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Abstract

We consider a statistical model for matrix factorization in a regime where the rank
of the two hidden matrix factors grows linearly with their dimension and their
product is corrupted by additive noise. Despite various approaches, statistical and
algorithmic limits of such problems have remained elusive. We study a Bayesian
setting with the assumptions that (a) one of the matrix factors is symmetric, (b)
both factors as well as the additive noise have rotational invariant priors, (c) the
priors are known to the statistician. We derive analytical formulas for Rotation
Invariant Estimators to reconstruct the two matrix factors, and conjecture that
these are optimal in the large-dimension limit, in the sense that they minimize
the average mean-square-error. We provide numerical checks which confirm the
optimality conjecture when confronted to Oracle Estimators which are optimal by
definition, but involve the ground-truth. Our derivation relies on a combination of
tools, namely random matrix theory transforms, spherical integral formulas, and
the replica method from statistical mechanics.

1 Introduction

Matrix factorization (MF) is the problem of reconstructing two matrices X and Y from the noisy
observations of their product. Applications in signal processing and machine learning abound, such as
for example dimensionality reduction [1, 2], sparse coding [3–5], representation learning [6], robust
principal components analysis [7, 8], blind source separation [9], or matrix completion [10, 11].

In this work we approach the problem from a Bayesian perspective and assume that an observation or
data matrix S =

√
κXY +W is given to a statistician who knows the prior distributions of X and

Y as well as the prior of the additive noise matrix W and the signal-to-noise ratio κ > 0. The task
of the statistician is to construct estimators ΞX(·), ΞY (·) for the matrix factors X , Y , that ideally,
minimize the average mean-square-error (MSE) E∥X − ΞX(S)∥2F and E∥Y − ΞY (S)∥2F (∥.∥F
the Frobenius norm and E the expectation w.r.t X,Y ,W ). We consider priors which are rotation
invariant for all three matrices X , Y , W and for X we furthermore impose that it is square and
symmetric. These matrix ensembles are defined precisely in section 2.1, but the reader can keep in
mind the examples of Wigner or Wishart matrices for X , and general Gaussian Y and W with i.i.d
elements. We look at the asymptotic regime where all matrix dimensions and ranks tend to infinity
at the same speed. We remark that the usual "rotation ambiguity" occuring in MF is not present
because we impose that at least one of the two matrix factors is symmetric. We also remark that
MF is different (and more difficult) than matrix denoising which would consist in constructing an
estimator ΞXY (S) for the signal as a whole by minimizing E∥XY −ΞXY (S)∥2F.

The rotation invariance of the model implies that the estimators minimizing the MSE belong to
the class of rotation invariant estimators (RIE). RIEs are matrix estimators which have the same
singular vectors (or eigenvectors) as the observation or data matrix. These estimators have been
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proposed for matrix denoising problems (see references [12–16] for covariance estimation, [17] for
cross-covariance estimation, and [18], [19,20] for extensions to rectangular matrices). For the present
MF model, we derive optimal estimators (minimizing the MSE) that belong to the RIE class and can
be computed explicitly in the large dimensional limit from the observation matrix and the knowledge
of the priors. We propose:

1. an explicit RIE to estimate X , which requires the knowledge of the priors of both X,Y
and of the noise W . Moreover, under the assumption that X is positive-semi-definite, a
sub-optimal RIE can be derived which does not require any prior on X .

2. an explicit RIE to estimate Y , which requires the knowledge of the priors of the noise W
and X only (the prior of Y is not required).

3. combined with the singular value decomposition (SVD) of the observation matrix, our
explicit RIEs provide a spectral algorithm to reconstruct both factors X and Y .

The derivation of the proposed estimators relies on the replica method from statistical mechanics
combined with techniques from random matrix theory and finite-rank spherical integrals [21, 22].
Although the replica method is not rigorous and involves concentration assumptions, the derivation is
entirely analytical and suggests that the estimators are optimal in the limit of large dimensions. This
is corroborated by numerical calculations comparing our explicit RIEs with Oracle Estimators which
are optimal by definition and involve the ground-truth matrices.

1.1 Related literature and discussion

When the matrices X and Y are assumed to have low-rank compared to their dimension, the
mathematical theory of MF has enjoyed much progress under various settings (Bayesian, spectral,
algorithmic) and fundamental information theoretical and algorithmic limits have been rigorously
derived. The behavior of eigenvalues/singular values and eigenvector/singular vectors of finite-rank
perturbations of a Gaussian matrix is studied in [23–25] which leads to spectral estimators when the
noise matrix is Gaussian distributed. For the case of factorized prior, and Gaussian noise, closed
form expressions have been established for the asymptotic Bayes-optimal estimation error [26–30],
and iterative algorithms based on approximate message passing has been proposed [31, 32]. The
low-rank matrix denoising problem has been addressed in various other settings, such as structured
noise matrix [33, 34], mismatched estimation problem [35–38], and estimation in the regime with
diverging aspect-ratio of matrices [39].

In extensive-rank regimes, when the rank grows like the matrix dimensions, despite various attempts
there is no solid theory of MF. One approach is based on Approximate Message Passing (AMP)
methods developed in [40–42]. Despite acceptable performance in practical settings [43], as pointed
out in [44] the AMP algorithms developed in these works are (theoretically) sub-optimal. Other
approaches rooted in statistical physics have been considered in [44–47] but have not led to explicit
reconstructions of matrix factors or algorithms. A practical probabilistic approach to MF problem is
based on variational Bayesian approximations [48–50], in which one tries to approximate the posterior
distribution with proper distribution. In [51] it is shown that under Gaussian priors, the solution to the
MF problem is a reweighted SVD of the observation matrix. We point out here that these estimators
can be seen as a RIE and therefore there seems to be a rather close relation between the RIE studied
here and the variational Bayesian approach. This also suggests that adapting RIEs to real data is an
interesting direction for future research. Finally, let us also mention optimization approaches where
one constructs estimators by following a gradient flow (or gradient descent) trajectory of a training
loss of the type ∥S −XY ∥2F + reg. term (see [52], [53] for analysis in rotation invariant models).
Benchmarking these various other algorithmic approaches against our explicit RIEs (conjectured to
be optimal) is outside the scope of this work and is left for future work.

Constraints such as sparsity or non-negativity of the matrix entries which have important applications
[54] are not covered by our theory. Despite this drawback, we believe that the proposed estimators
are important both for theoretical and practical purposes. Even in non-rotation invariant problems our
explicit RIEs may serve as sub-optimal estimators, and as we show in an example they can be used
as a "warmed-up" spectral initialization for more efficient algorithms (see for example [31, 55] for
related ideas in other contexts). The methodology developed here may open up the way to further
analysis in inference and learning problems perhaps also in the context of neural networks where
extensive rank weight matrices must be estimated.
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1.2 Organization and notations

In section 2, we introduce the precise MF model, general class of RIEs, and the Oracle estimators.
In section 3, we present the explicit RIEs (and algorithm) to estimate X and Y . We provide the
numerical examples and calculations in section 4. In section 5, we sketch the derivation of RIE for
X , while the one for Y is similar and deferred to the appendices.

The following notations are used throughout. For a vector γ ∈ RN we denote by Γ ∈ RN×M a matrix
constructed as Γ =

[
ΓN 0N×(M−N)

]
with ΓN ∈ RN×N a diagonal matrix with diagonal γ.

The same notations will also be used for the vector σ and the corresponding matrix Σ and . For a
sequence of non-symmetric matrices A of growing size, we denote the limiting empirical singular
value distribution (ESD) by µA, and the limiting empirical eigenvalue distribution of AA⊺ by ρA.
For a sequence of symmetric matrices B of growing size, we denote the limiting empirical eigenvalue
distribution by ρB , and the limiting eigenvalue distribution of B2 by ρB2 .

2 Matrix factorization model and rotation invariant estimators

2.1 Matrix factorization model

Let X = X⊺ ∈ RN×N a symmetric matrix distributed according to a rotationally invariant prior
PX(X), i.e., for any orthogonal matrix O ∈ RN×N we have PX(OXO⊺) = PX(X). Let also
Y ∈ RN×M be distributed according to a bi-rotationally invariant prior PY (Y ), i.e. for any
orthogonal matrices U ∈ RN×N ,V ∈ RM×M we have PY (UY V ⊺) = PY (Y ). We observe the
data matrix S ∈ RN×M ,

S =
√
κXY +W (1)

where W ∈ RN×M is also bi-rotationally invariant distributed, and κ ∈ R+ is proportional to the
signal-to-noise-ratio (SNR). The goal is to recover both factors X and Y from the data matrix S.
For definiteness, we consider the regime M ≥ N with aspect ratio N/M → α ∈ (0, 1] as N → ∞.
The case of α > 1 can be analyzed in the same manner and is presented in appendix F. Furthermore,
we assume that the entries of X,Y and W are of the order O(1/

√
N). This scaling is such that the

eigenvalues of X and singular values of Y ,W and S are of the order O(1) as N → ∞.

Assumption 1. The empirical eigenvalue distribution of X converge weakly to measure ρX , and the
ESD of Y ,W converge weakly to measures µY , µW with bounded support on the real line. Moreover,
these measures are known to the statistician. He can deduce (in principle) these measures from the
priors on X,Y ,W .

Remark 1. In a general formulation of matrix factorization the hidden matrices have dimensions
X ∈ RN×H ,Y ∈ RH×M , and in the Bayesian framework with bi-rotational invariant priors for
both factors, the optimal estimators are trivially the zero matrix. Indeed, from bi-rotational invariance
we have PX(−X) = PX(X), PY (−Y ) = PY (Y ), which implies that the Bayesian estimate is
zero. Here, by imposing that X ∈ RN×N is symmetric and PX(OXO⊺) = PX(X), we can break
this symmetry and find non-trivial estimators. This is due to the fact that the map X → −X cannot
be realized as a (real) orthogonal transformation, so PX(−X) = PX(X) does not hold in general
(various examples are given in section 4 and appendices). Of course, if the prior is even, e.g. Wigner
ensemble, again the Bayesian posterior estimate is trivially zero for both factors. As we will see our
RIEs are consistent with these observations.

2.2 Rotation invariant estimators

To recover matrices X,Y from S, we consider two denoising problems. One is recovering X by
treating both Y ,W as "noise" matrices, and the other is estimating Y by treating X,W as "noise".
As will become clear the procedure is not iterative, and the two denoising problems are solved
independently and simultaneously. In the following, for each of these two problems, we introduce two
rotation invariant classes of estimators and discuss their optimum Oracle estimators. We then provide
an explicit construction and algorithm for RIEs which we conjecture have the optimum performance
of Oracle estimators in the large N limit.
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2.2.1 RIE class for X

Consider the SVD of S = USΓV
⊺
S , where US ∈ RN×N , VS ∈ RM×M are orthogonal, and

Γ ∈ RN×M is a diagonal matrix with singular values of S on its diagonal,
(
γi
)
1≤i≤N

. A rotational
invaraint estimator for X is denoted ΞX(S), and is constructed as:

ΞX(S) = US diag(ξx1, . . . , ξxN )U⊺
S (2)

where ξx1, . . . , ξxN are the eigenvalues of the estimator.

First, we derive an Oracle estimator by minimizing the squared error 1
N

∥∥X −ΞX(S)
∥∥2
F

for a given
instance, over the RIE class or equivalently over the choice of the eigenvalues

(
ξxi

)
1≤i≤N

. Let the

eigen-decomposition of X be X =
∑N

i=1 λi xix
⊺
i with xi ∈ RN eigenvectors of X . The error can

be expanded as:

1

N

∥∥X −ΞX(S)
∥∥2
F
=

1

N

N∑

i=1

λ2
i +

1

N

N∑

i=1

ξx
2
i −

2

N

N∑

i=1

ξxi

N∑

j=1

λj

(
u⊺
i xj

)2

where ui’s are columns of US . Minimizing over ξxi’s, we find the optimum among the RIE class:

Ξ∗
X(S) =

N∑

i=1

ξ∗xi uiu
⊺
i , ξ∗xi =

N∑

j=1

λj

(
u⊺
i xj

)2
= u⊺

i Xui (3)

Expression (3) defines the Oracle estimator which requires the knowledge of signal matrix X .
Surprisingly, in the large N limit, the optimal eigenvalues

(
ξ∗xi

)
1≤i≤N

can be computed from the
observation matrix and knowledge of the measures ρX , µY , µW . In the next section, we show that
this leads to an explicitly computable (or algorithmic) RIE, which we conjecture to be optimal as
N → ∞, in the sense that its performance matches the one of the Oracle estimator.

Now we remark that the Oracle estimator is not only optimal within the rotation invariant class but
is also Bayesian optimal. From the Bayesian estimation point of view, one wishes to minimize the
average mean squared error (MSE) MSEX̂ ≡ 1

NE
∥∥X − X̂(S)

∥∥2
F

, where the expectation is over
X,Y ,W , and X̂(S) is an estimator of X . The MSE is minimized for X̂∗(S) = E[X|S] which
is the posterior mean. Therefore, the posterior mean estimator has the minimum MSE (MMSE)
among all possible estimators, in particular MSEX̂∗ ≤ MSEΞ∗

X
for any N . In appendix A.1, we

show that, for rotational invariant priors, the posterior mean estimator is inside the RIE class. Thus,
since Ξ∗

X(S) is optimum among the RIE class MSEΞ∗
X
≤ MSEX̂∗ . Therefore, we conclude that the

Oracle estimator (3) is Bayesian optimal in the sense that MSEΞ∗
X
= MSEX̂∗ = MMSE.

2.2.2 RIE class for Y

Estimators for Y from the rotation invariant class are denoted ΞY (S), and are constructed as:

ΞY (S) = US

[
diag(ξy1, . . . , ξyN ) 0N×(M−N)

]
V ⊺
S (4)

where ξy1, . . . , ξyN are the singular values of the estimator.

