
Failure-Aware Gaussian Process Optimization
with Regret Bounds

Shogo Iwazaki
MI-6 Ltd., Tokyo, Japan
iwazaki@mi-6.co.jp

Shion Takeno
RIKEN AIP, Tokyo, Japan
shion.takeno@riken.jp

Tomohiko Tanabe
MI-6 Ltd., Tokyo, Japan
tanabe@mi-6.co.jp

Mitsuru Irie
MI-6 Ltd., Tokyo, Japan
irie@mi-6.co.jp

Abstract

Real-world optimization problems often require black-box optimization with ob-
servation failure, where we can obtain the objective function value if we succeed,
otherwise, we can only obtain a fact of failure. Moreover, this failure region can
be complex by several latent constraints, whose number is also unknown. For this
problem, we propose a failure-aware Gaussian process upper confidence bound
(F-GP-UCB), which only requires a mild assumption for the observation failure that
an optimal solution lies on an interior of a feasible region. Furthermore, we show
that the number of successful observations grows linearly, by which we provide
the first regret upper bounds and the convergence of F-GP-UCB. We demonstrate
the effectiveness of F-GP-UCB in several benchmark functions, including the
simulation function motivated by material synthesis experiments.

1 Introduction

The effectiveness of optimization methods based on Gaussian process (GP) regression for expensive-
to-evaluate black-box functions has been repeatedly shown in a wide range of real-world applications,
including robotics [34, 35], experimental design [14], and hyperparameter optimization [4, 41].
On the other hand, failure of the observation itself must often be considered. For example, in the
optimization of hyperparameters for a complicated physical model, the evaluation may crash for
some hyperparameters. Another example is materials development, in which experimental testing of
new materials can reveal that the synthesis procedure fails.

Therefore, this study considers the optimization of a black-box function f with a black-box determin-
istic failure function c : X → {0, 1}, where X is an input space. In this study, failure of observation
at the input x is represented as c(x) = 1, while the success of observation is represented as c(x) = 0.
Then, our optimization problem can be formulated as follows:

x∗ = arg max
x∈X

f(x) s.t. c(x) = 0, (1)

where the observation of f can be obtained only if c(x) = 0, but the observation cost is consumed
even if c(x) = 1. Hence, the goal is to efficiently identify the optimal point x∗ while considering the
observation failure.

One of the notable technical difficulties of problem (1) is how to handle the failure function c. To
model c, existing studies [32, 2] use the GP classification (GPC) model [38] or its variants, which
assume that c can be represented by a smooth latent function. However, the observation failure can

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

be caused by several latent constraints implicitly. In addition, since only the binary failure can be
obtained, the number of latent constraints is also unknown. Therefore, modeling c with the usual
GPC is hard and often unsuitable, which can degrade the optimization performance. Hence, an
optimization method under a mild assumption on c is demanded. Furthermore, the existence of c
makes theoretical analysis and even securing the number of successful observations difficult.

Our contribution. In this paper, we propose a novel GP-based optimization algorithm, failure-
aware GP upper confidence bound (F-GP-UCB), which chooses the next evaluation in an input
domain except for the adaptively adjusted neighborhood of the past observation failures. Furthermore,
we show that the number of successful observations grows linearly under a very mild assumption
of the failure function c that the optimal solution lies on an interior of a feasible region. Then, we
provide the first regret upper bound of the GP optimization problem (1), which shows that F-GP-UCB
converges to the optimal solution with high probability. We demonstrate the effectiveness of the
F-GP-UCB algorithm with several benchmark functions, including a heuristic simulation function
motivated by materials research of quasicrystals.

Related work. In the past few decades, many GP-based optimization algorithms have been devel-
oped [37, 42, 18, 8, 53]. In addition to the standard optimization settings, various extensions have been
studied, such as parallel [9], high-dimensional [54], multi-fidelity [25], and robust optimization [6].

GP-based constrained optimization [10, 11, 19, 47] has a close relation to our study. It considers
the black-box optimization under an inequality constraint g(x) ≤ 0, where g is also a black-box
function. If the failure function in this paper is recast as c(x) = 1l{g(x) > 0}, the optimization
problem matches that of problem (1). However, there are two crucial differences. First, in constrained
optimization, observations at an input can be obtained even if the constraint is not satisfied, i.e.,
g(x) > 0. Under the setting of this paper, no information about the objective function can be obtained
for input points that result in failure. Second, in constrained optimization problems, it is generally
assumed that noisy observation of g(x) is possible. In the setting of our study, we cannot obtain a
direct observation from the latent function g.

There exist works on GP optimization that take into account failures. Lindberg and Lee [32] proposed
an algorithm that combines the Expected Improvement (EI) criterion [37] with the posterior success
probability of the classical GPC. Instead of GPC, Sacher et al. [39] used a support vector machine-
based model. However, although c is deterministic, these classifiers assume that observation failure
is essentially stochastic, i.e., the evaluations at the same input can fail and succeed. This model
misspecification can degrade the optimization performance, as described in Bachoc et al. [2]. Then,
Bachoc et al. [2] proposed the deterministic variant of GPC which models c as c(x) = 1l{g(x) ≥ 0},
where g is a latent function modeled by a GP. They also provide an EI-based strategy and prove
convergence to an optimal solution. From a practical point of view, surrogate models of c navigate
the optimization process efficiently when c is well represented through a smooth latent function g.
However, practical applications often have too complex failure processes to model with one latent
function (e.g., the failure function c depends on several latent functions.) Furthermore, it is difficult to
know that such a complex failure structure exists beforehand. Finally, from a theoretical perspective,
Bachoc et al. [2] give the convergence guarantee, but its rate and the regret-based analysis are not
provided.

2 Preliminaries

Problem setup. Let f : X → R and c : X → {0, 1} be an unknown fixed objective function and
an unknown failure function, respectively, where X := [0, 1]d is the input space. At each time step
t, the user makes a selection xt ∈ X and obtains the failure label c(xt). If c(xt) = 0, the user
proceeds to make a noisy observation yt = f(xt)+ ϵt where ϵt is a noise term which is conditionally
σ-sub-Gaussian. Our noise model is a mild one; examples include an arbitrary distribution over
[−σ, σ] and a Gaussian noise with variance below σ2. Note that, in the case of c(xt) = 1 (failure),
the user obtains no further information.

The user’s goal is to efficiently identify the optimal solution x∗ over the unknown feasible region
Sc := {x ∈ X | c(x) = 0}. For convenience, we rephrase the problem (1) using Sc as follows:

x∗ = arg max
x∈Sc

f(x). (2)

2

We assume that Sc ̸= ∅ and that there exists a unique solution x∗. Furthermore, we define the failure
region Fc as Fc = X \ Sc.

Regret. We employ the regret to evaluate the algorithm’s performance. The regret rt at step t is
defined as rt = f(x∗)− f(x̂t) if x̂t ∈ Sc, otherwise rt = f(x∗)−minx∈X f(x), where x̂t ∈ X is
the algorithm’s estimated solution1. In our definition of rt, the algorithm is supposed to incur the
worst-case regret when x̂t is not in Sc. Similar definitions are also used in performance metrics of
GP-based constrained optimization [19].

Regularity assumptions for the objective function. As a regularity assumption, we assume that
f is an element of the reproducing kernel Hilbert space (RKHS) Hk, corresponding to a known
positive-definite kernel k : X × X → R, and has a bounded Hilbert norm ∥f∥Hk

≤ B. Furthermore,
the kernel k is assumed to be normalized, namely ∀x ∈ X , k(x,x) ≤ 1. These are common
assumptions in existing GP optimization literature [42, 51, 8, 48].

Gaussian process modeling. Our algorithm uses the modeling information of f from GP [38], using
only the successful observations. First, we assume zero-mean GP with the covariance function k as
the prior of f . Next, we model the generating process of the value yt queried at xt as yt = f(xt)+ ϵt,
where ϵt ∼ N (0, σ2). We note that the assumptions on the GP prior on f and Gaussian noise,
as stated above, are assumptions only for constructing the GP model, which can differ from the
underlying true function f and the noise. Let I(S)

t := {i ∈ {1, . . . , t} | c(xi) = 0} be the index set
of successful observations, X(S)

t := (xi)i∈I(S)
t

be the corresponding inputs, y(S)
t := (yi)i∈I(S)

t
, be

the corresponding outputs, and nt := |I(S)
t | be the number of successful observations. In addition,

we also define the failure index set I(F)
t := {i ∈ {1, . . . , t} | c(xi) = 1}. Given X

(S)
t ,y

(S)
t ,

the posterior distribution of f(x) becomes a normal distribution, whose posterior mean µt(x) and
posterior variance σ2

t (x) are given as follows:

µt(x) = k(x,X
(S)
t)⊤

(
K(X

(S)
t) + σ2Int

)−1

y
(S)
t , (3)

σ2
t (x) = k(x,x)− k(x,X

(S)
t)⊤

(
K(X

(S)
t) + σ2Int

)−1

k(x,X
(S)
t). (4)

Here, Int
is a nt × nt identity matrix. Furthermore, denoting the index of the j-th least element

of I(S)
t as ij , k(x,X(S)

t) ∈ Rnt represents a vector whose j-th element is k(x,xij). Similarly,
K(X

(S)
t) ∈ Rnt×nt represents the kernel matrix whose jk-th element is k(xij ,xik).

Lastly, we define the maximum information gain [42, 49] as a quantity representing the GP complexity.
The maximum information gain γt;A from observing t number of data points over the set A ⊂ Rd is de-
fined as γt;A = maxX:=(x1...,xt)∈AtI(fX ,yX), where I(fX ,yX) := 0.5 ln det

(
It + σ−2K(X)

)
is the mutual information between the latent function values fX ∼ N (0,K(X)) and corresponding
output values yX = fX + ϵt, ϵt ∼ N (0, σ2It) of GP. In GP-based optimization, γt;A is often used
as a quantity that characterizes the confidence bound and regret bound of f . Furthermore, for a
compact convex set A, the upper bound for γt,A has been derived for some commonly used kernels.
For example, γt;A = O((ln t)d+1) for Gaussian kernel and γt;A = O(td/(ν+d)(ln t)2ν/(ν+d)) for
Matérn kernel with the smoothness parameter ν > 1/2 [42, 49]. The following Lemma 2.1 adapts
the well-known result that gives the confidence bound of f for our problem setup, which is a direct
consequence of Theorem 3.11 in [1].
Lemma 2.1. Fix f ∈ Hk with ∥f∥Hk

≤ B. Suppose the observation yt = f(xt) + ϵt has a noise ϵt
that is conditionally σ-sub-Gaussian. Define {βt}t∈N as β1/2

t = B + σ
√
2(γt−1;X + 1 + ln(1/δ))

for δ ∈ (0, 1). Then the following holds with probability at least 1− δ:

∀t ≥ 1, ∀x ∈ X , lcbt(x) ≤ f(x) ≤ ucbt(x). (5)

Here, lcbt(x) and ucbt(x) are defined as lcbt(x) = µt−1(x) − β
1/2
t σt−1(x) and ucbt(x) =

µt−1(x) + β
1/2
t σt−1(x), respectively.

1Some applications prefer to assess the performance via cumulative regret. In Appendix C, the analysis of
the cumulative regret of our algorithm is provided.

3

Regularity assumption for failure function. A regret upper bound cannot be obtained without
any assumption on c. As an extreme example, we consider the case where x∗ is an isolated point
surrounded by Fc. Under this scenario, the worst case exists in which an arbitrary algorithm can
never observe x∗ in a finite number of trials. Therefore, in order to give a convergence guarantee, at
least x∗ must be contained in a subset of the feasible region Sc having a non-zero volume. In this
paper, we focus on the case that x∗ is the interior point of Sc as in the following assumption.
Assumption 2.2. There exists η > 0 such that Nx∗;η ⊂ Sc, where Nx∗;η := {x ∈ X | ∥x−x∗∥∞ <
η} is an open infinity ball with a radius η centered at x∗ 2.

The parameter η above depends on the size of the subset of the feasible region that x∗ belongs to
and is an important quantity for theoretical analysis. Note that Assumption 2.2 is quite mild. For
example, when c is defined as c(x) = 1l{g(x) ≥ 0} with a continuous latent function g, there exists
η > 0 such that Nx∗;η ⊂ Sc from the continuity of g. Since the analysis of [2] assumes the existence
of the latent function g, which is a continuous sample path generated from GP, our assumption also
subsumes their assumption. Finally, note that η is not needed for running the algorithm and is only
used as a quantity that characterizes the regret bound.

3 Proposed algorithm

Our proposed algorithm F-GP-UCB is shown as pseudo-code in Algorithm 1. Roughly speaking, our
F-GP-UCB searches the input domain excluding the adaptively adjusted neighborhood of past failure
points based on the existing GP-UCB [42] strategy. Below, we start by describing the background of
the algorithm construction.

Philosophy of algorithm construction. Since Fc is unknown, the algorithm needs to appropriately
avoid the failure observation in Fc while balancing the trade-off between exploration and exploitation
in a way that guarantees convergence. The difficulty of this problem lies in the fact that there exist
cases where the small feasible region containing x∗ is surrounded by the past failure observations and
is isolated as shown in the left plot of Fig. 1. Since the algorithm is unable to exclude the possibility
that an arbitrary small feasible region exists between failure points only from Assumption 2.2, the
algorithm should be constructed so that it simultaneously satisfies the following two points: the
failure observation should be avoided; and the inputs evaluated by the algorithm should eventually
cover the arbitrarily close area of the past failure point.

F-GP-UCB satisfies the above requirements by adaptively controlling the GP-UCB search region by
eliminating the neighborhood of the past failure points, and shrinking the eliminated region as step
increase. Next, we describe below the details of and ideas behind each step.

Selection of xt. At each step t, the F-GP-UCB algorithm firstly computes the seach region Xt as

Xt = {x ∈ X | ∀i ∈ I(F)
t−1, ∥xi − x∥∞ ≥ θtb(t)}. (6)

Here, θt and b : R+ → R+ are the scale parameter and monotonically decreasing function, respec-
tively. The parameter θt is controlled by the algorithm at every step so that it decreases monotonically
with respect to t from its initial value θ0 given by the user. It plays the role of guaranteeing that the
search space Xt satisfies Xt ̸= ∅. The function b is defined by the user before running the algorithm.

