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Abstract

Visual motion processing is essential for humans to perceive and interact with dy-
namic environments. Despite extensive research in cognitive neuroscience, image-
computable models that can extract informative motion flow from natural scenes
in a manner consistent with human visual processing have yet to be established.
Meanwhile, recent advancements in computer vision (CV), propelled by deep
learning, have led to significant progress in optical flow estimation, a task closely
related to motion perception. Here we propose an image-computable model of hu-
man motion perception by bridging the gap between biological and CV models.
Specifically, we introduce a novel two-stages approach that combines trainable
motion energy sensing with a recurrent self-attention network for adaptive motion
integration and segregation. This model architecture aims to capture the compu-
tations in V1-MT, the core structure for motion perception in the biological visual
system, while providing the ability to derive informative motion flow for a wide
range of stimuli, including complex natural scenes. In silico neurophysiology re-
veals that our model’s unit responses are similar to mammalian neural recordings
regarding motion pooling and speed tuning. The proposed model can also repli-
cate human responses to a range of stimuli examined in past psychophysical stud-
ies. The experimental results on the Sintel benchmark demonstrate that our model
predicts human responses better than the ground truth, whereas the state-of-the-art
CV models show the opposite. Our study provides a computational architecture
consistent with human visual motion processing, although the physiological cor-
respondence may not be exact. 1

1 Introduction

Visual motion perception is essential not only for humans and animals to perceive and interact with
the world but also for artificial agents to process various dynamic visual tasks. As such, visual mo-
tion estimation has been extensively studied by both biological vision and computer vision research
communities. The key issue lies in estimating optical flow, an array of instantaneous image motion
vectors [1, 2].

Vision science has revealed that optical flow estimation in the human visual system (HVS) is pri-
marily served by a pathway that includes the primary visual cortex (V1 [3, 4]) and middle temporal
(MT [5, 6]) area. A significant portion of neurons in area V1 are sensitive to the direction of local
motion, while those in area MT integrate and segregate local motion signals for global flow inter-
pretation. The MT process also helps to overcome the aperture problem[7]. Several computational
models of area MT have been proposed [8, 9], but mechanisms that can fully encapsulate a variety
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of motion integration abilities of MT neurons and/or human perception have yet to be developed
[10]. Furthermore, previous studies tested the models using only simple artificial stimuli. It remains
challenging to create a human-like optical flow extraction mechanism that can derive informative
motion flow for a wide range of stimuli including complex natural videos.

On the other hand, optical flow estimation has recently made remarkable progress in the field of com-
puter vision. FlowNet[11] pioneered the use of fully convolutional neural networks for dense opti-
cal flow estimation, and various approaches based on deep neural networks (DNNs) have emerged
subsequently[12–15]. Owing to the powerful representation ability of DNNs, these models out-
perform humans in estimating the ground-truth optical flow of natural scenes [16]. Consequently,
one might expect DNN-based optical flow estimation algorithms to become promising models of
human visual motion processing, similar to how ImageNet-trained DNN models provide good com-
putational models of human object recognition[17]. However, since computer vision optical flow
models are designed solely to find local image correspondences between pairs of frames on the
image coordinates [11], they cannot explain systematic or adaptive deviations of human perceived
motion from local ground truth (GT) [16]. Moreover, existing DNN models often exhibit instability
when dealing with non-textured stimuli commonly used in vision science [18].

In this study, we leveraged the flexibility of DNNs to construct an image-computational model of
human motion processing. While recent studies successfully used DNNs to elaborate the under-
standing of the neural mechanism of visual motion processing[19–23], we aimed to make a model
that can explain a broader range of physiological and psychophysical phenomena, including those
whose neural mechanisms are not yet clear. From an engineering standpoint, we aimed to make a
human-aligned optic flow algorithm while maintaining a flow estimation capability comparable to
the state-of-the-art (SOTA) CV models. Our model extracts dense informative motion flows for a
wide range of inputs in a way consistent with physiologically measured neural responses and psy-
chophysically measured human motion perception. It consisted of two stages. The first stage, which
mimicked the function of V1, comprised of neurons with multi-scale spatiotemporal filters to extract
local motion energy. Unlike previous models of V1 [24, 8, 25], the filter tunings were learnable to fit
natural optic flow computation. The second stage, which mimicked the function of MT recurrently
integrated local motion signals, and solved the aperture problem. We constructed an undirected fully
connected graph from the map of local motion energy, and used the attention mechanism [26, 27]
for adaptive global motion integration and segregation.

