix the size of neighbors k as 5 for all datasets. We search the parameter γ in
{10−9, 10−6, 10−3, 100, 103, 106, 109}.

S6.1.3 Evaluation Workflow

The overall evaluation workflow in Section 4.3 is shown in Algorithm S2, which includes two steps:

1. Given the dataset X and a prespecified feature number m, we first randomly split the dataset
using an 8 : 2 ratio and select features based on the training set Xtr by FS method F using
different parameters Θ, as shown in Algorithm S1. This allows us to obtain FS results under
different parameter candidates θi, along with the corresponding reduced training data X ′

tr
and testing data X ′

te. Based on the reduced data, we perform classification tasks on these
datasets with the random forest, thereby obtaining the classification performance for each
parameter combination. We select the parameter combination with the best classification
performance as the optimal parameter θ∗ for F.

2. Based on the optimal parameter θ∗, we construct the FS model Fθ∗ and evaluate its perfor-
mance in different downstream tasks. To avoid randomness, we randomly split the dataset
10 times. With each random split, we use the training set Xtr to select features, and obtain
reduced training set X ′

tr and testing set X ′
te. We use these sets for downstream tasks in-

cluding classification, clustering, and reconstruction, and obtain corresponding performance
metrics. For each downstream task, we calculate the average metric over 10 runs as the
performance of F for the given number m.

For each dataset, we vary the value of m and follow the aforementioned procedure to obtain the cor-
responding performance. For each downstream task, we report the best metric and the corresponding
feature number m as the performance of the FS method in this downstream task.

18

https://github.com/GhadaSokar/WAST
https://github.com/Ofirlin/DUFS
https://github.com/mfbalin/Concrete-Autoencoders
https://github.com/mfbalin/Concrete-Autoencoders
https://github.com/Ofirlin/DUFS
http://www.cad.zju.edu.cn/home/dengcai/Data/ReproduceExp.html#LaplacianScore
http://www.cad.zju.edu.cn/home/dengcai/Data/ReproduceExp.html#LaplacianScore
https://github.com/AISKYEYE-TJU/RSR-PR2015
https://guijiejie.github.io/code.html

Algorithm S1 Param_tuning
Input: Training data (Xtr,ytr), testing data (Xte,yte), selected number m, FS method F, and
parameter set Θ = {θi}.
Output: Optimal parameter θ∗.

1: for θi in Θ do
2: ξ = Fθi(Xtr,m); ▷ Determining selected features ξ by F under the parameter θi.
3: X ′

tr = Xtr(:, ξ), X ′
te = Xte(:, ξ); ▷ Generating reduced datasets using selected features.

4: ACC = RF(X ′
tr, ytr, X ′

te, yte);▷ Evaluating selected features with random forest classifier.
5: if ACC > ACC∗ then
6: ACC∗ = ACC;
7: θ∗ = θi;
8: end if
9: end for

Algorithm S2 Overall evaluation workflow
Input: Original dataset (X,y), selected feature number m, FS method F, parameter set Θ = {θi},
and downstream tasks T = {Ti}.
Output:. Performance M = {Mi} in downstream tasks.

1: Partitioning the dataset into training data (Xtr,ytr) and testing data (Xte,yte).
2: Determining θ∗ by Param_tuning((Xtr,ytr), (Xte,yte), m, F, Θ) in Algorithm S1;
3: for j = 1 : 10 do
4: Partitioning the dataset into training data (Xtr,ytr) and testing data (Xte,yte).
5: ξ∗ = Fθ∗(Xtr,m);
6: X ′

tr = Xtr(:, ξ
∗), X ′

te = Xte(:, ξ
∗);

7: for Ti in T do
8: m{i, j} = Ti(X ′

tr,ytr,X
′
te,yte); ▷ Evaluating the performance in downstream tasks.