By using Xt, the F-GP-UCB algorithm chooses xt as

xt = arg max
x∈Xt

ucbt(x). (7)

The middle and right plots in Fig. 1 show an example behavior of the F-GP-UCB algorithm. By
using the monotonically decreasing θtb(t) to control the search space, the algorithm’s behavior can
be qualitatively described as follows. First, during the early phase where t is small, θtb(t) is large,
corresponding to choosing an unexplored point for observation while avoiding a large neighborhood
of the past failure points where there is a high possibility of failure. Then as t increases and the

2Our algorithm and theoretical analysis can be generalized for arbitrary norms over Rd such as L2-norm and
for a compact convex subset X ⊂ Rd, however the computational technique discussed in Sec.5 assumes the
infinity norm.

4

Iteration 5 Iteration 10

Figure 1: An example problem in one dimension. The left plot shows the situation where there exists
an isolated feasible region, which includes the optimum. The green and grey shaded areas represent
the feasible region Sc and the failure region Fc, respectively. The green (black) points represent the
observed successful (failure) points. In this situation, it is necessary to identify the feasible region
which hides among the observed failure points. The middle and right plots are example behaviors of
the F-GP-UCB algorithm in t = 5 and t = 10, respectively. The gray shaded regions represent the
neighborhood of the observed failure points which is excluded from the search space at the given step.
The F-GP-UCB algorithm performs searches in all the feasible regions while avoiding the observed
failure points by iteratively narrowing down the excluded search space in the neighborhood of the
failure points.

remaining unexplored space shrinks, it is expected that the algorithm’s behavior will become more
aggressive in considering the possibility that the region near the observed failure points contains a
feasible region that may be difficult to identify.

Algorithm 1 The F-GP-UCB algorithm
Input: θ0 ∈ (0, 1), b : R+ → R+, {βt}t∈N+ .

1: Initialize GP prior and set I(S)
0 = I(F)

0 = ∅.
2: for t = 1 to T do
3: θ̃t ← θt−1.
4: while X ⊂

⋃
i∈I(F)

t
Nxi;θ̃tb(t)

do

5: θ̃t ← θ̃t/2.
6: end while
7: θt ← θ̃t and define Xt as in (6).
8: Choose xt = argmaxx∈Xt

ucbt(x).
9: if c(xt) = 0 then

10: Observe yt = f(xt) + ϵt and update GP.
11: I(S)

t ← I(S)
t−1 ∪ {t}, I

(F)
t ← I(F)

t−1.
12: else
13: I(S)

t ← I(S)
t−1, I(F)

t ← I(F)
t−1 ∪ {t}.

14: end if
15: end for
16: Calculate xT̂ as in (8) if I(S)

T ̸= ∅.

The choice of θ0 and b affects the performance
of F-GP-UCB. In Sec. 4, we show the conver-
gence of the regret under an appropriate choice
of b. In Sec. 5, the practical choices of θ0 and b
are discussed.

Shrinking θt. In the case where Xt = ∅, xt is
not defined. We ensure such cases do not occur
by controlling the scale parameter θt. In our
algorithm, the main role of θt is to guarantee
that xt is well-defined as follows. Specifically,
before the step t starts, θt is computed by halv-
ing the previous scale parameter θt−1 until the
union of all the neighborhoods does not fully
cover X . This procedure requires that we solve
the set covering problem to find the cover of X
with the neighborhoods of the past failure points.
Unfortunately, this problem is known to be NP
complete [20]. In Sec. 5, we provide a practical
approach to this problem. On the other hand,
note that our analysis in Sec. 4 assumes that this
procedure can be computed exactly.

Algorithm estimated solution. The estimated
solution of the F-GP-UCB algorithm x̂t at step
t is defined as follows:

x̂t = xt̂ where t̂ = arg max
i∈I(S)

t

lcbi(xi). (8)

The definition of the estimated solution based on the observed points and lcbi is often used in exisiting
literature [6, 26, 21]. While the estimated solution of the proposed method resembles those in the

5

literature, it should be noted that the maximum of lcbi is computed over I(S)
t . Note x̂t is not defined

if all the points up to t are failures (i.e., I(S)
t = ∅). In Sec. 4, it is shown that there always exists x̂T

for a sufficiently large step size T . Finally, although the estimated solution (8) is useful for discussing
the theoretical performance, for practical purposes, x̂t = xt̂ where t̂ = argmax

i∈I(S)
t

lcbt(xi) is
often used instead [6, 21]. We use this modified definition of x̂t in the benchmark experiments in
Sec. 6.

4 Theoretical analysis

The results of the theoretical analysis are discussed in this section. The complete proofs of the
theorems and lemmas are described in Appendix A.

Key of regret analysis. To analyze the regret, we start by evaluating the growth rate of the number
of successful observations nt in the algorithm. By noting that θtb(t) is monotonically decreasing,
we can find that the failure points of F-GP-UCB are separated by at least a distance θtb(t) apart
from each other. Therefore, nt can be evaluated via θtb(t)-packing number of Fc. The following
Lemma 4.1 is based on the standard argument for the packing number, which gives the lower bound
for the number of successful observations nt.
Lemma 4.1. When running Algorithm 1, nt ≥ t − P (X , ∥ · ∥∞, θtb(t)/4) holds for any t ∈ N+,
where P(X , ∥ · ∥∞, ϵ) denotes the ϵ-packing number over the set X with respect to the norm ∥ · ∥∞.

Using the above Lemma 4.1, designing the choice of b so that t − P(X , ∥ · ∥∞, θtb(t)/4) = Θ(t)
holds leads to nt = Ω(t), which means that the number of successful observations can be secured at
the same rate as in the standard GP optimization setting. By using the fact P(X , ∥ · ∥∞, ϵ) = ⌈1/ϵ⌉d
(Lemma A.4), the choice of b(t) = o(t−1/d) is sufficient for nt = Ω(t)3. While our result holds for
any b satisfying b(t) = o(t−1/d), we give results for b satisfying b(t) = t−α with α ∈ (0, 1/d) in
this section for simplicity. In Appendix A, the result for general X and b is also provided.

Regret bound. The following Theorem 4.2 gives the regret bound of the F-GP-UCB algorithm.
Theorem 4.2. Fix δ ∈ (0, 1), α ∈ (0, d−1), X = [0, 1]d, and f ∈ Hk such that ∥f∥Hk

≤ B. Let
β
1/2
t = B + σ

√
2(γt−1;X + 1 + ln(1/δ)) and b(t) = t−α. In addition, suppose that there exists

η > 0 such that Nx∗;η ⊂ Sc, where Nx∗;η = {x ∈ X | ∥x − x∗∥∞ < η}. When applying
Algorithm 1 under the above conditions, the estimated solution x̂T defined in (8) exists for all
T ≥ T̃s := max{(10/θd)1/(1−dα), 2}+ 1, where θ = min{θ0, η/2}. Moreover, the following holds
with probability at least 1− δ:

∀T ≥ T̃s, rT ≤
2

T

[
2B(T̃∗ − 1) +

√
C1βTTγT ;Sc

]
, (9)

where T̃∗ = (θ0/η)
1/α + 1 and C1 = 8/ ln(1 + σ−2).

In the analysis above, η is interpreted as the complexity of the failure function c, and θ corresponds to
the lower bound on θt while running the algorithm. The constants T̃s and T̃∗ are important quantities
that characterize the regret and can be respectively interpreted as follows.

• The constant T̃s is the upper bound on the number of steps until the first successful observa-
tion.

• The constant T̃∗ is the upper bound on the number of steps needed until the search space Xt

of the algorithm always contains the optimal solution x∗.

The regret bound in Theorem 4.2 can be intuitively seen as evaluating the algorithm execution in
terms of two stages along the time axis. The first term of (9) represents the regret generated when the
algorithm’s search space Xt does not contain x∗. Specifically, the worst-case regret incurred during
this phase is bounded by 2B using the fact that supx∈X |f(x)| ≤ B from the kernel normalization

3Strictly speaking, we use the fact that θt becomes constant for sufficiently large t. See Lemma A.8 in
Appendix A.

6

condition. The second term is the regret incurred during the process of identifying x∗ after Xt

includes x∗ and is similar to the regret bound of standard GP-UCB. The only difference is that, in our
setup, the observations of GP are only on Sc, so the maximum information gain is defined over Sc.

By noting that γT ;Sc
⊂ γT ;X in the second term and using the known results concerning the

upper bound on γT ;X , the more explicit form of regret upper bound can be obtained on a per-
kernel basis. For example, in the case of the Gaussian kernel, we have that γT ;X = O((lnT)d+1)

and rT = O
(
T−1BT̃∗ + T−1/2(lnT)(d+1)/2

(
B + σ

√
(lnT)d+1 + ln(1/δ)

))
. Thus, indeed we

obtain rT → 0 (as T → ∞). The F-GP-UCB algorithm is guaranteed to converge when the
cumulative regret for ordinary GP-UCB (corresponding to the second term in (9)) becomes sub-linear
under the chosen setup and the kernel4.

The case where x∗ exists on the boundary of Sc. The case where x∗ exists on the boundary
Sc is not covered in Theorem 4.2, which is the case that often appears in a real-world application.
If undesirable Lipschitz-style dependencies are allowed to emerge in the regret upper bound, our
F-GP-UCB algorithm is also guaranteed to have convergence in such cases (Theorem B.2). The
details of the result and discussion about its limitation are in Appendix B.

5 Practical considerations

In this section, we discuss several issues that arise in practical situations and provide their solutions.
Due to the space limitation, we only give brief descriptions. The details are described in Appendix E.

Computation of θt. The computation of θt requires us to know whether the union of all the
neighborhoods of the failure points covers X . A simple solution might be to partition X into a
sufficiently fine grid by subdividing each axis and look for a feasible solution in each grid cell by
brute force. However, as the step size t and dimension d become large, the number of grid cells grows
rapidly. Furthermore, even a very fine grid will not be able to detect the case where a feasible solution
exists on the cell boundary. Another heuristic approach is to use a constrained optimization solver
which does not require a feasible solution as part of the initial points (e.g., penalty function method
and augmented Lagrangian method [17]) and try to solve the problem (7) by using θt−1. In case that
the solver is unable to find a feasible solution, it is decided that X̃t ̸= ∅, multiply θt−1 by 1/2, then
we try to solve problem (7) again. This is our chosen approach. A drawback of this approach is that,
depending on the scale of θt, the constrained optimization problem must be solved many times. We
show that, by performing an appropriate preprocessing, a feasible solution can be obtained within
two rounds of constrained optimization in the worst case. We give the details in Appendix E.1.

Selection of b. As stated in Sec. 4, the F-GP-UCB algorithm is valid for an arbitrary monotonically
decreasing function b such that t−P(X , ∥ ·∥∞, θtb(t)/4) = Θ(t). However, if the rate is slower than
1/tα (α ∈ (0, 1/d)), for example, b(t) = 1/ ln(t+ 1), then the dominant term of our regret upper
bound can become O(1/ lnT) (See Theorem B.3 in Appendix B and Corollary F.1 in Appendix F).
This intuitively means that an exponentially large sample is needed to obtain an arbitrarily small
regret and is not the desirable behavior. In this paper, we use b in the form of b(t) = 1/tα with
α = 1/(2d) as a practical choice. (Additional discussion about α is given in Appendix E.2.)

Adaptive tuning of θ0. Although the choice of θ0 does not affect the no-regret guarantee, it has
a large impact on the practical behavior when the number of steps is small. For example, if θ0 is
set to a large value when the failure region Fc forms a relatively small region, then there is a risk
of excessively avoiding the feasible region that should be searched. It is practically difficult to find
a desirable choice of θ0 as it depends on some conditions that are unknown to the user, such as
the failure region Fc. In order to alleviate this issue while retaining the theoretical convergence,
we use the strategy to adaptively choose θt based on the posterior standard deviation σt−1(xt) of
the observed points. We note that such a strategy using σt−1(xt) to adaptively select an unknown
parameter is also developed in [54] to set the unknown kernel hyperparameters for ordinary GP
optimization.

4As with the standard GP-UCB, βt = O(
√
γT ;X) in F-GP-UCB, which leads to the regret of Õ(γT ;X/

√
T).

In Appendix D, we discuss the possibility of addressing this issue based on several existing works [48, 30].

7

Algorithm 4 in Appendix E.3 shows the pseudo-code of our modified strategy. In Algorithm 4,
the user specifies the possible range for θt ∈ [θmin, θmax], the threshold for the posterior standard
deviation hσ > 0, the threshold for the step number q ∈ N+, and a scaling factor w ∈ (0, 1). As the
initial value, we set θ0 = θmax. After that, if the observed point is lower than the posterior standard
deviation for q consecutive number of times, θt is multiplied by w to lower its value, but no less
than the minimum value θmin. Intuitively, suppose the posterior standard deviation is repeatedly
excessively small. In that case, there exists a possibility that θ0 was set to an excessively large value,
which may lead to the unwanted exclusion of the feasible region from the search space. In this
procedure, by setting θ0 to a large value of θmax at the start, we expect it to get adjusted towards an
appropriate neighborhood scale. In our simulation experiments, we set w = 0.75, hσ = 0.02, q = 3,
θmin = 0.0001, and θmax = 0.5. We emphasize that this procedure does not affect our convergence
guarantee (Theorems F.2 in Appendix E).

Lastly, the pseudo-code, including all the considerations provided in this section, is described in
Algorithm 5 of Appendix E.

6 Numerical experiments

In this section, we show the performance of F-GP-UCB through numerical experiments. The detailed
settings of the experiments and additional results can be found in Appendices G and H, respectively.
First, for comparison, we use EI [37] and GP-UCB [42] as the baseline algorithms which do not
consider failures. In each of these algorithms, the GP model is constructed using only the successful
observations; the failure observations are not used. We also compare F-GP-UCB with the EFI-GPC-
EP and EFI-GPC-Sign algorithms that leverage GPC models [2]. EFI-GPC-EP is the algorithm
that uses the classic GPC model with probit likelihood, and posterior approximation is based on
Expectation Propagation (EP). EFI-GPC-Sign uses a variant of GPC proposed in [2]. Both EFI-GPC-
EP and EFI-GPC-Sign choose the next input based on the posterior success probability of GPC and
the EI value of f as in [2] (Details are in Appendix H).