Let the SVD of Y be Y =
∑N

i=1 σi y
(l)
i y

(r)
i

⊺
with y

(l)
i ∈ RN ,y

(r)
i ∈ RM the left and right singular

vectors of Y . To derive an Oracle estimator, we proceed as above. Expanding the error, we have:

1

N

∥∥Y −ΞY (S)
∥∥2
F
=

1

N

N∑

i=1

σ2
i +

1

N

N∑

i=1

ξy
2
i −

2

N

N∑

i=1

ξyi

N∑

j=1

σj

(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)

where vi’s are columns of VS . Minimizing over ξyi’s, we find the optimum among the RIE class:

Ξ∗
Y (S) =

N∑

i=1

ξ∗yi uiv
⊺
i , ξ∗yi =

N∑

j=1

σj

(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)
= u⊺

i Y vi (5)

Expression (5) defines the Oracle estimator which requires the knowledge of signal matrix Y . Like
for the case of X , in the large N limit we can derive the optimal singular values

(
ξ∗yi

)
1≤i≤N

in terms
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of the singular values of observation matrix and knowledge of the measures ρX , µW . This leads to
an explicitly computable (or algorithmic) RIE, which is conjectured to be optimal as N → ∞, in the
sense that it has the same performance as the Oracle estimator. Note that unlike the estimator for X ,
we do not need the knowledge of µY .

In appendix A.2, we show that for bi-rotationally invariant priors the posterior mean estimator
Ŷ ∗(S) = E[Y |S] belongs to the RIE class, which (by similar arguments to the case of X) implies
that the Oracle estimator (5) is Bayesian optimal.

3 Algorithmic RIEs for the matrix factors

In this section, we present our explicit RIEs for X,Y and the corresponding algorithm. We conjecture
that their performance matches the one of Oracles estimators in the large N limit and they are therefore
Bayesian optimal in this limit. Let us first give a brief reminder on useful transforms in random
matrix theory.

3.1 Preliminaries on transforms in random matrix theory

For a probability density function ρ(x) on R, the Stieltjes (or Cauchy) transform is defined as

Gρ(z) =

∫

R

1

z − x
ρ(x) dx for z ∈ C\supp(ρ)

By Plemelj formulae we have for x ∈ R,

lim
ϵ→0+

Gρ(x− iϵ) = πH[ρ](x) + πiρ(x) (6)

with H[ρ](x) = p.v. 1π
∫
R

ρ(t)
x−tdt the Hilbert transform of ρ (here p.v. stands for "principal value").

Denoting the inverse of Gρ(z) by G−1
ρ (z), the R-transform of ρ is defined as [56]:

Rρ(z) = G−1
ρ (z)− 1

z

For a probability density function µ with support contained in[−K,K] with K > 0, we define a
generating function of (even) moments Mµ : [0,K−2] → R+ as Mµ(z) =

∫
1

1−t2zµ(t) dt− 1. For

α ∈ (0, 1], define T (α)(z) = (αz + 1)(z + 1), and H(α)
µ (z) = zT (α)

(
Mµ(z)

)
. The rectangular

R-transform with aspect ratio α is defined as [57]:

C(α)
µ (z) = T (α)−1

( z

H(α)
µ

−1
(z)

)

3.2 Explicit RIE for X

The RIE for X is constructed as Ξ̂∗
X(S) =

∑N
i=1 ξ̂

∗
xiuiu

⊺
i with eigenvalues

(
ξ̂∗xi

)
1≤i≤N

:

ξ̂∗xi =
1

2κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

ζ3

[
GρX

(√z − ζ1
κζ3

)
+ GρX

(
−
√

z − ζ1
κζ3

)]}
(7)

where γi is the i-th singular value of S, µ̄S is the symmetrized limiting ESD of S, and

ζ1 =
1

Gµ̄S
(z)

C(α)
µW

(
Gµ̄S

(z)
[
αGµ̄S

(z) +
1− α

z

])
(8)

and ζ3 satisfies 1:

(z − ζ1)Gµ̄S
(z)− 1 = C(α)

µY

( 1

ζ3

[
αGµ̄S

(z) +
1− α

z

][
(z − ζ1)Gµ̄S

(z)− 1
])

(9)

Remark 2. If ρX is a symmetric measure, ρX(x) = ρX(−x), then GρX
(−z) = −GρX

(z). This
implies that the optimal eigenvalues

(
ξ̂∗xi

)
1≤i≤N

in (7) are all zero, and Ξ̂∗
X(S) = 0, see figure 4.

1ζ1, ζ3 are the only parameters which appear in the final estimator. However, in derivation of the RIE, we
have defined other parameters which do not appear in the final estimator and we omit them here.
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3.2.1 An estimator for X2

It is interesting to note that we can construct a RIE for X2 as Ξ̂∗
X2(S) =

∑N
i=1 ξ̂

∗
x2 i

uiu
⊺
i with

eigenvalues
(
ξ̂∗x2 i

)
1≤i≤N

:

ξ̂∗x2 i
=

1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ1
ζ3

Gµ̄S
(z)− 1

ζ3
(10)

with ζ1, ζ3 as in (8), (9). Note that, ζ1, ζ3 can be evaluated using the observation matrix and the
knowledge of µY , µW , and therefore this time the statistician does not need to know the prior of X .
Furthermore, assuming that X is positive semi-definite (PSD), we can construct a sub-optimal RIE

for X by using
√
ξ̂∗x2 i

for the eigenvalues of the estimator.

3.2.2 Case of Gaussian Y ,W

If Y ,W have i.i.d. Gaussian entries with variance 1/N , then C(α)
µY (z) = C(α)

µW (z) = z/α. Consequently,
ζ1, ζ3 can easily be computed to be ζ1 = ζ3 = Gµ̄S

(z) + (1−α)/(αz), thus the estimator (7) can be
evaluated from the observation matrix. In particular, the estimator (10) simplifies to:

ξ̂∗x2 i
=

1

κ

[
− 1 +

1

α
(
π2µ̄S(γi)2 +

(
πH[µ̄S ](γi) +

1−α
αγi

)2)
]

(11)

3.3 Explicit RIE for Y

Our explicit RIE for Y is constructed as Ξ̂∗
Y (S) =

∑N
i=1 ξ̂

∗
yi
uiv

⊺
i with singular values

(
ξ̂∗yi

)
1≤i≤N

:

ξ̂∗yi =
1√
κ

1

πµ̄S(γi)
Im lim

z→γi−i0+
q4 (12)

where γi is the i-th singular value of S, and q4 is the solution to the following system of equations 2:




β1 =
C(α)
µW

(q1q2)

q1
+ 1

2

√
q3
q1

(
RρX

(
q4 +

√
q1q3

)
−RρX

(
q4 −√

q1q3
))

β4 = 1
2

(
RρX

(
q4 +

√
q1q3

)
+RρX

(
q4 −√

q1q3
))

q1 = Gµ̄S
(z), q2 = αGµ̄S

(z) + (1− α) 1z
q3 = (z−β1)

2

β2
4

Gµ̄S
(z)− z−β1

β2
4

, q4 = z−β1

β4
Gµ̄S

(z)− 1
β4

(13)

Similarly to the estimator derived for X , if ρX is a symmetric measure then the optimal singular
values for the estimator of Y are all zero, see remark 5.

If X is a shifted Wigner matrix, i.e. X = F + cI with F = F ⊺ ∈ RN×N having i.i.d. Gaussian
entries with variance 1/N and c ̸= 0 a real number, then RρX

(z) = z + c. Moreover, if W is
Gaussian matrix with variance 1/N , then the set of equations (13) simplifies to a great extent, and we
can compute q4 analytically in terms of Gµ̄S

(z), see appendix D.4.

3.4 Algorithmic nature of the RIEs

The explicit RIEs (7) and (12) proposed in this section, provide spectral algorithms to estimate the
matrix factors from the data matrix (and the priors). An essential ingredient that must be extracted
from the data matrix is Gµ̄S

(z). This quantity can be approximated from the observation matrix using
Cauchy kernel method introduced in [58](see section 19.5.2), from which µ̄S(.) can be approximated
using (6). Therefore, given an observation matrix S, the spectral algorithm proceeds as follows:

1. Compute the SVD of S.
2. Approximate Gµ̄S

(z) from the singular values of S.
3. Construct the RIEs for X,Y as proposed in paragraphs 3.2, 3.3.

2Like the case for X , we omit some of the parameters which do not appear in the final estimator.
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Oracle estimator, Ξ∗
X(S)

RIE, Ξ̂∗
X(S)√

Ξ̂∗
X2(S)

Figure 1: MSE of estimating X . MSE is normalized
by the norm of the signal, ∥X∥2F. X is a Wishart
matrix with aspect ratio 1/4, X = HH⊺ with H ∈
RN×4N having i.i.d. Gaussian entries of variance
1/N. Both Y and W are N ×M matrices with i.i.d.
Gaussian entries of variance 1/N. RIE is applied to
N = 2000,M = 4000, and the results are averaged
over 10 runs (error bars are invisible).

0 1 2 3 4 5

0.1

0.2

0.3

κ

M
S
E

Oracle estimator, Ξ∗
Y (S)

RIE, Ξ̂∗
Y (S)

Figure 2: MSE of estimating Y . MSE is normalized
by the norm of the signal, ∥Y ∥2F. Y has uniform spec-
tral density, U

(
[1, 3]

)
. X is a shifted Wigner matrix

with c = 3, and W is a N × M matrix with i.i.d.
Gaussian entries of variance 1/N. RIE is applied to
N = 2000,M = 4000, and the results are averaged
over 10 runs (error bars are invisible).

4 Numerical results

4.1 Performance of RIE for X

We consider the case where Y ,W both have i.i.d. Gaussian entries of variance 1/N, and X is
a Wishart matrix, X = HH⊺ with H ∈ RN×4N having i.i.d. Gaussian entries of variance 1/N.
For various SNRs, we examine the performance of two proposed estimators, the RIE (7), and the
square-root of the estimator (10) (since X is PSD), which is sub-optimal. In figure 1, the MSEs
of these algorithmic estimators are compared with the one of Oracle estimator (3). We see that the
average performance of the algorithmic RIE Ξ̂∗

X(S) is very close to the (optimal) Oracle estimator
Ξ∗

X(S) (relative errors are small and provided in the appendices) and we believe that the slight
mismatch is due to the numerical approximations and finite-size effects. Note that, although the
estimator

√
Ξ̂∗

X2(S) is sub-optimal, it does not use any prior knowledge of X . For more examples,
details of the numerical experiments and the relative error of the estimators, we refer to appendix C.3.

4.2 Performance of RIE for Y

We consider the case where W has i.i.d. Gaussian entries of variance 1/N , and X is a shifted Wigner
matrix with c = 3. Matrix Y is constructed as Y = UY ΣV ⊺

Y with UY ∈ RN×N ,VY ∈ RM×M are
Haar distributed, and the singular values are generated independently from the uniform distribution
on [1, 3]. MSEs of the RIE (12) and the Oracle estimator (5) are illustrated in figure 2. We see that
the performance of the algorithmic RIE Ξ̂∗

Y (S) is very close to the optimal estimator Ξ∗
Y (S).

Non-rotational invariant prior In another example, which we omit here, with the same settings
for X,W , we consider the case where Y is a sparse matrix with entries distributed according to
Bernoulli-Rademacher prior. The RIE is not optimal in this setting (since the prior is not bi-rotational
invariant), however applying a simple thresholding function on the matrix constructed by RIE yields
an estimate with lower MSE. This observation suggests that for the case of general priors, the RIEs
can provide a spectral initialization for more efficient estimators. For more details and examples, see
appendix D.4.

4.3 Comparing RIEs of matrix factorization and denoising

The proposed RIEs, namely (7) and (12), simplify greatly when the matrices W ,Y are Gaussian,
and X is a shifted Wigner matrix. We perform experiments with these priors, where for a given
observation matrix S, we look at the RIEs of X , Y for the MF problem, and simultaneously at
the RIE of the product XY as a whole for the denoising problem with formulas introduced in [19]
(which can also be obtained by taking X to be the identity matrix, see appendix D.3.1). Figure 3
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Figure 3: MSE of factorization problem. MSE is normalized by the norm of the signal. X is a shifted Wigner
matrix with c = 1, and both Y and W are N ×M matrices with i.i.d. Gaussian entries of variance 1/N. RIE is
applied to N = 2000,M = 4000. In each run, the observation matrix S is generated according to (1), and the
factors X , Y are estimated simultaneously from S. Results are averaged over 10 runs (error bars are invisible).

illustrates these experiments. In particular the MSE of the denoising-RIE matches well the one of the
associated Oracle estimator, and as expected is lower than the MSE of the product of MF-RIEs.

5 Derivation of the explicit RIEs

In this section, we sketch the derivation of our explicit RIE for X . The RIE for Y is derived similarly,
but requires more involved analysis and is presented in appendix D. For simplicity, we take the SNR
parameter in (1) to be 1, so the model is S = XY +W . The optimal eigenvalues are constructed
as ξ∗xi =

∑N
j=1 λj

(
u⊺
i xj

)2
. We assume that in the large N limit, ξ∗xi can be approximated by its

expectation and we introduce

ξ̂∗xi =
N∑

j=1

λj E
[(
u⊺
i xj

)2]
(14)

where the expectation is over the (left) singular vectors of the observation matrix S. Therefore,
to compute these eigenvalues, we need to find the mean squared overlap E

[(
u⊺
i xj

)2]
between

eigenvectors of X and singular vectors of S. In what follows, we will see that (a rescaling of) this
quantity can be expressed in terms of i-th singular value of S and j-th eigenvector of X (and the
limiting measures, indeed). Thus, we will use the notation OX(γi, λj) := NE

[(
u⊺
i xj

)2]
in the

following. In the next section, we discuss how the overlap can be computed from the resolvent of the
"Hermitized" version of S.