9: end for
10: end for
11: for Ti in T do
12: Mi = Average(m{i, :});
13: end for

S6.1.4 Evaluation Metrics

We employ two metrics in our experiments: the accuracy (ACC) and the root mean square error
(RMSE) normalized by d.

The formulation of ACC is

ACC(y, ŷ) =

∑n
i=1 Bool(yi = ŷi)

n
, (S23)

where y ∈ Rn denotes the groundtruth labels and ŷ ∈ Rn denotes the prediction label.

The formulation of RMSE normalized by d is

RMSE(X, X̂) =

√∑n
i=1 ∥xi − x̂i∥22

n× d
, (S24)

where X = [x1;x2; . . . ;xn] and X̂ = [x̂1; x̂2; . . . ; x̂n] denote the original feature matrix and the
reconstructed feature matrix, respectively.

S6.1.5 Formulation of Heat Kernel Method

Here we describe the heat kernel (Heat) method compared in this paper. To implement Heat, we first
compute the similarity matrix Ŝ as follows:

ŝi,j = exp(−∥xi − xj∥22
2σ2

), (S25)

19

Based on Ŝ, we keep the k-nearest neighbors for each sample. Namely, for each sample i, we obtain
its similarity vector si as

si,j =

{
ŝi,j , xj ∈ K(xi)

0, otherwise
, (S26)

where K(xi) denotes the k nearest neighbors of xi. When we need to calculate the Laplacian matrix
using S (for example, when we analyze the effect of DGL in Section 4.4), we use the symmetrized
version of S:

S̃ =
S⊤ + S

2
(S27)

S6.2 Standard Deviations of Quantitative Analysis

Table S1, Table S2, and Table S3 exhibit the mean and the standard deviations of the results in Table
2 in Section 4.3.

Table S1: Classification results with standard deviations.
Dataset CAE DUFS WAST AEFS LS RSR UDFS Our AllFea

Madelon 0.65±0.04 0.52±0.04 0.87±0.02 0.87±0.01 0.51±0.01 0.83±0.02 0.74±0.06 0.90±0.01 0.73±0.02
PCMAC 0.79±0.06 0.77±0.02 0.83±0.01 0.71±0.03 0.68±0.03 0.91±0.02 0.87±0.02 0.79±0.01 0.93±0.01
COIL-20 1.00±0.01 1.00±0.00 1.00±0.00 1.00±0.00 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Yale 0.72±0.05 0.72±0.05 0.70±0.05 0.70±0.06 0.67±0.07 0.72±0.08 0.71±0.06 0.81±0.05 0.75±0.06
Jaffe 0.97±0.02 0.97±0.01 0.97±0.01 0.97±0.01 0.97±0.03 0.98±0.02 0.98±0.02 1.00±0.01 0.98±0.02
PIX10 0.99±0.02 0.98±0.03 0.99±0.02 0.98±0.03 0.97±0.06 0.97±0.04 0.97±0.04 1.00±0.00 0.97±0.03
warpPIE10P 0.96±0.04 0.96±0.03 0.95±0.03 0.98±0.04 0.96±0.05 0.98±0.03 0.97±0.05 0.99±0.02 0.98±0.04
GLIOMA 0.68±0.10 0.66±0.12 0.72±0.09 0.63±0.12 0.67±0.13 0.67±0.11 0.68±0.10 0.81±0.09 0.72±0.14
LUNG 0.86±0.05 0.87±0.05 0.87±0.04 0.87±0.05 0.92±0.04 0.93±0.05 0.91±0.06 0.94±0.03 0.90±0.05
PROSTATE 0.88±0.05 0.81±0.07 0.81±0.06 0.81±0.07 0.88±0.07 0.90±0.07 0.90±0.05 0.89±0.05 0.89±0.06
SRBCT 0.99±0.02 0.94±0.05 0.98±0.03 0.95±0.05 0.98±0.04 1.00±0.00 1.00±0.00 0.98±0.03 0.99±0.02
SMK 0.67±0.06 0.66±0.07 0.65±0.07 0.66±0.08 0.72±0.10 0.72±0.11 0.73±0.09 0.75±0.06 0.68±0.10

