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Abstract

Diffusion-based planning has shown promising results in long-horizon, sparse-
reward tasks by training trajectory diffusion models and conditioning the sampled
trajectories using auxiliary guidance functions. However, due to their nature as
generative models, diffusion models are not guaranteed to generate feasible plans,
resulting in failed execution and precluding planners from being useful in safety-
critical applications. In this work, we propose a novel approach to refine unreliable
plans generated by diffusion models by providing refining guidance to error-prone
plans. To this end, we suggest a new metric named restoration gap for evaluating
the quality of individual plans generated by the diffusion model. A restoration gap
is estimated by a gap predictor which produces restoration gap guidance to refine a
diffusion planner. We additionally present an attribution map regularizer to prevent
adversarial refining guidance that could be generated from the sub-optimal gap
predictor, which enables further refinement of infeasible plans. We demonstrate
the effectiveness of our approach on three different benchmarks in offline control
settings that require long-horizon planning. We also illustrate that our approach
presents explainability by presenting the attribution maps of the gap predictor and
highlighting error-prone transitions, allowing for a deeper understanding of the
generated plans.

1 Introduction

Planning plays a crucial and efficient role in tackling decision-making problems when the dynamics
are known, including board games and simulated robot control (Tassa et al., 2012; Silver et al., 2016,
2017; Lee et al., 2018). To plan for more general tasks with unknown dynamics, the agent needs to
learn the dynamics model from experience. This approach is appealing since the dynamics model is
independent of rewards, enabling it to adapt to new tasks in the same environment, while also taking
advantage of the latest advancements from deep supervised learning to employ high-capacity models.

The most widely used techniques for learning dynamics models include autoregressive forward
models (Deisenroth & Rasmussen, 2011; Hafner et al., 2019; Kaiser et al., 2020), which make
predictions based on future time progression. Although an ideal forward model would provide
significant benefits, there is a key challenge that the accuracy of the model directly affects the quality
of the plan. As model inaccuracies accumulate over time (Ross & Bagnell, 2012; Talvitie, 2014;
Luo et al., 2019; Janner et al., 2019; Voelcker et al., 2022), long-term planning using imprecise
models might yield sub-optimal performances compared to those achievable through model-free
techniques. Building upon the latest progress in generative models, recent studies have shown
promise in transforming reinforcement learning (RL) problems into conditional sequence modeling,
through the modeling of the joint distribution of sequences involving states, actions, and rewards
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Figure 1: Illustration of two plans with low/high restoration gaps with a specified start ○⃝ and goal
⋆⃝. For each input plan, we first perturb it using Gaussian noise. We then remove the noise from the
perturbed plan by simulating the reverse SDE which progressively transforms the perturbed plan into
the initial plan by utilizing the score function (Section 2.2). The restoration gap is then computed as
the expected L2 distance between the input plan and the plan restored from noise corruption (Section
3). The top example exhibits a smaller restoration gap because of its successful restoration close to
the original plan, while the bottom example has a larger restoration gap due to its poor restoration
performance. Plans restored from various noise corruptions are differentiated by distinct colors.

(Lambert et al., 2021; Chen et al., 2021; Janner et al., 2021, 2022). For instance, Diffuser (Janner
et al., 2022) introduces an effective framework for generating trajectories using a diffusion model
with flexible constraints on the resulting trajectories through reward guidance in the sampling phase.
Although these approaches have achieved notable performance on long-horizon tasks, they still face
challenges in generating outputs with unreliable trajectories, referred to as artifacts, resulting in
limited performance and unsuitability for deployment in safety-critical applications.

This paper presents an orthogonal approach aimed at enhancing the plan quality of the diffusion
model. We first propose a novel metric called restoration gap that can automatically detect whether
generated plans are feasible or not. We theoretically analyze that it could detect artifacts with bounded
error probabilities under regularity conditions. The restoration gap directly evaluates the quality of
generated plans by measuring their restorability through diffusion models in which plans are exposed
to a certain degree of noise, as illustrated in Figure 1. A restoration gap is estimated by a function
approximator which we name a gap predictor. The gap predictor provides an additional level of
flexibility to the diffusion model, and we demonstrate its ability to efficiently improve low-quality
plans by guiding the reduction of the estimated restoration gap through a process, which we call
Restoration Gap Guidance (RGG). Furthermore, we propose a regularizer that prevents adversarial
restoration gap guidance by utilizing an attribution map of the gap predictor. It effectively mitigates
the risk of the plan being directed towards an unreliable plan, enabling further improvement in the
planning performance.

The main contributions of this paper are summarized as follows: (1) We provide a novel metric to
assess the quality of individual plans generated by the diffusion model with theoretical justification.
(2) We propose a new generative process, Restoration Gap Guidance (RGG) which utilizes a gap
predictor that estimates the restoration gap. (3) We show the effectiveness of our approach across
three different benchmarks in offline control settings.

2 Background

2.1 Planning with Diffusion Probabilistic Models

We consider the reinforcement learning problem which aims to maximize the expected discounted
sum of rewards Eπ[

∑T
t=0 γ

tr(st,at)] where π is a policy that defines a distribution over actions
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at, st represents the states that undergo transition according to unknown discrete-time dynamics
st+1 = f(st,at), r : S × A → R is a reward function, and γ ∈ (0, 1] is the discount factor.
Trajectory optimization solves this problem by finding the sequence of actions a∗

0:T that maximizes
the expected discounted sum of rewards over planning horizon T :

a∗
0:T = argmax

a0:T

J (τ ) = argmax
a0:T

T∑
t=0

γtr(st,at), (1)

where τ = (s0,a0, s1,a1, ..., st,at) represents a trajectory and J (τ ) denotes an objective value of
that trajectory. This trajectory can be viewed as a particular form of two-dimensional sequence data:

τ =

[
s0 s1 . . .

sT
a0 a1 aT

]
. (2)

Diffuser (Janner et al., 2022) is a trajectory planning model, which models a trajectory distribution by
employing diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020):

pθ(τ
0) =

∫
p(τN )

N∏
i=1

pθ(τ
i−1|τ i) dτ 1:N (3)

where p(τN ) is a standard Gaussian prior, τ 0 is a noiseless trajectory, and pθ(τ i−1|τ i) is a denoising
process which is a reverse of a forward process q(τ i|τ i−1) that gradually deteriorates the data
structure by introducing noise. The denoising process is often parameterized as Gaussian with
fixed timestep-dependent covariances: pθ(τ i−1|τ i) = N (τ i−1|µθ(τ i, i),Σi). Diffuser recasts the
trajectory optimization problem as a conditional sampling with the conditional diffusion process
under smoothness condition on p(O1:T = 1|τ ) (Sohl-Dickstein et al., 2015):

p̃θ(τ ) = p(τ |O1:T = 1) ∝ p(τ )p(O1:T = 1|τ ), pθ(τ
i−1|τ i,O1:T ) ≈ N (τ i−1;µ+Σg,Σ)

(4)

where µ,Σ are the parameters of the denoising process pθ(τ i−1|τ i), Ot is the optimality of timestep
t of trajectory with p(Ot = 1) = exp(γtr(st,at)) and

g = ∇τ log p(O1:T |τ )|τ=µ =

T∑
t=0

γt∇st,at
r(st,at)|(st,at)=µt

= ∇J (µ). (5)

Therefore, a separate model Jϕ can be trained to predict the cumulative rewards of trajectory samples
τ i. By utilizing the gradients of Jϕ, trajectories with high cumulative rewards can be generated.