5.1 Relation between overlap and resolvent

Construct the matrix S ∈ R(N+M)×(N+M) from the observation matrix:

S =

[
0N×N S
S⊺ 0M×M

]

By Theorem 7.3.3 in [59], S has the following eigen-decomposition:

S =

[
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

] [ ΓN 0 0
0 −ΓN 0
0 0 0

] [
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

]⊺
(15)

with VS =
[
V

(1)
S V

(2)
S

]
in which V

(1)
S ∈ RM×N . And, V̂ (1)

S = 1√
2
V

(1)
S , ÛS = 1√

2
US .

Eigenvalues of S are signed singular values of S, therefore the limiting eigenvalue distribution of S
(ignoring zero eigenvalues) is the same as the limiting symmetrized singular value distribution of S.
Define the resolvent of S,

GS(z) = (zI − S)−1

We assume that as N → ∞ and z is not too close to the real axis, the matrix GS(z) concentrates
around its mean. Consequently, the value of GS(z) becomes uncorrelated with the particular
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realization of S. Specifically, as N → ∞ , GS(z) converges to a deterministic matrix for any
fixed value of z ∈ C\R (independent of N). Denote the eigenvectors of S by si ∈ RM+N , i =
1, . . . ,M +N . For z = x− iϵ with x ∈ R and small ϵ, we have:

GS(x− iϵ) =
2N∑

k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
sks

⊺
k +

x+ iϵ

x2 + ϵ2

N+M∑

k=2N+1

sks
⊺
k

where γ̃k are the eigenvalues of S, which are in fact the (signed) singular values of S, γ̃1 =
γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .

Define the vectors x̃i = [x⊺
i ,0M ]⊺ for xi eigenvectors of X . We have

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i =

2N∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
x̃⊺
i sk

)2
+

ϵ

x2 + ϵ2

N+M∑

k=2N+1

(
x̃⊺
i sk

)2
(16)

Given the structure of sk’s in (15),
(
x̃⊺
i sj

)2
= 1

2

(
x⊺
i uj

)2
=

(
x̃⊺
i sj+N

)2
for 1 ≤ j ≤ N , and the

second sum in (16) is zero. We assume that in the limit of large N this quantity concentrates on
OX(γj , λi) and depends only on the singular values and eigenvalue pairs (γj , λi). We thus have:

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i

N→∞−−−−→
∫

R

ϵ

(x− t)2 + ϵ2
OX(t, λi)µ̄S(t) dt (17)

where the overlap function OX(t, λi) is extended (continuously) to arbitrary values within the
support of µ̄S (the symmetrized limiting singular value distribution of S) with the property that
OX(t, λi) = OX(−t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i → πµ̄S(x)OX(x, λi) (18)

This is a crucial relation as it allows us to study the overlap by means of the resolvent of S. In the
next section, we establish a connection between this resolvent and the signal X , which enables us to
determine the optimal eigenvalues values ξ̂∗xi in terms of the singular values of S.

5.2 Resolvent relation

To derive the resolvent relation between S and X , we fix the matrix X and consider the model

S = XU1Y V ⊺
1 +U2WV ⊺

2

with Y ,W ∈ RN×M fixed matrices with limiting singular value distribution µY , µW , and U1,U2 ∈
RN×N ,V1,V2 ∈ RM×M independent random Haar matrices. Indeed, if we substitute the SVD of
the matrices Y ,W in model (1) we find the latter model. Now, the average over the singular vectors
of S (with fixed X) is equivalent to the average over the matrices U1,U2,V1,V2. In appendix C.1,
using the Replica trick, we derive the following relation in the limit N → ∞:

〈
GS(z)

〉
=

[
ζ−1
3 GX2

(
z−ζ1
ζ3

)
0

0 (z − ζ2)
−1IM

]
(19)

with ζ1, ζ2, ζ3 satisfying set of equations (41). ⟨.⟩ is the expectation w.r.t. the singular vectors of S
(or equivalently over U1,U2,V1,V2), and GX2 is the resolvent of X2. As stated earlier, we assume
that the resolvent GS(z) concentrates in the limit N → ∞, therefore we drop the brackets in the
following computation.

5.3 Overlaps and optimal eigenvalues

From (18), (19), we find:

OX(γ, λi) ≈
1

πµ̄S(γ)
Im lim

z→γ−i0+
x⊺
i ζ

−1
3 GX2

(z − ζ1
ζ3

)
xi

=
1

πµ̄S(γ)
Im lim

z→γ−i0+

1

z − ζ1 − ζ3λ2
i

(20)

In Fig. 4 we illustrate that the theoretical predictions (20) are in good agreement with numerical
simulations for a particular case of X a Wigner matrix, and Y ,W with i.i.d. Gaussian entries.
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Figure 4: Comparison of the theoretical prediction (20) of the
rescaled overlap with the numerical simulation. The rescaled overlap
between 200-th and 800-th left singular vector of S and the eigen-
vectors of X is illustrated. X = X⊺ ∈ RN×N has i.i.d. Gaussian
entries with variance 1/

√
N and is fixed. Both Y and Z are N ×M

matrices with i.i.d. Gaussian entries of variance 1/N. The simu-
lation results are average of 1000 experiments with fixed X , and
N = 1000,M = 2000. Some of the simulation points are dropped
for clarity.
One can see that the overlap is an even function of eigenvalues λi,
so the optimal eigenvalues ξ∗xi =

∑N
j=1 λj

(
u⊺

ixj

)2 are all zero, as
discussed in remark 2.

Once we have the overlap, we can compute the optimal eigenvalues to be

ξ̂∗xi ≈
1

N

N∑

j=1

λjOX(γi, λj) ≈
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

λj

z − ζ1 − ζ3λ2
j

(21)

With a bit of algebra, we find the estimator in (7) in the limit N → ∞, see appendix C.2.

6 Conclusion

We studied the MF problem with extensive-rank hidden matrices, and proposed explicit (optimal)
RIEs to recover the distinct factors. The model we considered, although limited, is the first analytically
solvable model in this challenging regime, and we believe it paves the way for future investigations.
Extending the methodology developed here to the general case where both matrices can be non-
symmetric is an interesting research direction (note that in this case factors can be recovered up to
rotations). Moreover, adapting RIEs to incorporate additional structures/ constraints on the signals is
a problem with practical importance, that we leave for future investigations.

In general, the MF problem in the extensive-rank regime has not received an in-depth exploration
compared to its counterpart in the low-rank regime. While substantial progress has been made in
understanding and devising algorithms for low-rank matrices, the challenges posed by extensive-rank
matrices remain relatively uncharted. Specifically, the study of general non-rotation invariant priors
with i.i.d entries (e.g. a prior supported on the positive real line as in non-negative MF) stands out as
an underdeveloped area from the theory side.
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A Posterior mean estimator is in the RIE class

In this section, we show that for rotational invariant priors, the posterior mean estimator is inside the
RIE class. For each of the estimators of X,Y , we present an equivalent definition of the RIE, then
we show that posterior mean estimator satisfies this definition.

A.1 X Estimator

Lemma 1. Given the observation matrix S, let X̂(S) be an estimator of X . Then X̂(S) is a RIE if
and only if for any orthogonal matrices U ∈ RN×N ,V ∈ RM×M :

X̂(USV ⊺) = UX̂(S)U⊺ (22)

Proof. If X̂(S) is a RIE, then the property (22) clearly follows from the definition (2). Now we turn
to the converse.

Suppose that an estimator X̂(S) satisfies (22). First, we show that if the observation matrix is
diagonal, then the estimator is also diagonal. Consider the observation matrix to be Sdiag =[
diag(s1, . . . , sN) 0N×(M−N)

]
. Let I−

k ∈ RN×N ,J−
k ∈ RM×M be diagonal matrices with

diagonal entries all one except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have
Sdiag = I−

k SdiagJ−
k . Moreover, matrices I−

k ,J−
k are indeed orthogonal. For any 1 ≤ k ≤ N , from

the property we have:

X̂(Sdiag) = X̂(I−
k SdiagJ−

k ) = I−
k X̂(Sdiag)I−

k (23)

This implies that all entries on the k-th row and k-th column of X̂(Sdiag) are zero except the k-th
entry on the diagonal. Since this holds for any k, we conclude that X̂(Sdiag) is diagonal.

Now, for a given general observation matrix with SVD S = USΓV
⊺
S , put U = U⊺

S ,V = V ⊺
S in the

property (22). We have:

X̂(Γ) = U⊺
SX̂(S)US

From the argument above, the matrix on the lhs is diagonal. Consequently, the matrix U⊺
SX̂(S)US

is diagonal which implies that the columns of US are eigenvectors of X̂(S). Therefore, X̂(S) is a
RIE.

Now, we prove that the posterior mean estimator X̂∗(S) = E[X|S] has the property (22), and
therefore belongs to the RIE class. For simplicity, we drop the SNR factor

√
κ. For any orthogonal

matrices U ∈ RN×N ,V ∈ RM×M , we have:

E[X|USV ⊺] =

∫
dY dX̃ X̃ PX(X̃)PY (Y )PW (USV ⊺ − X̃Y )∫
dY dX̃ PX(X̃)PY (Y )PW (USV ⊺ − X̃Y )

(a)
=

∫
dY dX̃ UX̃U⊺ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺Y )∫

dY dX̃ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺Y )

(b)
=

∫
dY dX̃ UX̃U⊺ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺UY V ⊺)∫

dY dX̃ PX(X̃)PY (Y )PW (USV ⊺ −UX̃U⊺UY V ⊺)

(c)
= U

{∫
dY dX̃ X̃ PX(X̃)PY (Y )PW (S − X̃Y )∫
dY dX̃ PX(X̃)PY (Y )PW (S − X̃Y )

}
U⊺

= UE[X|S]U⊺

where in (a), we changed variables X̃ → UX̃U⊺, used |detU | = 1, and rotational invariance of PX ,
PX(X̃) = PX(UX̃U⊺). In (b), we changed variables Y → UY V ⊺, used |detU | = |detV | = 1,
and bi-rotational invariance of PY , PY (Y ) = PY (UY V ⊺). In (c), we used the bi-rotational
invariance property of PW , namely PW (USV ⊺ −UX̃Y V ⊺) = PW (S − X̃Y ).
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A.2 Y Estimator

Lemma 2. Given the observation matrix S, let Ŷ (S) be an estimator for Y . Then Ŷ (S) is a RIE if
and only if for any orthogonal matrices U ∈ RN×N ,V ∈ RM×M :

Ŷ (USV ⊺) = UŶ (S)V ⊺ (24)

Proof. If Ŷ (S) is a RIE, then this property clearly follows from the definition (4). Let us now show
the converse.

Suppose that an estimator Ŷ (S) satisfies (24). First, we show that if the observation matrix is
diagonal, then the estimator is also diagonal. Consider the observation matrix to be Sdiag =[
diag(s1, . . . , sN) 0N×(M−N)

]
. Let I−

k ∈ RN×N ,J−
k ∈ RM×M be diagonal matrices with

diagonal entries all one except the k-th entry which is −1. Note that for 1 ≤ k ≤ N , we have
Sdiag = I−

k SdiagJ−
k . Moreover, matrices I−

k ,J−
k are indeed orthogonal. For any 1 ≤ k ≤ N , from

the property we have:

Ŷ (Sdiag) = Ŷ (I−
k SdiagJ−

k ) = I−
k Ŷ (Sdiag)J−

k (25)

This implies that all entries on the k-th row and k-th column of Ŷ (Sdiag) is zero except the k-th
entry on the diagonal. Since this holds for any k, we conclude that Ŷ (Sdiag) is diagonal.

Now, for a given general observation matrix S = USΓV
⊺
S , put U = U⊺

S ,V = V ⊺
S in the property

(24). We have:

Ŷ (Γ) = U⊺
S Ŷ (S)VS

From the argument above, the matrix on the lhs is diagonal. Consequently, the matrix U⊺
S Ŷ (S)VS is

diagonal which implies that the columns of US ,VS are the left and right singular vectors of Ŷ (S).
Therefore, Ŷ (S) is a RIE.

Now, we prove that the posterior mean estimator Ŷ ∗(S) = E[Y |S] has the property (24), and it
is inside the RIE class. For simplicity, we drop the SNR factor

√
κ. For any orthogonal matrices

U ∈ RN×N ,V ∈ RM×M , we have:

E[Y |USV ⊺] =

∫
dX dỸ Ỹ PX(X)PY (Ỹ )PW (USV ⊺ −XỸ )∫
dX dỸ PX(X)PY (Ỹ )PW (USV ⊺ −XỸ )

(a)
=

∫
dX dỸ UỸ V ⊺ PX(X)PY (Ỹ )PW (USV ⊺ −XUỸ V ⊺)∫

dX dỸ PX(X)PY (Ỹ )PW (USV ⊺ −XUỸ V ⊺)

(b)
=

∫
dX dỸ UỸ V ⊺ PX(X)PY (Ỹ )PW (USV ⊺ −UXU⊺UỸ V ⊺)∫

dX dỸ PX(X)PY (Ỹ )PW (USV ⊺ −UXU⊺UỸ V ⊺)

(c)
= U

{∫
dX dỸ Ỹ PX(X)PY (Ỹ )PW (S −XỸ )∫
dX dỸ PX(X)PY (Ỹ )PW (S −XỸ )

}
V ⊺

= UE[Y |S]V ⊺

where in (a), we changed variables Ỹ → UỸ V ⊺, used |detU | = |detV | = 1, and bi-rotational
invariance of PY , PY (Ỹ ) = PY (UỸ V ⊺). In (b), we changed variables X → UXU⊺, used
|detU | = 1, and rotational invariance of PX , PX(X) = PX(UXU⊺). In (c), we used the
bi-rotational invariance property of PW , namely PW (USV ⊺ −UXỸ V ⊺) = PW (S −XỸ ).