We evaluated the performance of our model from several aspects. In in-silico neurophysiology, we
found that our model’s neurons exhibited direction and speed tunings similar to those observed in
mammalian physiological recordings in V1 and MT [28, 29]. In simulations of psychophysical find-
ings, our model showed good generalization from simple artificial stimuli (e.g., drifting Gabor) to
complex naturalistic scenes. Our model produced human-like responses for several conventional
motion stimuli and illusions, including global motion pooling and the barber-pole illusion. Further-
more, the mode’s response to natural scenes was closer to that of humans in comparison to other
computer vision models. Our two-stages model provides a computational architecture consistent
with human visual motion processing, although the physiological correspondence may not be exact.
This achievement is not only valuable in terms of neuroscientific understanding of human visual
computation but also for the development of human-aligned machine vision that stably recognizes
the world as humans do.

2 Molding of two-stages motion perception system

2.1 First-stage: Local Motion Energy Computation

Spatiotemporal separable Gabor filter: Since we aimed at an image-computable model, the in-
put is a sequence of grayscale images S(p, t) for all spatial positions p = (x, y) within the image
domain Ω and for all times t > 0. The goal of the first-stage neuron is to capture local motion
energy at a specific spatiotemporal frequency, which is associated with the function of a direction-
selective neuron in the V1 cortex. The responses of neurons can be modeled as 3D Gabor filters
[30, 31]. Gabor filters are known to be optimal in the sense that they achieve maximal resolution
in both the spatiotemporal and associated frequency domains[32]. To save computational complex-
ity, we decomposed 3D spatiotemporal filters into filters separable in space and time. The spatial
component is described by 2D Gabor filters G(·), and the temporal component T (·) is described
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Figure 1: Molding of motion perception system, Stage I. (A): The first stage is built using a group of trainable
motion energy units to capture local motion energy; (B): Motion energy calculation based on spatiotemporal
separable filters, a sub-block of (A); (C): Demo of spatiotemporal separable filters, a sub-block of (B).

by a 1D sinusoidal function with exponential decay. Specifically, given x′ = x cos θ + y sin θ and
y′ = −x sin θ + y cos θ within the receptive field, the impulse responses of spatial and temporal
complex filters are defined as:{

G(x, y; fs, θ, σ, γ) = exp
(
−x

′2+γ2y′2

2σ2

)
exp (i (2πfsx

′)) , s.t. {x, y |(x2 + y2 ≤ R2)}
T (t; ft, τ) = exp

(
− t
τ

)
exp (2πi (ftt)), s.t. {t | 0 ≤ t < T}

(1)
The parameters in red are designed to be trained to fit the dataset, where fs and ft denote the
spatiotemporal frequency tunings of the filter with the preferred speed v ∝ ft

fs
, and θ determines the

preferred moving orientation; σ and γ control the shape of the Gabor filter, and τ controls the degree
of attenuation of the temporal impulse response. All parameters are subject to certain numerical
constraints, such as θ being limited to [0,2π) to avoid redundancy; fs and ft are limited to less than
0.25 pixels per frame to avoid spectrum aliasing, etc. The response of a simple direction-selective
cell Ln to a video stimuli S(p, t) can be computed via separate convolutions:

Ln(x, y, t; Θ) = (S∗G)∗T =

∫∫∫
S(X ,Y, T )·Gn(x−X , y−Y)·Tn(t−T )d(X ,Y)dT +α1 (2)

where α1 can be learned as spontaneous firing rates. Further, local motion energy is captured by
a phase-insensitive complex cell in the V1 cortex, which computes the squared summation of the
response from a pair of simple V1 cells with approximately orthogonal spatiotemporal receptive
fields[24]. We denote the pair of orthogonal (even and odd) simple V1 cells as:{