As part of the training procedure, Diffuser trains an ϵ-model to predict the source noise instead of
training µθ as it turns out that learning ϵθ enables the use of a simplified objective, where µθ is easily
recovered in a closed form (Ho et al., 2020):

L(θ) := Ei,ϵ,τ0 [∥ϵ− ϵθ(τ
i, i)∥2], (6)

where i ∈ {0, 1, ..., N} is the diffusion timestep, ϵ ∼ N (0, I) is the target noise, and τ i is the
trajectory corrupted by the noise ϵ from the noiseless trajectory τ 0.

2.2 Generalizing Diffusion Probabilistic Models as a Stochastic Differential Equation (SDE)

The forward process in diffusion probabilistic models perturbs data structure by gradually adding
Gaussian noises. Under an infinite number of noise scales, this forward process over continuous time
can be represented as a stochastic differential equation (SDE) (Song et al., 2021):

dτ = f(τ , t) dt+ g(t) dw, (7)

where t ∈ (0, 1] is a continuous time variable for indexing diffusion timestep, f(τ , t) is the drift
coefficient, g(t) is the diffusion coefficient, and w is the standard Wiener process. Similarly, the
denoising process can be defined by the following reverse-time SDE:

dτ = [f(τ , t)− g(t)2sθ(τ , t)] dt+ g(t) dw̄, (8)
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where w̄ is the infinitesimal noise in the reverse time direction and sθ(τ , t) is the learned score
network which estimates the data score ∇τ log pt(τ ). This score network can be replaced by the
ϵ-model:

sθ(τ , t) ≈ ∇τ log q(τ ) = Eτ0 [∇τ log q(τ |τ0)] = Eτ0

[
−ϵθ(τ , t)

Ct

]
= −ϵθ(τ , t)

Ct
, (9)

where Ct is a constant determined by the chosen perturbation strategies.

The solution of a forward SDE is a time-varying random variable τ t. Using the reparameterization
trick (Kingma & Welling, 2014), it is achieved by sampling a random noise ϵ from a standard
Gaussian distribution which is scaled by the target standard deviation σt and shifted by the target
mean:

τ t = αtτ
0 + σtϵ, ϵ ∼ N (0, I), (10)

where αt : [0, 1] → [0, 1] denotes a scalar function indicating the magnitude of the noiseless data τ 0,
and σt : [0, 1] → [0,∞) denotes a scalar function that determines the size of the noise ϵ. Depending
on perturbation strategies for αt and σt, two types of SDEs are commonly considered: the Variance
Exploding SDE (VE-SDE) has αt = 1 for all t; whereas the Variance Preserving (VP) SDE satisfies
α2
t + σ2

t = 1 for all t. Both VE and VP SDE change the data distribution to random Gaussian
noise as t moves from 0 to 1. In this work, we describe diffusion probabilistic models within the
continuous-time framework using VE-SDE to simplify notation, as VE/VP SDEs are mathematically
equivalent under scale translations (Song et al., 2021).

For VE SDE, the forward process and denoising process are defined by the following SDEs:

(Forward SDE) dτ =

√
d[σ2

t ]

dt
dw (11)

(Reverse SDE) dτ =

[
−d[σ2

t ]

dt
sθ(τ , t)

]
dt+

√
d[σ2

t ]

dt
dw̄. (12)

3 Restoration Gap

To assess the quality of plans generated by diffusion probabilistic models, we propose a novel metric
named restoration gap. It aims to automatically detect infeasible plans that violate system constraints.
We hypothesize that for feasible plans, even if a certain amount of noise perturbs them, they can be
closely restored to their initial plans by diffusion models. It is attributed to the property of temporal
compositionality in diffusion planners (Janner et al., 2022) that encourages them to compose feasible
trajectories by stitching together any feasible plan subsequences. However, for infeasible plans that
obviously fall out of the training distribution as they violate physical constraints as shown in Figure
5, restoring them to a state near their original conditions is challenging. Based on this intuition, we
define the restoration gap of the generated plan τ as follows:

perturbt̂(τ ) = τ + σt̂ϵt̂, ϵt̂ ∼ N (0, I) (13)

restoret̂,θ(τ ) = τ +

∫ 0

t̂

[
−d[σ2

t ]

dt
sθ(τ , t)

]
dt+

√
d[σ2

t ]

dt
dw̄ (14)

restoration gapt̂,θ(τ ) = Eϵt̂

[
∥τ − restoret̂,θ(perturbt̂(τ ))∥2

]
, (15)

where t̂ ∈ (0, 1] indicates the magnitude of applied perturbation. The restoration gap measures the
expected L2 distance between the generated plan and the plan restored from noise corruption, which
is estimated by the Monte Carlo approximation.

Figure 2 provides empirical evidence supporting our hypothesis. In order to analyze the effectiveness
of the restoration gap, we define artifact plans generated by Diffuser (Janner et al., 2022) that involve
transitions of passing through walls for which it is impossible for the agent to follow. We compare the
distribution of the restoration gap for both groups, normal plans and artifact plans1. The histogram of
the restoration gap for normal and artifact plans demonstrates that infeasible artifact plans have larger

1The purpose of defining artifacts in this manner is solely to validate our hypothesis. Artifacts are not
explicitly defined beyond the scope of this validation.
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Figure 2: The first and second rows show examples of artifact and normal plans, respectively, gener-
ated by Diffuser (Janner et al., 2022) in the Maze2D-Large environment, including a predetermined
start ○⃝ and goal ⋆⃝. The third row presents the density of realism score (Kynkäänniemi et al., 2019),
rarity score (Han et al., 2023), and restoration gap to illustrate the differences in distribution between
artifacts and normal plans. Detailed explanation of other metrics is described in Appendix C.2.

restoration gap values compared to normal plans. Therefore, the detection of infeasible artifact plans
can be automated by incorporating a statistical test that utilizes the restoration gap and thresholding
with a threshold value of b > 0:

restoration gapt̂,θ(τ ) > b. (16)

To bound the probability of making errors by choosing the specific threshold b, we provide Proposition
1. Let H0 represent the null hypothesis which assumes that the trajectory τ belongs to the normal set
Tnormal, and let H1 represent the alternative hypothesis which assumes that the trajectory τ belongs
to the artifact set Tartifacts. The following proposition suggests how to choose the threshold b in order
to bound the error probabilities.
Proposition 1. Given t ∈ [0, 1] and a positive constant C,∆, assume that ∥sθ(τ , t)∥22 ≤ C2 for all
τ ∈ Tnormal ⊂ Rd, and ∥sθ(τ , t)∥22 ≥ (C +∆)2 for all τ ∈ Tartifacts ⊂ Rd. If

∆ ≥ 2
√
d+ 2

√
d+ 2

√−d · log δ − 2 log δ

σt̂
, (17)

then setting

b ≥ σt̂

(
Cσt̂ +

√
d+

√
d+ 2

√
−d · log δ − 2 log δ

)
(18)

guarantees both type I and type II errors at most 2δ.

Proof Sketch. We begin by deriving thresholds bI and bII to control type I and type II errors at most
δ, respectively. This is done by decomposing the restoration gap into the outcomes of the score and
Gaussian noise. To ensure the control of both type I and type II errors, we examine the condition
bI ≤ bII and obtain the conclusion. For the complete proof, see Appendix A.