B The replica method for deriving the resolvent relation

In this section we present the replica method used to obtain the resolvent relation. For simplicity of
notation we use G(z) ≡ GS(z) for the resolvent of a random matrix S.
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First, we express the entries of the resolvent G(z) using the Gaussian integral representation of an
inverse matrix [60]:

Gij(z) =

√
1

(2π)N+M det (zI − S)

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}

=

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}

∫ (M+N∏

k=1

dηk

)
exp

{
− 1

2
η⊺(zI − S

)
η
}

(26)

For z not close to the real axis, the resolvent is expected to exhibit self-averaging behavior in the
limit of large N, meaning that it will not depend on the particular matrix realization. Thus, we can
examine the resolvent GS(z) by analyzing its ensemble average, denoted by ⟨.⟩ in the following.

〈
Gij(z)

〉
=

〈
1

Z

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}〉

(27)

where Z is the denominator in (26). Computing the average is, in general, non-trivial. However,
the replica method provides us with a technique to overcome this issue by employing the following
identity:

〈
Gij(z)

〉
= lim

n→0

〈
Zn−1

∫ (M+N∏

k=1

dηk

)
ηiηj exp

{
− 1

2
η⊺(zI − S

)
η
}〉

= lim
n→0

〈 ∫ (M+N∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑

τ=1

η(τ)⊺(zI − S
)
η(τ)

}〉 (28)

So, the problem now is reduced to computation of an average over n copies (or replicas) of the initial
system (26). After computing the average value (the bracket) in (28), we can perform an analytical
continuation of the result to real values of n and then take the limit n → 0. Throughout, we assume
as is common in the replica method, that the analytical continuation can be done with only n different
sets of points. Of course, this is a totally uncontrolled step that comes with no guarantees.

C Derivation of the RIE for X

In this section, we consider estimating X , and treat both Y and W as noise. We consider X to be
fixed, and the observation model:

S = XU1Y V ⊺
1 +U2WV ⊺

2 (29)

where Y ,W ∈ RN×M are fixed matrices with limiting singular value distribution µY , µW , and
U1,U2 ∈ RN×N ,V1,V2 ∈ RM×M are independent random Haar matrices.

Construct the hermitization S ∈ R(N+M)×(N+M) from S as

S =

[
0N×N S
S⊺ 0M×M

]

For simplicity of notation, we use T ≡ XU1Y V ⊺
1 , T ∈ R(N+M)×(N+M) the hermitization of T ,

and W̃ denotes the hermitization of the matrix U2WV ⊺
2 .
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C.1 Resolvent relation

We want to find a relation between G(z) ≡ GS(z), and the signal matrix X . From (28), we have

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

〈
exp

{
− 1

2

n∑

τ=1

η(τ)⊺(zI − S)η(τ)
}〉

U1,U2,V1,V2

= lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− z

2

n∑

τ=1

η(τ)⊺η(τ)
}

×
〈
exp

{1
2

n∑

τ=1

η(τ)⊺T η(τ)
}〉

U1,V1

〈
exp

{1
2

n∑

τ=1

η(τ)⊺W̃η(τ)
}〉

U2,V2

(30)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
. The exponent in

the first bracket in (30) can be written as:
η(τ)⊺T η(τ) = a(τ)⊺XU1Y V ⊺

1 b(τ) + b(τ)
⊺
V1Y

⊺U⊺
1 Xa(τ)

= 2a(τ)⊺XU1Y V ⊺
1 b(τ)

= 2Tr b(τ)a(τ)⊺XU1Y V ⊺
1

(31)

Using the formula for the rectangular spherical integral [22] (see Theorem 2 in H.1), we find:
〈
exp

{ n∑

τ=1

Tr b(τ)a(τ)⊺XU1Y V ⊺
1

}〉
U1,V1

≈ exp
{N

2

n∑

τ=1

Q(α)
µY

( 1

NM
∥Xa(τ)∥2∥b(τ)∥2

)}

(32)

with Q(α)
µY (x) =

∫ x

0

C(α)
µY

(t)

t dt. In (32), we used that b(τ)a(τ)⊺X is a rank-one matrix with non-zero
singular value ∥b(τ)∥∥Xa(τ)∥.

Similarly, for the second bracket in (30) we can write:

η(τ)⊺W̃η(τ) = a(τ)⊺U2WV ⊺
2 b(τ) + b(τ)

⊺
V2W

⊺U⊺
2 a

(τ)

= 2a(τ)⊺U2WV ⊺
2 b(τ)

= 2Tr b(τ)a(τ)⊺U2WV ⊺
2

(33)

which using the formula of rectangular spherical integrals, implies
〈
exp

{ n∑

τ=1

Tr b(τ)a(τ)⊺U2WV ⊺
2

}〉
U2,V2

≈ exp
{N

2

n∑

τ=1

Q(α)
µW

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)}
(34)

From (30), (32), (34), we find:

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
− 1

2

n∑

τ=1

z∥η(τ)∥2 −NQ(α)
µY

(∥Xa(τ)∥2∥b(τ)∥2
NM

)
−NQ(α)

µW

(∥a(τ)∥2∥b(τ)∥2
NM

)}

(35)

Now, we introduce delta functions δ
(
p
(τ)
1 − ∥a(τ)∥2

N

)
, δ

(
p
(τ)
2 − ∥b(τ)∥2

M

)
, and δ

(
p
(τ)
3 − ∥Xa(τ)∥2

N

)
,

and using them, the integral in (35) can be written as (for brevity we drop the limit term):

⟨Gij(z)⟩ =
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
p
(τ)
1 − ∥a(τ)∥2

N

)
δ
(
p
(τ)
2 − ∥b(τ)∥2

M

)
δ
(
p
(τ)
3 − ∥Xa(τ)∥2

N

)

× exp
{
− 1

2

n∑

τ=1

z∥η(τ)∥2 −NQ(α)
µY

(p
(τ)
2 p

(τ)
3 )−NQ(α)

µW
(p

(τ)
1 p

(τ)
2 )

}

(36)
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In the next step, we replace each delta with its Fourier transform, δ
(
pτ1 − 1

N ∥aτ∥2
)
∝

∫
dζτ1 exp

{
−

N
2 ζ

τ
1

(
pτ1 − 1

N ∥aτ∥2
)}

. After rearranging, we find:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3 dζ

(τ)
1 dζ

(τ)
2 dζ

(τ)
3

)

× exp
{N

2

n∑

τ=1

Q(α)
µY

(p
(τ)
2 p

(τ)
3 ) +Q(α)

µW
(p

(τ)
1 p

(τ)
2 )− ζ

(τ)
1 p

(τ)
1 − 1

α
ζ
(τ)
2 p

(τ)
2 − ζ

(τ)
3 p

(τ)
3

}

×
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp
{
− 1

2

n∑

τ=1

z∥η(τ)∥2 − ζ
(τ)
1 ∥a(τ)∥2 − ζ

(τ)
2 ∥b(τ)∥2 − ζ

(τ)
3 ∥Xa(τ)∥2

}

(37)

The inner integral in (37) is a Gaussian integral, and can be written as:
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
n∑

τ=1

−1

2
η(τ)⊺

[
(z − ζ

(τ)
1 )IN − ζ

(τ)
3 X2 0

0 (z − ζ
(τ)
2 )IM

]
η(τ)

}

(38)

Denote the matrix in the exponent by C
(τ)
X . Its determinant reads:

detC
(τ)
X = (z − ζ

(τ)
2 )M

N∏

k=1

(z − ζ
(τ)
1 − ζ

(τ)
3 λ2

k)

where λk’s are eigenvalues of X . So replacing the formula for the Gaussian integrals, (37) can be
written as:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dp
(τ)
1 dp

(τ)
2 dp

(τ)
3 dζ

(τ)
1 dζ

(τ)
2 dζ

(τ)
3

)(
C

(1)
X

−1)
ij

× exp
{
− Nn

2
FX
0 (p1,p2,p3, ζ1, ζ2, ζ3)

}

(39)

with

FX
0 (p1,p2,p3, ζ1, ζ2, ζ3) =

1

n

n∑

τ=1

[
1

N

N∑

k=1

ln(z − ζ
(τ)
1 − ζ

(τ)
3 λ2

k) +
1

α
ln(z − ζ

(τ)
2 )

−Q(α)
µY

(p
(τ)
2 p

(τ)
3 )−Q(α)

µW
(p

(τ)
1 p

(τ)
2 ) + ζ

(τ)
1 p

(τ)
1 +

1

α
ζ
(τ)
2 p

(τ)
2 + ζ

(τ)
3 p

(τ)
3

]

(40)

In the large N limit, the integral in (39) can be computed using the saddle-points of the function FX
0 .

In the evaluation of this integral, we use the replica symmetric ansatz that assumes a saddle-point of
the form:

∀τ ∈ {1, · · · , n} :

{
pτ1 = p1, pτ2 = p2, pτ3 = p3
ζτ1 = ζ1, ζτ2 = ζ2, ζτ3 = ζ3

The saddle point is a solution of the set of equations:




ζ∗1 =
C(α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = α
p∗
2

(
C(α)
µW (p∗1p

∗
2) + C(α)

µY (p∗2p
∗
3)
)
, ζ∗3 =

C(α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = 1
ζ∗
3
GρX2

( z−ζ∗
1

ζ∗
3

)
, p∗2 = 1

z−ζ∗
2
, p∗3 =

z−ζ∗
1

ζ∗
3
2 GρX2

( z−ζ∗
1

ζ∗
3

)
− 1

ζ∗
3

(41)
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Now, since the relation (39) and the solutions (41) hold for arbitrary indices i, j, we can state the
relation in matrix form. The inverse of C∗

X
−1, and the block structure of GS(z) are computed in

sections H.2. From (111), (112) we have (for sufficiently large N ):

〈
GS(z)

〉
U1,U2,V1,V2

=

〈[
1
zIN + 1

zSGS⊺S(z
2)S⊺ SGS⊺S(z

2)
GS⊺S(z

2)S⊺ zGS⊺S(z
2)

]〉

=

[
1
ζ∗
3
GX2

( z−ζ∗
1

ζ∗
3

)
0

0 1
z−ζ∗

2
IM

] (42)

With this relation, we proceed to simplify the equations (41).

The normalized trace of the upper-left blocks of
〈
GS(z)

〉
U1,U2,V1,V2

is:

1

N

N∑

k=1

[1
z
+

1

z

γ2
k

z2 − γ2
k

]
=

1

z

1

N

N∑

k=1

[
1 +

γ2
k

z2 − γ2
k

]

= z
1

N

N∑

k=1

1

z2 − γ2
k

=
1

2N

N∑

k=1

[ 1

z − γk
+

1

z + γk

]
= Gµ̄S

(z)

(43)

and the normalized trace of the upper-left block in C∗
X

−1 is 1
ζ∗
3
GρX2

( z−ζ∗
1

ζ∗
3

)
= p∗1. Therefore, we

have p∗1 = Gµ̄S
(z).

The normalized trace of lower-right block of
〈
GS(z)

〉
U1,U2,V1,V2

reads:

1

M
z
[ N∑

k=1

1

z2 − γ2
k

+ (M −N)
1

z2

]
=

N

M
Gµ̄S

(z) +
M −N

M

1

z
= αGµ̄S

(z) + (1− α)
1

z
(44)

and the normalized trace of the lower-right block in C∗
X

−1 is 1
z−ζ∗

2
= p∗2. Therefore, we have

p∗2 = αGµ̄S
(z) + (1− α) 1z . Moreover, we also have that ζ∗2 = αz

zGµ̄S
(z)−1

αzGµ̄S
(z)+1−α .

Therefore, the saddle point equations (41) can be rewritten in a simplified form, which does not
involve ρX2 , as:





ζ∗1 =
C(α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = αz
zGµ̄S

(z)−1

αzGµ̄S
(z)+1−α , ζ∗3 =

C(α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = Gµ̄S
(z), p∗2 = αGµ̄S

(z) + (1− α) 1z , p∗3 =
z−ζ∗

1

ζ∗
3

Gµ̄S
(z)− 1

ζ∗
3

(45)

Note that ζ∗1 , ζ
∗
2 can be computed from the observation matrix, and we only need to find ζ∗3 satisfying

the following equation:

(z − ζ∗1 )Gµ̄S
(z)− 1 = C(α)

µY

( 1

ζ∗3

[
αGµ̄S

(z) +
1− α

z

][
(z − ζ∗1 )Gµ̄S

(z)− 1
])

(46)

C.2 Overlaps and optimal eigenvalues

We restate the relation between the resolvent and the overlaps from the main text (18). For x̃i =
[x⊺

i ,0M ]⊺ with xi eigenvectors of X , we have:

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i ≈ πµ̄S(x)OX(x, λi) (47)

From (47), (42), we find:

OX(γ, λi) ≈
1

πµ̄S(γ)
Im lim

z→γ−i0+
x⊺
i ζ

∗
3
−1GX2

(z − ζ∗1
ζ∗3

)
xi

=
1

πµ̄S(γ)
Im lim

z→γ−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(48)
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Once we have the overlap, we can compute the optimal eigenvalues from (14) in section 5. Note
that, until now we had absorbed

√
κ into X . Therefore, we should use (48) with OX(γ,

√
κλi). This

leads to:

ξ̂∗xi ≈
1

N

N∑

j=1

λjOX(γi,
√
κλj)

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

λj

z − ζ∗1 − ζ∗3κλ
2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

κζ∗3

1

N

N∑

j=1

λj

z−ζ∗
1

κζ∗
3

− λ2
j

=
1

κπµ̄S(γi)
Im lim

z→γi−i0+

1

ζ∗3

(
1

2

1

N

N∑

j=1

1√
z−ζ∗

1

κζ∗
3

− λj

− 1

2

1

N

N∑

j=1

1√
z−ζ∗

1

κζ∗
3

+ λj

)

≈ 1

κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

2

1

ζ∗3
GρX

(√z − ζ∗1
κζ∗3

)
− 1

2

1

ζ∗3
Gρ−X

(√z − ζ∗1
κζ∗3

)}

=
1

2κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

ζ∗3

[
GρX

(√z − ζ∗1
κζ∗3

)
+ GρX

(
−

√
z − ζ∗1
κζ∗3

)]}

(49)

C.2.1 Estimating X2

The resolvent relation we have found in (42) is in terms of GX2 . Therefore, like other RIEs in other
problems [14, 19], we can express the estimator for X2 without any knowledge about ρX or ρX2 .
One can see that, the optimal RIE for X2 is constructed in the same way as for X with eigenvalues
denoted by ξ̂∗x2 i

. To compute the optimal eigenvalues, we absorb
√
κ into X and we use the exact

expression in (48). In the end, we only need to divide by κ to find an estimator for the true X2.