Lon(x, y, t; Θ) = (S ∗ Im[G]) ∗ Re[T ] + (S ∗ Im[G]) ∗ Im[T ]
Len(x, y, t; Θ) = (S ∗ Re[G]) ∗ Re[T ]− (S ∗ Im[G]) ∗ Im[T ],

(3)

where Re(·) and Im(·) extract the real and imaginary parts of a complex number; ∗ denotes convo-
lution operations. Then, the response of a complex cell Lcn is obtained from a combination of the
quadrature pair of the simple cells using the motion energy formulation:

Lcn(x, y, t; Θ) = (Lon(x, y, t; Θ))
2

+ (Len(x, y, t; Θ))2 (4)

Multi-scale Wavelet Processing: The convolution kernel of our spatial filter has a fixed size of
15 × 15, which imposes a physical limitation on the receptive field of each unit. To enhance the
flexibility of the receptive field size, we employed a multi-scale processing strategy, as shown in
Fig. 1 (A). Specifically, we constructed an image pyramid consisting of eight images scaled linearly
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Figure 2: Molding of motion perception system, Stage II. (A): The second Stage is constructed by using
self-attention mechanism and recurrent processing to simulate the function of global motion integration and
segregation. We use an identical flow decoder to visualize the dense optical flow at each iteration. (B): the
global motion integration process based on self-attention mechanism, a sub-block of (A).

from H ×W to H×W
16 . In total, 256 independent complex cells are deployed across different scales,

with the lower scale having a larger receptive field and a preference for a faster motion speed.
This approach is computationally efficient for capturing large-scale displacements in engineering
applications[33, 34], and enables the representation of different groups of cells sensitive to short-
and long-distance motions [35]. The N complex cells {Lcn}Ni capture motion energy on multiple
scales. We applied energy normalization to each cell to ensure consistent energy levels:

L̂c
n(t) =

K1L
c
n(t)∑N

i=1 L
c
i (t) + σ1

, (5)

where σ1 is the semi-saturation constant of the normalization, and K1 > 0 determines the maxi-
mum attainable response. We interpret the response, denoted by L̂n(t), as the model equivalent of
a post-stimulus time histogram (PSTH), which is a measure of the neuron’s firing rate. Physiologi-
cally, such responses could be computed via inhibitory feedback mechanisms[36, 37]. Considering
the spatial arrangement of images, it is expected that motion energy responses should exist at each
spatial location generated by the same complex cell groups. Bilinear interpolation is used to resize
the multi-scale motion energy into the same spatial size = H×W

8 . In the context of DNNs, this is
mainly to balance the trade-off between the spatial resolution and computational overhead, and the
final output of the first stage is a 256-channel feature map E ∈ RH

8 ×
W
8 that captures the under-

lying local motion energy, which partially characterizes the cellular patterns of the V1 cortex in a
computational manner[24].

2.2 Second stage: Global Motion Integration and Segregation

The receptive field size of first-stage neurons limits their ability to capture only local motion. Ad-
vanced spatial integration is an essential requirement for a motion perception system to solve the
aperture problem[7]. Spatial integration could involve several mechanisms, such as object recog-
nition and segmentation[38], depth estimation[39], contour structure inference[40], etc., which rely
on substantial prior information that may go beyond the capabilities of classical modeling methods.
DNNs, with their massive number of parameters and flexibility, offer a suitable solution. However,
the spatial integration of local motion requires more flexible connectivity relations than what can be
achieved by general convolutions, which are limited by their local receptive field[41]. To overcome
this limitation, we propose a computational model based on the attention mechanism and recurrent
processing to model the function of motion integration.

Constructing a Graph Structure: First, to establish more flexible connections between cells, we
discard the Euclidean space structure within the image and construct topological spaces with an
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undirected weighted graph G = {V,A}, where V is the set of nodes; A represents the adjacent
matrix based on the graph. Each spatial location p(i, j) is treated as a node, and the feature of each
node is derived from the whole set of local motion energies E(i, j) = {L̂cn(t)}256

i=1. The connection
between any pair of nodes is computed using a specific distance metric, and strong connection
relationships are formed between nodes whose local motion energy patterns are similar.