In EFI-GPC-EP and EFI-GPC-Sign, as the prior for the latent function of GPC, we use zero-mean
GP with Gaussian kernel kc(x,y) := σ2

c exp(−∥x − y∥2/(2l2c)). Before the experiment, we fix
the kernel parameters of GPC σc and lc by marginal likelihood maximization using observations
at a randomly generated Sobol sequence. All the kernel hyperparameters of the GPC fixed by
this procedure are given in Appendix H. Furthermore, it is well-known that the theoretical choice
of βt in GP-UCB is excessively conservative. We set βt = 2 ln(2t) as in [24] for GP-UCB and
F-GP-UCB. The other parameters in F-GP-UCB are fixed as described in Sec. 5. For the evaluation
of the algorithms, we confirm the behavior of the regret at each step rt = f(x∗) − f(x̂t). We
note that x̂t is the estimated solution x̂t = xt̂ where t̂ = argmax

i∈I(S)
t

lcbt(xi), which is slightly

modified from the theoretical value as discussed in Sec. 3 If we get that I(S)
t = ∅, then we set

rt = f(x∗) −minx∈X f(x). This definition is the same as the utility gap metric for constrained
GP optimization [19]. In each experiment, we report the average performance of 20 numbers of
optimization trials with different seeds. In each trial, we generate one point uniformly at random over
X and use it as the initial point. Lastly, we add an artificial noise ϵt ∼ N (0, σ2) with σ2 = 0.0001 to
the observation of f . We also fix the noise variance hyperparameter of the GP model for f to 0.0001.

Synthetic experiments with the Branin function. We perform synthetic benchmark experiments
with the Branin function whose input space is scaled to [0, 1]2. The failure function used in these
experiments is shown in Fig. 2. This failure function has a feasible region on the upper right
side which is easily identifiable. In addition, the failure function also contains multiple small
isolated feasible regions, one of which contains the optimal solution. We use the Gaussian kernel
k(x,y) := σ2

f exp(−∥x − y∥22/(2l2f)) to construct a GP model of f . The parameters σf and lf
are fixed beforehand by marginal likelihood maximization over a Sobol sequence of 1024 points.
The subsequent experiments also use the Gaussian kernel; and the parameters are fixed as described
above.

Figure 2 shows the result. Under this benchmark setting, F-GP-UCB has a better performance. We
also give the detailed behavior of F-GP-UCB in Appendix G. We note that, in EI and GP-UCB, the
regret stops decreasing in the early stage. This is because these algorithms get stuck on the same
failure point.

8

0.0 0.2 0.4 0.6 0.8 1.0
Input 1

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 2

Branin test problem
Optimal solution

0 50 100 150 200 250
Iteration

10 1

100

101

102

Re
gr

et

Branin test function
GP-EI
GP-UCB
EFI-GPC-EP
EFI-GPC-Sign
F-GP-UCB

Figure 2: The left plot shows the Branin function whose input space is scaled to [0, 1]2. The shaded
regions represent the failure regions. The right plot shows the regret in the synthetic problem using
the Branin function, where the average of 20 experiments with different random seeds is shown. The
error bars correspond to two standard errors.

GP-EI GP-UCB EFI-GPC-EP EFI-GPC-Sign F-GP-UCB

0 20 40 60 80 100 120 140
Iteration

10 4

10 3

10 2

10 1

100

Re
gr

et

Gardner test function

0 50 100 150 200 250
Iteration

10 2

10 1

100

Re
gr

et

Hartmann test function

0 25 50 75 100 125 150 175 200
Iteration

10 2

Re
gr

et

Quasicrystal simulation function

Figure 3: Experiment results of benchmark function of the constrained optimization problems (left
and middle) and quasicrystal simulation function (right). The left and middle plots show the result of
Gardner and Hartmann test functions, respectively. The error bars correspond to two standard errors.

Test functions for constrained optimization. We adopt the two benchmark settings which are
used in existing GP-based constrained optimization literature. Gardner [10] is a 2D test problem
whose objective and constraint functions are defined as a combination of sine and cosine functions.
Hartmann [29] is a 3D test problem5 whose feasible region becomes a unit hypersphere. To adapt the
constrained problem to our settings, the feasible region in each benchmark is defined as the success
region, while the rest is defined as the failure region. Fig. 3 shows the result. Within the compared
algorithms, F-GP-UCB has the best performance for the Gardner function, while EFI-GPC-Sign has
the best performance for the Hartmann function. This can be understood from the fact that the feasible
region of the Hartmann function, which is a unit hypersphere, and can be modeled easily by GPC.
However, F-GP-UCB performs better compared to EFI-GPC-EP, which uses a classic GPC model.
Moreover, the regret of F-GP-UCB continues to decrease as the number of iterations increases.

Numerical experiments with quasicrystals. We perform a numerical experiment involving qua-
sicrystals in the Al-Cu-Mn system. We consider the optimization of the phonon thermal conductivity
for quasicrystals. In this setting, the input space is the relative composition of the three elements,
restricted to be around the feasible region of quasicrystal formation. The feasible region is the
composition values that form quasicrystals based on data [16]. Outside of this region, quasicrystals do
not form and so we consider it as a failure region, as the material property could not be probed with
methods designed for quasicrystals. For the objective function, we use an empirical formula for the
phonon thermal conductivity which we extract from [46]. The details of the setting are described in

5The original paper [29] considers a 6D problem and this setting leads to an excessively large failure region.
We modify the setting by using a 3D version of the Hartmann function with unit hypersphere constraint.

9

Appendix H.2. In Fig. 3, the right plot shows the result of the numerical experiments for quasicrystals.
It shows that F-GP-UCB performs the best among the compared algorithms.

7 Conclusions

In this paper, we propose a novel GP-based optimization algorithm in the presence of unknown
failure regions in the search space. Our algorithm only requires a very mild assumption of the
failure function that the optimal solution lies on an interior of a feasible region. We show that our
algorithm achieves a convergence with high probability and provides the first regret upper bound by
appropriately adjusting the search space. Its effectiveness is verified empirically through numerical
experiments, including the heuristic simulation experiment motivated by the material research of
quasicrystals.

Acknowledgements

This work was partially supported by RIKEN Center for Advanced Intelligence Project.

References
[1] Yasin Abbasi-Yadkori. Online learning for linearly parametrized control problems. PhD thesis,

University of Alberta, 2013.

[2] François Bachoc, Céline Helbert, and Victor Picheny. Gaussian process optimization with
failures: classification and convergence proof. Journal of Global Optimization, 78(3):483–506,
2020.

[3] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient Monte-Carlo Bayesian optimization.
Advances in Neural Information Processing Systems, 33:21524–21538, 2020.

[4] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, volume 24,
2011.

[5] Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimization with safety
constraints: safe and automatic parameter tuning in robotics. Machine Learning, pages 1–35,
2021.

[6] Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher. Adversarially robust
optimization with Gaussian processes. Advances in Neural Information Processing Systems, 31,
2018.

[7] Romain Camilleri, Kevin Jamieson, and Julian Katz-Samuels. High-dimensional experimental
design and kernel bandits. In International Conference on Machine Learning, pages 1227–1237.
PMLR, 2021.

[8] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Proceedings
of the 34th International Conference on Machine Learning, volume 70, pages 844–853, 2017.

[9] Thomas Desautels, Andreas Krause, and Joel W. Burdick. Parallelizing exploration-exploitation
tradeoffs in Gaussian process bandit optimization. Journal of Machine Learning Research, 15
(119):4053–4103, 2014.

[10] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunning-
ham. Bayesian optimization with inequality constraints. Proceedings of the 31st International
Conference on Machine Learning, 32(2):937–945, 22–24 Jun 2014.

[11] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian optimization with unknown
constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
UAI’14, page 250–259, Arlington, Virginia, USA, 2014. AUAI Press. ISBN 9780974903910.

10

[12] Alan Genz. Numerical computation of multivariate normal probabilities. Journal of Computa-
tional and Graphical Statistics, 1(2):141–149, 1992.

[13] Susana Gomez and Alejandro Velasco Levy. The tunnelling method for solving the constrained
global optimization problem with several non-connected feasible regions. In Numerical Analysis,
pages 34–47. Springer, 1982.

[14] Javier González, Joseph Longworth, David C James, and Neil D Lawrence. Bayesian optimiza-
tion for synthetic gene design. arXiv preprint arXiv:1505.01627, 2015.

[15] GPy. GPy: A Gaussian process framework in python. http://github.com/SheffieldML/
GPy, since 2012.

[16] Benjamin Grushko and SB Mi. Al-rich region of Al–Cu–Mn. Journal of Alloys and Compounds,
688:957–963, 2016.

[17] PC Haarhoff and JD Buys. A new method for the optimization of a nonlinear function subject
to nonlinear constraints. The Computer Journal, 13(2):178–184, 1970.

[18] Philipp Hennig and Christian J. Schuler. Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13(57):1809–1837, 2012.

[19] José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W. Hoffman,
and Zoubin Ghahramani. A general framework for constrained Bayesian optimization using
information-based search. Journal of Machine Learning Research, 17(1):5549–5601, 2016.

[20] Jörg Hoffmann and Sebastian Kupferschmid. A covering problem for hypercubes. In IJCAI,
pages 1523–1524, 2005.

[21] Shogo Iwazaki, Yu Inatsu, and Ichiro Takeuchi. Mean-variance analysis in Bayesian optimiza-
tion under uncertainty. In International Conference on Artificial Intelligence and Statistics,
pages 973–981. PMLR, 2021.

[22] Steven G. Johnson. The NLopt nonlinear-optimization package, 2011. URL http://
ab-initio.mit.edu/nlopt.

[23] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993.

[24] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimensional Bayesian
optimisation and bandits via additive models. In Francis Bach and David Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 295–304, Lille, France, 07–09 Jul 2015.

[25] Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider, and Barnabas Poczos.
Multi-fidelity Gaussian process bandit optimisation. Journal of Artificial Intelligence Research,
66:151–196, 2019.

[26] Johannes Kirschner, Ilija Bogunovic, Stefanie Jegelka, and Andreas Krause. Distributionally
robust Bayesian optimization. In International Conference on Artificial Intelligence and
Statistics, pages 2174–2184. PMLR, 2020.

[27] Shunya Kusakawa, Shion Takeno, Yu Inatsu, Kentaro Kutsukake, Shogo Iwazaki, Takashi
Nakano, Toru Ujihara, Masayuki Karasuyama, and Ichiro Takeuchi. Bayesian Optimization for
Cascade-Type Multistage Processes. Neural Computation, 34(12):2408–2431, 11 2022. ISSN
0899-7667. doi: 10.1162/neco_a_01550.

[28] Madison Lee, Shubhanshu Shekhar, and Tara Javidi. Multi-scale zero-order optimization of
smooth functions in an rkhs. In 2022 IEEE International Symposium on Information Theory
(ISIT), pages 288–293. IEEE, 2022.

[29] Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. Constrained Bayesian
optimization with noisy experiments. Bayesian Analysis, 14(2):495–519, 2019.

11

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

[30] Zihan Li and Jonathan Scarlett. Gaussian process bandit optimization with few batches. In
International Conference on Artificial Intelligence and Statistics, pages 92–107. PMLR, 2022.

[31] Zihan Li and Jonathan Scarlett. Regret bounds for noise-free cascaded kernelized bandits.
CoRR, abs/2211.05430, 2022.

[32] David V Lindberg and Herbert KH Lee. Optimization under constraints by applying an
asymmetric entropy measure. Journal of Computational and Graphical Statistics, 24(2):379–
393, 2015.

[33] Chang Liu, Erina Fujita, Yukari Katsura, Yuki Inada, Asuka Ishikawa, Ryuji Tamura, Kaoru
Kimura, and Ryo Yoshida. Machine learning to predict quasicrystals from chemical composi-
tions. Advanced Materials, 33(36):2102507, 2021.

[34] Daniel J Lizotte, Tao Wang, Michael H Bowling, Dale Schuurmans, et al. Automatic gait
optimization with Gaussian process regression. In IJCAI, volume 7, pages 944–949, 2007.

[35] Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, and José A Castellanos. Active
policy learning for robot planning and exploration under uncertainty. In Robotics: Science and
systems, volume 3, pages 321–328, 2007.

[36] Thomas P Minka. Expectation propagation for approximate Bayesian inference. In Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pages 362–369, 2001.

[37] Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques
IFIP Technical Conference, pages 400–404, 1975.

[38] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 11 2005. ISBN 9780262256834. doi: 10.7551/mitpress/3206.001.
0001.

[39] Matthieu Sacher, Régis Duvigneau, Olivier Le Maitre, Mathieu Durand, Elisa Berrini, Frédéric
Hauville, and Jacques-André Astolfi. A classification approach to efficient global optimization
in presence of non-computable domains. Structural and Multidisciplinary Optimization, 58(4):
1537–1557, 2018.

[40] Sudeep Salgia, Sattar Vakili, and Qing Zhao. A domain-shrinking based bayesian optimization
algorithm with order-optimal regret performance. Advances in Neural Information Processing
Systems, 34:28836–28847, 2021.

[41] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

[42] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), pages 1015–1022, 2010.

[43] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization
with Gaussian processes. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Research, pages 997–1005, Lille,
France, 07–09 Jul 2015.

[44] Yanan Sui, Vincent Zhuang, Joel Burdick, and Yisong Yue. Stagewise safe Bayesian opti-
mization with Gaussian processes. In International conference on machine learning, pages
4781–4789. PMLR, 2018.

[45] Krister Svanberg. A class of globally convergent optimization methods based on conservative
convex separable approximations. SIAM Journal on Optimization, 12(2):555–573, 2002.

[46] Yoshiki Takagiwa, Ryota Maeda, Satoshi Ohhashi, and An-Pang Tsai. Reduction of thermal con-
ductivity for icosahedral Al-Cu-Fe quasicrystal through heavy element substitution. Materials,
14(18):5238, 2021.

12

[47] Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and Masayuki Karasuyama. Sequential and
parallel constrained max-value entropy search via information lower bound. In Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 20960–20986, 17–23 Jul 2022.

[48] Sattar Vakili, Nacime Bouziani, Sepehr Jalali, Alberto Bernacchia, and Da-shan Shiu. Optimal
order simple regret for gaussian process bandits. Advances in Neural Information Processing
Systems, 34:21202–21215, 2021.

[49] Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in
Gaussian process bandits. In International Conference on Artificial Intelligence and Statistics,
pages 82–90. PMLR, 2021.

[50] Sattar Vakili, Jonathan Scarlett, and Tara Javidi. Open problem: Tight online confidence
intervals for RKHS elements. In Conference on Learning Theory, pages 4647–4652. PMLR,
2021.

[51] Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas, and Nello Cristianini. Finite-time
analysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, pages 654–663, 2013.

[52] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge University Press, 2018.

[53] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3627–3635,
06–11 Aug 2017.

[54] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

13

A Proofs of Section 4

In this section, we prove the regret bound of the proposed algorithm for the case of an arbitrary
normed space X . This is followed by proofs of Theorems 4.2 and B.2.

A.1 Preliminaries for proofs

We first define the packing number and the covering number and provide some known inequalities
for those.

