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1 All Proofs

This section presents all proofs in our work.

min
ϕ∈Φ

max
Q̃:Wd(Q̃,Qϕ)≤ρ

LS

(
Q̃
)
, (1)

where Wd

(
Q̃,Qϕ

)
= minγ∈Γ(Q̃,Qϕ)

E(θ,θ̃)∼γ

[
d
(
θ, θ̃

)]1/p
with d

(
θ, θ̃

)
= ∥θ̃ − θ∥p2.

The OP in (1) seeks the most challenging model distribution Q̃ in the WS ball around Qϕ and then
finds Qϕ, ϕ ∈ Φ which minimizes the worst loss. To derive a solution for the OP in (1), we define

Γρ,ϕ =

{
γ : γ ∈ ∪Q̃Γ

(
Q̃,Qϕ

)
,E(θ,θ̃)∼γ

[
d
(
θ, θ̃

)]1/p
≤ ρ

}
.

Theorem 1.1. The OP in (1) is equivalent to the following OP:

min
ϕ∈Φ

max
γ∈Γρ,ϕ

LS (γ) , (2)

where LS (γ) = E(θ,θ̃)∼γ

[
1
N

∑N
n=1 ℓ

(
fθ̃ (xn) , yn

)]
.

Proof. Let Q̃∗ be an optimal solution of the OP in (1). Let γ∗ be the optimal coupling of the WS
distance Wd

(
Q̃,Qϕ

)
. Then, we have γ∗ ∈ Γρ,ϕ. It follows that

max
Q̃:Wd(Q̃,Qϕ)≤ρ

LS

(
Q̃
)
= LS

(
Q̃∗

)
= LS (γ∗) ≤ max

γ∈Γρ,ϕ

LS (γ) . (3)

Let γ∗ ∈ Γρ,ϕ be the optimal solution of (2). There exists Q̃∗ such that γ∗ ∈ Γ
(
Q̃∗,Qϕ

)
. It follows

that

max
γ∈Γρ,ϕ

LS (γ) = LS (γ∗) = LS

(
Q̃∗

)
≤ max

Q̃:Wd(Q̃,Qϕ)≤ρ
LS

(
Q̃
)

(4)

Leveraging Inequalities (3) and (4), we reach the conclusion.
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min
ϕ∈Φ

max
γ∈Γρ,ϕ

{
LS (γ) +

1

λ
H (γ)

}
, (5)

where H (γ) returns the entropy of the distribution γ with the trade-off parameter 1/λ. We note that
when λ approaches +∞, the OP in (5) becomes equivalent to the OP in (2). The following theorem
indicates the solution of the OP in (5).
Theorem 1.2. When p = +∞, the inner max in the OP in (5) has the solution which is a distribution
with the density function

γ∗
(
θ, θ̃

)
= qϕ (θ) γ

∗
(
θ̃ | θ

)
,

where γ∗
(
θ̃ | θ

)
=

exp{λLS(θ̃)}∫
Bρ(θ)

exp{λLS(θ′)}dθ′ , qϕ (θ) is the density function of the distribution Qϕ, and

Bρ(θ) = {θ′ : ∥θ′ − θ∥2 ≤ ρ} is the ρ-ball around θ.

Proof. Given γ ∈ Γρ,ϕ, we first prove that if E(θ,θ̃)∼γ

[
d
(
θ, θ̃

)]
is finite ∀p > 1 then

Mγ := sup
(θ,θ̃)∈support(γ)

∥θ − θ̃∥2 = lim
p→∞

E(θ,θ̃)∼γ

[
d
(
θ, θ̃

)]1/p

Let denote Aγ as the set of
(
θ, θ̃

)
∈ support (γ) such that ∥θ − θ̃∥2 = Mγ . We have

E(θ,θ̃)∼γ

[
d
(
θ, θ̃

)]1/p
=

[∫
Aγ

d
(
θ, θ̃

)
dγ

(
θ, θ̃

)
+

∫
Ac

γ

d
(
θ, θ̃

)
dγ

(
θ, θ̃

)]1/p

.