Specifically, given a reshaped feature map F ∈ RHW×256, the features at each of its locations
are first locally embedded into the graph space, as ϕ(F) = GELU(F ·WΘ1) ·WΘ2 , where
WΘ ∈ R256×256 is a group of trainable parameters. The distance between any pair of nodes (i, j)
is calculated by the cosine similarity, which is similar to the self-attention mechanism in current
transformer structures[26, 42, 27]. We employ the adjacency matrix A ∈ RHW×HW to represent
the connectivity of the whole topological space, and A is a symmetric semi-positive definite matrix
defined as:

A(i, j) = A(j, i) =
ϕ(F)i · ϕ(F)j
‖ϕ(F)i‖‖ϕ(F)j‖

. (6)

We perform exponential scaling of the connections between graphs using the matrix A, given by
exp(As), where s is a learnable scalar restricted to the range (0,10) to avoid overflow. The smaller
s, the smoother the connections across nodes and vice versa. Finally, a symmetric normalization op-
eration is utilized to balance the energy, given by A := D−

1
2 exp(sA)D−

1
2 , where D is the degree

matrix with D = diag

({∑
j exp(sAi,j)

}n

i−1

)
. As such, an energy-normalized undirected graph

structure is constructed, as illustrated in the top side of Fig. 2 (B). Intuitively, this adjacency matrix
represents the neuron’s affinity or connectivity within the space, with strong and global connections
built across neurons with related motion responses.

Recurrent Integration Processing: Recurrent neural networks (RNNs) are often used to simulate
neurons in the brain, as they are flexible in modelling temporal dependencies and feedback loops,
which are fundamental aspects of neural processing in the brain[43]. We use a recurrent network,
rather than multiple feedforward blocks, to simulate the process of local motion signals being grad-
ually integrated into MT and eventually converging to a stable state.

As shown in Fig. 2 (A), the local motion energy from the first stage is divided into two recurrent
streamlines. One is the motion energy E ∈ RH×W×256, which is continuously updated in the loop,
while the other is embedded in the attention space to generate the graph adjacency matrix to control
motion integration, denoted as F ∈ RH×W×256. In each iteration, the adjacency matrix is first con-
structed using F. Subsequent motion integration is achieved through a simple matrix multiplication,
which is computationally similar to the information propagation mechanism in transformers[26, 42]
and can also be considered a simplified version of graph convolution[44]. The integrated motion
information is passed through two independent Conv-GRU blocks to update the motion energy E
and feature F, respectively. The Conv-GRU represents a gated recurrent unit[45] implemented in
a convolutional manner, and we adopt a spatio-temporal separable approach following RAFT[14].
The motion integration process approximates the ideal final convergence state of the motion energy
Ek → E∗ through recurrent iteration.

Decoding the Motion Flow: We adopt the same strategy of decoding the 2D optical flow in
each iteration. Initially, the integrated motion is E projected back to the energy space with pos-
itive value using a square operation, followed by an energy normalization operation: Ê(i, j) =

{K2E
2(i, j)}/{

∑HW
i,j E2(i, j) + σ2

2}. The resulting response Ê ∈ RH×W×256 is interpreted as
a post-stimulus time histogram and the motion energy is constrained to the same energy space as
the local motion energy from stage I, as we further design an identical flow decoder to project the
energy of each spatial location into the optical flow. The structure of the flow decoder is a nonlinear
mapping process consisting of multiple 1 × 1 convolution blocks with residual connections, which
are referred to in several current advanced optical flow estimation models[33, 46]. Additionally, a
convex upsampling strategy[14] is employed to restore the optical flow’s original resolution. The
entire architecture of stage II is illustrated in Fig. 2 (A, B).