Definition A.1 (Packing number). Let (A, ∥ · ∥) be a normed space and ϵ > 0. If a subset N ⊂ A
satisfies the following equation, we say that N is an ϵ-separated set:

∥x− y∥ > ϵ for all distinct x,y ∈ N . (10)

Furthermore, we define P(A, ∥ · ∥, ϵ) with respect to A ⊂ A as the maximum possible number of
elements of the ϵ-separated set N ⊂ A of A.

Definition A.2 (Covering number). Let (A, ∥ · ∥) be a normed space, A ⊂ A be its subset, and ϵ > 0.
If a subset N ⊂ A satisfies the following equation, we say that N is an ϵ-net of A:

∀x ∈ X ,∃y ∈ N , ∥x− y∥ ≤ ϵ. (11)

Furthermore, we define C(A, ∥ · ∥, ϵ) to be the minimum possible number of elements of the ϵ-net
N ⊂ A of A.

Lemma A.3. Let (A, ∥ · ∥) be an arbitrary normed space, A ⊂ A be its subset, and ϵ > 0. Then the
following holds:

• P(A, ∥ · ∥, 2ϵ) ≤ C(A, ∥ · ∥, ϵ) ≤ P(A, ∥ · ∥, ϵ).

• Ã ⊂ A⇒ C(Ã, ∥ · ∥, ϵ) ≤ C(A, ∥ · ∥, ϵ/2).

The proof of Lemma A.3 can be found, e.g., around Lemma 4.2.8 in Ch. 4 of Vershynin [52].

Then, we show the packing number of the unit hypercube:

Lemma A.4. Let ϵ > 0 and d ∈ N+. Then the following holds:

P
(
[0, 1]d, ∥ · ∥∞, ϵ

)
=

⌈
1

ϵ

⌉d
. (12)

Proof. Let W = {v/2+ jϵ | j ∈ {0, 1, . . . , u}} for u ∈ N+ and v ∈ (0, ϵ] such that uϵ+v = 1, and
N ⊂ [0, 1]d be an ϵ-separated set such that |N | = P

(
[0, 1]d, ∥ · ∥∞, ϵ

)
. We further denote yx ∈W d

as the nearest point in W d for an arbitrary x ∈ [0, 1]d, which satisfies ∥x− yx∥∞ ≤ ϵ/2 from the
definition of W . If the equality yx1

= yx2
holds for some distinct elements x1 and x2 of N , then it

follows that

∥x1 − x2∥∞ ≤ ∥x1 − yx1∥∞ + ∥x2 − yx2∥∞ (13)
≤ ϵ, (14)

which contradicts that N is the ϵ-separated set. Therefore, yx1 ̸= yx2 . Thus, there exists an
injection from N to W d, i.e., |N | ≤ |W d|. Furthermore, if we let W̃ = {j(ϵ + v/(u + 1)) |
j ∈ {0, 1, . . . , u}}, then W̃ d is an ϵ-separated set and |W d| = |W̃ d| ≤ |N |. It follows that
|W d| = |N | = P

(
[0, 1]d, ∥ · ∥∞, ϵ

)
. From the definition of W , we obtain |W d| = ⌈1/ϵ⌉d. This

completes the proof.

A.2 Proof of Theorem 4.2.

Theorem 4.2 assumes X = [0, 1]d, b(t) = t−α with α ∈ (0, d−1), and the search region Xt which is
defined based on the infinity norm ∥ · ∥∞. Before the proof of Theorem 4.2, we prove the theorem
for Algorithm 1 that uses the general X , b(·), and the norm ∥ · ∥, which satisfy the following
Assumption A.5.

14

Assumption A.5. Suppose that the input domain X , the function b(·), and the search region Xt in
the Algorithm 1 satisfy the following:

• b : [1,∞)→ (0,∞) is a strictly monotonically decreasing continuous function such that
limt→∞ b(t) = 0.

• X is a compact subset of an arbitrary normed space equipped with norm ∥ · ∥.

• The search region Xt at each step t is given using the norm ∥ · ∥ of X as follows:

Xt = {x ∈ X | ∀i ∈ I(F)
t , ∥xi − x∥ ≥ θtb(t)}. (15)

In addition, we define X̃t as the search space for θt−1 instead of θt. That is,

X̃t = {x ∈ X | ∀i ∈ I(F)
t , ∥xi − x∥ ≥ θt−1b(t)}. (16)

We also define the x∗
t as one of the optimal solutions over Xt, i.e., x∗

t ∈ argmaxx∈Xt
f(x). We first

prove Theorem A.6, which is the more general form of Theorem 4.2.

Theorem A.6. Fix δ ∈ (0, 1) and f ∈ Hk such that ∥f∥Hk
≤ B. Let β

1/2
t = B +

σ
√
2(γt−1;X + 1 + ln(1/δ)). We further assume the following two conditions.

1. There exists η > 0 such that Nx∗;η,∥·∥ ⊂ Sc holds where Nx∗;η,∥·∥ := {x ∈ X | ∥x−x∗∥ <
η}.

2. limT→∞
(
T − P

(
Fc, ∥ · ∥, θb(T)

))
=∞ holds for θ = min{θ0, η/(2b(1))}.

Then, letting s(T) = T − P(Fc, ∥ · ∥, θb(T)), the following holds under Assumption A.5 in Algo-
rithm 1:

• x̂T exists for all T ∈ N+ such that T ≥ Ts.

• The following holds with probability at least 1− δ:

∀T ≥ Ts, rT ≤
1

s(T)

[
2B(T∗ − 1) +

√
C1βTTγT ;Sc

]
. (17)

Here, T∗ is a natural number defined as follows:

T∗ =

{
⌊b−1(η

θ0
) + 1⌋ if η

θ0
≤ b(1),

1 otherwise
. (18)

Moreover, we let Ts be the smallest natural number T such that s(T) ≥ 1 and C1 = 8/ ln(1 + σ−2).

The variables θ, Ts, T∗, and s(T) are important quantities for regret analysis and can be interpreted
as follows:

• θ is the lower bound on θt for t ∈ N+.
• Ts is the upper bound on the number of steps until the first successful observation.
• T∗ is the upper bound on the number of steps until x∗ ∈ Xt holds.
• s(T) is the lower bound on the number of successful observations at step T .

Note that θ, Ts, and T∗ depend only on c, η, θ0, and b and does not depend on T . We provide some
lemmas before proving Theorem A.6.
Lemma A.7. The following holds for any t ∈ N+:

nt ≥ t− P (Fc, ∥ · ∥, θtb(t)) . (19)

Proof. The set of failure points {xi}i∈I(F)
t

at step t is a θtb(t)-separated set over Fc due to the
monotonicity of θtb(t). It follows that

nt = t− |I(F)
t | (20)

≥ t− P (Fc, ∥ · ∥, θtb(t)) . (21)

15

Lemma A.8. The following holds for any natural number t such that t ≥ T∗:

1. Xt contains the optimal solution, i.e., x∗ ∈ Xt.

2. θt = θT∗ and θT∗ ≥ min{θ0, η/(2b(1))}.

Proof. We first prove the first statement. Given an arbitrary t ≥ T∗, the following holds from the
definition of T∗:

• If η/θ0 ≤ b(1), then t ≥ ⌊b−1(η/θ0) + 1⌋ > b−1(η/θ0)⇒ θ0b(t) < η.

• If η/θ0 > b(1), then θ0b(1) < η ⇒ θ0b(t) < η.

Thus, in either case, θ0b(t) < η holds. Combining it with the monotonicity of θt, we have θtb(t) < η.
This implies x∗ ∈ Xt.

Concerning the second statement, θtb(t + 1) < θtb(t) < η holds for t ≥ T∗. Thus, we have
x∗ ∈ X̃t+1. That is, X̃t+1 ̸= ∅ and θt = θt+1. It follows that θt is equal for all t ≥ T∗ and θt = θT∗
holds.

Let θi−1 > θi and θi = θT∗ for some index i < T∗. Then, if θi−1b(i) < η, we have that X̃i ̸= ∅,
which contradicts θi−1 > θi. Thus, θi−1b(i) ≥ η. Note that reducing θi−1 is done by multiplying
1/2 and the reduction at least stops when θ̃ib(i) < η holds for the newly reduced θ̃i, we have that
θib(i) ≥ η/2. It follows that

θT∗ = θi ≥
η

2b(i)
>

η

2b(1)
. (22)

Combining the fact that we have θT∗ = θ0 if the index i does not exist, we can obtain θT∗ ≥
min{θ0, η/(2b(1))}, which completes the proof.

Lemma A.9. Let T be a natural number such that nt ≥ 1. Then the following holds:

∑
t∈I(S)

T

σt−1(xt) ≤

√
2nt

ln(1 + σ−2)
γnt;Sc (23)

Lemma A.9 immediately holds from the well-known inequality about the maximum information
gain [42].

Lemma A.10. The following holds for any t ∈ N+:

nt ≥ t− P
(
Fc, ∥ · ∥, θb(t)

)
. (24)

Proof. From Lemma A.8, ∀t ∈ N, θt ≥ θ. It follows that, together with the monotonicity of the
packing number over the normed space, ∀t ∈ N+,P (Fc, ∥ · ∥, θtb(t)) ≤ P

(
Fc, ∥ · ∥, θb(t)

)
. Using

Lemma A.7 completes the proof.

We give the proof for Theorem A.6.

Proof of theorem A.6. For any natural number T such that T ≥ Ts, we have that nt ≥ 1 from
Lemma A.10, and the definition of Ts. It follows that xT exists. We show the regret bound next. We
first assume that Eq. (5) holds. Here, we fix a natural number T ≥ Ts. Then,

rT = f(x∗)− f(x̂T) (25)

= n−1
t

∑
t∈I(S)

T

(f(x∗)− f(x∗
t) + f(x∗

t)− f(x̂T)) (26)

≤ s(T)−1

 ∑
t∈I(S)

T

(f(x∗)− f(x∗
t)) +

∑
t∈I(S)

T

(f(x∗
t)− f(x̂T))

 . (27)

16

From Lemma A.8, the first term in the equation above becomes x∗ = x∗
t for any natural number t

such that t ≥ T∗. It follows that∑
t∈I(S)

T

(f(x∗)− f(x∗
t)) ≤

T∑
t=1

(f(x∗)− f(x∗
t)) (28)

≤
T∗−1∑
t=1

(f(x∗)− f(x∗
t)) (29)

≤ 2B(T∗ − 1). (30)
In the last line, we used the fact that supx∈X |f(x)| ≤ ∥f∥Hk

≤ B due to ∀x ∈ X , k(x,x) ≤ 1.

Concerning the second term, we have, for any t ∈ I(S)
T ,

f(x∗
t)− f(x̂T) ≤ ucbt(xt)− max

i∈I(S)
T

lcbi(xi) (31)

≤ ucbt(xt)− lcbt(xt) (32)

≤ 2β
1/2
t σt−1(xt). (33)

Using Lemma A.9, ∑
t∈I(S)

T

(f(x∗)− f(x̂T)) ≤ 2β
1/2
T

∑
t∈I(S)

T

σt−1(xt) (34)

≤ 2β
1/2
T

√
2nt

ln(1 + σ−2)
γnt;Sc (35)

≤

√
8βTT

ln(1 + σ−2)
γT ;Sc

(36)

≤
√

C1βTTγT ;Sc
. (37)

In summary, assuming Eq. (5) holds,

∀T ≥ Ts, rT ≤
1

s(T)

[
2B(T∗ − 1) +

√
C1βTTγT ;Sc

]
. (38)

Finally, from Lemma 2.1, Eq. (5) holds with probability at least 1− δ. This completes the proof.

We consider Sc = X as a special case of Theorem A.6. Then, some η exists such that θ0b(1) < η
and we have T∗ = 1. It follows that s(T) = T and Ts = 1. This matches the standard regret bound
for GP-UCB.

Furthermore, if we fix b, η, and B and consider only the dependence on T , we obtain rT =
O(
√
βTTγT ;X /s(T)). (Here, we used γT ;Sc ≤ γT ;X which follows from Sc ⊂ X .) We note that

the cumulative regret in standard GP-UCB is O(
√
βTTγT ;X). Thus, F-GP-UCB converges for X , k

and b such that the cumulative regret under standard GP-UCB without failure points is sublinear and
s(T) = Θ(T).

Theorem 4.2 can be obtained from Theorem A.6 by letting X = [0, 1]d, b(t) = 1/tα and using the
infinity norm. We prove Lemma 4.1 before proving Theorem 4.2.

Proof of lemma 4.1. Using Lemma A.7 and Lemma A.3, we obtain
nt ≥ t− P (Fc, ∥ · ∥∞, θtb(t)) (39)

≥ t− C
(
Fc, ∥ · ∥∞,

θtb(t)

2

)
(40)

≥ t− C
(
X , ∥ · ∥∞,

θtb(t)

4

)
(41)

≥ t− P
(
X , ∥ · ∥∞,

θtb(t)

4

)
. (42)

17

The following Lemma A.11 also holds.
Lemma A.11. The following holds for any t ∈ N+:

nt ≥ t− P
(
X , ∥ · ∥∞,

θb(t)

4

)
. (43)

We omit the proof of Lemma A.11 as it is similar to the proof of Theorem A.10. We give below the
proof of Theorem 4.2.

Proof of Theorem 4.2. We consider the bounds for θ, T∗, and s(T) under Lemma A.6 by letting
X = [0, 1]d, ∥ · ∥ = ∥ · ∥∞, b(t) = 1/tα.

• From b(1) = 1, θ = min{θ0, η/(2b(1))} = min{θ0, η/2}.

• From the definition of b, we can obtain T∗ = ⌊(θ0/η)1/α + 1⌋ consistently as follows: We
see that b−1(·) = (·)−1/α is also monotonically decreasing. Therefore, if η/θ0 > b(1), then
b−1(η/θ0) ∈ (0, 1) and ⌊b−1(θ0/η) + 1⌋ = 1, by which that T∗ = ⌊(θ0/η)1/α +1⌋ always
holds is shown. Consequently, we obtain the upper bound of T∗: T∗ = ⌊(θ0/η)1/α + 1⌋ ≤
(θ0/η)

1/α + 1.

• Similarly to the proof of Lemma 4.1, we have s(T) ≥ T − P
(
X , ∥ · ∥∞, θb(T)/4

)
= T −

⌈4Tα/θ⌉d, where we use the fact that P([0, 1]d, ∥ · ∥∞, ϵ) = ⌈1/ϵ⌉d shown in Lemma A.4.