According to Proposition 1, to achieve low error probabilities for both type I (false positives, where
normal trajectories are incorrectly classified as artifacts) and type II (false negatives, where artifact
trajectories are wrongly identified as normal) errors, it is essential to have a large enough σt̂ to
properly satisfy the condition, which implies having a large enough t̂. In practice, we find that setting
t̂ = 0.9 works well.
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4 Refining Diffusion Planner

4.1 Restoration Gap Guidance

Although Diffuser (Janner et al., 2022) has demonstrated competitive performance against previous
non-diffusion-based planning methods by utilizing gradients of return Jϕ to guide trajectories during
the denoising process:

dτ = [f(τ , t)− g(t)2
(
sθ(τ , t) + α∇Jϕ(τ )

)
] dt+ g(t) dw̄, (19)

it entirely relies on the ability of a generative model and assumes a perfect data score estimation.
For plans with inaccurately estimated scores, the diffusion models could generate unreliable plans
that are infeasible to execute and lead to limited performance. To address this, it is essential to
construct an adjusted score to refine the generative process of the diffusion planner. Therefore, we
estimate the restoration gap by training a gap predictor Gψ on synthetic diffused data generated
through the diffusion process, taking full advantage of its superior generation ability with conditional
guidance from gradients of return. Parameters of the gap predictor ψ are optimized by minimizing
the following objective:

L(ψ) := Et,τ0 [∥restoration gapt̂,θ(τ
t)− Gψ(τ t, t)∥2], (20)

where t ∈ (0, 1] denotes a continuous time variable for indexing the diffusion timestep, and τ t is the
diffused trajectory resulting from τ 0 at diffusion timestep t. With this gap predictor, we define the
Restoration Gap Guidance (RGG) as follows:

dτ = [f(τ , t)− g(t)2
(
sθ(τ , t) + α

(
∇Jϕ(τ )− β∇Gψ(τ , t)

))
] dt+ g(t) dw̄, (21)

where α is a positive coefficient that scales the overall guidance and β is a positive coefficient that
can be adjusted to enforce a small restoration gap for the generated trajectory.

4.2 Attribution Map Regularization

Although guiding the diffusion planner to minimize the restoration gap effectively refines low-quality
plans (more details in Section 5), this refining guidance could push the plan in an undesirable direction
due to the estimation error of the gap predictor during the denoising process. As a result of this
estimation error, guiding plans with the sub-optimal gap predictor may result in model exploitation
(Kurutach et al., 2018; Janner et al., 2019; Rajeswaran et al., 2020), yielding sub-optimal results.
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Figure 3: Planning performance of RGG+ on
Maze2D-Large single-task with varying λ values.

To mitigate the issue of adversarial guidance, we
present a regularization method that prevents the
gap predictor from directing plans in the wrong
direction. Inspired by the prior studies which
improve the model performance by utilizing at-
tribution maps (Nagisetty et al., 2020; Bertoin
et al., 2022), we measure a total variation of
the attribution map M obtained from any input
attribution methodsM = E(Gψ(τ , t)). Each el-
ement of the attribution map indicates the extent
to which the final prediction is influenced by the
corresponding input feature. The rationale of
employing the total variation of M lies in the
hypothesis that transitions with excessively high attribution scores are more likely to be outliers. This
is because a sequence of transitions within a planned trajectory, rather than a single one, causes a plan
to have a high restoration gap. By adding this attribution map regularization, Equation 21 becomes:

dτ = [f(τ , t)− g(t)2
(
sθ(τ , t) + α

(
∇Jϕ(τ )− β∇Gψ(τ , t)− λ∇∥∇M∥

))
] dt+ g(t) dw̄,

(22)

where λ is a control parameter given by a positive constant, encouraging the attribution map to have a
simple, organized structure while preventing the occurrence of adversarial artifacts. We refer to this
modification as RGG+.
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Table 1: The performance of RGG, RGG+, and various previous algorithms, measured as normalized
average return, is presented on the D4RL locomotion benchmark (Fu et al., 2020). Results for RGG
and RGG+ show the mean and standard error over 15 planning seeds. Detailed sources for the
performance of prior methods are provided in Appendix E.

Dataset Environment BC CQL IQL DT TT MOPO MOReL MBOP Diffuser RGG RGG+
Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 95.0 63.3 53.3 105.9 79.8 90.8 ± 0.3 91.2 ± 0.3
Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 23.7 108.7 55.1 107.2 109.6 ± 2.3 109.9 ± 2.3
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 44.6 95.6 70.2 108.4 107.8 ± 0.1 107.7 ± 0.2

Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.3 42.1 44.6 44.2 44.0 ± 0.3 44.2 ± 0.3
Medium Hopper 52.9 58.5 66.3 67.6 61.1 28.0 95.4 48.8 58.5 82.5 ± 4.3 84.9 ± 4.1
Medium Walker2d 75.3 72.5 78.3 74.0 79.0 17.8 77.8 41.0 79.7 81.7 ± 0.5 82.0 ± 0.4

Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 53.1 40.2 42.3 42.2 41.0 ± 0.2 41.3 ± 0.2
Med-Replay Hopper 18.1 95.0 94.7 82.7 91.5 67.5 93.6 12.4 96.8 95.2 ± 0.5 95.8 ± 0.5
Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 39.0 49.8 9.7 61.2 78.3 ± 4.4 77.5 ± 4.7

Average 51.9 77.6 77.0 74.7 78.9 42.1 72.9 47.8 75.3 81.2 81.6

5 Experiments

We present the analytical results of approaches to improve planning performance by leveraging
guidance from our proposed metric, the restoration gap, for a wide range of decision-making tasks in
offline control settings. Specifically, we demonstrate (1) the relationship between a high restoration
gap and poor planning performance, (2) the enhancement of planning performance in the diffusion
planner by leveraging restoration gap guidance, and (3) explainability by presenting the attribution
maps of the learned gap predictor, highlighting infeasible transitions. More information about
our experimental setup and implementation details can be found in Appendix C and Appendix D,
respectively.

5.1 Relationship between Restoration Gap and Planning Performance
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Figure 4: Performance of plans chosen from
the top-K % considering various metrics, in
the Maze2D-Large single-task.

We evaluate how effectively the restoration gap can
identify infeasible plans by comparing our metric with
a realism score (Kynkäänniemi et al., 2019) and rar-
ity score (Han et al., 2023). Both prior metrics are
designed to assess the quality of generated samples
by examining the discrepancy between the generated
sample and the real data manifold in the feature space.
Figure 4 illustrates the performance of plans which are
chosen up to top-K% from each metric. As illustrated
in Figure 4, the higher the restoration gap of the plan
is, the poorer the performance is, which implies that
the restoration gap captures the quality of the plan well
compared to other metrics.

5.2 Planning Performance Enhancement

Table 2: Diffuser with RGG and Diffuser with RGG+ out-
perform all baselines. We report the mean and the standard
error over 1000 planning seeds.