Table S2: Clustering results with standard deviations.
Dataset CAE DUFS WAST AEFS LS RSR UDFS Our AllFea

Madelon 0.60±0.01 0.52±0.01 0.52±0.01 0.55±0.04 0.52±0.01 0.61±0.02 0.57±0.05 0.60±0.01 0.58±0.04
PCMAC 0.52±0.01 0.51±0.01 0.51±0.01 0.51±0.01 0.52±0.01 0.51±0.01 0.51±0.01 0.53±0.02 0.51±0.01
COIL-20 0.69±0.03 0.59±0.04 0.65±0.03 0.60±0.04 0.53±0.04 0.59±0.03 0.60±0.04 0.66±0.03 0.63±0.05
Yale 0.55±0.06 0.55±0.07 0.56±0.06 0.54±0.06 0.58±0.06 0.60±0.08 0.58±0.05 0.62±0.04 0.61±0.08
Jaffe 0.85±0.07 0.80±0.06 0.83±0.05 0.80±0.07 0.76±0.09 0.83±0.08 0.83±0.09 0.87±0.06 0.82±0.06
PIX10 0.86±0.05 0.79±0.04 0.85±0.06 0.79±0.04 0.85±0.10 0.72±0.08 0.81±0.09 0.87±0.07 0.78±0.05
warpPIE10P 0.55±0.05 0.42±0.03 0.44±0.04 0.53±0.06 0.55±0.05 0.57±0.06 0.49±0.08 0.51±0.05 0.45±0.05
GLIOMA 0.69±0.07 0.65±0.11 0.65±0.10 0.62±0.10 0.63±0.13 0.65±0.16 0.68±0.11 0.75±0.08 0.62±0.08
LUNG 0.64±0.07 0.64±0.11 0.62±0.10 0.66±0.06 0.65±0.11 0.69±0.10 0.61±0.05 0.72±0.12 0.69±0.11
PROSTATE 0.64±0.11 0.59±0.05 0.58±0.05 0.59±0.05 0.71±0.13 0.63±0.10 0.69±0.11 0.68±0.09 0.64±0.10
SRBCT 0.76±0.09 0.54±0.05 0.56±0.08 0.57±0.08 0.56±0.07 0.60±0.11 0.59±0.11 0.63±0.10 0.52±0.06
SMK 0.60±0.06 0.58±0.05 0.58±0.06 0.58±0.05 0.59±0.05 0.59±0.05 0.61±0.07 0.64±0.05 0.60±0.07

Table S3: Reconstruction results with standard deviations.
Dataset CAE DUFS WAST AEFS LS RSR UDFS Our AllFea

Madelon 0.99±0.01 0.99±0.00 0.98±0.00 0.98±0.00 0.99±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.28±0.00
PCMAC 1.14±0.17 1.03±0.06 1.05±0.06 1.05±0.07 1.04±0.06 1.17±0.19 1.07±0.12 1.30±0.22 0.78±0.03
COIL-20 0.48±0.03 0.41±0.02 0.43±0.01 0.41±0.01 0.48±0.02 0.45±0.02 0.41±0.02 0.38±0.02 0.27±0.01
Yale 0.63±0.03 0.56±0.02 0.56±0.02 0.56±0.02 0.78±0.04 0.57±0.03 0.60±0.03 0.54±0.02 0.50±0.01
Jaffe 0.31±0.05 0.25±0.05 0.26±0.05 0.25±0.05 0.33±0.08 0.26±0.05 0.25±0.05 0.22±0.01 0.23±0.04
PIX10 0.49±0.03 0.43±0.04 0.46±0.05 0.43±0.02 0.63±0.05 0.46±0.04 0.47±0.05 0.39±0.03 1.20±0.23
warpPIE10P 0.30±0.03 0.26±0.02 0.27±0.02 0.26±0.02 0.45±0.06 0.27±0.03 0.26±0.02 0.25±0.01 0.25±0.04
GLIOMA 0.74±0.05 0.71±0.04 0.71±0.04 0.72±0.05 0.71±0.04 0.72±0.04 0.72±0.04 0.69±0.04 1.86±0.59
LUNG 0.94±0.06 0.77±0.02 0.77±0.02 0.78±0.02 0.82±0.04 0.81±0.02 0.79±0.02 0.80±0.03 0.82±0.28
PROSTATE 1.00±0.14 0.78±0.08 0.77±0.08 0.77±0.09 0.72±0.10 0.74±0.10 0.71±0.10 0.73±0.13 1.48±0.26
SRBCT 0.84±0.03 0.77±0.02 0.77±0.02 0.78±0.02 0.80±0.02 0.79±0.02 0.78±0.02 0.75±0.02 0.83±0.03
SMK 0.98±0.07 0.68±0.02 0.68±0.03 0.68±0.02 0.78±0.04 0.78±0.04 0.73±0.03 0.69±0.03 4.32±0.45