Then, we consider Ts. From the above derivation for s(T), we can obtain s(T) ≥ T − ⌈4Tα/θ⌉d ≥
T/2 if T ≥ (10/θ

d
)1/(1−dα) holds, as follows:

T ≥ (10/θ
d
)1/(1−dα) ⇔ T ≥ 10T dα

θ
d
⇔ T

2
− 5T dα

θ
d
≥ 0, (44)

from which we obtain

T

2
≤ T −

(
5Tα

θ

)d

(45)

= T −
(
4Tα

θ
+

Tα

θ

)d

(46)

≤ T −
(
4Tα

θ
+ 2Tα

)d

(47)

≤ T −
(
4Tα

θ
+ 1

)d

(48)

≤ T −
⌈
4Tα

θ

⌉d
. (49)

Note that θ ≤ η/2 ≤ 1/2, where η ∈ (0, 1) from the definition of X and ∥ · ∥∞. Hence, s(T) ≥ 1 for
all T ≥ max{(10/θd)1/(1−dα), 2}, which suffices to show Ts ≤ T̃s := max{(10/θd)1/(1−dα), 2}+
1.

Substituting the bounds on θ, T∗, s(T), Ts obtained above into Theorem A.6 completes the proof.

B More general regret bound

A disadvantage of Theorem 4.2 is that the case where x∗ exists on the boundary of Sc is not covered,
which is the case that often appears in a real-world application. In this section, we give a more general
regret bound that covers the case where x∗ on the boundary of Sc and discuss its limitations.

We first assume that the failure function c satisfies the following Assumption B.1 instead of Assump-
tion 2.2.

18

Figure 4: A two-dimensional example illustrating ζ and τ . In this example, the success region is a
disc with x∗ existing on its boundary. The point x̃ is contained in the search space Xt at least at step
t such that θtb(t) < ζ. In this case, we have f(x̃)− f(x∗) ≤ Lτ due to Lipschitz continuity.

Assumption B.1. There exists a convex set D ⊂ Sc satisfying the following conditions:

1. The optimal solution x∗ is included in D, namely, x∗ ∈ D.

2. For some ζ > 0, there exists x̃ ∈ D such that Nx̃;ζ ⊂ D.

Here, Nx̃;ζ := {x ∈ X | ∥x− x̃∥∞ < ζ} denotes an open ball with a radius ζ centered at x̃.

Note that, for the failure function c that satisfies Assumption 2.2, Assumption B.1 also holds for c by
letting x̃ = x∗ and ζ = η.

Theorem B.2 (General regret bound.). Let β1/2, b, f, δ, Xt, and α be defined as in Theorem 4.2.
Assume that f is L-Lipschitz continuous, that is

∀x, x̃ ∈ X , |f(x)− f(x̃)| ≤ L∥x− x̃∥∞. (50)

In addition, suppose that the failure function c satisfies Assumption B.1. When applying Algorithm 1
under the above conditions, the following two statements hold:

1. Estimated solution x̂T defined in (8) exists for T ≥ T̃s.

2. The following holds with probability at least 1− δ:

∀T ≥ T̃s, rT ≤
2

T

[
2B(T̃∗ − 1) +

√
C1βTTγT ;Sc

+ Lθ0τ
T 1−α

(1− α)ζ

]
. (51)

Here, we set T̃s := max{(10/θd)1/(1−dα), 2} + 1, T̃∗ := (θ0/ζ)
1/α + 1, and θ := min{θ0, ζ/2}.

Furthermore, C1 and τ are defined as C1 = 8/ ln(1 + σ−2) and τ = ∥x∗ − x̃∥∞, respectively. It
should be noted that ζ and x̃ are defined in Assumption B.1.

Note that the additional Lipschitz continuity on f in Theorem B.2 is often assumed in existing GP
optimization literature [43, 44, 27, 31]. In addition, the Lipschitzness assumption holds for commonly
used kernels such as the Gaussian kernel [28].

In Theorem B.2, T̃s and θ can be interpreted similarly to Theorem 4.2, where η is replaced by ζ . The
regret bound in Theorem B.2 has a newly appearing third term containing the Lipschitz constant.
This additional term converges to zero in O(T−α(1− α)−1) as T increases. An illustrative example
of ζ and τ is in Fig.4. Intuitively, the analysis of Theorem B.2 is obtained by applying Theorem 4.2
for x̃ instead of x∗; and we bound the regret incurred from the difference between x∗ and x̃ by using
the Lipschitz property.

19

Limitation of Theorem B.2. When the first and second terms in (51) converge to zero, Theorem B.2
provides the no-regret guarantees, that is, rT → 0 (as T → ∞) with high probability. Indeed, the
third term in (51) is O(T−α(1− α)−1) and always converges to zero as T →∞. However, since
α ∈ (0, d−1), this third term incurs at least the regret of O(T−1/d), which dominates the second
term on which the benefit of the kernelized assumption appears. We conjecture that our F-GP-UCB
algorithm cannot avoid this undesirable third term and leaves its necessity analysis as future work.
Here, although the result of Theorem B.2 is limited as described above, the following points should
be noted:

• To our knowledge, even in the standard GP-based optimization that handles black-box
constraint functions, the case where the optimum exists on the boundary of a feasible region
is not considered in theory [43, 44, 5].

• The dependence of the failure function c against the regret bound provided by Theorem B.2
is different from that of Theorem 4.2. Especially, the case exists where the bound of
Theorem B.2 is tighter than that of Theorem 4.2 when T is small.

• Existing analysis of [2] does not consider the case where x∗ exists on the boundary of the
success region. Our result of Theorem B.2 is the first convergence guarantee for the case
where x∗ exists on the boundary.

Finally, even if the result of Theorem B.2 is limited, we believe that it is valuable to show the
convergence guarantees.

B.1 Proof of Theorem B.2

As in the proof of Theorem 4.2 in Appendix A, the generalized Theorem B.3 is proved before
Theorem B.2.
Theorem B.3. Let β1/2

t = B+σ
√
2(γt−1;X + 1 + ln(1/δ)) for a fixed f ∈ Hk such that ∥f∥Hk

≤
B and δ ∈ (0, 1). We further assume the following four conditions:

1. f is L-Lipschitz continuous over X . That is, ∀x(1),x(2) ∈ X , |f(x(1)) − f(x(2))| ≤
L∥x(1) − x(2)∥.

2. There exists a convex set D ⊂ Sc such that x∗ ∈ D.

3. There exists some x̃ ∈ D and ζ > 0 such that Nx̃;ζ,∥·∥ ⊂ D.

4. For θ = min{θ0, ζ/(2b(1))}, limT→∞
(
T − P

(
Fc, ∥ · ∥, θb(T)

))
=∞ holds.

Then, letting s(T) = T − P(Fc, ∥ · ∥, θb(T)), the following holds under Assumption A.5 in Algo-
rithm 1:

• x̂T exists for some T ∈ N+ such that T ≥ Ts.

• The following equation holds with probability at least 1− δ:

∀T ≥ Ts, rT ≤
1

s(T)

[
2B(T∗ − 1) +

√
C1βTTγT ;Sc

+ ζ−1Lθ0τ

T∑
t=1

b(t)

]
. (52)

Here, T∗ is a natural number which is defined as follows:

T∗ =

{
⌊b−1(ζ

θ0
) + 1⌋ if ζ

θ0
≤ b(1),

1 otherwise
. (53)

Here we let Ts be the smallest natural number T such that s(T) ≥ 1, τ = ∥x∗ − x̃∥, and
C1 = 8/ ln(1 + σ−2).

The interpretation of θ, Ts, and s(T) is the same as that in Theorem A.6. On the other hand, T∗ is
the upper bound on the number of steps until Xt contains x̃, the point “close” to x∗. We give an
illustrative example for x̃, τ , and ζ in Fig.4.

20

The following Lemma B.4 evaluates the “closeness” of the points inside the convex region D and x∗.
From this, f(x∗

t) and f(x∗) can be evaluated using Lipschitz continuity even if x∗ does not exist
inside Sc.
Lemma B.4. For any τ ∈ (0, τ], where τ = ∥x̃ − x∗∥ > 0, some x(τ) ∈ D exists such that the
following holds:

∥x(τ) − x∗∥ = τ and Nx(τ);ζτ/τ,∥·∥ ⊂ D. (54)

Proof. Fix τ ∈ (0, τ]. Let x(τ) = (1− τ/τ)x∗ + (τ/τ)x̃. Then, we have ∥x∗ − x(τ)∥ = τ .

Let xy = x∗ + (y − x∗)τ/τ for an arbitrary y ∈ Nx(τ);ζτ/τ,∥·∥. Then,

∥xy − x̃∥ = ∥x∗ − x̃+ (y − x∗)
τ

τ
∥ (55)

=
τ

τ
∥y −

[(
1− τ

τ

)
x∗ +

τ

τ
x̃
]
∥ (56)

=
τ

τ
∥y − x(τ)∥ (57)

≤ ζ. (58)

It follows that xy ∈ Nx̃;ζ,∥·∥ ⊂ D. Because y = (1− τ/τ)x∗ + (τ/τ)xy , we have y ∈ D from the
convexity of D. This completes the proof.

Using Lemma B.4, we introduce another lemma which is similar to Lemma A.8.
Lemma B.5. The following statements hold for any natural number t such that t ≥ T∗:

1. θt = θT∗ and θT∗ ≥ min{θ0, ζ/(2b(1))}.

2. For any ϵ ∈ (0, ϵ],Xt contains x(τt) such that ∥x∗−x(τt)∥ = τt, where τt = θT∗b(t)τ/ζ+ϵ.
Here, we define ϵ as ϵ := τ(1− θT∗b(t)/ζ).

Proof. Statement 1 immediately follows by substituting ζ for η in the proof of statement 2 of
Lemma A.8:

Concerning statement 2, we have

τt =
θT∗b(t)τ

ζ
+ ϵ ≤ θT∗b(t)τ

ζ
+ ϵ ≤ τ . (59)

Thus, from Lemma B.4, there exists some x(τt) such that

∥x(τt) − x∗∥ = τt and Nx(τt);ζτt/τ,∥·∥ ⊂ D ⊂ Sc. (60)

Moreover, from the definition of τt, it follows that ζτt/τ > θT∗b(t). Combining it with
Nx(τt);ζτt/τ,∥·∥ ⊂ Sc, we see that Nx(τt);θT∗b(t),∥·∥ ⊂ Sc, which implies ∥x(τt) − x∥ > θT∗b(t) for
all x ∈ Fc. Hence, we obtain x(τt) ∈ Xt.

We show below the proof of Theorem B.3.

Proof of Theorem B.3. The existence of x̂T follows immediately from Lemmas A.10 and the defini-
tion of Ts. Now, fix some natural number T ≥ Ts and assume Eq. (5) holds. Then, similarly to the
proof of Theorem A.6, the following statements hold:

rT ≤ s(T)−1

 ∑
t∈I(S)

T

(f(x∗)− f(x∗
t)) +

∑
t∈I(S)

T

(f(x∗
t)− f(x̂T))

 . (61)

For the second term above, following the proof of Theorem A.6, we have∑
t∈I(S)

T

(f(x∗
t)− f(x̂T)) ≤

√
C1βTTγT ;Sc

. (62)

21

For the first term, we have∑
t∈I(S)

T

(f(x∗)− f(x∗
t)) ≤

T∑
t=1

(f(x∗)− f(x∗
t)) (63)

≤
T∗−1∑
t=1

(f(x∗)− f(x∗
t)) +

T∑
t=T∗

(f(x∗)− f(x∗
t)) (64)

≤ 2B(T∗ − 1) +

T∑
t=T∗

(f(x∗)− f(x∗
t)) . (65)

From Lemma B.5, by using a sufficiently small ϵ and τt = θT∗b(t)τ/ζ + ϵ, we have

T∑
t=T∗

(f(x∗)− f(x∗
t)) =

T∑
t=T∗

(
f(x∗)− f(x(τt)) + f(x(τt))− f(x∗

t)
)

(66)

≤
T∑

t=T∗

(
f(x∗)− f(x(τt))

)
(67)

≤
T∑

t=T∗

L∥x∗ − x(τt)∥ (68)

=

T∑
t=T∗

Lτt (69)

= LθT∗τζ
−1

(
θ−1
T∗

τ−1ζϵ+

T∑
t=T∗

b(t)

)
(70)

≤ Lθ0τζ
−1

(
θ−1
T∗

τ−1ζϵ+

T∑
t=1

b(t)

)
. (71)

The second line follows from the definition of x(τt) ∈ Xt and x∗
t . The third line follows from the

Lipschitz continuity of f . The fourth line follows from Lemma B.5. In the equation above, letting
ϵ ↓ 0 gives

T∑
t=T∗

(f(x∗)− f(x∗
t)) ≤ Lθ0τζ

−1
T∑

t=1

b(t). (72)

In summary, assuming Eq. (5) holds, we obtain

∀T ≥ Ts, rT ≤
1

s(T)

[
2B(T∗ − 1) +

√
C1βTTγT ;Sc + ζ−1Lθ0τ

T∑
t=1

b(t)

]
. (73)

Finally, by noting that Eq. (5) holds with probability at least 1− δ, the proof is completed.

We show Theorem B.2 using Theorem B.3.

Proof of theorem B.2. We consider Theorem B.3 by letting X = [0, 1]d, ∥ · ∥ = ∥ · ∥∞, and
b(t) = 1/tα. Now, by substituting ζ for η in Theorem 4.2, we similarly have the following for θ, T∗,
T ∗, and s(T).

• θ = min{θ0, η/2}.

• T∗ ≤ T̃∗ := (θ0/ζ)
1/α + 1.

• Ts ≤ T̃s := max{(10/θd)1/(1−dα), 2}+ 1.

22

• For T ≥ T̃s, s(T) ≥ T/2.

Using the inequality above and from Theorem B.3, we have

∀T ≥ T̃s, rT ≤
2

T

[
2B(T̃∗ − 1) +

√
C1βTTγT ;Sc

+ ζ−1Lθ0τ

T∑
t=1

t−α

]
. (74)

For the third term, we have

T∑
t=1

t−α ≤
∫ T

0

t−αdt ≤ T 1−α

1− α
. (75)

Substituting the equation above into Eq. (74) completes the proof.

C Cumulative regret bound

In this section, we show the upper bound of the cumulative regret of Algorithm 1. We define the
cumulative regret RT as

RT =

T∑
t=1

r̃t, (76)

where r̃t is the instantaneous regret at step t, which is defined as

r̃t =

{
f(x∗)− f(xt) if xt ∈ Sc,

f(x∗)−minx∈X f(x) if xt ∈ Fc
. (77)

We show the following Theorem C.1.