2.3 Training Strategy

Current methods for estimating optical flow using deep neural networks (DNNs) can be categorized
as unsupervised/self-supervised and supervised learning approaches. While unsupervised learn-
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Figure 3: Properties of trained complex cells in stage I. (A): Orientation-speed distribution of trained motion
energy units. (B): Spatiotemporal frequency tuning distribution of trained motion energy units. (C), (D): The
ability to tune simple motions with a single spatiotemporal frequency component has emerged in the stage I,
exemplified by direction tuning of drifting Gabor stimuli.

ing methods are intuitively similar to creatures’ interaction with the world, most current methods
based on differentiable image warping[47–49] still try to approximate physical motion ground truth.
Therefore, we adopt a supervised learning approach in this work, which is more straightforward as
recent research suggests that human perception of motion is reasonably similar to physical GT[16].
However, our primary goal lies in evaluating how well the model approximates human motion per-
ception rather than its accuracy in predicting GT. To train and evaluate the model, we construct
a dataset containing various natural and artificial motion scenes. Specifically, we incorporate the
Sintel benchmark[50], the DAVIS[51] dataset with pseudo-labels generated by FlowFormer[52], as
well as self-created multi-frame datasets with non-texture motions and drifting grating motion. In-
cluding simple motion stimuli and drifting gratings allows the model to generalize under different
non-texture conditions while providing a potential slow-world Bayesian prior[9]. The model is first
pre-trained with simple motion and subsequently fine-tuned on complex natural scenes to facilitate
convergence[12]. More specific training details can be found in the supplementary materials.

3 Analyses

Fig. 3 shows the distribution of trained parameters in the first stage: (A) presents the distribution
of velocity and orientation of the units; (B) displays the spatiotemporal frequency tuning of the
units; (C) demonstrates that the complex cells in the first stage are capable of handling single-
frequency component motions such as drifting gratings. The design of the trainable motion energy
unit allows for optimal fitting to the flow statistics of the dataset. Although the distribution of the
trained parameters appears to lack specific characteristics other than uniformity, it does reflect the
effect of training. To validate the effectiveness of training the motion energy units, we conducted
experiments with a fixed tuning parameter design using a uniform distribution sampled at equal
intervals in terms of spatiotemporal frequency and orientation. The results showed that stage I
without the fitting function significantly degraded the model’s ability to estimate motion. (See Our-
fixed in Table 1 for details).

The following three parts are conducted for analysis: 1) In silico neurophysiological test of the
activation pattern of the units; 2) Psychophysical stimulus tests comparing human perception and
model response; 3) Natural scene test of the generalizability of the model in complicated scenarios.

3.1 In silico Neurophysiological Study

Directional Tuning: Some V1 and MT neurons respond selectively to a specific range of motion
directions. To investigate the directional tuning of the units in our model, we utilized in silico neu-
rophysiology to measure the activation patterns of 256 units in response to drifting Gabor and plaid
stimuli. A plaid consists of two superimposed drifting Gabors, as illustrated in Fig. 4 (C). Analysis
of the data revealed three distinct groups of units based on their partial correlation to Gabor and
plaid stimuli: 1) Component cells, which always respond to the direction of a Gabor component;
2) Pattern cells, which respond to the integrated (coherent) motion direction of plaid; and 3) Un-
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Figure 4: In Silico Neurophysiological Test. (A, B, C): Analysis of the direction tuning of different groups
of neurons for 1D and 2D stimuli; Stage II-N means the result from iteration N th in the stage II; (D, E, F):
Analysis of the spectral receptive field and speed tuning of different groups of neurons. The neural distribution
in (A) is redrawn from [29]. Neurons’ spectral receptive fields in (D) are redrawn from [53]. Two neurons
distributions in (F) are separately taken from [54] and [55].

classified cells, which do not show a clear preference for either component or pattern motions, as
illustrated in Fig. 4 (C). The distribution of these cell types is not uniform, with component cells
being more commonly found in the primary visual cortex (V1), while pattern cells are more often
observed in the MT and MST regions[? ]. In agreement with this, as illustrated in Fig. 4 (A) (B),
our model demonstrates that in the first stage, most units tend to be component cells, whereas the
number of pattern and unclassified cells increases in the second stage. In addition, we employed
the maximizing activation method [56] to reversely render their cellular preferences, showing that
the second-stage unclassified units respond to more complicated motion patterns consisting of both
central and background motions, as presented at the bottom of Fig. 4 (B). This suggests that the
classical classification of motion neurons into component and pattern cells might be insufficient to
characterize the motion integration properties of these neurons.