ξ̂∗x2 i
≈ 1

N

N∑

j=1

λ2
jOX(γi, λj)

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

λ2
j

z − ζ∗1 − ζ∗3λ
2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

ζ∗3

1

N

N∑

j=1

λ2
j

z−ζ∗
1

ζ∗
3

− λ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
− 1

ζ∗3

1

N

N∑

j=1

z−ζ∗
1

ζ∗
3

− λ2
j − z−ζ∗

1

ζ∗
3

z−ζ∗
1

ζ∗
3

− λ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
− 1

ζ∗3

1

N

N∑

j=1

[
1− z − ζ∗1

ζ∗3

1
z−ζ∗

1

ζ∗
3

− λ2
j

]

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+
− 1

ζ∗3
+

z − ζ∗1
ζ∗3

2 GρX2

(z − ζ∗1
ζ∗3

)

(a)
=

1

πµ̄S(γi)
Im lim

z→γi−i0+
p∗3

(b)
=

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄S
(z)− 1

ζ∗3

(50)

where in (a) we used (41), and for (b) we used (45). Thus, the optimal eigenvalues for X2 read:

ξ̂∗x2 i
=

1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄S
(z)− 1

ζ∗3
(51)
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Note that the parameters ζ∗1 , ζ
∗
3 can be computed from (45), (46), without the knowledge of ρX or

ρX2 .
Remark 3. The main barrier to find an estimator for X is that the resolvent relation (42) is in terms of
GρX2 . Moreover, in the estimator for X , second equality in (49), we have the sum

∑N
j=1

λj

z−ζ∗
1−κζ∗

3λ
2
j

which cannot be written in terms of GρX2 .
Remark 4. If we add the assumption that the matrix X is positive semi-definite, without any further

knowledge on the prior, we can use
√
ξ̂∗x2 i

for the eigenvalues of ΞX(S). However, note that, this

estimator is sub-optimal for X as
√∑N

j=1 λ
2
j

(
u⊺
i xj

)2 ̸= ∑N
j=1 λj

(
u⊺
i xj

)2
.

C.3 Numerical Examples

In this section, we will illustrate the derived formulas (42), (48), and (49) with numerical experiments.

We consider matrices Y ,W ∈ RN×M to have i.i.d. Gaussian entries, so C(α)
µY (z) = C(α)

µW (z) = 1
αz

which leads to a simplification of saddle point equations (45):
{
ζ∗1 = 1

αp
∗
2, ζ∗2 = αz

zGµ̄S
(z)−1

αzGµ̄S
(z)+1−α , ζ∗3 = 1

αp
∗
2

p∗1 = Gµ̄S
(z), p∗2 = αGµ̄S

(z) + (1− α) 1z , p∗3 =
z−ζ∗

1

ζ∗
3

Gµ̄S
(z)− 1

ζ∗
3

(52)

C.3.1 Resolvent relation

We take κ = 1. In model (29), without loss of generality we can consider X to be diagonal. In figures
5 and 6 respectively, we consider the X to be a diagonal matrix obtained by taking the eigenvalues of
a Wigner matrix and a Wishart matrix respectively.

Note that µS and Gµ̄S
(z) can be computed analytically using tools from random matrix theory, but the

computation is highly involved. In our experiments, we use instead a numerical estimation of Gµ̄S
(z)

obtained from the observation matrix with the help of a Cauchy kernel to compute the parameters
ζ∗1 , ζ

∗
3 (see section G, and [58] for details on the Cauchy kernel method).

Unlike the simpler models [15] for which the fluctuations are derived to be of the order 1/
√
N , based

on our derivation we cannot assess the order of fluctuations. However, from our numerics we observe
that the fluctuations are of the order o(N). Moreover, fluctuations near the edge points of density are
larger (in particular for the last row in both figures 5, 6), which is due to the fact that the limiting
measures have higher fluctuations on their edge-points.

Another observation, from comparison of figures 5, 6, is that the fluctuations for the first example are
relatively larger than the second one. One possible guess could be that this is due to the symmetry of
ρX in the first example. However based on more extensive numerical observations (which we omit
here) we speculate that this issue is in fact related to the existence of small eigenvalues of X . In other
words, if X has eigenvalue 0 or small eigenvalues, we have higher fluctuations in the relation (47).

C.3.2 Overlaps

To illustrate the formula for the overlap (48), we fix the matrix X and run experiments over various
realization of the model (29). For each experiment, we record the overlap of k-th left singular
vector of S and the eigenvectors of X . To compute the theoretical prediction, we find ζ∗1 = ζ∗3 for
z = γ̄k − i0+ where γ̄k is the average of k-th singular value of S in the experiments.

To find ζ∗1 = ζ∗3 , we use the set of equations (41) which for Y ,W Gaussian can be written as:




ζ∗1 = 1
αp

∗
2, ζ∗2 = p∗1 + p∗3, ζ∗3 = 1

αp
∗
2

p∗1 = 1
ζ∗
1
GρX2

(
z
ζ∗
1
− 1

)
, p∗2 = 1

z−ζ∗
2
, p∗3 =

z−ζ∗
1

ζ∗
1
2 GρX2

(
z
ζ∗
1
− 1

)
− 1

ζ∗
1

(53)

Now we proceed to simplify the solution above:

ζ∗2 = p∗1 + p∗3 =
z

ζ∗1
2GρX2

( z

ζ∗1
− 1

)
− 1

ζ∗1
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Figure 5: Illustration of (42). X is diagonal matrix from the eigenvalues of a Wigner matrix and Y ,Z
are Gaussian matrices with N = 2000,M = 3000. The empirical estimate of GS(z) (dashed blue line) is

computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N . Theoretical estimate (solid orange line) computed from the
rhs of (42) with parameters obtained from the generated matrix. Note that, the theoretical estimate has also
fluctuations because the parameters ζ∗1 , ζ∗3 are given by the numerical estimate of Gµ̄S (z).
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Figure 6: Illustration of (42).X is diagonal matrix from the eigenvalues of a Wishart matrix with aspect ratio
1/2 and Y ,Z are Gaussian matrices with N = 2000,M = 3000. The empirical estimate of GS(z) (dashed

blue line) is computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N . The Theoretical estimate (solid orange line) is
computed from the rhs of (42) with parameters obtained from the generated matrix. Note that, the theoretical
estimate has also fluctuations because the parameters ζ∗1 , ζ∗3 are given by the numerical estimate of Gµ̄S (z).
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Figure 7: Computation of the rescaled overlap. Both Y and W are N×M matrices with i.i.d. Gaussian entries
of variance 1/N , and aspect ratio N/M = 1/2. The simulation results are averaged over 1000 experiments
with fixed X , and N = 1000,M = 2000. Some of the simulation points are dropped for clarity.

p∗2 =
1

z − ζ∗2
=

ζ∗1
ζ∗1z − z

ζ∗
1
GρX2

(
z
ζ∗
1
− 1

)
+ 1

ζ∗1 =
1

α
p∗2 =⇒ ζ∗1z −

z

ζ∗1
GρX2

( z

ζ∗1
− 1

)
+ 1 =

1

α

⇒ GρX2

( z

ζ∗1
− 1

)
= ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

⇒ z

ζ∗1
− 1 = G−1

ρX2

(
ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

)

⇒ z

ζ∗1
− 1− 1

ζ∗1
2 +

(
1− 1

α

) ζ∗
1

z

= RρX2

(
ζ∗1

2 +
(
1− 1

α

)ζ∗1
z

)

(54)

Thus, ζ∗1 is the solution to (54). For each example, we solve this equation and compare the obtained
theoretical overlap against the average over the experiments.

Wigner X . Let X ∈ RN×N be a Wigner matrix, then RρX2 (z) = 1
1−z . Solving (54), we can

compute the overlap using (48). In Fig. 7a, we compare the theoretical computation with simulations
for N = 1000,M = 2000. As in previous cases µ̄S(γ) is approximated using a Cauchy kernel [58].

Square root Wishart X . Let X ∈ RN×N be the square root of a Wishart matrix X =
√

1
NHH⊺

with H ∈ RN×N ′
having i.i.d. Gaussian entries. Then RρX2 (z) =

1
α′

1
1−z , α′ = N/N ′. Solving (54),

we can compute the overlap using (48). In Fig. 7b, we compare the theoretical computation with
simulations for N = 1000, N ′ = 4000,M = 2000.

C.3.3 RIE performance

In this section, we investigate the performance of our proposed estimators for X . We compare
performances of the optimal RIE (49) with the one of Oracle estimator (3). Moreover, we illustrate
the performance of the estimator for X2 (50), and the sub-optimal estimator of X derived from it,
see remark 4.
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For Y ,W with Gaussian i.i.d. entries, (51) simplifies to:

ξ̂∗x2 i
=

1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z − ζ∗1
ζ∗3

Gµ̄S
(z)− 1

ζ∗3

=
1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z

ζ∗1
Gµ̄S

(z)− Gµ̄S
− 1

ζ∗1

=
1

κ

1

πµ̄S(γi)
Im lim

z→γi−i0+

z

Gµ̄S
(z) + 1−α

α
1
z

Gµ̄S
(z)− Gµ̄S

(z)− 1

Gµ̄S
(z) + 1−α

α
1
z

=
1

κ

1

πµ̄S(γi)
Im

{
γi

πH[µ̄S ](γi) + πiµ̄S(γi) +
1−α
α

1
γi

(
πH[µ̄S ](γi) + πiµ̄S(γi)

)

−
(
πH[µ̄S ](γi) + πiµ̄S(γi)

)
− 1

πH[µ̄S ](γi) + πiµ̄S(γi) +
1−α
α

1
γi

}

=
1

κ

1

πµ̄S(γi)
πµ̄S(γi)

(
− 1 +

1

α
(
π2µ̄S(γi)2 +

(
πH[µ̄S ](γi) +

−1+ 1
α

γi

)2)
)

=
1

κ

[
− 1 +

1

α
(
π2µ̄S(γi)2 +

(
πH[µ̄S ](γi) +

−1+ 1
α

γi

)2)
]

(55)

For our first example, we consider two priors for X:

Shifted Wigner X . We consider X = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries with
variance 1/N , and c ̸= 0 is a real number. Then, the spectrum of X is a shifted version of the Wigner
law

ρX(λ) =

√
4− (λ− c)2

2π
, for c− 2 < λ < c+ 2,

and the Stieltjes transform reads:

GρX
(z) =

z − c−
√
(z − 2− c)(z + 2− c)

2

Wishart X . Take X = 1
NHH⊺ with H ∈ RN×N ′

having i.i.d. Gaussian entries, with N/N ′ =
α′ ≤ 1. Then, the spectrum of X is the renowned Marchenko-Pastur distribution:

ρX(λ) =

√[
λ−

(
1√
α′ − 1

)2][( 1√
α′ + 1

)2 − λ
]

2πλ
, for

( 1√
α′ − 1

)2
< λ <

( 1√
α′ + 1

)2
,

and the Stieltjes transform reads:

GρX
(z) =

z −
(

1
α′ − 1

)
−

√[
z −

(
1√
α′ − 1

)2][
z −

(
1√
α′ + 1

)2]

2z

In Figure 8, the MSE of Oracle estimator, RIE (49), and
√
X2-RIE is illustrated for shifted Wigner

X with c = 3, and Wishart with aspect-ratio α′ = 1/4. We see that the performance of RIE is close to
the one of Oracle estimator, which implies the optimality of the proposed estimator (49). Moreover,

we observe the sub-optimality of estimating X using
√
Ξ̂∗

X2(S). Note that, in the low-SNR regime,

the estimated eigenvalues ξ̂∗x2 i
might be negative which makes the estimator

√
Ξ̂∗

X2(S) undefined,
so the MSE is not depicted in this case.

In Figure 9, the MSE of estimating X2 is shown. We see that in the high-SNR regimes the RIE (55)
has the same performance as the Oracle estimator.
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Figure 8: Estimating X . The MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are N×M
matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 1/2. The RIE is applied to
N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

X(S) and Oracle estimator is also reported.
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Figure 9: Estimating X2. The MSE is normalized by the norm of the signal, ∥X2∥2F. Both Y and W are
N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 1/2. The RIE is applied
to N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

X(S) and Oracle estimator is also reported.

Bernoulli spectral distribution. In this case, the matrix X is constructed as X = UXΛU⊺
X with

UX a N ×N orthogonal matrix distributed according to Haar measure on orthogonal matrices, and
Λ = diag(λ) where λ has i.i.d. Bernoulli elements. Thus, ρX = pδ0 + (1− p)δ+1 for p ∈ (0, 1),
and the Stieltjes transform is:

GρX
(z) = p

1

z
+ (1− p)

1

z − 1

For this prior, we have that X = X2, so both estimators Ξ̂∗
X(S) and Ξ̂∗

X2(S) should have the same
performance. However, note that Ξ̂∗

X2(S) does not use any knowledge of ρX . In Figure 10, the MSE
is illustrated for these two estimators for two sparsity parameter, p = 0.5 and 0.9. We observe that,
except for for the low-SNR regimes, both estimators have the same MSE. The poor performance of
Ξ̂∗

X2(S) in the low-SNR regimes might be due to the fact that, some of the estimated eigenvalues
ξ̂∗x2 i

are negative although the true eigenvalue is 0. This makes the estimation more difficult for the
sparser prior, see Figure 10b. However, this problem is resolved in Ξ̂∗

X(S) by taking the knowledge
of GρX

(z) into account.

