
Supplementary Material for Language Semantic
Graph Guided Data-Efficient Learning

Wenxuan Ma
Beijing Institute of Technology
wenxuanma@bit.edu.cn

Shuang LiB
Beijing Institute of Technology

shuangli@bit.edu.cn

Lincan Cai
Beijing Institute of Technology
lincancai@bit.edu.cn

Jingxuan Kang
University of Liverpool

sgjkang3@liverpool.ac.uk

The supplementary materials include the general algorithm of our method (§ A), dataset introduction
(§ B), implementation details (§ C) and additional experimental results (§ D).

A General Algorithm for LSG

Our method is generally applicable to various data-efficient training scenarios. Here we provide a
general algorithm of LSG in Alg. 1 on a labeled dataset {xi, yi}ni=1. We note that unlabeled data
can also be utilized in the semi-supervised learning scenario by assigning pseudo labels via vanilla
pseudo-labeling techniques as proposed in the paper or more advanced approaches.

B Dataset Introduction

FGVC Aircraft [7] is a benchmarking dataset for aircraft visual categorization. The dataset contains
10,000 aircraft images, with 100 images for each of 100 different aircraft model variants. The data is
split into 6,667 training images and 3,333 testing images.

Stanford Cars [4] is a fine-grained dataset contains 16,185 images of 196 classes of cars. The data is
split into 8,144 training images and 8,041 testing images, where each class has been split roughly in
a 50-50 split. Classes are typically at the level of Make, Model, Year, e.g. 2012 Tesla Model S or
2012 BMW M3 coupe.

CUB-200-2011 [10] is the most widely-used dataset for fine-grained classification. It contains 11,788
images of 200 subcategories belonging to birds, 5,994 for training and 5,794 for testing. We only use
the subcategory name for each bird to as concepts without using the fine-grained natural language
descriptions.

Office-Home [9] is a standard dataset for domain adaptation and domain generalization. It contains
four different domains: Artistic (Ar), Clip Art (Cl), Product (Pr) and Real-world (Re). Each domain
consists of roughly 4,000 images within the same 65 object categories found typically in office
and home scenarios. We adopt a 80-20 split for each domain to train the model and evaluate the
in-distribution performance. We adopt all the data available in the rest domain for out-of-distribution
performance evaluation.

UCF-101 [8] is an action recognition data set of realistic action videos, collected from YouTube,
having 13,320 videos from 101 action categories. The action categories can be divided into five types:
human-object interaction, body-motion only, human-human interaction, playing musical instruments
and sports. We adopt the first official dataset split and obtain 9,537 training videos and 3,783 test
videos.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Algorithm 1: Language Semantic Graph Guided Training

Input: Labeled Data {xi, yi}ni=1; Concepts (labels in natural language) {Wk}Kk=1; Backbone
Model F ; Pre-trained Language Model; Prompt set {Pq}mq=1; Hyper-parameters λ and τ ;
GCN training iteration Ig; Max training iteration: I

Output: Model for the Task: C ◦ F (C is the task-specific classifier).

// Stage 1: Train a GCN on language semantic graph
1 Combine P withW to obtain input text set T0 = ∪Kk=1{P1Wk,P2Wk, ...,PmWk};
2 Send input texts to the pre-trained language model and obtain the set of text embeddings

T = ∪Kk=1{t
(1)
k , t

(2)
k , ..., t

(m)
k };

3 Create the Language Semantic Graph G(V,A,K), where node embeddings comes from T and
adjacency matrix from Eq. (2);

4 Initialize GCN encoder F and classifier C;
5 for iter = 1, 2, · · · , Ig do
6 Compute the output for every node t in the graph G as C ◦ F(t);
7 Update the GCN model by Lnode in Eq. (4);
8 end

// Stage 2: Formal training stage with LSG
9 Initialize classifier C and linear projector H;

10 Fix the weights in GCN;
11 for iter = 1, 2, · · · , I do
12 f i ← F (xi);
13 pi ← C(f i), hi ← H(f i);
14 Compute Lemp(pi, yi) by Eq. (1);
15 Connect the projected features to the graph G to obtain augmented graph Gaug(Va,Aa,Ka);
16 Compute the output for every projected feature hi in th augmented graph Gaug;
17 Calculate Lalign(hi, yi) by Eq. (5);
18 Calculate Lr(hi, yi) by Eq. (6);
19 L ← Lemp + λLalign + µLr;
20 Update model by L;
21 end

HMDB51 [5] dataset is a large collection of realistic videos from various sources, including movies
and web videos. The dataset is composed of 6,766 video clips from 51 action categories (such as
“jump”, “kiss” and “laugh”), with each category containing at least 101 clips. We adopt the official
70-30 split.

AudioSet [2] is an audio event dataset, which consists of over 2M human-annotated 10-second video
clips collected from YouTube. It contains 527 categories, in which an audio clip are often annotated
to multiple categories. All the videos are split into Evaluation/Balanced-Train/Unbalanced-Train set.
The balanced training set is referred to AudioSet-20K and the complete training set is AudioSet-2M.
We adopt Audio-MAE pre-trained on the complete AudioSet-2M set and fine-tune the model on
AudioSet-20K.