Spectral Receptive Field and Speed Tuning: We test the spectral (spatial-frequency-vs-temporal-
frequency) receptive field of the model’s units using a combination of drifting Gabors with different
spatiotemporal frequencies. Two-dimensional oriented Gaussian contours are used to depict the
receptive field of the 256 cells, fitted by minimizing the least square error. The results are shown in
Fig 4 (E) . Visually, the distribution of the receptive field tilt angle spreads from horizontal/vertical
directions to oblique directions (Fig. 4, E). This indicates that the units in the stage II have significant
speed tuning compared to the stage I. Speed tuning is a characteristic of higher-order visual motion
neurons[28] and is often found in the MT area[57]. This tendency can be seen from the distribution
of the partial correlation between the actual receptive field and its speed prediction/independent
prediction[55], as demonstrated in Fig. 4 (F). Our two-stages process shows a degree of consistency
with the change in mammalian neural distribution from the V1 to MT area.

3.2 Psychophysical Analysis

Fourier motion: In the "missing fundamental illusion"[60], as shown in Fig. 5 (C), when the first
spatial harmonic is removed from a square-wave grating with a quarter-cycle shift, the perceived
motion direction appears reversed. Our model, whose first stage estimates motion from the Fourier
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Figure 5: Psychophysical stimulus tests compare human perception and model response. (A, B) : Spatial
integration of 1D and 2D motions. In the stimulus panels, grey arrows indicate the direction perceived by
humans, while red arrows indicate the direction of physical motion. The middle panel of (B) : is the heat
map representing the neuron’s connectivity from a selected local region (circle center) to other regions, with
the warmer color indicating a stronger connection. (C): Fourie-motion-based illusion. The size of the shaded
area indicates the pixel-wise standard deviation (STD) of the response. (D): Barber pole illusion. The human
psychophysical data in (A), (D) were redrawn from the [58] and [59], respectively.

components[61], can predict this reversal. In contrast, computer vision models designed to infer
optical flow based on structural correspondence do not exhibit this bias.

Motion Integration: The direction of 1D motion stimuli, such as drifting Gabors, is ambiguous
due to the aperture problem. When presented alone, they are perceived to move in orthogonal di-
rections of stripes. When superimposed with other 1D motion components in different orientations,
2D directions consistent with both components are perceived. Pattern motion neurons in MT may
contribute to this phenomenon. The second stage of our model can explain this as well, as shown
in Fig. 5. Psychophysics also demonstrates motion integration across space. Fig. 5 (A) shows a
psychophysical stimulus consisting of drifting Gabors [58]. These Gabors have a variety of local
directions and speeds, yet all of them are consistent with one global 2D motion (downward in this
case). When viewed as a whole, humans do perceive coherent downward motion. Stage II of our
model predicts both the perceived direction and speed of the global Gabor motion.

Fig. 5 (B) compares spatial motion integration between 1D Gabor motion (left) and 2D plaid mo-
tion (right). Humans are able to perceive global downward motion only in the former case: The heat
maps depict how units with high activity establish long-distance connections to resolve the aperture
problem when subjected to Gabor (ambiguous motion) stimuli. In contrast, the plaid stimuli (de-
termined motion) suppress these long-distance connections. In the latter case, local integration of
motion signals takes priority over global integration. Once the local ambiguity is resolved, the global
integration process is suppressed. Our model can predict such adaptive motion pooling in human
visual processing [58]. Furthermore, the barber pole illusion demonstrates how locally ambiguous
1D motion is affected by the shape of the moving area [62]. Specifically, as the height-width ratio
of the visual area varies, human perception of direction shifts from oblique to vertical [59] (Fig. 5,
D). Our model can predict the shift in perceived direction in stage II, showing its ability to integrate
motion signals with boundary orientations. For more video demonstrations, such as the reverse phi
illusion[63], please see the supplementary material.