Therefore, for
(
θ, θ̃

)
∈ Ac

γ , we have

lim
p→∞

d
(
θ, θ̃

)
Mp

γ
=

∥θ − θ̃∥p2
Mp

γ
= 0,

while for
(
θ, θ̃

)
∈ Aγ , we have

lim
p→∞

d
(
θ, θ̃

)
Mp

γ
=

∥θ − θ̃∥p2
Mp

γ
= 1.

We derive as

lim
p→∞

E(θ,θ̃)∼γ

[
d
(
θ, θ̃

)]1/p
=Mγ lim

p→∞

∫
Aγ

d
(
θ, θ̃

)
Mp

γ
dγ

(
θ, θ̃

)
+

∫
Ac

γ

d
(
θ, θ̃

)
Mp

γ
dγ

(
θ, θ̃

)1/p

=Mγ lim
p→∞

γ (Aγ)
1/p = Mγ .

Therefore, γ ∈ Γρ,ϕ with p = ∞ is equivalent to the fact that the support set support (γ) is the union

of Bρ (θ) =
{
θ′ : ∥θ − θ̃∥2 ≤ ρ

}
with θ ∈ support (Qϕ).

We can equivalently turn the optimization problem of the inner max in (5) as follows:

max
γ∈Γρ,ϕ

E(θ,θ̃)∼γ [LS (γ)] +
1

λ
H (γ) (6)

s.t. :support (γ) = ∪θ∈support(Qϕ)Bρ (θ)

where Γρ,ϕ = ∪Q̃Γ
(
Qϕ, Q̃

)
.
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Because γ ∈ Γ
(
Qϕ, Q̃

)
for some Q̃, we can parameterize its density function as:

γ
(
θ, θ̃

)
= qϕ (θ) γ

(
θ̃ | θ

)
,

where qϕ (θ) is the density function of Qϕ and γ
(
θ̃ | θ

)
has the support set Bρ (θ). Please note that

the constraint for γ
(
θ̃ | θ

)
is
∫
Bρ(θ)

γ
(
θ̃ | θ

)
dθ̃ = 1.

The Lagrange function for the optimization problem in (6) is as follows:

L =

∫
LS

(
θ̃
)
qϕ (θ) γ

(
θ̃|θ

)
dθdθ̃

− 1

λ

∫
qϕ (θ) γ

(
θ̃|θ

)
log

[
qϕ (θ) γ

(
θ̃|θ

)]
dθdθ̃

+

∫
α (θ)

[
γ
(
θ̃ | θ

)
dθ̃ − 1

]
dθ̃dθ,

where the integral w.r.t θ over on support (Qϕ) and the one w.r.t. θ̃ over Bρ (θ).

Taking the derivative of L w.r.t. γ
(
θ̃ | θ

)
and setting it to 0, we obtain

0 = LS

(
θ̃
)
qϕ (θ) + α (θ)− qϕ (θ)

λ

[
log qϕ (θ) + log γ

(
θ̃|θ

)
+ 1

]
.

γ
(
θ̃|θ

)
=

exp
{
λ
[
LS

(
θ̃
)
+ α(θ)

qϕ(θ)

]
− 1

}
qϕ (θ)

.

Taking into account
∫
Bρ(θ)

γ
(
θ̃ | θ

)
dθ̃ = 1, we achieve∫

Bρ(θ)

exp
{
λLS

(
θ̃
)}

dθ̃ =
qϕ (θ)

exp
{
λ α(θ)

qϕ(θ)
− 1

} .

Therefore, we arrive at

γ∗
(
θ̃|θ

)
=

exp
{
λLS

(
θ̃
)}

∫
Bρ(θ)

exp
{
λLS

(
θ̃
)}

dθ̃
.