20

S6.3 Reconstruction Results on PIX10

Fig. S1 presents the reconstruction results on PIX10 achieved by our method. We can see that our
method is able to reconstruct the original images of 10000 dimensions reasonably well with only 300
features. Notably, the reconstructions capture important appearance details, including reflections,
hair tips, and facial features, demonstrating the effectiveness of our method.

Reconstructed
Images

Groundtruth
Images

Figure S1: Reconstruction results on PIX10 with 300 features, where the training data are indicated
in blue and testing data are indicated in light orange.

S6.4 Graph Visualization

We visualize COIL-20 and Jaffe with t-SNE, and plot the graph structures obtained by different
methods. The results are shown in Fig. S2, where red lines represent the intra-class connections and
blue lines represent inter-class connections. Unlike “Heat” and “DGL only” that use the original
features for visualization, we visualize the data points using only selected features. Remarkably, our
method successfully achieves separable structures using t-SNE, demonstrating its ability to capture
features that reflect the intrinsic data structure.

(a) Heat (b) DGL only (c) Our

Figure S2: Visualization with t-SNE, where the first row and the second row correspond to COIL-20
and Jaffe, respectively. Different classes are indicated with different colors. Intra-class connections
are indicated in red and inter-class connections are indicated in blue. For each sample, we only
present the connections to the 5 nearest neighbors.

S6.5 Extended Results for Ablation Study

Table S4 and Table S5 present the clustering result and the reconstruction result of the ablation study
on DGL in Section 4.4:

Table S4: Clustering results without DGL.
Method Madelon PCMAC Jaffe PIX10 GLIOMA PROSTATE

w/o DGL 0.52±0.01 0.51±0.01 0.81±0.06 0.78±0.06 0.65±0.08 0.57±0.05
Our 0.60±0.01 0.53±0.02 0.87±0.06 0.87±0.07 0.75±0.08 0.68±0.09

Table S5: Reconstruction results without DGL.
Method Madelon PCMAC Jaffe PIX10 GLIOMA PROSTATE

w/o DGL 0.99±0.00 1.07±0.10 0.26±0.05 0.45±0.02 0.74±0.03 0.79±0.08
Our 0.98±0.00 1.30±0.22 0.22±0.01 0.39±0.03 0.69±0.04 0.73±0.13

21

S6.6 Additional Experiment: Parameter Sensitivity Analysis

In this section, we analyze the effect of the parameters of our method, including the learning rate, the
number of nearest neighbors k, the hyperparameter γ in the entropy regularized OT problem 14, and
the selected feature number m. We use four real-world datasets, including a text dataset PCMAC, an
artificial dataset Madelon, an image dataset Jaffe, and a biological dataset PROSTATE.