Environment CQL MPPI IQL Diffuser RGG RGG+
Maze2D U-Maze 5.7 33.2 47.4 108.6 ± 1.4 108.8 ± 1.4 109.5 ± 1.3
Maze2D Medium 5.0 10.2 34.9 129.8 ± 0.7 131.8 ± 0.5 132.1 ± 0.4
Maze2D Large 12.5 5.1 58.6 123.5 ± 2.0 135.4 ± 1.7 143.9 ± 1.5

Single-task Average 7.7 16.2 47.0 120.6 125.3 128.5

Multi2D U-Maze - 41.2 24.8 127.9 ± 0.8 128.3 ± 0.8 128.3 ± 0.8
Multi2D Medium - 15.4 12.1 130.1 ± 0.9 130.0 ± 0.9 130.0 ± 0.9
Multi2D Large - 8.0 13.9 141.2 ± 1.6 148.3 ± 1.4 150.9 ± 1.3

Multi-task Average - 21.5 16.9 133.1 135.5 136.4

Maze2D Experiments Maze2D en-
vironments (Fu et al., 2020) involve a
navigation task that requires an agent to
exhibit long-horizon planning abilities
to reach a target goal location. Maze2D
environments consist of two tasks: a
single-task where the goal location is
fixed, and a multi-task which we refer
to as Multi2D where the goal location
is randomized at the beginning of ev-
ery episode. We compare our methods
with the model-free offline reinforcement learning algorithms CQL (Kumar et al., 2020) and IQL
(Kostrikov et al., 2022); conventional trajectory optimizer MPPI (Williams et al., 2015); and sequence
modeling approach Diffuser (Janner et al., 2022). As shown in Table 2, RGG improves the planning
performance of Diffuser in 5 out of 6 tasks, with notable improvements in the Maze2D-Large envi-
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ronments where the complexity of the obstacle maps is higher than in U-Maze or Medium layouts,
leading to a higher occurrence of infeasible plans. RGG+ performs on par with or better than RGG.
In contrast, model-free algorithms fail to reliably achieve the goal, as Maze2D environments require
hundreds of steps to arrive at the goal location.

Locomotion Experiments Gym-MuJoCo locomotion tasks (Fu et al., 2020) are standard bench-
marks in evaluating algorithms on heterogeneous data with varying quality. We compare our methods
with the model-free algorithms CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2022); model-
based algorithms MOPO (Yu et al., 2020), MOReL (Kidambi et al., 2020), and MBOP (Argenson
& Dulac-Arnold, 2021); sequence modeling approach Decision Transformer (DT) (Chen et al.,
2021), Trajectory Transformer (TT) (Janner et al., 2021) and Diffuser (Janner et al., 2022); and pure
imitation-based approach behavior-cloning (BC). As indicated in Table 1, our approach of refining
Diffuser with RGG either matches or surpasses most of the offline RL baselines when considering
the average score across various tasks. Additionally, it significantly enhances the performance of
Diffuser, particularly in the "Medium" dataset. We attribute this improvement to the sub-optimal and
exploratory nature of the policy that was used to generate the "Medium" dataset, which results in a
challenging data distribution to learn the diffusion planner. Consequently, RGG clearly contributes
to the enhancement of planning performance. However, RGG+ only brings about a marginal im-
provement over RGG. This might be because we adopt the strategy of (Janner et al., 2022), using
a closed-loop controller and a shorter planning horizon in locomotion environments compared to
Maze2D environments, thereby simplifying the learning process of the gap predictor.

Table 3: The performance of RGG, RGG+, and vari-
ous prior methods evaluated over 100 planning seeds.
A score of 100 is desired, while a random approach
would receive a score of 0.

Environment BCQ CQL Diffuser RGG RGG+
Unconditional Stacking 0.0 24.4 53.3 ± 2.4 63.3 ± 2.7 65.3 ± 2.0
Conditional Stacking 0.0 0.0 44.3 ± 3.2 53.0 ± 3.3 56.7 ± 3.1

Average 0.0 8.1 48.8 58.2 61.0

Block Stacking Experiments The block
stacking task suite with a Kuka iiwa robotic
arm is a benchmark to evaluate the model
performance for a large state space (Janner
et al., 2022) where the offline demonstration
data is achieved by PDDLStream (Garrett
et al., 2020). It involves two tasks: an un-
conditional stacking task whose goal is to
maximize the height of a block tower, and a conditional stacking task whose goal is to stack towers
of blocks subject to a specified order of blocks. We compare our methods with model-free offline
reinforcement learning algorithms BCQ (Fujimoto et al., 2019) and CQL (Kumar et al., 2020), and
Diffuser (Janner et al., 2022). We present quantitative results in Table 3, where a score of 100 corre-
sponds to the successful completion of the task. The results demonstrate the superior performance of
RGG over all baselines, with RGG+ further enhancing this planning performance.

5.3 Injecting Explainability to Diffusion Planners

The explainability of decision-making models is particularly important in control domains as they
could potentially harm physical objects including humans (Kim & Choi, 2021; Lee et al., 2023;
Beechey et al., 2023; Kim et al., 2023; Kenny et al., 2023). Training the gap predictor enables the
diffusion planner to have explainability. Diffusion planners often generate trajectories with unreliable
transitions resulting in execution failures. Attribution maps from the gap predictor highlight such
unreliable transitions by identifying the extent to which each transition contributes to the decision of
the gap predictor. Specifically, in Maze2D, the attribution maps emphasize the transitions involving
wall-crossing or abrupt directional changes, as illustrated in Figure 5. In the unconditional block
stacking task where the robot destroys the tower while stacking the last block, the tower-breaking
transitions are highlighted. On the other hand, for successful trajectories on the second and third
attribution maps, the attribution maps do not emphasize picking or stacking behaviors. Similarly,
in the conditional block stacking task where the robot fails to stack the block, they spotlight the
transitions of stacking behaviors.

5.4 Additional Experiments

To study the benefit of regularization on harder tasks, characterized by a larger trajectory space and a
smaller fraction of the space observed in training, we explore λ values [0.0, 0.5, 1.0, 3.0, 5.0] while
increasing the planning budget as illustrated in Figure 3. As the planning budget increases, λ = 0
generates adversarial plans, resulting in decreased performance. In contrast, RGG+ demonstrates
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Figure 5: Attribution maps for trajectories generated by diffusion planner highlight transitions that
have a substantial contribution to the estimation of a high restoration gap by the gap predictor,
indicated in red.

effectiveness across a wide range of λ values, with λ > 0 consistently outperforming λ = 0
(i.e., better than no regularization). Further investigation into the attribution method, perturbation
magnitude, and comparison with guidance approaches, including metrics such as the rarity score, the
negative realism score, and the discriminator, as well as the visualization of low and high restoration
gap plans, can be found in Appendix B.

6 Related Work

Metrics for Evaluating Generative Model Inception score (IS) (Salimans et al., 2016) and Fréchet
inception distance (FID) (Heusel et al., 2017) are commonly used as standard evaluation metrics
for generative models, assessing the quality of generated samples by comparing the discrepancy
between real and generated samples in the feature space. However, these metrics do not distinguish
between fidelity and diversity aspects of generated samples. To address this issue, precision and
recall variants (Sajjadi et al., 2018; Kynkäänniemi et al., 2019) are introduced to separately evaluate
these properties. Subsequently, density and coverage (Naeem et al., 2020) are proposed to overcome
some of the drawbacks of precision and recall, such as vulnerability to outliers and computational
inefficiency. While these metrics are helpful for evaluating the quality of a set of generated samples,
they are not suitable for ranking individual samples. In contrast, realism score (Kynkäänniemi et al.,
2019) and rarity score (Han et al., 2023) offer a continuous extension of improved precision and
recall, enabling the evaluation of individually generated sample quality. Despite their usefulness,
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these methods come with limitations as they rely on real samples for precise real manifold estimation,
whereas our restoration gap does not have such a constraint.