γ∗
(
θ, θ̃

)
= qϕ (θ)

exp
{
λLS

(
θ̃
)}

∫
Bρ(θ)

exp
{
λLS

(
θ̃
)}

dθ̃
. (7)

min
ϕ∈Φ

max
Q̃:Wd(Q̃,Qϕ)≤ρ

LS

(
Q̃
)
= min

ϕ∈Φ
max

Q̃:Wd(Q̃,Qϕ)≤ρ
Eθ∼Q̃ [LS (θ)] . (8)

By linking to the dual form, we reach the following equivalent OP:

min
ϕ∈Φ

min
λ>0

{
λρ+ Eθ∼Qϕ

[
max

θ̃

{
LS

(
θ̃
)
− λd

(
θ̃, θ

)}]}
. (9)

Considering the simple case wherein Qϕ = δθ is a Dirac delta distribution. The OPs in (8) and (9)
equivalently entails

min
θ

min
λ>0

{
λρ+max

θ̃

{
LS

(
θ̃
)
− λd

(
θ̃, θ

)}}
. (10)
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Theorem 1.3. With the distance metric d defined as

d
(
θ, θ̃

)
=

{
∥θ̃ − θ∥2 ∥θ̃ − θ∥2 ≤ ρ

+∞ otherwise
, (11)

the OPs in (8), (9) with Qϕ = δθ, and (10) equivalently reduce to the OP of SAM as

min
θ

max
θ̃:∥θ̃−θ∥2≤ρ

LS

(
θ̃
)
.

Proof. As Qϕ = δθ, we prove that the OP in (8) is equivalent to the OP in SAM. We start with

Wd

(
Q̃, δθ

)
=

∫
d
(
θ̃, θ

)
q
(
θ̃
)
dθ̃.

Due to the definition of the cost metric d, Wd

(
Q̃, δθ

)
≤ ρ entails that Q̃ with the density q has its

support set over Bρ(θ) and Wd

(
Q̃, δθ

)
=

∫
Bρ(θ)

∥θ̃ − θ∥2q
(
θ̃
)
dθ̃. Therefore, we reach

max
Q̃:Wd(Q̃,δθ)≤ρ

LS

(
Q̃
)
= max

Q̃:Wd(Q̃,δθ)≤ρ

∫
LS

(
θ̃
)
q
(
θ̃
)
dθ̃

= max
Q̃:support(Q̃)=Bρ(θ)

∫
Bρ(θ)

LS

(
θ̃
)
q
(
θ̃
)
dθ̃. (12)

It is obvious that the OP in (12) peaks when Q̃ puts its all mass over the single value
argmaxθ̃∈Bρ(θ)

LS

(
θ̃
)

. Finally, we obtain the conclusion as

max
Q̃:Wd(Q̃,δθ)≤ρ

LS

(
Q̃
)
= maxθ̃∈Bρ(θ)

LS

(
θ̃
)
.

2 Experiments

2.1 Experiment Setting on a Single Model

In the experiments presented in Tables 1 and 2 in the main paper, we train all models for 200 epochs
using SGD with a learning rate of 0.1. We utilize a cosine schedule for adjusting the learning rate
during training. To enhance the robustness of the models, we augmented the training set with basic
data augmentations, including horizontal flipping, padding by four pixels, random cropping, and
normalization. It’s worth noting that the experiments in Table 1 utilize an input resolution of 32x32,
while those in Table 2 followed the setting in [3] for the comparison with bSAM on Resnet18, which
takes an input resolution of 224x224.

During our experiments, we encounter a common issue with Stochastic Gradient Langevin Dynamics
(SGLD) [4] when using the noise term ϵ1mk, ϵ

2
mk ∼ N (0, ρI) following the formulation in Formula 9.

This noise can lead to a reduction in accuracy. In fact, in the original paper [4], the noise is decreased
gradually across the training step from 1e− 2 to 1e− 4 or from 1e− 2 to 1e− 8. In [2], the authors
also addressed this issue by reducing the noise to a very small value, from 1e − 4 to 5e − 5 for
WideResNet, to ensure the convergence of SGLD. To simplify our approach while still mitigating the
negative impact of the noise, we chose to fix ϵ1mk, ϵ

2
mk ∼ N (0, 0.0001) in most of our experiments.

This choice helped to strike a balance between the diversity of models and maintaining effective
convergence.