C Implementation Details

Text embeddings from Pre-trained Language Model. We adopt the modified version of 20 prompts
provided in CLIP, which is adding “This is” before the original prompt to make the sentences more
complete. For the text embeddings, we directly use the output embedding corresponding to the
concept instead of the [cls] embedding or [eos] embedding. If the concept is divided into several
tokens by the tokenizer, we simply take the average of the corresponding output. We find that
using the text embeddings obtained in this way generally yields better results than using [cls] token
embedding or [eos] token embedding. We think it is because special tokens in pre-trained language
models focus more on representing the entire sentences rather than the specific object, making the
output embeddings more likely to from “prompt” cluster.

2



Training Details. We use SGD with momentum 0.9 as optimizer for training GCN, and the learning
rate is set as 1e-3. On three fine-grained image classification dataset, we set the mini-batch size as 24
for both labeled and unlabeled data and adopt the step decay learning rate schedular following [11].
We only apply strong data augmentations [1] in semi-supervised learning tasks. On Office-Home
dataset, we follow the settings within the domain generalization codebase [3], using mini-batch size
of 64 and train 250 iterations for 40 epochs. For both video and audio experiments with masked
autoencoder as pre-trained model, we fine-tune the model using four gpus on a single node instead of
the configurations from official scripts due to our resource constraint. Such a change will slightly
lower the model performance.

D Additional Experiments

D.1 More Results on Data-Efficient Image Classification

Table 1: Classification accuracy in large-scale
COCO-70 dataset (Pre-trained DenseNet-121).

Method 15% 30% 50% 100%

Fine-tuning 76.60 80.15 82.50 84.41
Co-tuning 77.64 81.19 83.43 85.65
LSG 79.50 82.33 84.14 86.11

Data-Efficient Training on Large Dataset.
Following Co-tuning [12], we evaluate LSG
on a larger-scaled image classification dataset
COCO-70 (DenseNet-121) and report the re-
sults in table below. Our method is supe-
rior than Co-tuning under every labeling ra-
tio on this large-scale benchmark, implying a
boarder application range of LSG.

Single Domain Generalization on PACS.
Here we show that LSG is still semantic meaningful and works well when the category number is
small. We evaluate single domain generalization on another classical benchmark PACS that has
only 7 categories. The results are shown in table 2. Similar to the experiments on Office-Home, We
find that LSG also brings significant performance improvement compared to vanilla empirical risk
minimization.

Table 2: Single domain generalization on PACS that only has 7 categories.

Backbone Method
Source:P Source:A Source:C Source:S Avg.

(ID)
Avg.

(OOD)P A C S A P C S C P A S S P A C

ConvNext-S ERM 100 75.6 37.0 31.6 99.5 99.1 76.2 82.0 99.3 90.2 89.8 77.5 99.1 44.4 56.1 75.8 99.5 69.6
LSG 100 85.4 48.4 52.7 99.1 99.3 80.8 86.0 99.8 97.2 90.3 82.1 99.2 56.5 64.9 74.4 99.5 76.5

Table 3: Classification accuracy with noisy labels (Pre-trained ResNet-50).

Method
FGCV Aircraft Stanford Cars CUB-200

15% 30% 50% 100% 15% 30% 50% 100% 15% 30% 50% 100%

Fine-tuning (clean) 41.6 57.8 68.7 80.2 41.1 65.9 78.4 87.8 6 72.3 76.3 78.7
LSG (clean) 55.6 72.0 79.5 86.7 55.4 75.5 83.8 90.7 57.7 70.6 77.5 82.2

Fine-tuning (20% noise) 27.2 38.8 50.7 62.6 21.7 43.6 58.1 71.8 36.2 50.1 57.4 69.7
LSG (20% noise) 41.5 54.8 61.9 72.6 36.3 54.3 67.9 80.8 42.1 57.3 64.2 73.8

Fine-tuning (40% noise) 15.7 20.7 33.7 44.3 13.9 27.8 37.7 51.3 23.0 35.2 44.0 52.6
LSG (40% noise) 27.5 35.6 44.7 52.8 23.4 38.0 46.4 58.6 27.9 39.5 47.2 56.9

Learning with Noisy Labels. To demonstrate the wide applicability of our method, we investigate
an alternative scenario where labels in the training data contain noise. We randomly add label noise
to the clean datasets and compare LSG with fine-tuning baseline. The corresponding results under
different noise and labeling ratio on three benchmarks are shown in table 3, in which 10% noise
means that 10% of the training data are randomly assigned to false labels.

The results show that both methods are influenced by the label noise and their performance degradation
is observed. Still, LSG outperforms fine-tuning baseline significantly on each noise level, and achieves
relatively less accuracy degradation from clean label scenarios. The possible reason behind such
robustness is that LSG regularizes the image feature space to maintain the category relationships,
which prevents the feature encoder learns heavily distorted feature space by overfitting to the noisy
data. Moreover, methods that identify and remove noisy labels can be integrated to LSG on these
scenarios to improve its performance.