Diffusion Model in Reinforcement Learning Diffusion models have gained prominence as a
notable class of generative models, characterizing the data generation process through iterative
denoising procedure (Sohl-Dickstein et al., 2015; Ho et al., 2020). This denoising procedure can be
viewed as a way to parameterize the gradients of the data distribution (Song & Ermon, 2019), linking
diffusion models to score matching (Hyvärinen & Dayan, 2005) and energy-based models (EBMs)
(LeCun et al., 2006; Du & Mordatch, 2019; Nijkamp et al., 2019; Grathwohl et al., 2020). Recently,
diffusion models have been successfully applied to various control tasks (Janner et al., 2022; Urain
et al., 2023; Ajay et al., 2023; Chi et al., 2023; Liang et al., 2023). In particular, Diffuser (Janner et al.,
2022) employs an unconditional diffusion model to generate trajectories consisting of state-action
pairs. The approach includes training a separate model that predicts the cumulative rewards of noisy
trajectory samples, which then guides the reverse diffusion process towards high-return trajectory
samples in the inference phase, analogous to classifier-guided sampling (Dhariwal & Nichol, 2021).
Building upon this, Decision Diffuser (Ajay et al., 2023) extends the capabilities of Diffuser by
adopting a conditional diffusion model with reward or constraint guidance to effectively satisfy
constraints, compose skills, and maximize return. Meanwhile, AdaptDiffuser (Liang et al., 2023)
enhances generalization ability of the diffusion model to unseen tasks by selectively fine-tuning it
with high-quality data, derived through the use of hand-designed reward functions and an inverse
dynamics model. In contrast, in this work, we focus on evaluating the quality of individually generated
samples and explore ways to enhance planning performance by utilizing guidance derived from these
evaluations.

Restoring Artifacts in Generative Models Recently, several studies have concentrated on in-
vestigating the artifacts in Generative Adversarial Networks (GAN) model architectures for image
generation tasks. GAN Dissection (Bau et al., 2019) explores the internal mechanisms of GANs,
focusing on the identification and removal of units that contribute to artifact production, leading to
more realistic outputs. In a subsequent study, an external classifier is trained to identify regions of
low visual fidelity in individual generations and to detect internal units associated with those regions
(Tousi et al., 2021). Alternatively, artifact correction through latent code manipulation based on
a binary linear classifier is proposed (Shen et al., 2020). Although these methods can assess the
fidelity of individual samples, they still necessitate additional supervision, such as human annotation.
To address this limitation, subsequent works explore unsupervised approaches for detecting and
correcting artifact generations by examining local activation (Jeong et al., 2022) and activation
frequency (Choi et al., 2022). In contrast, our work primarily focuses on refining the generative
process of diffusion probabilistic models to restore low-quality plans.

7 Conclusion

We have presented a novel refining method that fixes infeasible transitions within the trajectory
generated by the diffusion planner. This refining process is guided by a proposed metric, restoration
gap, which quantifies the restorability of a given plan. Under specific regularity conditions, we prove
that the restoration gap effectively identifies unreliable plans while ensuring a low error probability
for both type I and type II errors. The experimental results, which include enhancement in quantitative
planning performance and visualization of qualitative attribution maps, highlight the importance of
the refinement method of the diffusion planner.

Limitations While the restoration gap guidance effectively enhances the feasibility of plans and
consistently improves the planning performance of diffusion models, our method is limited in
situations where an offline dataset is provided. Training the diffusion model often requires transition
data that uniformly covers the state-action space, the collection of which is a nontrivial and time-
consuming task.

Future Work Our analysis of the effectiveness of the restoration gap is currently confined to a
relatively simple task, Maze2D (see Figure 2), where we explicitly define normal and artifact plans.
The choice of Maze2D is motivated by its suitability for identifying violations of prior knowledge,
such as feasible plans not passing through walls. However, as future work, it would be worthwhile to
explore the efficacy of restoration gap in more complex tasks, such as the block stacking task.
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Appendix A Proofs

Proposition 1. Given t ∈ [0, 1] and a positive constant C,∆, assume that ∥sθ(τ , t)∥22 ≤ C2 for all
τ ∈ Tnormal ⊂ Rd, and ∥sθ(τ , t)∥22 ≥ (C +∆)2 for all τ ∈ Tartifacts ⊂ Rd. If

∆ ≥ 2
√
d+ 2

√
d+ 2

√−d · log δ − 2 log δ

σt̂
, (17)

then setting

b ≥ σt̂

(
Cσt̂ +

√
d+

√
d+ 2

√
−d · log δ − 2 log δ

)
(18)

guarantees both type I and type II errors at most 2δ.

Proof. We prove the proposition by employing techniques similar to those used in Theorem 3.3 from
(Han et al., 2019) and Proposition 1 from (Meng et al., 2022). To guarantee that both Type I and Type
II errors are at most 2δ, we first derive thresholds bI and bII to control Type I and Type II errors at
most δ, respectively.

Controlling Type I Error

For the type I error, we aim to bound the probability:

P(restoration gapt̂,θ(τ ) ≥ bI |H0), (23)

where bI represents the acceptance threshold for the alternative hypothesis. The restoration gapt̂,θ(τ )
can be written as

restoration gapt̂,θ(τ ) (24)

= Eϵt̂

[∥∥∥∥τ − restoret̂,θ(perturbt̂(τ ))
∥∥∥∥
2

]
(25)

= Eϵt̂

[∥∥∥∥τ − (τ + σt̂ϵt̂ +
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t̂

[
−d[σ2

t ]

dt
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dt+
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d[σ2

t ]

dt
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2

]
(26)

= Eϵt̂
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dt
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dt
dw̄
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2

]
(27)

≤ σt̂Eϵt̂ [∥ϵt̂∥2] +
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dt
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, (30)

where the last inequality comes from Jensen’s inequality, Eϵt̂ [∥ϵt̂∥2] ≤
√
Eϵt̂ [∥ϵt̂∥22] =

√
d, and

considering the assumption over sθ(τ , t) under the null hypothesis. As shown in (Meng et al., 2022),
the last term corresponds to the L2 norm of a random variable arising from a Wiener process at time
t = 0, where its marginal distribution is given by ϵ ∼ N (0, σ2

t̂
I). Dividing the squared L2 norm of ϵ

by σ2
t results in a χ2-distribution with d degrees of freedom. According to Lemma 1 from (Laurent

& Massart, 2000), we obtain the following one-sided tail bound:

P(∥ϵ∥22/σ2
t̂
≥ d+ 2

√
−d · log δ − 2 log δ) ≤ exp(log δ) = δ. (31)

Then, we have,

P
(
∥ϵ∥2/σt̂ ≥

√
d+ 2

√
−d · log δ − 2 log δ

)
≤ δ. (32)

15



Therefore, under null hypothesis, with probability of at least (1− δ), we have that:

restoration gapt̂,θ(τ ) ≤ bI = σt

(
Cσt +

√
d+

√
d+ 2

√
−d · log δ − 2 log δ

)
(33)

which guarantees a bounded type I error at most δ.