Comparison of Complex Natural Scenes: The proposed model can effectively handle natural
scenes, as demonstrated in Fig. 6 (A). Natural stimuli contain diverse spatiotemporal frequency
components, leading to complex activation patterns in Stage I. From the decoded flow field, the mo-
tion of stage I is limited to localized areas. For example, local motion cannot be found in untextured
road areas. This situation necessitates long-range interactions with the surrounding spatial context,
which our recurrent integration process in stage II effectively accomplishes. It is evident from the
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Figure 6: Comparison of Performance on Complex Natural Scenes. (A): Our model can estimate a dense
natural optical flow with the recurrent integration. (B-D): Similarity of our model estimation to human per-
ceived flow on Sintel dataset. The red circle’s size in (D) shows how much closer our model is to the human
response than GT.

affinity heat map (right side of subfigure A) that object and background areas are clearly segregated
in stage II. This suggests that the integration mechanism based on attention has the potential to com-
bine motion integration and object segmentation into a single framework. These two processes are
considered highly relevant in the human visual system [64].

We used psychophysically measured optical flow from the Sintel dataset[16] as a benchmark for
naturalistic scene flow perceived by humans. Our model was compared to several optical flow
estimation methods used in computer vision, including classical algorithms like Farneback, as well
as SOTA DNN-based models. We evaluated officially released DNN models that utilize a wide
range of inference structures, such as multi-scale inference[11, 12], spatial recurrent models[14],
graph reasoning[65], and vision transformers[15].

As shown in Table 1, we computed both the Pearson correlation coefficients and vector endpoint
errors (EPEs) between the model prediction and human response, or ground truth (GT). Additionally,
we examined the partial correlation between humans and models while controlling the impact of GT:

ρmodel = rresp model ·GT =
rresp model − rrespGT · rmodelGT√

1− r2
respGT

√
1− r2

modelGT

, (7)

where r is the Pearson correlation. This measure is critical in validating the models’ ability to capture
the characteristics of the human response, as any model could appear to have a high correlation with
the human response by just approximating the GT due to a high correlation between the human
response and GT[16].

Quantitatively, the proposed model outperformed all compared models in terms of partial correla-
tion. The RAFT-val in the table is the RAFT framework trained on our dataset as a validation, and
indicates that our mixed training set also improves the explanatory power of the human response.
Fig. 6 (C) shows that our model significantly improves the partial correlation across iterations in
Stage II, indicating that the proposed recurrent motion integration architecture can generate more
human-like deviations from GT, which is a trend not present in a similar recurrent network, RAFT.
In Fig. 6 (D), one can directly see that our model prediction is more similar to human-perceived
flow than the GT flow.

Table 1 also shows the results of three biologically-inspired models. FFV1MT[67] is a model ca-
pable of computing dense optical flow using direct decoding of the Simoncelli & Heeger V1-MT
mechanism. The other two models are modified versions of MotionNet[20] and DorsalNet[23], re-
cently proposed DNN-based models for the explanation of neural responses to visual motion stimuli.
Since the original models are designed to recognize global motion only, we tested general multi-
layer 3D CNN (a core component of MotionNet and DorsalNet) with residual connections, and a
pre-trained DorsalNet with frozen parameters, with a linear flow decoder to compute dense flow,
trained on natural dense optical flow datasets. Our model outperforms these biologically-inspired
models in predicting human responses. The low performances of FFV1MT model and the modified
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Table 1: Model v.s. Human v.s. GT. ρ : Partial correlation between human & model controlling GT; r:
Pearson correlation coefficient; epe: vector end-point error; uv, dir, spd represent motion components in
Cartesian space, direction, and speed, respectively.