Theorem C.1. Fix δ ∈ (0, 1) and f ∈ Hk such that ∥f∥Hk
≤ B. Let β

1/2
t = B +

σ
√
2(γt−1;X + 1 + ln(1/δ)). We further assume the following two conditions.

1. There exists η > 0 such that Nx∗;η,∥·∥ ⊂ Sc holds where Nx∗;η,∥·∥ := {x ∈ X | ∥x−x∗∥ <
η}.

2. limT→∞
(
T − P

(
Fc, ∥ · ∥, θb(T)

))
=∞ holds for θ = min{θ0, η/(2b(1))}.

Then, under Assumption A.5, the following holds with probability at least 1− δ in Algorithm 1:

∀T ≥ 1, RT ≤ 2B
(
P
(
Fc, ∥ · ∥, θb(T)

)
+ T∗ − 1

)
+
√
C1βTTγT ;Sc . (78)

Here, T∗ is a natural number defined as follows:

T∗ =

{
⌊b−1(η

θ0
) + 1⌋ if η

θ0
≤ b(1),

1 otherwise
. (79)

Moreover, we set C1 as C1 = 8/ ln(1 + σ−2).

23

Proof. Under the event (5), the following holds:

RT =
∑

t∈I(F)
T

r̃t +
∑

t∈I(S)
T

r̃t

≤ 2B|I(F)
T |+

∑
t∈I(S)

T

(f(x∗)− f(xt)) (80)

≤ 2B|I(F)
T |+

∑
t∈I(S)

T

(f(x∗)− f(x∗
t)) +

∑
t∈I(S)

T

(f(x∗
t)− f(xt))

≤ 2B|I(F)
T |+

T∗−1∑
t=1

(f(x∗)− f(x∗
t)) +

∑
t∈I(S)

T

(ucbt(xt)− lcbt(xt)) (81)

≤ 2B
(
|I(F)

T |+ T∗ − 1
)
+ 2β

1/2
T

∑
t∈I(S)

T

σt−1(xt)

≤ 2B
(
P
(
Fc, ∥ · ∥, θb(T)

)
+ T∗ − 1

)
+
√
C1βTTγT ;Sc

, (82)

where:

• In (80), the first term follows by applying the inequality r̃t ≤ 2B, and the second term
follows by using the fact that r̃t = f(x∗)− f(xt) holds for xt ∈ Sc.

• In (81), the second term follows from Lemma A.8, which shows x∗ ∈ Xt for any t ≥ T∗.
The third term follows by using (5).

• In (82), the first term follows by applying the inequality |I(F)
T | ≤ P

(
Fc, ∥ · ∥, θb(T)

)
from

Lemma A.10. The second term follows by using Lemma A.9 and the monotonicity of the
maximum information gain.

Finally, the event (5) holds with probability at least 1−δ. This implies that (78) holds with probability
at least 1− δ.

Furthermore, as in Theorem 4.2, the following Corollary C.2 gives the result for the case where X ,
b(t), and the norm ∥ · ∥ are defined as X = [0, 1]d, b(t) = 1/tα with α ∈ (0, d−1), and ∥ · ∥ = ∥ · ∥∞,
respectively.

Corollary C.2. Fix δ ∈ (0, 1), α ∈ (0, d−1), X = [0, 1]d and f ∈ Hk such that ∥f∥Hk
≤ B. Let

β
1/2
t = B + σ

√
2(γt−1;X + 1 + ln(1/δ)) and b(t) = t−α. In addition, there exists η > 0 such that

Nx∗;η ⊂ Sc, where Nx∗;η = {x ∈ X | ∥x − x∗∥∞ < η}. When applying Algorithm 1 under the
above conditions, with probability at least 1− δ, the following upper bound of the cumulative regret
holds:

∀T ≥ 1, RT ≤ 2B

[(
5θ

−1
)d

Tαd + T̃∗ − 1

]
+
√
C1βTTγT ;Sc

. (83)

Here, we set T̃∗, θ and C1 as T̃∗ := (θ0/η)
1/α + 1, θ := min{θ0, η/2}, and C1 = 8/ ln(1 + σ−2),

respectively.

Proof. From Theorem C.1, it is sufficient to prove that P
(
Fc, ∥ · ∥, θb(T)

)
≤ (5/θ)dTαd and

T∗ ≤ T̃ ∗ holds, where T∗ is defined in Theorem C.1. Under X = [0, 1]d with the norm ∥ · ∥∞ and
b(t) = t−α, the inequality P

(
Fc, ∥ · ∥, θb(T)

)
≤ P

(
X , ∥ · ∥, θb(T)/4

)
≤ ⌈4Tα/θ⌉d holds from

Lemma A.11 and Lemma A.4. Furthermore, the inequality ⌈4Tα/θ⌉d ≤ (5/θ)dTαd follows from
the fact of θ ≤ 1 and T ≥ 1. Consequently, P

(
Fc, ∥ · ∥, θb(T)

)
≤ (5/θ)dTαd holds. As for T∗, we

already obtained the inequality T∗ ≤ T̃ ∗ in the proof of Theorem 4.2. This completes the proof.

24

D The difficulty to extend the algorithm of [48] and [30]

As described in Sec. 4, the regret bound of the F-GP-UCB algorithm has the Õ(γT ;X /
√
T) term,

where the notation Õ(·) denotes the order whose dimension-independent logarithmic factors are
hidden. Similarly, as described in Appendix C, the cumulative regret bound of the F-GP-UCB
algorithm has the O(γT ;X

√
T) term. Although whether the GP-UCB based algorithm achieves

Õ(γT ;X /
√
T) regret or not is an open problem even in the standard setting [50], several existing

works proposed algorithms which achieve the regret of Õ(
√

γT ;X /T), or the cumulative regret of
Õ(
√
γT ;XT) [51, 48, 40, 7, 30].

In this section, we discuss some naive extensions of the algorithm of [48] and [30] to our settings
and clarify the difficulty we encountered while building their theoretical analysis in our setup. As
a summary, due to the existence of the unknown failure regions, we could not naively extend the
algorithm of [48] and [30] to our setup. We leave the study of the algorithm that achieves the regret
of Õ(

√
γT ;X /T) as future work.

D.1 Maximum variance reduction based algorithm of [48]

Algorithm overview The maximum variance reduction (MVR) algorithm in the standard setting
defines the observation point xt at each step t as xt = argmaxx∈Xσt−1(x), and define the estimated
solution x̂t as x̂t = argmaxx∈Xµt(x). From Theorem 3 of [48], the MVR algorithm achieves the
Õ(
√
γT ;X /T) regret with high probability. The core idea of their analysis is that the tight confidence

bound of f can be obtained when the selection rule of xt is non-adaptive, which means {xt} and
the noises {ϵt} are independent. Since the {xt} of MVR is chosen only from the posterior variance,
which is independent of the noises, the non-adaptive tight confidence bound of f can be obtained as
in Theorem 1 of [48]. We give a brief summary of their regret analysis below:

1. From the definition of xt of MVR, the maximum posterior variance is monotonically
decreasing, i.e., t̃ ≤ t ⇒ σt̃−1(xt̃) ≥ σt−1(xt). By combining the monotonicity of
σt−1(xt) with the inequality of maximum information gain, the posterior standard deviation
of any input at step T is bounded by O(

√
γT ;X /T). More specifically, the following holds:

∀x ∈ X , σT (x) ≤

√
2γT ;X

ln(1 + σ−2)T
. (84)

2. The regret is decomposed by using the posterior mean of x̂T as follows:
rT = f(x∗)− f(x̂T)

= f(x∗)− µT (x
∗)︸ ︷︷ ︸

(a)

+µT (x̂T)− f(x̂T)︸ ︷︷ ︸
(b)

. (85)

Here, (85) follows from the fact: ∀x ∈ X , µT (x̂T) ≥ µT (x).
3. With probability 1− δ/3, the upper bound of the term (a) is obtained as βσT (x

∗), where β
is the width of confidence bound of f(x∗) which is the constant for fixed δ, and does not
depend on T . By combining (84), we obtain the upper bound of O(

√
γT ;X /T) of the term

(a).
4. Under the regularity condition for the kernel k as in Assumption 4 in [48], with probability

1− 2δ/3, the upper bound of Õ(
√

γT ;X /T + 1/
√
T) of the term (b) is obtained.

5. By taking the union bound of step 3 and 4, the regret upper bound of Õ(
√
γT ;X /T) is

obtained with high probability.

The naive extension to our setting. The naive extension of MVR to our setting can be considered
by modifying the search space at step t of the MVR algorithm from X to Xt. More specifically, in
the modified MVR algorithm, the observation point xt and the estimated solution x̂t at step t are
respectively defined as follows:

xt = argmaxx∈Xt
σt−1(x), (86)

x̂t = argmaxx∈Xt
µt(x). (87)

25

Here, Xt is defined as

Xt = {x ∈ X | ∀i ∈ I(F)
t−1, ∥x− xi∥∞ ≥ θtbT }, (88)

where θt is a parameter which is determined in the same way as F-GP-UCB, and bT is a parameter
which depends on the total step size T . It should be noted here that we consider the setting where
total step size T is known as the same as the setting in [48], whereas our main paper considers the
setting where total step size T is unknown. Therefore, we consider the fixed parameter bT instead of
the decreasing function b(·) to define the search space Xt. The pseudo-code of this modified MVR
algorithm is given by replacing the lines 7, 8, and 16 of Xt, xt, and x̂t in the Algorithm 1 with (86),
(87), and (88). Since the failure function c is fixed, {xt} and {ϵt} are independent in this modified
algorithm, and we can leverage the tight confidence bound of f as in Theorem 4 of [48]. Furthermore,
by using the packing argument described in Sec.4, the number of successful observations can be
secured with the properly pre-specified parameter bT . However, in the modified MVR algorithm
described above, there exist two crucial problems to building the theoretical guarantees as follows:

• The monotonicity of the posterior variance is not guaranteed. Since the modified MVR
algorithm chooses xt in the search space Xt, which varies along the time horizon t, the
monotonicity of the posterior variance σt−1(xt) does not always holds even if we only focus
on the time steps which the successful observations are obtained. This is because lines 4-6
in Algorithm 1 could expand the search space Xt. If the user specify a small parameter θ0
such that θ0bT < η holds, the monotonicity of σt−1(xt) is guaranteed. However, whether
the parameter θ0 can be pre-specified such that θ0bT < η, there requires unrealistic prior
knowledge about η.

• The estimated solution is not guaranteed to become feasible. Since the presence of
the failure point in the Xt, we could not guarantee the estimated solution is feasible. The
F-GP-UCB algorithm avoids this problem by defining the estimated solution within past
successful inputs.

D.2 Batched pure exploration based algorithm of [30]

The batched pure exploration (BPE) [30] is an algorithm that observes the points based on the
maximum posterior variance within an appropriate batch size. In addition, the BPE algorithm reduces
the search space (which is called potential maximizers) according to the maximum lower confidence
bound at the end of each batch. Here, for simplicity, we consider the case where X is finite.

Algorithm 2 shows one possible extension of the BPE algorithm to our setup, in which the past failure
points are eliminated from the potential maximizers. In Algorithm 2, we use the following notations:

• The posterior mean and variance at the end of the j − 1 step for batch i is defined as µi
j−1

and σi
j−1, respectively.

• The upper and lower confidence bounds of f(x) at the end of batch i are denoted as
ucbi(x) and lcbi(x), respectively. Namely, ucbi(x) = µi

j
(x) + βσi

j
(x) and lcbi(x) =

µi
j
(x)− βσi

j
(x), where j is the last index within the batch and β is the parameter which

represents the width of the confidence bound.

Note that additional operations with respect to the original BPE algorithm are lines 10–12, which
eliminates the failure points, and lines 14 and 20–22, which count and secure the number of successful
observations in the batch. In addition, since the failure function c is unknown to the user, the
observation trials are done at each iteration within each batch (line 9); on the other hand, the original
algorithm observes all Ni suggested points xt at the end of the batch all at once. Unfortunately, under
a natural assumption that T < |X |, we cannot exclude the possibility that the algorithm gets stuck in
the first batch by failing the observation T times.

Although other extensions may be able to secure enough number of successful observations, they
appear to break other essential requirements to achieve the Õ(

√
γT ;XT) cumulative regret. For

example, we can consider an idea that is similar to F-GP-UCB, i.e., the exclusion of the neighborhood
of the observation failure from the search space instead of line 11 in Algorithm 2, which can secure
enough number of successful observations by appropriately reducing θt. However, since the search

26

space can be increased by reducing θt, the monotonicity of the variance at observed points cannot
be guaranteed. This monotonicity is a key property for Õ(

√
γT ;XT) cumulative regret of the BPE

algorithm, as with the MVR algorithm. As with the discussion for the MVR algorithm, although using
a pre-specified and sufficiently small θ0 can guarantee the monotonicity of the variance, setting θ0
beforehand requires unrealistic prior knowledge. Furthermore, if θ0bT < ∥x− x′∥ for all x,x′ ∈ X
such that x ̸= x′, then the exclusion of the neighborhood of the observation failure is equivalent to
line 11 in Algorithm 2. Thus, the pre-specified sufficiently small θ0 can cause again the problem
that the algorithm makes the failure observation T times in the first batch as with Algorithm 2. In
conclusion, we believe that the BPE-based algorithm for our setup is not obvious.

Algorithm 2 The naive extension of the batched pure exploration-based algorithm.
Input: Total step size T , the discrete input space X .

1: Initialize GP prior.
2: X 1 ← X , t← 1, N0 ← 1.
3: for i = 1, 2, . . . do
4: Ni ←

√
TNi−1.

5: Si ← ∅.
6: for j = 1, 2, . . . do
7: Compute σi

j−1 only based on Si.
8: xt ← argmaxx∈X i

σi
j−1(x).

9: Try to observe at xt.
10: if c(xt) = 1 then
11: X i ← X i \ {xt}.
12: else
13: Si ← Si ∪ {xt}.
14: mi ← mi + 1.
15: end if
16: t← t+ 1.
17: if t > T then
18: Terminate.
19: end if
20: if mi = Ni then
21: break.
22: end if
23: end for
24: Compute µi

j
and σi

j
only based on Si.

25: X i+1 ← {x ∈ X i | ucbi(x) ≥ maxx̃∈X i
lcbi(x̃)}.