Controlling Type II Error

For the type II error, we aim to bound the probability:

P(restoration gapt̂,θ(τ ) ≤ bII |H1), (34)

where bII represents the acceptance threshold for the alternative hypothesis. The restoration gapt̂,θ(τ )
can be written as

restoration gapt̂,θ(τ ) (35)
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where we follow a similar procedure as in the proof for controlling type I error, except deriving the
lower bound by employing the triangle inequality. Therefore, under alternative hypothesis, with
probability at least (1− δ), we have that:

restoration gapt̂,θ(τ ) ≥ bII = σt̂

(
(C +∆)σt̂ −

√
d−

√
d+ 2

√
−d · log δ − 2 log δ

)
(42)

which guarantee a bounded type II error at most δ.

Combining Type I and Type II Thresholds

Following Theorem 3.3 in (Han et al., 2019), when bI ≤ bII , selecting bI as the threshold ensures
that both type I and type II errors are at most 2δ. Therefore, under

∆ ≥ 2
√
d+ 2

√
d+ 2

√−d · log δ − 2 log δ

σt̂
(43)

setting

b ≥ σt̂

(
Cσt̂ +

√
d+

√
d+ 2

√
−d · log δ − 2 log δ

)
(44)

guarantees both type I and type II errors at most 2δ, which completes the proof.

Appendix B Additional Experiments

B.1 Sensitivity Analysis to Input Attribution Methods
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Table 4: Performance of RGG+ in Maze2D
depending on the choice of attribution maps
which suggests the robustness of the attri-
bution map regularizer.

Maze2D Large Multi2D Large

Grad-Cam 143.9 ± 1.50 150.9 ± 1.25
Saliency 142.7 ± 1.56 150.1 ± 1.29
DeepLIFT 143.8 ± 1.48 150.9 ± 1.26

We investigate how sensitive the proposed method is
depending on the choice of input attribution methods.
As described in Section 4.2, RGG+ utilizes the input at-
tribution method as a regularizer to prevent adversarial
restoration gap guidance. We apply the input attribu-
tion method to the gap predictor, where it quantifies the
impact of each transition in the generated plan on the
prediction of the restoration gap. To validate the robust-
ness of RGG+ to different input attribution methods, we compare its performance while employing
three attribution methods: Grad-CAM (Selvaraju et al., 2017), Sailency (Simonyan et al., 2013),
and DeepLIFT (Shrikumar et al., 2017). The experimental results for Maze2D tasks are presented
in Table 4. RGG+ exhibits comparable performances across the three attribution methods, which
implies that our proposed method is robust in terms of the choice of input attribution methods.

B.2 Sensitivity Analysis to Perturbation Magnitude

0 20 40 60 80 100

Top-K %

140

150

P
la

n
n

in
g

P
er

fo
rm

an
ce

Negative Realism Score

Rarity Score

Restoration Gap t̂ = 0.3

Restoration Gap t̂ = 0.5

Restoration Gap t̂ = 0.7

Restoration Gap t̂ = 0.9

Figure 6: An ablation study varying t̂ to under-
stand the impact of the magnitude of the applied
perturbation.

To further investigate the effect of choosing dif-
ferent t̂ values on the restoration gap, we com-
pare the performance of plans which are chosen
up to top-K% from the restoration gap when
setting t̂ to 0.3, 0.5, and 0.7, in addition to the
initial setting of 0.9. The results of this abla-
tion study are illustrated in Figure 6. The results
clearly show that the restoration gap remains sig-
nificantly correlated with planning performance,
even with these varied t̂ values, when consider-
ing the top 10% of results. Specifically, while
the correlation is strongest with t̂ set to 0.9, even
with t̂ at 0.3, 0.5, or 0.7, the restoration gap still
demonstrates a stronger correlation with plan-
ning performance compared to the rarity score
or the negative realism score. This indicates the robustness of the restoration gap as a metric for
assessing the quality of generated plans. Moreover, these results support our Proposition 1 that a
larger t̂ is an effective choice when using the restoration gap.

B.3 Comparison to Other Metrics

Table 5: Performance Comparison with rarity score and negative realism score.
Environment Rarity Negative Realism RGG RGG+

Maze2D Large 126.9 ± 2.1 128.9 ± 1.6 135.4 ± 1.7 143.9 ± 1.5
Multi2D Large 143.4 ± 1.7 143.3 ± 1.5 148.3 ± 1.4 150.9 ± 1.3

We investigate how effectively the restoration gap evaluates the quality of generated samples by
comparing the histogram with various metrics in Figure 2 and comparing the planning performance
in Figure 4. To further explore how significant a guidance signal provided by the restoration gap is
for refining a diffusion planner, we compare the planning performance of plans guided by various
metrics including the rarity score, the negative realism score, and the restoration gap. We conduct
additional experiments in the Maze2D Large and Multi2D Large environments, the results of which
are presented in Table 5. Consistent with the observations in the previous experiments, Table 5
clearly demonstrates that the restoration gap is a useful metric for control tasks. Unlike other metrics
requiring expert data for training, our restoration gap works without such constraints, making it even
more practical.

B.4 Comparison to Discriminator Guidance

In our work, we have demonstrated the effectiveness of utilizing the restoration gap prediction model
to enhance the performance of Diffuser. However, there could be an alternative approach that is
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Table 6: Performance Comparison with discriminator guidance (DG).
Environment Diffuser DG RGG RGG+

Maze2D Large 123.5 ± 2.0 127.0 ± 1.9 135.4 ± 1.7 143.9 ± 1.5
Multi2D Large 141.2 ± 1.6 143.6 ± 1.6 148.3 ± 1.4 150.9 ± 1.3
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Figure 7: The distribution differences between Artifacts and Normal plans illustrated through
the density of the negative D-value and restoration gap.

to leverage the output of the discriminator which distinguishes whether the given plan is real or
generated; we refer to this discriminator output as the "D-value". It is plausible as the discriminator
inherently distinguishes between real and generated trajectories.

To evaluate the ability of the discriminator to accurately identify infeasible plans, we define a subset
of plans generated by Diffuser (Janner et al., 2022) as "artifact plans". These artifact plans consist of
transitions that include passing through walls, an impossible action for the agent to follow. We then
compare the distribution of the restoration gap for both the normal and artifact plans.

As illustrated in Figure 7, our comparison reveals that the D-value fails to distinguish between
artifacts and normal groups as effectively as the restoration gap. A noteworthy observation is that the
discriminator, while adept at identifying infeasible transitions within generated trajectories, tends to
focus more on local transitions rather than the overall structure. This local concentration results in it
being less useful than the restoration gap when it comes to recognizing infeasible plans.

To further illustrate the practical implications of these findings, we conduct an additional performance
comparison experiment. Here, the discriminator guidance (DG) is used to refine the Diffuser, and
the resulting performances are compared with those of RGG and RGG+ (see Table 6). In our
comparative experiments involving Maze2D Large and Multi2D Large environments, it is apparent
that the restoration gap guidance methods significantly outperform both the original Diffuser and
the discriminator guidance (DG) method. While DG offers a slight improvement over Diffuser, it is
unable to match the performance enhancements provided by our proposed methods.

These results underscore the effectiveness of the restoration gap as a reliable metric for improving tra-
jectory generation by diffusion planners. This superiority holds even when compared to discriminator
guidance, which directly capitalizes on the discriminator’s capability to distinguish between real and
generated trajectories. Consequently, it is evident that the restoration gap provides a more efficient
strategy for refining diffusion planners.