Effect of aspect-ratio α. In Figure 11, we consider X to be shifted Wigner with c = 3, and the
MSE is depicted for various values of the aspect-ratio α. As expected, as M increases (α decreases)
and we have more observation or more data samples, the estimation error decreases.
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Figure 10: Estimating X and X2 with Bernoulli spectral prior distribution. The MSE is normalized by the
norm of the signal, ∥X∥2F = ∥X2∥2F. Both Y and W are N × M matrices with i.i.d. Gaussian entries of
variance 1/N , and aspect ratio N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

X(S) and Oracle
estimator is also reported.
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Figure 11: MSE of estimating X as a function of aspect-ratio α, prior on X is shifted Wigner with c = 3, and
κ = 5. MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are N ×M matrices with i.i.d.
Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results are averaged
over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

X(S) and Oracle estimator is also
reported.

D Estimating Y

In this section, we present the derivation of the optimal RIE for Y . For simplicity, the SNR parameter
in (1) is absorbed into Y , so the model is S = XY +W . Therefore, the final estimator should be
divided by 1/

√
κ to give an estimate of the original Y .

The optimal singular values are constructed as ξ∗yi =
∑N

j=1 σj

(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)
. We assume that,

for large N , ξ∗yi can be approximated by its expectation:

ξ̂∗yi ≈
N∑

j=1

σj E
[(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)]

where the expectation is over the singular vectors of the observation matrix S. Therefore, to compute
the optimal singular values, we need to find the mean overlap E

[(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)]
between singular

vectors of Y and singular vectors of S. In the following we will see that (a rescaling of) this quantity
can be expressed in terms of i-th singular value of S and j-th singular value of Y (and the limiting
measures, indeed). Thus, we will use the notation OY (γi, σj) := NE

[(
u⊺
i y

(l)
j

)(
v⊺
i y

(r)
j

)]
in what

follows. In the nest section, we discuss how the overlap can be computed from the resolvent of the
Hermitized matrix of S.
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D.1 Relation between overlap and the resolvent

Construct the matrix S ∈ R(N+M)×(N+M) from the observation matrix:

S =

[
0N×N S
S⊺ 0M×M

]

By Theorem 7.3.3 in [59], S has the following eigen-decomposition:

S =

[
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

] [ ΓN 0 0
0 −ΓN 0
0 0 0

] [
ÛS ÛS 0

V̂
(1)
S −V̂

(1)
S V

(2)
S

]⊺
(56)

with VS =
[
V

(1)
S V

(2)
S

]
in which V

(1)
S ∈ RM×N . And, V̂ (1)

S = 1√
2
V

(1)
S , ÛS = 1√

2
US .

Eigenvalues of S are signed singular values of S, therefore the limiting eigenvalue distribution of S
(ignoring zero eigenvalues) is the same as the limiting symmetrized singular value distribution of S.

Define the resolvent of S
GS(z) =

(
zI − S

)−1

Denote the eigenvectors of S by si ∈ RM+N , i = 1, . . . ,M +N . For z = x− iϵ with x ∈ R and
ϵ ≫ 1

N , we have:

GS(x− iϵ) =
2N∑

k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
sks

⊺
k +

x+ iϵ

x2 + ϵ2

N+M∑

k=2N+1

sks
⊺
k

where γ̃k are the eigenvalues of S, which are in fact the (signed) singular values of S, γ̃1 =
γ1, . . . , γ̃N = γN , γ̃N+1 = −γ1, . . . , γ̃2N = −γN .

Define the vectors ri =
[

0N

y
(r)
i

]
, li =

[
y
(l)
i

0M

]
for y(r)

i ,y
(l)
i right/ left singular vectors of Y , we

have

r⊺i
(
ImGS(x− iϵ)

)
li =

2N∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
r⊺i sk

)(
l⊺i sk

)
+

x+ iϵ

x2 + ϵ2

N+M∑

k=2N+1

(
r⊺i sk

)(
l⊺i sk

)

(57)

Given the structure of sk’s in (56), we have:

(
r⊺i sk

)(
l⊺i sk

)
=





1
2

(
u⊺
ky

(l)
i

)(
v⊺
ky

(r)
i

)
for 1 ≤ k ≤ N

− 1
2

(
u⊺
k−Ny

(l)
i

)(
v⊺
k−Ny

(r)
i

)
for N + 1 ≤ k ≤ 2N

0 for 2N + 1 ≤ k ≤ N +M

In the limit of large N, the latter quantity is also self-averaging, due to the fact that as N → ∞, these
overlaps exhibit asymptotic independence, enabling the law of large numbers to be applied here. We
can thus state that:

r⊺i
(
ImGS(x− iϵ)

)
li

N→∞−−−−→
∫

R

ϵ

(x− t)2 + ϵ2
OY (t, σi)µ̄S(t) dt (58)

where the overlap function OY (t, λi) is extended (continuously) to arbitrary values within the support
of µ̄S with the property that OY (−t, λi) = −OY (t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find

r⊺i
(
ImGS(x− iϵ)

)
li ≈ πµ̄S(x)OY (x, σi) (59)

In the next section, we establish a connection between the resolvent GS(z) and the signal Y , which
enables us to determine the overlap and consequently the optimal singular values values ξ̂∗yi in terms
of the singular values of the observation matrix S.

28



D.2 Resolvent relation for Y

In this section, we consider estimating Y , and treat both X and W as noise. We consider the model
to be:

S = OXO⊺Y +UWV ⊺ (60)
where X = X⊺ ∈ RN×N ,W ∈ RN×M are fixed matrices with limiting eigenvalue/singular value
distribution ρX , µW , and O,U ∈ RN×N ,V ∈ RM×M are independent random Haar matrices. For
simplicity of notation, we use T ≡ OXO⊺Y , and T ∈ R(N+M)×(N+M) the hermitization of T .
And W̃ denotes the hermitization of the matrix UWV ⊺.

As in the case for X , we express the entries of G(z) ≡ GS(z) using Gaussian integral representation,
and after applying the replica trick (28), we find:

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

〈
exp

{
− 1

2

n∑

τ=1

η(τ)⊺(zI − S)η(τ)
}〉

O,U ,V

= lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− z

2

n∑

τ=1

η(τ)⊺η(τ)
}

×
〈
exp

{1
2

n∑

τ=1

η(τ)⊺T η(τ)
}〉

O

〈
exp

{1
2

n∑

τ=1

η(τ)⊺W̃η(τ)
}〉

U ,V

(61)

Split each replica η(τ) into two vectors a(τ) ∈ RN , b(τ) ∈ RM , η(τ) =

[
a(τ)

b(τ)

]
. The exponent in

the first bracket in (61) can be written as :

η(τ)⊺T η(τ) = a(τ)⊺OXO⊺Y b(τ) + b(τ)
⊺
Y ⊺OXO⊺a(τ)

= TrOXO⊺(Y b(τ)a(τ)⊺ + a(τ)b(τ)
⊺
Y ⊺

︸ ︷︷ ︸
Ỹ (τ)

) (62)

where Ỹ (τ) is a symmetric N × N matrix with two non-zero eigenvalues a(τ)⊺Y b(τ) ±
∥a(τ)∥∥Y b(τ)∥ by lemma 3.

Using the formula for the spherical integral [21] (see Theorem 1 in H.1), we find:
〈
exp

{1
2

n∑

τ=1

TrOXO⊺Ỹ (τ)
}〉

O
≈ exp

{
N

2

n∑

τ=1

PρX

( 1

N

(
a(τ)⊺Y b(τ) + ∥a(τ)∥∥Y b(τ)∥

))

+ PρX

( 1

N

(
a(τ)⊺Y b(τ) − ∥a(τ)∥∥Y b(τ)∥

))}

(63)

By the same computation as previous section, for the second bracket we have:
〈
exp

{ n∑

τ=1

Tr b(τ)a(τ)⊺UWV ⊺}〉
U ,V

≈ exp
{N

2

n∑

τ=1

Q(α)
µW

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)}
(64)

From (61), (63), (64), we find:

⟨Gij(z)⟩ = lim
n→∞

∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp

{
− 1

2

n∑

τ=1

[
z∥η(τ)∥2 −NQ(α)

µW

( 1

NM
∥a(τ)∥2∥b(τ)∥2

)

−NPρX

( 1

N

(
a(τ)⊺Y b(τ) + ∥a(τ)∥∥Y b(τ)∥

))

−NPρX

( 1

N

(
a(τ)⊺Y b(τ) − ∥a(τ)∥∥Y b(τ)∥

))]
}

(65)
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Now, we introduce delta functions (for brevity we drop the limit term):

⟨Gij(z)⟩ =
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)( n∏

τ=1

dp
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4

)
η
(1)
i η

(1)
j

×
n∏

τ=1

δ
(
q
(τ)
1 − 1

N
∥a(τ)∥2

)
δ
(
q
(τ)
2 − 1

M
∥b(τ)∥2

)

× δ
(
q
(τ)
3 − 1

N
∥Y b(τ)∥2

)
δ
(
q
(τ)
4 − 1

N
a(τ)⊺Y b(τ)

)

× exp
{
− 1

2

n∑

τ=1

z∥η(τ)∥2 −NQ(α)
µW

(q
(τ)
1 q

(τ)
2 )

−NPρX

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
−NPρX

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)}

(66)

In the next step, we replace each delta with its Fourier transform. Note that for the parameters
q1, q2, q3 we use δ

(
qτ1 − 1

N ∥aτ∥2
)
∝

∫
dβτ

1 exp
{
− N

2 β
τ
1

(
qτ1 − 1

N ∥aτ∥2
)}

, and for q4 we use

δ
(
q
(τ)
4 − 1

N a(τ)⊺Y b(τ)
)
∝

∫
dβτ

1 exp
{
− Nβτ

1

(
q
(τ)
4 − 1

N a(τ)⊺Y b(τ)
)}

. After rearranging, we
find:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dq
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4 dβ

(τ)
1 dβ

(τ)
2 dβ

(τ)
3 dβ

(τ)
4

)

× exp
{N

2

n∑

τ=1

Q(α)
µW

(q
(τ)
1 q

(τ)
2 ) + PρX

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
+ PρX

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)

− β
(τ)
1 q

(τ)
1 − 1

α
β
(τ)
2 q

(τ)
2 − β

(τ)
3 q

(τ)
3 − 2β

(τ)
4 q

(τ)
4

}

×
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j exp

{
− 1

2

n∑

τ=1

z∥η(τ)∥ − β
(τ)
1 ∥a(τ)∥2 − β

(τ)
2 ∥b(τ)∥2

− β
(τ)
3 ∥Y b(τ)∥2 − 2β

(τ)
4 a(τ)⊺Y b(τ)

}

(67)

The inner integral is a Gaussian integral, and can be written as:
∫ (N+M∏

k=1

n∏

τ=1

dη
(τ)
k

)
η
(1)
i η

(1)
j

× exp
{ n∑

τ=1

−1

2
η(τ)⊺

[
(z − β

(τ)
1 )IN −β

(τ)
4 Y

−β
(τ)
4 Y ⊺ (z − β

(τ)
2 )IM − β

(τ)
3 Y ⊺Y

]
η(τ)

} (68)

Denote the matrix in the exponent by C
(τ)
Y . Using the formula for determinant of block matrices (see

proposition 2.8.4 in [61]), we have::

detC
(τ)
Y = det

[
(z − β

(τ)
1 )IN − β

(τ)
4

2
Y
(
(z − β

(τ)
2 )IM − β

(τ)
3 Y ⊺Y

)−1
Y ⊺

]

× det
[
(z − β

(τ)
2 )IM − β

(τ)
3 Y ⊺Y

]

=

N∏

k=1

[
z − β

(τ)
1 − β

(τ)
4

2 σ2
k

z − β
(τ)
2 − β

(τ)
3 σ2

k

] N∏

k=1

(
z − β

(τ)
2 − β

(τ)
3 σ2

k

) (
z − β

(τ)
2

)M−N

=
(
z − β

(τ)
2

)M−N
N∏

k=1

[
(z − β

(τ)
1 )(z − β

(τ)
2 − β

(τ)
3 σ2

k)− β
(τ)
4

2
σ2
k

]

=
(
z − β

(τ)
2

)M−N
N∏

k=1

[
(z − β

(τ)
1 )(z − β

(τ)
2 )−

(
β
(τ)
4

2
+ β

(τ)
3 (z − β

(τ)
1 )

)
σ2
k

]
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where σk’s are the singular values of Y . So computing the Gaussian integrals, (67) can be written as:

⟨Gij(z)⟩ ∝
∫ ( n∏

τ=1

dq
(τ)
1 dq

(τ)
2 dq

(τ)
3 dq

(τ)
4 dβ

(τ)
1 dβ

(τ)
2 dβ

(τ)
3 dβ

(τ)
4

)(
C

(1)
Y

−1)
ij

× exp
{
− Nn

2
FY
0 (q1, q2, q3, q4,β1,β2,β3,β4)

}

(69)

with

FY
0 (q1, q2, q3, q4,β1,β2,β3,β4) =

1

n

n∑

τ=1

[( 1
α
− 1

)
ln(z − β

(τ)
2 )

+
1

N

N∑

k=1

ln
(
(z − β

(τ)
1 )(z − β

(τ)
2 )−

(
β
(τ)
4

2
+ β

(τ)
3 (z − β

(τ)
1 )

)
σ2
k

)

−Q(α)
µW

(q
(τ)
1 q

(τ)
2 )− PρX

(
q
(τ)
4 +

√
q
(τ)
1 q

(τ)
3

)
− PρX

(
q
(τ)
4 −

√
q
(τ)
1 q

(τ)
3

)

+ β
(τ)
1 q

(τ)
1 +

1

α
β
(τ)
2 q

(τ)
2 + β

(τ)
3 q

(τ)
3 + 2β

(τ)
4 q

(τ)
4

]

(70)

We will evaluate the integral (67) using saddle-points of the function FY
0 . From the replica symmetric

ansatz at the saddle-point we have:

∀τ ∈ {1, · · · , n} :

{
qτ1 = q1, qτ2 = q2, qτ3 = q3, qτ4 = q4
βτ
1 = β1, βτ

2 = β2, βτ
3 = β3, βτ

4 = β4

Finally, we find the solution to be:




β∗
1 =

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 = α

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 =
(z−β∗

2 )β
∗
4
2

Z2(z)2
GρY

(Z1(z)
Z2(z)

)
+

β∗
3

Z2(z)

q∗2 = α
z−β∗

1

Z2(z)
GρY

(Z1(z)
Z2(z)

)
+ 1−α

z−β∗
2

q∗3 =
(z−β∗

1 )Z1(z)
Z2(z)2

GρY

(Z1(z)
Z2(z)

)
− z−β∗

1

Z2(z)

q∗4 =
β∗
4Z1(z)
Z2(z)2

GρY

(Z1(z)
Z2(z)

)
− β∗

4

Z2(z)

with
{
Z1(z) = (z − β∗

1)(z − β∗
2)

Z2(z) = β∗
4
2 + β∗

3(z − β∗
1)

(71)
where ρY is the limiting eigenvalue distribution of Y Y ⊺.