3



Table 4: Accuracy of CLIP ViT-B/16 with tunable language head and CLIP language encoder.

Method
FGCV Aircraft Stanford Cars CUB-200

15% 30% 50% 100% 15% 30% 50% 100% 15% 30% 50% 100%

CLIP Fine-tuning 39.4 50.0 56.7 65.1 69.2 77.8 80.5 83.7 60.7 71.0 74.9 78.3
+ language head (Tunable) 45.1 54.9 60.1 68.1 74.3 80.0 82.7 86.5 67.4 74.5 77.3 82.1

LSG 48.9 58.6 65.0 74.5 79.4 83.2 86.1 90.1 70.2 78.4 81.9 85.4
LSG w/ CLIPtext 49.1 58.6 64.5 74.4 79.2 83.4 85.9 89.6 70.6 77.9 81.8 85.1

(a) T-SNE visualization on OfficeHome label embeddings (b) LSG Training Loss (2nd stage) (c) LSG Training Accuracy

Final label embeddings
(refined by GCN)

Initial label embeddings
(generated by PLM)

Prompt cluster
(bad)

Figure 1: Additional analytical experiments: (a)T-SNE visualization of the original and refined
label embeddings of OfficeHome datasets; (b) Three loss curves during the LSG primary training
stage, showing that the training process of LSG is steady; (c) The variation of training accuracies on
Aircraft-15% sample for five runs with different seed.

This experiment shows the potential of using LSG on scenarios with low quality labels. Still, we
acknowledge that there are other scenarios where label quality is not satisfying, and we will leave it
for future study.

D.2 Additional Analysis

. Visualization of the Refined Label Embeddings. We visualize the original label embeddings
and the refined label embeddings from GCN penultimate layer in Fig. 1(a). We can see that in the
original label embeddings, some poorly-crafted prompt template may generate "prompt cluster" in
embedding space due to its dominance influence on the label embedding over the concept that we
want to distinguish. On the other hand, with the help of GCN, the refined label embeddings are more
compact and the intra-class distance is smaller than the original label embeddings. This indicates that
the GCN can refine the label embeddings to be more discriminative and compact, which is beneficial
for the classification task.

Comparison to using CLIP language encoder. We also compare the performance of LSG with
using CLIP language encoder instead of the pre-trained language model. The results are shown in
table 4. Here we consider two new variants: (1) CLIP Fine-tuning + language head (Tunable) refers
to the stronger baseline by making the language embedding initialized classifier tunable. We draw
the same conclusion as in ELEVATER [6] that the tunable head achieves better performance than
random initialization. Yet, our method still outperforms this language-augmented baseline on all the
tasks with a great margin. (2) LSG w/ CLIPtext. We use the CLIPtext as the language encoder in
LSG. We can see that LSG w/ CLIPtext achieves similar performance as LSG, which indicates that
both the pre-trained language model BERT and CLIPtext are suitable for LSG.

The Training Stability. We show the training curves of the three losses in the primary training
stage of LSG in Fig. 1(b). We can see that the training process is steady and the three losses are
all decreasing during the training process. Also, we plot the variance of training accuracies on
Aircraft-15% sample for five runs with different seed in Fig. 1(c). We can see that the variance is
small and similar to the vanilla fine-tuning, which indicates that introducing the extra supervision
from language semantics does not increase the variance of the training process.

References
[1] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data

augmentation with a reduced search space. In CVPR Workshops, pages 702–703, 2020.

4



[2] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and
M. Ritter. Audio set: An ontology and human-labeled dataset for audio events. In ICASSP,
pages 776–780, 2017.

[3] D. Kim, K. Wang, S. Sclaroff, and K. Saenko. A broad study of pre-training for domain
generalization and adaptation. In ECCV, 2022.

[4] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained
categorization. In CVPR Workshops, pages 554–561, 2013.

[5] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: a large video database for
human motion recognition. In ICCV, pages 2556–2563, 2011.

[6] C. Li, H. Liu, L. Li, P. Zhang, J. Aneja, J. Yang, P. Jin, H. Hu, Z. Liu, Y. J. Lee, et al. Elevater:
A benchmark and toolkit for evaluating language-augmented visual models. In NeurIPS, pages
9287–9301, 2022.

[7] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-grained visual classification
of aircraft. CoRR, abs/1306.5151, 2013.

[8] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from
videos in the wild. CoRR, abs/1212.0402, 2012.

[9] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for
unsupervised domain adaptation. In CVPR, pages 5018–5027, 2017.

[10] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

[11] X. Wang, J. Gao, M. Long, and J. Wang. Self-tuning for data-efficient deep learning. In ICML,
pages 10738–10748, 2021.

[12] K. You, Z. Kou, M. Long, and J. Wang. Co-tuning for transfer learning. In NeurIPS, pages
17236–17246, 2020.

5


	General Algorithm for LSG
	Dataset Introduction
	Implementation Details
	Additional Experiments
	More Results on Data-Efficient Image Classification
	Additional Analysis