B.5 Visualization of Plans with Low and High Restoration Gap

To understand how restoration gap values relate to the qualities of generated plans and to validate the
efficacy of the restoration gap in detecting infeasible plans, we present additional qualitative results
comparing visualized plans with low and high restoration gaps.

In the Maze2D-Large environment, as depicted in Figure 8, plans with low restoration gap values
exhibit smoother and more coherent trajectories. In contrast, plans with high restoration gap values
often include physically infeasible transitions, such as passing through walls or abrupt changes in
direction.
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In the HalfCheetah environment, as demonstrated in Figure 9, the instability of movement, particularly
during landing, is more apparent in plans with a high restoration gap. On the other hand, plans with
low restoration gap values allow for stable landings, enabling the cheetah to move farther.

In the Unconditional Block Stacking environment, as illustrated in Figure 10, plans with a high
restoration gap exhibit error-prone transitions. For example, in such plans, the robotic arm suddenly
teleports from the initial joint position, magically grasps a block stacked under other blocks, or
unexpectedly changes the grasped block. Moreover, these plans violate physical constraints, such as
having the block in the same position as the robotic arm. In comparison, plans with low restoration
gap values comply with the physical constraints.

This disparity between plans with low and high restoration gap values illustrates the effectiveness
of our restoration gap metric in distinguishing between reliable and unreliable plans across various
environments.

High Restoration Gap Low Restoration Gap

Figure 8: Visual comparison of plans of low and high restoration gap values generated by Diffuser in
the Maze2D-Large environment.

High Restoration Gap Low Restoration Gap

Figure 9: Visual comparison of plans of low and high restoration gap values generated by Diffuser in
the HalfCheetah environment.
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Figure 10: Visual comparison of plans of low and high restoration gap values generated by Diffuser
in the Unconditional Block Stacking environment.

Appendix C Experimental Setup Details

C.1 Environments

Maze2D Maze2D environments (Fu et al., 2020) involve a navigation task where an agent needs to
plan for a long-horizon to navigate toward a distant target goal location. A reward is not provided
except when the agent successfully reaches the target goal where it only gets a reward of 1. Maze2D
environments consist of three distinct maze layouts: "U-Maze", "Medium", and "Large" each of
which offers different levels of difficulty. In Maze2D environments, there are two tasks: a single-task,
where the goal location is fixed, and a multi-task, which we refer to as Multi2D, where the goal
location is randomly selected at the beginning of every episode. Details about Maze2D environments
are summarized in Table 7.

Table 7: Environment details for Maze2D experiments.

Maze2D-Large Maze2D-Medium Maze2D-UMaze

State space S ∈ R4 ∈ R4 ∈ R4

Action space A ∈ R2 ∈ R2 ∈ R2

Goal space G ∈ R2 ∈ R2 ∈ R2

Episode length 800 600 300

Locomotion Gym-MuJoCo locomotion tasks (Fu et al., 2020) are widely used benchmarks for
evaluating algorithms on heterogeneous data with varying quality. The "Medium" dataset is generated
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by collecting 1M samples from an SAC agent (Haarnoja et al., 2018) trained to approximately
one-third of the performance level compared to an expert. The "Medium-Replay" dataset includes all
samples acquired during training until a "Medium" level of performance is achieved. The "Medium-
Expert" dataset is composed of an equal mixture of expert demonstrations and sub-optimal data.
Environmental details for Locomotion experiments are summarized in Table 8.

Table 8: Environment details for Locomotion experiments.

Hopper-* Walker2d-* Halfcheetah-*

State space S ∈ R11 ∈ R17 ∈ R17

Action space A ∈ R3 ∈ R6 ∈ R6

Episode length 1000 1000 1000

Block Stacking The Block Stacking suite is a benchmark used to evaluate the model performance
for a large state space, which employs a Kuka iiwa robotic arm (Janner et al., 2022). The offline
demonstration data required to train a policy model or a diffusion planning model is obtained through
the application of PDDLStream (Garrett et al., 2020).

The objective of the unconditional stacking task is to construct a tower of blocks with the maximum
possible height. In this task, the agent observes the state including the joint position of the robot,
as well as the position and rotation of each block, and then commands the robot’s desired joint
position while performing the grasping action to pick up the blocks. In the conditional stacking task,
where the objective is to stack blocks in a specified order, the agent observes the same state as in the
unconditional stacking task, but it additionally observes the index of the block which indicates the
order in which the blocks should be stacked.

We employ the same diffusion model for both tasks, but in the conditional stacking task, we addition-
ally utilize a value function to guide the diffusion planner in stacking blocks according to specified
conditions. Details about Block Stacking environments are summarized in Table 9.

Table 9: Environment details for Block Stacking experiments.

Unconditional Stacking Conditional Stacking

State space S ∈ R39 ∈ R43

Action space A ∈ R11 ∈ R11

Episode length 384 384

C.2 Other Metrics for the Assessment of Individually Generated Samples

Kynkäänniemi et al. (2019) present the notions of improved precision and recall to the study of
generative models. Precision is determined by examining if each generated sample falls within the
estimated manifold of real samples. Symmetrically, recall is computed by checking if each real
sample resides within the estimated manifold of generated samples. Real and generated sample
feature vectors are represented as ϕr and ϕg , respectively, and the corresponding sets of these feature
vectors are denoted by Φr and Φg . To compute improved precision and recall, the manifolds of real
and generated samples are estimated using the sets of k-NN hyperspheres for each sample:

manifoldk(Φ) =
⋃
ϕ′∈Φ

Bk(ϕ
′,Φ), Bk(ϕ

′,Φ) = {ϕ
∣∣ ∥ϕ′ − ϕ∥2 ≤ ∥ϕ′ − NNk(ϕ′,Φ)∥2} (45)

where NNk(ϕ′,Φ) returns the kth nearest feature vector of ϕ′ from the set Φ. Bk(ϕ′,Φ) is the k-NN
hyperspheres with the radius of ∥ϕ′ − NNk(ϕ′,Φ)∥2.

Although the improved precision metric provides a way to evaluate the quality of a population of
generated samples, it yields only a binary result for an individual sample, making it unsuitable for
ranking individual samples by their quality. In contrast, realism score (Kynkäänniemi et al., 2019)
and rarity score (Han et al., 2023) offer a continuous extension of improved precision and recall,
enabling the assessment of individually generated sample quality.
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Realism Score The realism score quantifies the maximum inverse relative distance of a generated
sample within a k-NN hypersphere originating from real data.

realism score(ϕg,Φr) = max
ϕr

∥ϕr − NNk(ϕr,Φr)∥2
∥ϕg − ϕr∥2

. (46)

A high realism score is achieved when the relative distance between a generated sample and a real
sample is small, compared to the radius of the real sample’s k-NN hypersphere.

Rarity Score The rarity score measures the radius of the smallest nearest-neighbor sphere that
contains the generated sample.

rarity score(ϕg,Φr) = min
r,s.t.ϕg∈Bk(ϕr,Φr)

∥ϕr − NNk(ϕr,Φr)∥2. (47)

This is grounded in the hypothesis that normal samples will be closely grouped, whereas unique and
rare samples will be dispersed in the feature space.

In an attempt to compare the restoration gap against negative realism scores and rarity scores, we
apply the parameters suggested in (Han et al., 2023), making use of k = 3 and 30,000 real samples to
approximate the real manifold and calculate the corresponding scores: negative realism and rarity.