2.2 Experiment Setting on Ensemble Models

For experiments in Table 3 in the main paper, we follow the same data processing and model
training procedures as in Table 1. We employ an ensemble approach by combining multiple models
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and evaluating the scores based on the average prediction. This average prediction was obtained
by aggregating the softmax predictions from all the base classifiers. Moreover, to ensure reliable
uncertainty estimation, we employ calibrated uncertainty scores (Brier, NLL, ECE, and AAC).
To avoid potential calibration errors that can be addressed through simple temperature scaling, as
suggested in [1], we calibrate the uncertainty scores at the optimal temperature. Note that we use 15
bins for the ECE score to accurately evaluate the calibration performance.

2.3 Experiment Setting on Bayesian Neural Networks

In our experiments, we train Resnet10 and Resnet18 models using the Stochastic Gradient Variational
Bayes (SGVB) approach. We employ the Adam optimizer with a learning rate of 0.001 and utilize
a plateau schedule for training the models over 100 epochs. However, we observe that the SGVB
approach yields poor performance when using different settings, which makes it challenging to scale
this approach up effectively.

For our OT-MDR method, we also employ the Adam optimizer as the base optimizer to update
parameters after obtaining the gradients ∇µLB

(
θ̃k

)
and ∇σLB (θ) ,. We set the hyperparameters

ρ1 = 0.005 and ρ2 = 0.01 for all experiments with BNNs. It is important to note that in each training
iteration, we sampled κl ∼ N (0, I) only once, as mentioned in Section 4.2.3 of the main paper. This
sampling process ensures consistency when computing the perturbation models.

3 Additional Ablation Studies

3.1 Computation complexity

The training time of OT-MDR and baselines are reported in Table 1. It is worth noting that OT-MDR
takes a longer time for training since it involves calculating the gradient three times sequentially.
However, for the first two times, it only needs to calculate the gradients for half of the data batch. In
total, the number of gradients needed to calculate is equal to the SAM methods.

Table 1: Training time (s/epoch) for single model on CIFAR-10
Method WideResnet28x10 Pyramid101 Densenet121

SAM 96 126 136
OT-MDR (Ours) 131 192 210

3.2 Training algorithm

The training procedure1 for OT-MDR in the single model case is outlined in Algorithm 1. To ensure
diversity, we randomly split the data batch B into two equal halves when computing perturbed models
within each particle. This way, each particle utilizes the same data for training but in a randomized
order.

Specifically, we first calculate the gradient g1k by minimizing the loss function on the first half
mini-batch B1

k to obtain the first perturbed model θ̃k1. Then, we repeat this procedure on the second
mini-batch B2

k to compute the second perturbed model θ̃k2. Lastly, we calculate the third gradient g3k
by minimizing the loss function on the entire data batch B and use this gradient to update the original
model θ.

SAM follows a similar procedure to OT-MDR, except that it skips the second perturbed model θ̃2k (the
blue code block) and employs the entire data batch B to compute the perturbed model θ′ instead of
just half, as in OT-MDR. In summary, both SAM and OT-MDR require an equal number of gradient
calculations.

1The implementation is provided in https://github.com/anh-ntv/OT_MDR.git
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Algorithm 1 Training algorithm of OT-MDR for single model setting

for e in epochs do
Given data batch B
for k in K particles do

[B1
k, B

2
k] = B ▷ Randomly split the data batch B into two equal halves

θ′ = θ ▷ Initialize model θ′

// Calculate the first perturbed model
g1k = ∇θ′LB1

k
(θ)

ϵ1k ∼ N (0, ρI)
θ′ = θ′ + ρ

g1
k

∥g1
k∥2

+ ϵ1k ▷ Perturb model θ̃1k

// Calculate the second perturbed model
g2k = ∇θLB2

k
(θ′)

ϵ2k ∼ N (0, ρI)
θ′ = θ′ + ρ

g2
k

∥g2
k∥2

+ ϵ2k ▷ Perturb model θ̃2k

// Calculate the actual gradient to update the model
g3k = ∇θLB (θ′)

end for
θ = θ − η

K

∑K
k=1 g

3
k ▷ Update model using g3k of K particles

end for
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