26: end for

E Details of Section 5

E.1 Details of computation of θt

In this subsection, we give the details of the proposed algorithm for computation of θt which is
described briefly in Sec. 5. In the proposed algorithm, before running the solver that uses θt−1, a
decision based on the packing number P(X , ∥ · ∥∞, θt−1b(t)) is made to exclude cases where it is
clear that a feasible solution could not be obtained. In fact, if the failure number |I(F)

t−1| satisfies
|I(F)

t−1| ≥ P(X , ∥ · ∥∞, θt−1b(t)), then, by the definition of P , there are no feasible solutions.
Then, θt−1 is multiplied by 1/2 in the proposed algorithm. This is repeated until the condition
P(X , ∥ · ∥∞, θt−1b(t)) = ⌈1/θt−1b(t)⌉d > |I(F)

t−1| is met. After these shrinking procedures of θt−1,
we try to solve the problem (7); and if a feasible solution could not be obtained, θt−1 is multiplied by
1/2 and problem (7) is solved again. The proposed procedure is shown in Algorithm 3, which is used
in lines 3–8 of Algorithm 1.

Lemma E.1 below shows that a feasible solution xt is guaranteed to be obtained within two optimiza-
tion trials. The proof is shown in Appendix F.

27

Algorithm 3 Practical method to compute θt and xt.
Input: θt, b(t).

1: θ̃t ← θt−1.
2: while ⌈1/θ̃tb(t)⌉d ≤ |I(F)

t−1| do
3: θ̃t ← θ̃t/2.
4: end while
5: Solve problem xt = arg max

x∈X
ucbt(x) s.t. ∀i ∈ I(F)

t−1, ∥xi − x∥∞ ≥ θ̃tb(t).

6: if solver did not return any feasible solution xt, then
7: θt ← θ̃t/2.
8: xt = arg max

x∈X
ucbt(x) s.t. ∀i ∈ I(F)

t−1, ∥xi − x∥∞ ≥ θtb(t).

9: else
10: θt ← θ̃t.
11: end if
Output: θt,xt.

Lemma E.1. Let I(F)
t−1 be the index set of failure points obtained up to step t− 1 for a fixed t. Then,

for any θ > 0 such that P(X , ∥ · ∥∞, θb(t)) > |I(F)
t−1|, the following holds.{

x ∈ X | ∀i ∈ I(F)
t−1, ∥xi − x∥∞ ≥

θb(t)

2

}
̸= ∅. (89)

E.2 Discussion about selection of α

The choice of α in the proposed algorithm affects the initial number of crash points and the guaranteed
rate of regret convergence. If α approaches 1/d, from Theorems 4.2 and B.2, then T̃s, i.e., the number
of steps needed for a successful observation, becomes large, leading to an enormous number of steps
needed for converging behavior. Despite this, the convergence rate eventually becomes fast due to
the rate improvement in T ∗ and the third term in Theorem B.2. Thus, a rational choice is to pick the
intermediate value α = 1/(2d) especially if there are no insights about the required total number of
steps.

E.3 Pseudo-code of adaptive tuning method of θ0

We show the variants of the proposed method in Algorithm 4, which consider the adaptive tuning of
θ0 as described in the final paragraph of Sec. 5. Furthermore, the pseudo-code, which includes all
practical considerations discussed in Sec. 5, is in Algorithm 5.

F Proofs of Section 5 and Appendix E

We first give a proof of Lemma E.1.

Proof of Lemma E.1. It is sufficient to show |I(F)
t−1| < C(X , ∥ · ∥∞, θb(t)/2). From Lemma A.3 and

the definition of θ,

|I(F)
t−1| < P(X , ∥ · ∥∞, θb(t)) ≤ C

(
X , ∥ · ∥∞,

θb(t)

2

)
. (90)

Next, the following Lemma F.1 gives the regret when letting b(t) = 1/ ln(t+ 1) in Theorem B.3.
Lemma F.1. Substituting b with b(t) = 1/ ln(t + 1) under the conditions of Theorem B.2, the
following holds when executing Algorithm 1.

• x̂T exists for some T ∈ N+ such that T ≥ T̃s.

28

Algorithm 4 The F-GP-UCB algorithm with adaptive tuning method of θ0.
Input: GP prior GP(0, k), θmin, θmax ∈ (0, 1), hσ > 0, q ∈ N+, w ∈ (0, 1), b : N → R+,
{βt}t∈N+

.
1: Initialize I(S)

0 = I(F)
0 = ∅, θ0 = θmax, C = 0.

2: for t = 1 to T do
3: θ̃t ← θt−1.
4: while X ⊂

⋃
i∈I(F)

t
Nxi;θ̃tb(t)

do

5: θ̃t ← θ̃t/2.
6: end while
7: θt ← θ̃t, Xt ← {x ∈ X | ∀i ∈ I(F)

t−1, ∥xi − x∥∞ ≥ θtb(t)}.
8: Choose xt = argmaxx∈Xt

ucbt(x).
9: if c(xt) = 0 then

10: Observe yt = f(xt) + ϵt.
11: Update GP by adding (xt, yt).
12: I(S)

t ← I(S)
t−1 ∪ {t}, I

(F)
t ← I(F)

t−1.
13: else
14: I(S)

t ← I(S)
t−1, I(F)

t ← I(F)
t−1 ∪ {t}.

15: end if
16: if σt−1(xt) < hσ then
17: C ← C + 1.
18: if C = q then
19: θt ← wθt.
20: C ← 0.
21: end if
22: else
23: C ← 0.
24: end if
25: end for
26: t̂ = argmax

i∈I(S)
t

lcbi(xi).
Output: xt̂.

• The following equation holds with probability at least 1− δ:

∀T ≥ T̃s, rT ≤
2

T

[
2B(T̃∗ − 1) +

√
C1βTTγT ;Sc

+ ζ−1Lθ0τC2
T

lnT

]
. (91)

Here, we let T̃∗ = exp(ζ/η), T̃s = max{(10/θd)1/(1−dα), 2}+1, θ = min{θ0, (ζ ln 2)/2},
and C1 = 8/ ln(1 + σ−2). Moreover, C2 is an absolute constant.

Proof. We evaluate s(T), Ts, T∗, θ, and
∑T

t=1 b(t) when substituting b(t) = 1/ ln(t+ 1) in Theo-
rem B.3. θ can be bounded from above by T̃s from b(1) = 1/ ln 2. θ = min{θ0, ζ ln 2/2}, Ts can be
bounded from above by T̃s similarly to Theorem B.2 We similarly have s(T) ≥ T/2 from T ≥ T̃s.
Concerning T∗, we have b−1(ζ/θ0) = exp(θ0/ζ) and T∗ ≤ exp(θ0/ζ) := T̃∗. Lastly, we have

T∑
t=1

1

ln(t+ 1)
≤
∫ T+1

0

1

ln(t+ 1)
dt (92)

≤ C2
T

lnT
. (93)

Here, in the last line, we used the known fact that the order of logarithmic integral is O(T/ lnT). C2

is an absolute constant given by the logarithmic integral. Applying the obtained results for s(T), Ts,
T∗, θ, and

∑T
t=1 b(t) in Theorem B.3 completes the proof.

Next, we prove Theorem F.2 and Theorem F.3, which we describe below.

29

Algorithm 5 The practical version of F-GP-UCB algorithm.
Input: GP prior GP(0, k), θmin, θmax ∈ (0, 1), hσ > 0, q ∈ N+, w ∈ (0, 1), b : N → R+,
{βt}t∈N+

.
1: Initialize I(S)

0 = I(F)
0 = ∅, θ0 = θmax, C = 0.

2: for t = 1 to T do
3: θ̃t ← θt−1.
4: while ⌈1/θ̃tb(t)⌉d < |I(F)

t−1| do
5: θ̃t ← θ̃t/2.
6: end while
7: Solve problem xt = arg max

x∈X
ucbt(x) s.t. ∀i ∈ I(F)

t−1, ∥xi − x∥∞ ≥ θ̃tb(t).

8: if solver did not return any feasible solution xt, then
9: θt ← θ̃t/2.

10: xt = arg max
x∈X

ucbt(x) s.t. ∀i ∈ I(F)
t−1, ∥xi − x∥∞ ≥ θtb(t).

11: else
12: θt ← θ̃t.
13: end if
14: if c(xt) = 0 then
15: Observe yt = f(xt) + ϵt.
16: Update GP by adding (xt, yt).
17: I(S)

t ← I(S)
t−1 ∪ {t}, I

(F)
t ← I(F)

t−1.
18: else
19: I(S)

t ← I(S)
t−1, I(F)

t ← I(F)
t−1 ∪ {t}.

20: end if
21: if σt−1(xt) < hσ then
22: C ← C + 1.
23: if C = q then
24: θt−1 ← wθt−1.
25: C ← 0.
26: end if
27: else
28: C ← 0.
29: end if
30: end for
31: t̂ = argmax

i∈I(S)
t

lcbi(xi).
Output: xt̂.

Theorem F.2. Let β1/2
t = B + σ

√
2(γt−1;X + 1 + ln(1/δ)) and b(t) = t−α for fixed f ∈ Hk such

that ∥f∥ ≤ B, δ ∈ (0, 1), and α ∈ (0, d−1). Let x∗ exist inside Sc such that Nx∗;η ⊂ Sc for some
η > 0. Here, we denote Nx∗;η = {x ∈ X | ∥x− x∗∥∞ < η}. Then the following two statements
hold with respect to Algorithm 4.

1. x̂T exists for T ≥ T̃s.

2. The following equation holds with probability at least 1− δ:

∀T ≥ T̃s, rT ≤
2

T

[
2B(T̃∗ − 1) +

√
C1βTTγT ;Sc

]
. (94)

Note that T̃s := max{(10/θd)1/(1−dα), 2}+ 1, T̃∗ := (θ0/η)
1/α + 1, and θ := min{θ0, η/2, θmin}

are constants that depend only on x∗, η, α, d, and θ0. Moreover, C1 = 8/ ln(1 + σ−2).
Theorem F.3. Let f ∈ Hk be any function such that ∥f∥Hk

≤ B and fix δ ∈ (0, 1) and α ∈ (0, d−1).
Let β1/2

t = B + σ
√
2(γt−1;X + 1 + ln(1/δ)) and b(t) = t−α. Let f be L-Lipschitz continuous

(Eq. (50)) and Sc satisfy Assumption 2.2. Then, the following two statements hold for Algorithm 4.

1. x̂T exists for some T ≥ T̃s.

30

0.0 0.2 0.4 0.6 0.8 1.0
Input 1

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 2

Sphere based failure function

0.0 0.2 0.4 0.6 0.8 1.0
Input 1

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 2

Sinusoidal based failure function

Figure 5: The failure functions used in the experiments based on the GP test functions. The shaded
and unshaded regions respectively represent the success and failure regions. The function shown on
the left is based on the sphere function, while the one on the right is based on sinusoidal functions.

2. The following equation holds with probability at least 1− δ:

∀T ≥ T̃s, rT ≤
2

T

[
2B(T̃∗ − 1) +

√
C1βTTγT ;Sc

+ Lθ0τ
T 1−α

(1− α)ζ

]
. (95)

Note that T̃s := max{(10/θd)1/(1−dα), 2}+ 1, T̃∗ := (θ0/η)
1/α + 1, and θ := min{θ0, ζ/2, θmin}

are constants that depend only on x∗, ζ, α, d, and θ0. Moreover, C1 = 8/ ln(1 + σ−2) and
τ = ∥x∗ − x̃∥∞.

Theorem F.2 immediately follows from Theorem A.6 by noting that the following holds under
Algorithm 4.

1. θtb(t) is monotone decreasing.
2. ∀t ∈ N+, θt ≥ min{θ0, η/2, θmin}.

First, Lemma A.7 holds under the monotonicity of θtb(t). From statement 2 above, Lemma A.8
holds by substituting the lower bound of θT∗ with min{θ0, η/2, θmin}. Lemma A.11 also holds under
this condition. Consequently, the same argument holds under Algorithm 4 where θ is replaced by
min{θ0, η/2, θmin} in Theorem A.6. Theorem F.3 also holds likewise.

G Additional experiments

G.1 2D-GP-generated Test Functions

We perform experiments using synthetic objective functions generated from GP. First, we generate
100 random points over X := [0, 1]2. Then, we sample function values on those 100 points from
the GP prior distribution. The objective function to be tested is the posterior mean computed by
feeding the pairs of the generated input points and the function values to the same GP. Following the
above process, we generate 5 test functions. For each test function, experiments are performed 10
times, with a total of 50 experiments. The average performance is evaluated. We use the GP with a
prior mean of 0 and the Gaussian kernel k(x,y) := σ2

f exp(−∥x− y∥2/(2l2f)) where σf = 1 and
lf = 0.2 for the generation of f and the modeling within the algorithm. We use two types of failure
functions c with the success regions depicted in Fig. 5. We refer to them respectively as the sphere
and sinusoidal failure functions. The mathematical definitions are given in Appendix H.

Figure 6 shows the result of the experiments. We note that, in the EI and GP-UCB algorithms,
the regret stops decreasing in the early stage. This occurs by getting stuck on the same failure
point because failures are not considered by those algorithms. In the case of the sphere failure
function, F-GP-UCB performs slightly worse compared to the other GPC-based algorithms. It is
reasonable to expect that model-based algorithms perform well on simple failure functions such as

31

0 20 40 60 80 100
Iteration

10 2

10 1

100

Re
gr

et

GP-generated test function with sphere
GP-EI
GP-UCB
EFI-GPC-EP
EFI-GPC-Sign
F-GP-UCB

0 20 40 60 80 100
Iteration

10 2

10 1

100

Re
gr

et

GP-generated test function with sinusoidal
GP-EI
GP-UCB
EFI-GPC-EP
EFI-GPC-Sign
F-GP-UCB

Figure 6: The evolution of the regret in the synthetic experiments based on the GP test functions.
The left plot uses the sphere failure function. The right plot uses the sinusoidal failure function.
The results show the average of 20 experiments, each with a different random seed. The error bars
correspond to two standard errors.

0.0 0.2 0.4 0.6 0.8 1.0
Input 1

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 2

Branin, F-GP-UCB, Iteration=25

0.0 0.2 0.4 0.6 0.8 1.0
Input 1

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 2

Branin, F-GP-UCB, Iteration=50

0.0 0.2 0.4 0.6 0.8 1.0
Input 1

0.0

0.2

0.4

0.6

0.8

1.0

In
pu

t 2

Branin, F-GP-UCB, Iteration=75

Figure 7: The behavior of F-GP-UCB is shown at iteration numbers 25 (left), 50 (middle), and 75
(right), respectively, for a fixed random seed. The observed points are overlaid over the objective
function: failures are shown as black triangles while successes are shown as blue crosses.

the sphere function which can be modeled with ease. The final regret of F-GP-UCB is comparable
to that of EFI-GP-EP. Thus no crucial differences in the performance are seen. For the sinusoidal
failure function, F-GP-UCB has a better performance than the other algorithms. In particular, in the
EFI-GP-EP algorithm, the probabilistic GPC has a serious misspecification in the model parameter.
Namely, the length scale parameter lc is excessively large, while the output scale parameter σc is
excessively small.6 It is observed that these parameter misspecifications lead to the next points
getting stuck on the same failure points in the early stage. Note that the risk of misspecifying kernel
parameters in classic GPC is a drawback of the EFI-GP-EP algorithm as also mentioned in [2].