Appendix D Implementation Details and Hyperparameters

D.1 Implementation of Gap Predictor

We employ a temporal U-Net architecture, with repeated convolutional residual blocks, for param-
eterizing Gψ as introduced in Diffuser (Janner et al., 2022). By using the pre-trained down blocks
from Diffuser’s diffusion model as our feature extraction module and keeping it fixed during training,
we can achieve enhanced performance and reduce training costs. The hyperparameters for training
the gap predictor are summarized in Table 10.

Table 10: Hyperparameters used for training the gap predictor. Values that are within brackets are
separately tuned through a grid search.

Hyperparameter Maze2D Locomotion Block Stacking
# synthetic data 500000 500000 500000

Observation normalization Yes Yes Yes
Gap predictor learning rate 0.0002 0.0002 {0.00002, 0.0002, 0.001}

Gap predictor batch size 32 32 {32, 64, 128, 256}
Gap predictor train steps 2000000 2000000 2000000

t̂ for perturbation magnitude 0.9 0.9 0.9

D.2 Implementation of Restoration Gap Guidance

In this section, we document hyperparameters employed for restoration gap guidance. We adopt
the hyperparameters from Diffuser (Janner et al., 2022) for determining the planning horizon and
diffusion steps. Furthermore, the values of α, β, and λ are determined through a grid search. The
hyperparameters utilized for the Maze2D experiments are presented in Table 11, while those for the
Locomotion experiments are summarized in Table 12, 13, and 14. The hyperparameters for the Block
Stacking experiments are provided in Table 15.

The planning performance exhibits a clear trend based on the choices of α, β, and λ parameters. This
allows us to perform a grid search using the relatively minimal number of evaluation episodes. As
depicted in Figure 3, the planning performance initially increases with rising values of λ but begins to
decline when the values become excessively large. Specifically, we conduct 10, 15, and 10 evaluation
episodes for the Maze2D, Locomotion, and Block Stacking experiments, respectively.
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Table 11: Specific hyperparameters for Maze2D experiments. Values that are within brackets are
separately tuned through a grid search.

Hyperparameter Large Medium UMaze
Planning horizon 384 256 128
Diffusion steps 256 256 64

# samples for MC estimate of restoration gap 10 10 10
α for scaling the overall guidance {0.05, 0.1} {0.05, 0.1} {0.05, 0.1}

β for scaling restoration gap guidance 1.0 1.0 1.0
λ for scaling attribution map regularization {0.1, 1.0, 3.0} {0.1, 1.0, 3.0} {0.1, 1.0, 3.0}

Table 12: Specific hyperparameters for HalfCheetah experiments. Values that are within brackets are
separately tuned through a grid search.

Hyperparameter Med-Expert Medium Med-Replay
Planning horizon 4 32 32
Diffusion steps 20 20 20

# samples for MC estimate of restoration gap 64 64 64
α for scaling the overall guidance {0.01, 0.1} {0.01, 0.1} {0.01, 0.1}

β for scaling restoration gap guidance {0.1, 1.0, 10.0} {0.1, 1.0, 10.0} {0.1, 1.0, 10.0}
λ for scaling attribution map regularization {0.001, 0.01, 0.1, 1.0} {0.001, 0.01, 0.1, 1.0} {0.001, 0.01, 0.1, 1.0}

Table 13: Specific hyperparameters for Hopper experiments. Values that are within brackets are
separately tuned through a grid search.

Hyperparameter Med-Expert Medium Med-Replay
Planning horizon 32 32 32
Diffusion steps 20 20 20

# samples for MC estimate of restoration gap 64 64 64
α for scaling the overall guidance {0.01, 0.1} {0.01, 0.1} {0.01, 0.1}

β for scaling restoration gap guidance {0.1, 1.0, 10.0} {0.1, 1.0, 10.0} {0.1, 1.0, 10.0}
λ for scaling attribution map regularization {0.001, 0.01, 0.1, 1.0} {0.001, 0.01, 0.1, 1.0} {0.001, 0.01, 0.1, 1.0}

Table 14: Specific hyperparameters for Walker2d experiments. Values that are within brackets are
separately tuned through a grid search.

Hyperparameter Med-Expert Medium Med-Replay
Planning horizon 32 32 32
Diffusion steps 20 20 20

# samples for MC estimate of restoration gap 64 64 64
α for scaling the overall guidance {0.01, 0.1} {0.01, 0.1} {0.01, 0.1}

β for scaling restoration gap guidance {0.1, 1.0, 10.0} {0.1, 1.0, 10.0} {0.1, 1.0, 10.0}
λ for scaling attribution map regularization {0.001, 0.01, 0.1, 1.0} {0.001, 0.01, 0.1, 1.0} {0.001, 0.01, 0.1, 1.0}

Table 15: Specific hyperparameters for Block Stacking experiments. Values that are within brackets
are separately tuned through a grid search.

Hyperparameter Unconditional Stacking Conditional Stacking
Planning horizon 128 128
Diffusion steps 1000 1000

# samples for MC estimate of restoration gap 5 5
α for guide scale {0.01, 0.02, 0.05, 0.1, 0.2, 0.5} {0.1, 0.3, 0.5, 0.7}

β for scaling restoration gap guidance 1.0 {0.01, 0.02, 0.04, 0.07}
λ for scaling attribution map regularization {0.1, 0.3, 0.5, 1.0, 3.0, 5.0} {0.001, 0.003, 0.005, 0.008}

D.3 Implementation of Attribution Map Regularizer

For the Maze2D experiments and the Block Stacking experiments, we adopt Grad-CAM (Selvaraju
et al., 2017), while we employ DeepLIFT (Shrikumar et al., 2017) for the Locomotion experiments,
as the attribution method. The rationale for the choice of each method is that both Grad-CAM and
DeepLIFT offer simplicity and efficiency in computation. Specifically, we apply the DeepLIFT for
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the Locomotion experiments due to their relatively smaller planning horizon compared to the other
tasks. This is because Grad-CAM compresses saliency information into a single value. However,
it is worth noting that our proposed method has shown robustness across different input attribution
methods, as demonstrated in Table 4.

D.4 The Amount of Computation

Our proposed method, refining diffusion planner, requires training the gap predictor which estimates
the restoration gap. For this purpose, we generate synthetic data of 500,000 plans generated by
Diffuser. The generation process takes approximately 30 to 50 hours, depending on the situation, on
a single NVIDIA Quadro 8000 GPU. The training time of the gap predictor on the same GPU can
range from 5 to 8 hours.

Appendix E Baseline Performance Sources

E.1 Maze2D Tasks

The scores for CQL are taken from Table 2 in Fu et al. (2020). The scores for MPPI and IQL are
taken from Table 1 in Janner et al. (2022).

E.2 Locomotion Tasks

The scores for BC, CQL, and IQL are found in Table 1 of Kostrikov et al. (2022), while DT scores
are taken from Table 2 in Chen et al. (2021), TT from Table 1 in Janner et al. (2021), MOPO from
Table 1 in Yu et al. (2020), MOReL from Table 2 in Kidambi et al. (2020), MBOP from Table 1 in
Argenson & Dulac-Arnold (2021), and Diffuser from Table 2 in Janner et al. (2022).

E.3 Block Stacking Tasks

The scores corresponding to BCQ and CQL are obtained from Table 3 of Janner et al. (2022). To
obtain the scores for Diffuser, the official implementation and model provided by the authors are
used, which can be found at https://github.com/jannerm/diffuser.
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