Method ρuv ρdir ρspd
v.s. Human v.s. GT

ruv rspd rdir epe ruv rspd rdir epe
Farneback[66] 0.27 0.23 0.11 0.41 0.91 0.34 2.02 0.34 0.33 0.92 1.96

FlowNet2.0[11] 0.39 0.26 0.34 0.92 0.90 0.96 0.94 0.95 0.94 0.98 0.47
RAFT[14] 0.20 0.22 0.14 0.92 0.90 0.96 0.93 0.98 0.99 0.99 0.25
RAFT-val 0.43 0.17 0.42 0.92 0.89 0.96 1.01 0.92 0.89 0.98 0.69

AGFlow[65] 0.30 0.16 0.20 0.93 0.90 0.96 0.92 0.98 0.98 0.98 0.27
GMFlow[15] 0.34 0.32 0.17 0.91 0.84 0.96 1.03 0.93 0.90 0.97 0.73

FlowFormer[52] 0.36 0.14 0.32 0.93 0.91 0.95 0.90 0.98 0.97 0.98 0.42
FFV1MT[67] 0.31 0.16 0.31 0.83 0.64 0.92 1.48 0.59 0.84 0.94 1.29

3DCNN 0.27 0.29 0.42 0.83 0.86 0.95 1.31 0.83 0.86 0.96 1.14
DorsalNet[23] 0.17 0.19 -0.10 0.20 -0.08 0.86 2.35 0.20 -0.04 0.86 2.33

Ours-fixed -0.02 0.12 0.16 0.31 0.23 0.78 2.24 0.35 0.18 0.80 2.29
Ours-Stage I 0.34 0.23 0.35 0.71 0.71 0.92 1.52 0.67 0.67 0.92 1.49
Ours-Stage II 0.57 0.43 0.47 0.91 0.88 0.95 0.98 0.86 0.87 0.95 1.04

DorsalNet also suggest that accurately estimating dense optical flow is a challenging task, requiring
specific design considerations to address complex and long-range spatial interactions, large jumps,
and boundary effects, the complexities of which are not adequately captured by simple mechanisms.

4 Discussion and Conclusion

DNNs have achieved impressive performance in various vision tasks, and their ability to explain the
HVS is an active area of research. Recent studies have employed DNNs to model and understand the
neural mechanism of visual motion. For instance, Rideaux et al.[19, 20] and Nakamura and Gomi
[21] used multilayer feedforward networks, while Storrs et al. [22] used a predictive coding network
(PredNet), to model biological visual motion processing, and found similarities to neurophysiologi-
cal data. De Jong et al.[68] found that the spatiotemporal frequency tuning properties of some units
in FlowNet resemble those found in mammalian neurons. DorsalNet[23] uses first-person perspec-
tive video stimuli to train a 3D ResNet model to predict self-motion parameters, which helps model
recapitulate the neural representation of dorsal visual stream.

With a similar goal in mind, we simplified the biological motion process pipeline and proposed a
two-stage architecture that models the complete pathway from images, through neural representa-
tions, to the perceptual response. Through end-to-end training using a wide range of datasets, our
model generalizes well from simple stimuli to complex natural scenes and partially captures im-
portant characteristics of motion-processing neurons, including a change in spatiotemporal tuning
from V1 to MT areas. To model the motion integration function, we introduced a novel recurrent
process based on the attention mechanism. This process successfully explains a wide range of phys-
iological findings (e.g., a change in the population of component and pattern cells from V1 to MT)
and psychophysical findings (e.g., global motion pooling). It also improves the partial correlation
with human psychophysical response. The success of the attention mechanism in motion integration
could be attributed to its similarity to the human visual grouping mechanism[69] or similar feature
grouping/binding that may be accomplished using a top-down attentional selection mechanism[70].

While we show that the attention-based recurrent network is a promising computational model of
human visual motion grouping and segmentation, how its complex architecture (where all responses
can be influenced by all other responses) is actually implemented in the human brain remains an
open question. Another limitation of our current model is that it does not process several important
abilities of human motion perception, including non-Fourier (second-order) motion detection [61],
and motion integration sensitive to surface layout[71]. Our model does not take into account the
benefits of biological processing, such as energy efficiency.

In conclusion, combining classical motion energy and advanced deep learning technology is a
promising approach to bridge the gap between human and DNN motion perception systems. Our
proposed architecture and recurrent process offer insights into the underlying mechanisms of motion
perception and open up new avenues for future research.
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