G.2 Behavior of the F-GP-UCB algorithm in Branin problem

In the experiment of our test problem using the Branin function, the ideal search strategy is to control
the trade-off between exploration and exploitation in the upper right region which reduces the regret,
while also continuing to seek the isolated success regions in the rest of the search space where there
are mostly failures.

Figure 7 shows the snapshots of the observed points at different iterations for a fixed random seed.
From Fig. 7, it can be seen that F-GP-UCB makes balanced observations between the large success
region on the upper right side and the rest of search space which consists of mostly failures.

6The exact parameter values are given in Appendix H.

32

H Details of numerical experiments

H.1 Details of benchmark functions.

We give the details of the benchmark functions used in the numerical experiments in Sec. 6 and
Appendix G.

Sphere and sinusoidal failure function. We describe the sphere and sinusoidal failure functions
used in the experiments based on GP test functions. The sphere failure function csphere : [0, 1]

2 →
{0, 1} is defined as follows.

csphere(x) = 1l{∥2x− 1∥22 > 1}. (96)

Here, 1l{·} is an indicator function that gives 1 when the argument is a true statement and returns 0
otherwise. The sinusoidal failure function csinusoidal : [0, 1]

2 → {0, 1} is defined as follows.

csinusoidal(x1, x2) = 1l{g(2x− 1) > −1.5}, (97)

where g is a constraint function used in [13] and is given as

g(x1, x2) = sin(4πx1)− 2 sin2(2πx2). (98)

Branin test problem. The Branin function, with its input space scaled to [0, 1]2, is used as the
objective function in the test problem. We define the objective function f : [0, 1]2 → R as

f(x1, x2) = −fBranin(15x1 − 5, 15x2), (99)

where fBranin : [−5, 10]× [0, 15]→ R is given as follows:

fBranin(x1, x2) =

(
x2 − 5.1x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10. (100)

The failure function c : [0, 1]2 → {0, 1} is given as

c(x) = 1l{g(2x− 1) > 0}, (101)

where g(x) is given as follows:

g(x1, x2) (102)

= min{(x1 − 1)2 + (x2 − 1)− 2− 1.52, (103)

(x1 −
2(π + 5)

15
− 1)2 + (x2 −

4.55

15
− 1)2 − 0.12, (104)

(x1 + 0.9)2 + (x2 + 0.9)2 − 0.12, (105)

(x1 + 0.6)2 + (x2 + 0.6)2 − 0.12}. (106)

Gardner test problem. The test problem is based on the benchmark function used in [10]. The
objective function f : [0, 1]2 → R and the failure function c : [0, 1]2 → {0, 1} are respectively
defined as

f(x) = −fGardner(6x), c(x) = 1l{gGardner(6x) > 0.5}, (107)

where fGardner and gGardner are given as follows:

fGardner(x1, x2) = cos(2x1) cos(x2) + sin(x1), (108)
gGardner(x1, x2) = cos(x1) cos(x2)− sin(x1) sin(x2) + 0.5. (109)

33

Hartmann test problem. The test problem uses the benchmark function in [29] which is modified
for three dimensions. The objective function f : [0, 1]3 → R is given as follows:

f(x) =

4∑
i=1

αi exp

− 3∑
j=1

Aij (xj − Pij)
2

 , where (110)

α = (1.0, 1.2, 3.0, 3.2)⊤, (111)

A =

 3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , (112)

P = 10−4

 3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 . (113)

The failure function c : [0, 1]3 → {0, 1} is defined as follows:

c(x) = 1l{∥x∥22 > 1}. (114)

H.2 Details of numerical experiments of quasicrystals.

In these numerical experiments, we define the objective function f : [0, 1]2 → R to be maximized as
follows:

f(x1, x2) = −
(

1

0.84623x̂1 + 0.646994x̂2 + 1.20782

)
− 0.3328 (115)

where x̂1 = 0.15x1 + 0.15 and x̂2 = 0.15x2 + 0.05. We describe the failure function after we give
the motivation for the choice of the objective function.

The above formula is based on the consideration of the quasicrystal properties in the Al–Cu–Mn
ternary system. We consider the relative composition of the three elements xAl, xCu, xMn ∈ [0, 1]
which are required to sum to unity: xAl + xCu + xMn = 1. Because of this constraint, the number of
degrees of freedom is two. Then, we define a heuristic function kph : R→ R that models the phonon
thermal conductivity of quasicrystals based on real data [46].7 We take Fig. 6 of their paper and use
the fitted curve as the heuristic function kph(Amean) which takes as input the mean atomic weight of
the alloy Amean. Our extraction of the heuristic function from the paper is

kph(Amean) =

(
1

0.02314Amean + 0.5835

)
+ 0.3328. (116)

In our Al-Cu-Mn ternary system, Amean is calculated as follows:

Amean = xAlAAl + xCuACu + xMnAMn. (117)

where the individual atomic weights are AAl = 26.98, ACu = 63.55, and AMn = 54.94. The objective of
this experimental setup is to minimize kph for quasicrystals. Thus we identify the objective function
to be f = −kph. We pick x̂1 := xCu and x̂2 := xMn as the independent fractions. This allows us
to substitute xAl := 1 − x̂1 − x̂2. Furthermore, we restrict the search space to x̂1 ∈ (0.15, 0.3)
and x̂2 ∈ (0.05, 0.2), because, without this, the success region is too small, resulting in too small
differences in the comparison of the methods. This corresponds to the experimental setup that that the
phase boundaries of quasicrystal formation are roughly known, but not precisely. Finally, we define
x1 := (x̂1− 0.15)/0.15 and x2 := (x̂2− 0.05)/0.15 for input normalization so that the search space
becomes (x1, x2) ∈ [0, 1]2. Substituting these definitions into Eqs. (116)–(117) yields Eq. (115).

The success region is defined to be the region where the quasicrystal forms in the Al-Cu-Mn ternary
system using data [16], from which we take the D3 phase in their main result to be the success region.
Outside of this region where quasicrystals do not form and is defined to be the failure region. Figure 8
shows the success and failure regions together with the distribution of kph.

7In ordinary crystals, the thermal conductivity has a negative temperature coefficient, i.e., the conductivity
decreases at higher temperatures. Quasicrystals have unusually low thermal conductivity with a positive
temperature coefficient. In certain applications, this property of positive temperature coefficient is desired, and
departure from this property is therefore considered a failure.

34

AlCu

Mn

0

50
0

10

60

10

20

70

20

30

80

30

40

90

40
50

100

50
0.995

1.000

1.005

1.010

1.015

1.020

Figure 8: Triangular plot with the axes corresponding to the relative composition of the elements in
the alloy, given in percent. The colored region corresponds to the success region, while the uncolored
region corresponds to the failure region. The color hue is given for the phonon thermal conductivity
of quasicrystals in units of W m−1 K−1. We adapted the plotting script from [33].

H.3 Details of other algorithms and implementation.

In this section, we describe the implementation of the numerical experiments and comparison methods.
In all the methods, we used BoTorch [3] for the GP regression of the objective function f and the
optimization of kernel hyperparameters. In all the numerical experiments (except the GP test function
setup), the Gaussian kernel hyperparameters σf and lf of the GP model are fixed beforehand using the
following procedure. First, we generate a Sobol sequence of 1024 points over X . Then, the objective
function is evaluated over the generated Sobol sequence. The obtained pairs of input and output are
used to train the GP model. We select σf and lf values that maximize the marginal likelihood which
are used for all the methods.

Next, we describe the details of comparison methods.

GP-EI. Using a GP model constructed from only the successful observations, the point
with the maximum EI is selected. We define the observed point xt at each step as xt =
argmaxx∈X EIt(x), EIt(x) = Et[max{f(x) − ỹt, 0}]. Here, the expected value is taken with
respect to the GP posterior distribution. Let {yi}i∈I(S)

t
be the observed values up to step t. We

define ỹt to be the maximum value among the observed values. Furthermore, if I(S)
t = ∅, we define

ỹt = 0. We note that, since we fix the prior mean to 0 regardless of the input, there are essentially no
differences in the choice of the imputation value in the case of no observations. Finally, the standard
BoTorch acquisition function solver was used for choosing xt.

GP-UCB. We observe the point over X that maximizes ucbt(x). That is, we let xt =

argmaxx∈X {µt−1(x) + β
1/2
t σt−1(x)}, where βt = 2 ln(2t) is used in the experiments. As in

GP-EI, the BoTorch solver function is used to optimize the selection of the input point.

EFI-GPC-EP. This method uses a GPC model with a probit likelihood to model the failure function.
We use the EP method [36] to approximate the computation of the GPC posterior distribution. In
this method, the observed point at each step is given as xt = argmaxx∈X pt(x)EIt(x), where pt(x)
is the prior success probability from GPC. The GPC kernel hyperparameters σc and lc are fixed in
the same way as the kernel hyperparameters for f , i.e., based on marginal likelihood optimization
using a Sobol sequence of 512 points over X . The open-source software GPy [15] was used for
the GPC EP inference and the marginal likelihood optimization. To select the xt optimization, the
Dividing Rectangles (DiRect) algorithm [23] implemented using the NLopt package [22] is used.
The maximum number of evaluations by DiRect is set to 500.

EFI-GPC-Sign. This is a deterministic GPC method proposed by [2]. We use the latent function
g ∼ GP(0, kc) with c(x) = 1l{g(x) > 0} to model the deterministic GPC, where GP(µ, k) is a
GP with a mean function µ and covariance function kc. The original paper treats the prior mean

35

Table 1: The Gaussian kernel hyperparameters used in the numerical experiments. The values
are chosen based on the marginal likelihood. The columns correspond to the objective function
f , EFI-GPC-EP’s classical GPC, and EFI-GPC-Sign’s deterministic GPC model. For the GP test
function experiment, the objective functions’ kernel hyperparameters are not listed because they are
fixed.

Objective function EFI-GPC-EP EFI-GPC-Sign
Sphere σ2

c = 13.4, lc = 0.29 σ2
c = 1.0, lc = 0.2

Sinusoidal σ2
c = 0.26, lc = 4.13 σ2

c = 1.0, lc = 0.2
Branin σ2

f = 110148, lf = 0.30 σ2
c = 5.05, lc = 0.199 σ2

c = 1.0, lc = 1.0
Gardner σ2

f = 8.47, lf = 0.26 σ2
c = 7.63, lc = 0.199 σ2

c = 1.0, lc = 0.2
Hartmann σ2

f = 0.46, lf = 0.20 σ2
c = 5.87, lc = 0.410 σ2

c = 1.0, lc = 0.8
Quasicrystal σ2

f = 0.03, lf = 4.85 σ2
c = 5.52, lc = 0.19 σ2

c = 1.0, lc = 0.2

function as an adjustable parameter. In this paper, we fix the prior mean to 0 for simplicity. As
is the case for ordinary GPC, this model also requires an approximation method as the posterior
distribution of g cannot be computed analytically. In this paper, we employ Gibbs sampling where
the burn-in and thinning periods are set to be 1000 and 10, respectively. Then the posterior success
probability is approximated based on the 100 approximate samples of posterior distributions of g.
The approximated posterior success probability pt(x) is used to choose xt. Specifically, as in EFI-
GPC-EP, we choose xt = argmaxx∈X pt(x)EIt(x). For the calculation of the marginal likelihood,
we need the multivariate normal orthant probability with the same number of dimensions as the
training sample size. In this paper, we use the approximation method for the orthant probability based
on [12]. The kernel hyperparameter is chosen by maximizing the marginal likelihood over a Sobol
sequence of 32 points over X . In particular, as the sample size over X becomes large, the orthant
probability becomes excessively small and causes numerical precision problems. Therefore, for the
marginal likelihood calculation, we choose a relatively small Sobol sequence with 32 points. For
simplicity, we fix σc = 1 and choose lc by doing a grid search in the range [0.2, 2.0]. The grid size is
set to 10. Finally, xt is chosen using DiRect, as is EFI-GPC-EP.

F-GP-UCB. The basic parameter settings are fixed and described in Sec. 5. That is, we let
b(t) = t−1/2d, w = 0.75, hσ = 0.02, q = 3, θmin = 0.0001, θmax = 0.5, βt = 2 ln(2t). To choose
xt, we employ the following process. First, a Sobol sequence with 1024 points is generated as
candidates for the initial points. Among the 1024 points, if a feasible point is found inside Xt, we
select up to 5 points in the order of highest ucbt(x) value. These points are used as initial points.
Then, we run the optimizations by using the method of moving asymptotes [45] implemented in
NLopt.

If there are fewer than 5 feasible points among the 1024 points, we select the non-feasible points in
the order of highest ucbt(x) value as initial points, which are used as initial points for the augmented
Lagrangian method in NLopt. We set the maximum number of evaluations in the augmented
Lagrangian method to 100000. The limited-memory BFGS method is used as the inner solver. If no
feasible points are obtained from this process, the scale parameter θt−1 is multiplied by 1/2, and the
optimization is repeated.

The parameter values σf , lf , σc, and lc fixed by marginal likelihood optimization in each experiment
are summarized in Tab. 1.

36

	Introduction
	Preliminaries
	Proposed algorithm
	Theoretical analysis
	Practical considerations
	Numerical experiments
	Conclusions
	Proofs of Section 4
	Preliminaries for proofs
	Proof of Theorem 4.2.

	More general regret bound
	Proof of Theorem B.2

	Cumulative regret bound
	The difficulty to extend the algorithm of vakili2021optimal and li2022gaussian
	Maximum variance reduction based algorithm of vakili2021optimal
	Batched pure exploration based algorithm of li2022gaussian

	Details of Section 5
	Details of computation of t
	Discussion about selection of
	Pseudo-code of adaptive tuning method of 0

	Proofs of Section 5 and Appendix E
	Additional experiments
	2D-GP-generated Test Functions
	Behavior of the F-GP-UCB algorithm in Branin problem

	Details of numerical experiments
	Details of benchmark functions.
	Details of numerical experiments of quasicrystals.
	Details of other algorithms and implementation.