The analysis is based on the optimal parameter obtained in Section 4.3. For each dataset, we fix the
values of the remaining parameters and vary the value of one parameter at a time. We retrain our
method using the updated parameter combination and evaluate the corresponding FS result with the
random forest. This allows us to observe the impact of different parameters on the performance of
our method. For example, to analyze the effect of the learning rate on Madelon, we keep k, γ, and
m at their optimal values, then we vary the learning rate in {10−4, 10−3, 10−2, 10−1, 100, 101} (the
range as we described in Appendix S6.1.2), and evaluate their corresponding performance in the
classification task with the random forest. The overall results are shown in Fig. S3, where the stars
represent the results using optimal parameters.

One the one hand, we observe that the variations in the learning rate, k, γ have little impact on the
performance of our method across different datasets. This suggests that we can set a value within a
proper range for these parameters, without the need to determine their values on different datasets.
On the other hand, the most sensitive parameter is m, where a higher number of features contributes
to better results, aligning with intuition and observations from existing literature. However, it is
important to emphasize that more features are not always better. As demonstrated in Section 4.3,
the FS methods consistently outperform AllFea in most classification and clustering tasks. Fewer
features not only result in lower computational costs but also contribute to faster learning speeds.
This suggests the need to adjust the value of m, for example, starting with a relatively small value
and gradually increasing it until the model performance begins to decline.

10 4 10 3 10 2 10 1 100 101

learning rate

40

60

80

100

AC
C

 (%
)

1 2 3 4 5
k

40

60

80

100

AC
C

 (%
)

10 3 10 2 10 1

γ

40

60

80

100

AC
C

 (%
)

5 10 15 20
m

40

60

80

100

AC
C

 (%
)

(a) Madelon

10 4 10 3 10 2 10 1 100 101

learning rate

40

60

80

100

AC
C

 (%
)

1 2 3 4 5
k

40

60

80

100

AC
C

 (%
)

10 3 10 2 10 1

γ

40

60

80

100

AC
C

 (%
)

25 50 75 100 150 200 300
m

40

60

80

100

AC
C

 (%
)

(b) PCMAC

10 4 10 3 10 2 10 1 100 101

learning rate

40

60

80

100

AC
C

 (%
)

1 2 3 4 5
k

40

60

80

100

AC
C

 (%
)

10 3 10 2 10 1

γ

40

60

80

100

AC
C

 (%
)

25 50 75 100 150 200 300
m

40

60

80

100

AC
C

 (%
)

(c) Jaffe

10 4 10 3 10 2 10 1 100 101

learning rate

40

60

80

100

AC
C

 (%
)

1 2 3 4 5
k

40

60

80

100

AC
C

 (%
)

10 3 10 2 10 1

γ

40

60

80

100

AC
C

 (%
)

25 50 75 100 150 200 300
m

40

60

80

100

AC
C

 (%
)

(d) PROSTATE

Figure S3: Parameter sensitivity analysis using the random forest, where the starred point denotes the
performance on the optimal parameter combination.

22

	Introduction
	Dirichlet Energy
	Proposed Method
	Unique Feature Selector
	Approximating Discrete Feature Selection
	Selecting Unique Features

	Differentiable k -NN Graph Learner
	Learning an Adaptive k -NN Graph Using Dirichlet Energy
	Differentiable k -NN Selector

	Experiments
	Datasets
	Toy Experiments
	Quantitive Analysis
	Ablation Study

	Discussion
	Proof of Proposition 3.1
	Discussion on Algorithm 1
	Derivation of the Solution to Problem 5
	Connection to CLR
	Iterative Bregman Projections
	Supplementary Experimental Details
	Implementation Details
	Synthetic Datasets
	Competing Methods
	Evaluation Workflow
	Evaluation Metrics
	Formulation of Heat Kernel Method

	Standard Deviations of Quantitative Analysis
	Reconstruction Results on PIX10
	Graph Visualization
	Extended Results for Ablation Study
	Additional Experiment: Parameter Sensitivity Analysis