The relation (69) and the solutions (71) hold for arbitrary indices i, j, so we can state the relation in
the matrix form. Computing the inverse of C∗

Y
−1 (see section H.2), we have:

〈
GS(z)

〉
O,U ,V

=

〈[
1
zIN + 1

zSGS⊺S(z
2)S⊺ SGS⊺S(z

2)
GS⊺S(z

2)S⊺ zGS⊺S(z
2)

]〉

=

[
1

z−β∗
1
IN +

β∗
4
2

(z−β∗
1 )Z2(z)

Y GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ β∗

4

Z2(z)
Y GY ⊺Y

(Z1(z)
Z2(z)

)
β∗
4

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ z−β∗

1

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
]

(72)

With this relation, we can further simplify the solution (71).

We start with comparing the trace of upper-left block in (72). The normalized trace of the first block
in

〈
GS(z)

〉
O,U ,V

is computed in (43) to be Gµ̄S
(z). The normalized trace of the upper-left block in
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C∗
Y
−1 is:

1

N
Tr

[
(z − β∗

1)
−1IN+

β∗
4
2

(z − β∗
1)Z2(z)

Y GY ⊺Y

(Z1(z)

Z2(z)

)
Y ⊺

]

=
1

N

1

z − β∗
1

N∑

k=1

[
1 +

β∗
4
2

Z2(z)

σ2
k

Z1(z)
Z2(z)

− σ2
k

]

=
1

N

1

z − β∗
1

N∑

k=1

[β∗
4
2Z1(z)

Z2
2 (z)

1
Z1(z)
Z2(z)

− σ2
k

+ 1− β∗
4
2

Z2(z)

]

=
1

N

1

z − β∗
1

β∗
4
2Z1(z)

Z2
2 (z)

N∑

k=1

1
Z1(z)
Z2(z)

− σ2
k

+
1

z − β∗
1

β∗
3(z − β∗

1)

Z2(z)

=
(z − β∗

2)β
∗
4
2

Z2(z)2
GρY

(Z1(z)

Z2(z)

)
+

β∗
3

Z2(z)

= q∗1

(73)

Thus, q∗1 = Gµ̄S
(z).

The normalized trace of the lower-right block of
〈
GS(z)

〉
O,U ,V

is αGµ̄S
(z) + (1− α) 1z (see (44)).

The normalized trace of the lower-right block in C∗
Y
−1 is:

1

M
Tr

[z − β∗
1

Z2(z)
GY ⊺Y

(Z1(z)

Z2(z)

)]
=

1

M

z − β∗
1

Z2(z)

N∑

k=1

1
Z1(z)
Z2(z)

− σ2
k

+
M −N

M

z − β∗
1

Z2(z)

Z2(z)

Z1(z)

=
N

M

1

N

z − β∗
1

Z2(z)

N∑

k=1

1
Z1(z)
Z2(z)

− σ2
k

+
M −N

M

z − β∗
1

Z1(z)

= α
z − β∗

1

Z2(z)
GρY

(Z1(z)

Z2(z)

)
+

1− α

z − β∗
2

= q∗2

(74)

So, q∗2 = αGµ̄S
(z) + (1− α) 1z .

With a bit of algebra, we can express the parameters q∗3 , q
∗
4 in terms of q∗1 , β

∗
1 , β

∗
4 :

q∗3 =
(z − β∗

1)
2

β∗
4
2 q∗1 − z − β∗

1

β∗
4
2 , q∗4 =

z − β∗
1

β∗
4

q∗1 − 1

β∗
4

(75)

Therefore, the solution can be written without involving GρY
, as:





β∗
1 =

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 = α

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 = Gµ̄S
(z)

q∗2 = αGµ̄S
(z) + (1− α) 1z

q∗3 =
(z−β∗

1 )
2

β∗
4
2 Gµ̄S

(z)− z−β∗
1

β∗
4
2

q∗4 =
z−β∗

1

β∗
4

Gµ̄S
(z)− 1

β∗
4

(76)

Remark 5. The simplifications in (75) are derived with the assumption that β∗
4 ̸= 0. However, in

the initial set of equations (71), if ρX is symmetric measure then β∗
4 = q∗4 = 0 is a solution. If ρX is

symmetric, then RρX
(−z) = −RρX

(z), and plugging q∗4 = 0 in the expression for β∗
4 in (71), we

find that β∗
4 = 0.
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D.3 Overlaps and the optimal singular values

From (59), (72), we find:

OY (γ, σi) ≈
1

πµ̄S(γ)
Im lim

z→γ−i0+

β∗
4

Z2(z)
y
(r)
i

⊺
GY ⊺Y

(Z1(z)

Z2(z)

)
Y ⊺y(l)

i

=
1

πµ̄S(γ)
Im lim

z→γ−i0+
β∗
4

σi

Z1(z)− Z2(z)σ2
i

(77)

From the overlap, we can compute the optimal singular values:

ξ̂∗yi ≈
1

N

N∑

j=1

σjOY (γi, σj)

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

N∑

j=1

β∗
4

σ2
j

Z1(z)− Z2(z)σ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

β∗
4

Z2(z)

N∑

j=1

σ2
j

Z1(z)
Z2(z)

− σ2
j

=
1

πµ̄S(γi)
Im lim

z→γi−i0+

1

N

β∗
4

Z2(z)

N∑

j=1

[ Z1(z)
Z2(z)

Z1(z)
Z2(z)

− σ2
j

− 1

]

≈ 1

πµ̄S(γi)
Im lim

z→γi−i0+

β∗
4Z1(z)

Z2(z)2
GρY

(Z1(z)

Z2(z)

)
− β∗

4

Z2(z)

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
q∗4

(78)

where in the last equality we used the solution we have found in (71). Note that, based on (76), we do
not need to have any knowledge about ρY to compute q∗4 . In the end, we need to divide the estimator
by

√
κ as we have absorbed it into Y .

D.3.1 Recovering the rectangular RIE for a denoising problem

Note that if in the model (60), we put X = I the model reduces to the additive denoising of Y , and
we recover the estimator recently proposed in [19] for the rectangular case.

For X = I , RρX
(z) = 1, so (76) reduces to:





β∗
1 =

C(α)
µW

(q∗1q
∗
2 )

q∗1
, β∗

2 = α
C(α)
µW

(q∗1q
∗
2 )

q∗2
, β∗

3 = 0, β∗
4 = 1

q∗1 = Gµ̄S
(z), q∗2 = αGµ̄S

(z) + (1− α) 1z
q∗3 = (z − β∗

1)
2Gµ̄S

(z)− (z − β∗
1), q∗4 = (z − β∗

1)Gµ̄S
(z)− 1

(79)
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From (78), we have:

ξ̂∗yi =
1

πµ̄S(γi)
Im lim

z→γi−i0+
q∗4

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− β∗
1Gµ̄S

(z)− 1

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− C(α)
µW (q∗1q

∗
2)

q∗1
Gµ̄S

(z)− 1

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− C(α)
µW

(q∗1q
∗
2)− 1

=
1

πµ̄S(γi)
Im lim

z→γi−i0+
zGµ̄S

(z)− C(α)
µW

(
Gµ̄S

(z)
(
αGµ̄S

(z) + (1− α)
1

z

))
− 1

(a)
=

1

πµ̄S(γi)
Im

[
γiGµ̄S

(γi − i0+)− C(α)
µW

(
1

γi
Gµ̄S

(γi − i0+)
(
1− α+ αγiGµ̄S

(γi − i0+)
))]

(b)
= γi −

1

πµ̄S(γi)
Im C(α)

µW

(
1− α

γi
πH[µ̄S ](γi) + α

(
πH[µ̄S ](γi)

)2 − α
(
πµ̄S(γi)

)2

+ iπµ̄S(γi)
(1− α

γi
+ 2απH[µ̄S ](γi)

))

(80)

where in (a) we used the analyticity of rectangular R-transform [57], and in (b), we used Plemelj
formula (6). Note that, the final estimator should be divided by the

√
κ.

D.4 Examples

Throughout the numerical experiments, we consider the matrix W to have i.i.d. Gaussian entries
with variance 1/N , so C(α)

µW (z) = 1
αz. And, X = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries

with variance 1/N , and c ̸= 0 is a real number, so RρX
(z) = z + c. With these choices, the solution

(76) simplifies to:




β∗
1 = 1

αq
∗
2 + q∗3 , β∗

2 = q∗1 , β∗
3 = q∗1 , β∗

4 = q∗4 + c

q∗1 = Gµ̄S
(z), q∗2 = αGµ̄S

(z) + (1− α) 1z
q∗3 =

(z−β∗
1 )

2

β∗
4
2 Gµ̄S

(z)− z−β∗
1

β∗
4
2 , q∗4 =

z−β∗
1

β∗
4

Gµ̄S
(z)− 1

β∗
4

(81)

Note that in (81), q∗1 , q
∗
2 are given in terms of the observation, so to find the solution we only need to

find the parameters q∗3 , q
∗
4 . In (81), one can see that we have the relation q∗3 =

z−β∗
1

β∗
4

q∗4 . Writing the
parameters β∗

1 , β
∗
4 in terms of q∗2 , q

∗
3 , q

∗
4 , after a bit of algebra we have the following relation:

q∗3 =
z − 1

αq
∗
2

2q∗4 + c
q∗4 (82)

In the expression for q∗4 in (81), using (82) we can rewrite β∗
1 , β

∗
4 in terms of q∗2 , q

∗
4 . After some

manipulations we find that q∗4 is the solution to the following cubic equation:

2x3+3c x2+
[
c2+2−

(
z−Gµ̄S

(z)−1− α

α

1

z

)
Gµ̄S

(z)
]
x−c

[(
z−Gµ̄S

(z)−1− α

α

1

z

)
Gµ̄S

(z)−1
]
= 0

(83)
Based on our numerical simulations, we pick the following root for q∗4 :

q∗4 = − c

2
− 12− 3c2 + 6A

3 3
√
B

+
3
√
B

12
(84)

with

A = Gµ̄S
(z)

2 − Gµ̄S
(z)

z

(
1− 1

α

)
− Gµ̄S

(z)z

B = −216cA+ 4

√
4
(
12− 3c2 + 6A

)3
+ 542c2A2
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Once we have q∗4 , we can find q∗3 using (82). In the end, β∗
1 , · · · , β∗

4 can be evaluated. Note that, for
the RIE, only q∗4 is required. Other parameters are used to evaluate the resolvent relation (72) and the
overlap (77).

D.4.1 Resolvent relation

We take κ = 1. In model (60), without loss of generality we can consider Y to be diagonal.

In figure 12, Y is the diagonal matrix obtained from the singular values of a Gaussian matrix with
i.i.d. entries of variance 1/N . In figure 13, the non-zero entries (on main diagonal) of Y are uniformly
distributed in [1, 3]. As in previous cases, µS ,Gµ̄S

(z) are estimated numerically using Cauchy kernel,
from which the parameters β∗

1 , · · · , β∗
4 are computed.

D.4.2 Overlap

To illustrate the formula for the overlap (77), we fix the matrix Y and run experiments over various
realization of the model (60). For each experiment, we record the overlap of k-th singular vectors left
and right) of S and singular vectors of Y . To compute the theoretical prediction, we evaluate the
parameters β∗

1 , β
∗
2 , β

∗
3 , β

∗
4 , for z = γ̄k − i0+ where γ̄k is the average of k-th singular value of S in

the experiments.

In figure 14a, the overlap is shown for Y with i.i.d. Gaussian entries of variance 1
N , so µY is the

Marchenko-Pastur law with aspect-ratio α. In figure 14b, matrix Y is constructed as Y = UY ΣV ⊺
Y ,

where UY ∈ RN×N ,VY ∈ RM×M are Haar distributed orthogonal matrices, and singular values
σ1, · · · , σN are chosen independently uniformly from [1, 3], so µY = U

(
[1, 3]

)
.

D.4.3 RIE performance

In this section, we investigate the performance of our proposed estimators for Y . To construct the
RIE for Y , we only need q∗4 which we use (84). We compare performances of the optimal RIE (78)
with the one of oracle estimator (5).

In figures 15,16, the MSE of RIE and the oracle estimator is plotted for three cases of priors: Y with
Gaussian entries, Y with uniform spectral density, and Y with Bernoulli spectral density. In all cases,
observe that the RIE has the same performance as the oracle estimator.

Effect of aspect-ratio α. In Figure 17, we take Y to have Gaussian entries (with variance 1
N ),

and the MSE is depicted for various values of the aspect-ratio α. We see that as M increases (α
decreases) the estimation error (of Y ) decreases.

Sparse Y : a non-rotation invariant example. We consider Y to have i.i.d. entries from the
Bernoulli-Rademacher distribution,

Yi,j =





+ 1√
N

with probability 1−p
2

0 with probability p

− 1√
N

with probability 1−p
2

, ∀ 1 ≤ i ≤ N, 1 ≤ j ≤ M

With the normalization 1/
√
N, the spectrum of Y does not grow with the dimension and has a finite

support, thus we can apply our estimator to reconstruct Y . Note that the prior of Y is not rotationally
invariant, and neither the oracle estimator nor the RIE are optimal. Therefore, taking the prior into
account, we apply a thresholding function on the entries of the matrix obtained from the RIE, Ξ̂∗

Y (S).
We apply the following function on each entry of the estimator:

fh(x) =





+ 1√
N

if x > h√
N

0 if |x| ≤ h√
N

− 1√
N

if x < − h√
N

, for h ∈ [0, 1]

In figure 18, the MSE of the oracle estimator, RIE, and RIE+fp(x) (with h = p) is plotted. A few
remarks on this figure are in order. First, RIEs are not limited to rotationally invariant priors and can
give non-trivial estimates for non-rotationally invariant priors, although they are sub-optimal. The
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Figure 12: Illustration of (72). Y ∈ RN×M is a diagonal matrix obtained from the singular values of a
N ×M matrix with i.i.d. entries of variance 1/N, X = X⊺ is shifted Wigner matrix with c = 3, and Z is a

Gaussian matrices with. The empirical estimate of GS(z) (dashed blue line) is computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N , for N = 2000,M = 4000. Theoretical one (solid orange line) is computed from the rhs of
(72) with parameters computed from the generated matrix. Note that, the theoretical one has also fluctuations
because the parameters β∗

1 , · · ·β∗
4 are computed from the numerical estimate of Gµ̄S (z).
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Figure 13: Illustration of (72). Y ∈ RN×M is a diagonal matrix with (main) diagonal entries uniformly
distributed in [1, 3], X = X⊺ is shifted Wigner matrix with c = 3, and Z is a Gaussian matrices with.

The empirical estimate of GS(z) (dashed blue line) is computed for z = γi − i
√

1
2N

for 1 ≤ i ≤ N , for
N = 2000,M = 4000. Theoretical one (solid orange line) is computed from the rhs of (72) with parameters
computed from the generated matrix. Note that, the theoretical one has also fluctuations because the parameters
β∗
1 , · · ·β∗

4 are computed from the numerical estimate of Gµ̄S (z).
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Figure 14: Computation of the rescaled overlap. X is a shifted Wigner matrix with c = 3, and W has i.i.d.
Gaussian entries of variance 1/N , and N/M = 1/2. The simulation results are average of 1000 experiments
with fixed Y , and N = 1000,M = 2000. Some of the simulation points are dropped for clarity.
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Figure 15: Estimating Y . MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner matrix
with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to
N = 2000,M = 4000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

Y (S) and Oracle estimator is also reported.
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Figure 16: Estimating Y with Bernoulli spectral prior. MSE is normalized by the norm of the signal, ∥Y ∥2F.
Y has Bernoulli spectral distribution with parameter p. X is a shifted Wigner matrix with c = 3, and W has
i.i.d. Gaussian entries of variance 1/N , and N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and
the results are averaged over 10 runs (error bars are invisible).Average relative error between RIE Ξ̂∗

Y (S) and
Oracle estimator is also reported.
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Figure 17: MSE of estimating Y as a function of aspect-ratio α, Y has Gaussain entries of variance 1/N, and
κ = 5. MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and
W has i.i.d. Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

Y (S) and Oracle
estimator is also reported.
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Figure 18: Estimating Y with Bernoulli-Rademacher entries. MSE is normalized by the norm of the signal,
∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and the results are averaged over 10 runs (error
bars are invisible).

RIE’s output can be refined, or used as a warmed-up initialization for other algorithms to get a better
estimate.

In figure 19, for one experiment, the MSE is plotted for RIE and RIE+f(x) with the best h among
{0, 0.1, · · · , 1}. We observe that for the particular case of Bernoulli-Rademacher prior, the thresh-
olding stage can improve the MSE when SNR is greater than 1, however the parameter h should be
chosen properly.

E Comparison of RIEs for MF and denoising

For estimating X , we have derived the estimator (49) for general priors ρX , µY , µW . This estimator
simplifies greatly, with parameters in (52), when both µY , µW are Marchenko-Pastur distribution,
i.e. both Y ,W having i.i.d. Gaussian entries of variance 1/N. Similarly, although the RIE for Y
in (78) is derived for the general priors, it reduces to a rather simple estimator if ρX , µW are taken
to be shifted Wigner, and Marchenko-Pastur distribution, respectively. Therefore, in our numerical
examples on factorization problem, we consider X to be a shifted Wigner matrix, and Y ,W to be
Gaussian matrices.

In each experiment, the factors X , Y are estimated simultaneously using RIE from the observation
matrix S. In addition to the MSE of estimating each factor, we also compute the MSE of estimating
the product XY . We compare the MSE of the product with the MSE of the oracle estimator and
the RIE introduced in [19] for the denoising problem. The oracle estimator for the denoising is
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Figure 19: Estimating Y with Bernoulli-Rademacher entries. MSE is normalized by the norm of the signal,
∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000, and thresholding function is applied with the best
h among {0, 0.1, · · · , 1}. Results are averaged over 10 runs (error bars are invisible).
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Figure 20: MSE of factorization problem. MSE is normalized by the norm of the signal. X is a shifted Wigner
matrix with c = 1, and both Y and W are N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000. In each run, the observation matrix S is generated
according to (1), and the factors X , Y are estimated simultaneously from S. Results are averaged over 10 runs
(error bars are invisible). Average relative error between RIEs and Oracle estimators is also reported.

constructed as:

Ξ∗
XY (S) =

N∑

i=1

ξ∗xyi uiv
⊺
i , ξ∗xyi = u⊺

i XY vi (85)

where ui,vi’s are left/right singular vectors of S. In the RIE proposed in [19], the singular values
are estimated by (see section D.3.1)

ξ̂∗xyi =
1√
κ

[
γi −

1

πµ̄S(γi)
Im C(α)

µW

(
1− α

γi
πH[µ̄S ](γi) + α

(
πH[µ̄S ](γi)

)2 − α
(
πµ̄S(γi)

)2

+ iπµ̄S(γi)
(1− α

γi
+ 2απH[µ̄S ](γi)

))
]

(86)

Note that, in general the MSE of the denoising RIE Ξ̂∗
XY (S), is less than the MSE of the prdouct of

the estimated factors Ξ̂∗
X(S)Ξ̂∗

Y (S).

In figures 20,21, the MSE of estimating the factors is illustrated for c = 1 and c = 3 respectively.
The MSE of estimating the product is shown in figure 22.
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Figure 21: MSE of factorization problem. MSE is normalized by the norm of the signal. X is a shifted Wigner
matrix with c = 3, and both Y and W are N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and
N/M = 1/2. The RIE is applied to N = 2000,M = 4000. In each run, the observation matrix S is generated
according to (1), and the factors X , Y are estimated simultaneously from S. Results are averaged over 10 runs
(error bars are invisible). Average relative error between RIEs and Oracle estimators is also reported.
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Figure 22: MSE of the product of the factors. MSE is normalized by the norm of the signal ∥XY ∥2F. X is a
shifted Wigner matrix with c = 1, c = 3, and both Y and W are N ×M matrices with i.i.d. Gaussian entries
of variance 1/N , and N/M = 1/2. The RIE is applied to N = 2000,M = 4000. Results are averaged over
10 runs (error bars are invisible).

F Case of α ≥ 1

In this section we consider the case where M ≤ N and N/M → α ≥ 1 as N → ∞. Throughout this
section Γ ∈ RN×M is a (tall) matrix with ΓM in its upper M ×M block, and the rest zero entries.
ΓM is diagonal matrix constructed from γ ∈ RM which are the singular values of S.

Similar to the case of α ≤ 1, resolvent of the matrix S ∈ R(N+M)×(N+M) plays a central role in
deriving the RIEs. For the case of M ≥ N , with S = USΓV

⊺
S , the matrix S has the following

eigen-decomposition:

S =

[
Û

(1)
S −Û

(1)
S U

(2)
S

V̂S −V̂S 0

][ ΓM 0 0
0 −ΓM 0
0 0 0

] [
Û

(1)
S −Û

(1)
S U

(2)
S

V̂S −V̂S 0

]⊺
(87)

with US =
[
U

(1)
S U

(2)
S

]
in which U

(1)
S ∈ RN×M . And, Û (1)

S = 1√
2
U

(1)
S , V̂S = 1√

2
VS . The

resolvent of S can be written as:

GS(x− iϵ) =
2M∑

k=1

x+ iϵ

(x− γ̃k)2 + ϵ2
sks

⊺
k +

x+ iϵ

x2 + ϵ2

M+N∑

k=2M+1

sks
⊺
k

where γ̃k are the eigenvalues of S, which are in fact the (signed) singular values of S, γ̃1 =
γ1, . . . , γ̃M = γM , γ̃M+1 = −γ1, . . . , γ̃2M = −γM .
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F.1 Estimating X

The RIE for X is constructed in the same way as in the case of α ≤ 1, (2). However, in the present
case the observation matrix S has M (non-trivially zero) singular values and we need to estimate N
eigenvalues for the RIE. As it will be clear, the N −M eigenvalues are chosen to be equal.

F.1.1 Relation between overlap and the resolvent

Define the vectors x̃i = [x⊺
i ,0M ]⊺ for xi eigenvectors of X . We have

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i =

2M∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
x̃⊺
i sk

)2
+

ϵ

x2 + ϵ2

M+N∑

k=2M+1

(
x̃⊺
i sk

)2
(88)

Given the structure of sk’s in (87), we have:

(
x̃⊺
i sk

)2
=





1
2

(
x⊺
i uk

)2
for 1 ≤ k ≤ M

1
2

(
x⊺
i uk−M

)2
for M + 1 ≤ k ≤ 2M(

x⊺
i uk−M

)2
for 2M + 1 ≤ k ≤ M +N

We assume that in the limit of large N this quantity concentrates on OX(γj , λi) and depends only on
the singular values and eigenvalue pairs (γj , λi). This assumption implies that the singular vectors
associated with 0 singular values (uj for M + 1 ≤ j ≤ N ) all have the same overlap with the
eigenvectors of X , OX(0, λi). We thus have:

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i

N→∞−−−−→ 1

α

∫

R

ϵ

(x− t)2 + ϵ2
OX(t, λi)µ̄S(t) dt+

(
1− 1

α

) ϵ

x2 + ϵ2
OX(0, λi)

(89)
where the overlap function OX(t, λi) is extended (continuously) to arbitrary values within the
support of µ̄S (the symmetrized limiting singular value distribution of S) with the property that
OX(t, λi) = OX(−t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find

x̃⊺
i

(
ImGS(x− iϵ)

)
x̃i →

1

α
πµ̄S(x)OX(x, λi) +

(
1− 1

α

)
πδ(x)OX(x, λi) (90)

F.1.2 Resolvent relation

We derive the resolvent relation for the same model as in (29). The derivation is similar to the
procedure explained in section C.1, and we omit here. The final resolvent relation is the same as (42),
with parameters satisfying:





ζ∗1 = 1
α

C(1/α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = 1
p∗
2

(
C(1/α)
µW (p∗1p

∗
2) + C(1/α)

µY (p∗2p
∗
3)
)
, ζ∗3 = 1

α

C(1/α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = 1
ζ∗
3
GρX2

( z−ζ∗
1

ζ∗
3

)
, p∗2 = 1

z−ζ∗
2
, p∗3 =

z−ζ∗
1

ζ∗
3
2 GρX2

( z−ζ∗
1

ζ∗
3

)
− 1

ζ∗
3

(91)

Again, with the same procedure as (43),(44), the saddle point equations (91) can be rewritten in a
simplified form, which does not involve ρX2 , as:




ζ∗1 = 1
α

C(1/α)
µW

(p∗
1p

∗
2)

p∗
1

, ζ∗2 = z − 1
Gµ̄S

(z) , ζ∗3 = 1
α

C(1/α)
µY

(p∗
2p

∗
3)

p∗
3

p∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z , p∗2 = Gµ̄S

(z), p∗3 =
z−ζ∗

1

αζ∗
3
Gµ̄S

(z) +
z−ζ∗

1

ζ∗
3

(
1− 1

α

)
1
z − 1

ζ∗
3

(92)
with µ̄S the limiting ESD of non-trivial singular values of S. Note that ζ∗1 , ζ

∗
2 can be computed from

the observation matrix, and we only need to find ζ∗3 satisfying the following equation:

(z−ζ∗1 )
[ 1
α
Gµ̄S

(z)+
(
1− 1

α

)1
z

]
−1 =

1

α
C(1/α)
µY

( 1

ζ∗3
Gµ̄S

(z)(z−ζ∗1 )
[ 1
α
Gµ̄S

(z)+
(
1− 1

α

)1
z

])
(93)

Note that both sets of equations (90), (92) and (47), (45) match for α = 1.
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Figure 23: Estimating X . The MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are
N ×M matrices with i.i.d. Gaussian entries of variance 1/N , and aspect ratio N/M = 2. The RIE is applied
to N = 2000,M = 1000, and the results are averaged over 10 runs (error bars are invisible). Average relative
error between RIE Ξ̂∗

X(S) and Oracle estimator is also reported.

F.1.3 Overlaps and optimal eigenvalues

From (90), (42), for γ a non-trivially zero singular value of S we find:

OX(γ, λi) ≈
α

πµ̄S(γ)
Im lim

z→γ−i0+
x⊺
i ζ

∗
3
−1GX2

(z − ζ∗1
ζ∗3

)
xi

=
α

πµ̄S(γ)
Im lim

z→γ−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(94)

And, in the case of M > N , for zero singular values we have:

OX(0, λi) ≈
α

(α− 1)π
Im lim

z→−i0+
x⊺
i ζ

∗
3
−1GX2

(z − ζ∗1
ζ∗3

)
xi

=
α

(α− 1)π
Im lim

z→−i0+

1

z − ζ∗1 − ζ∗3λ
2
i

(95)

Finally, the optimal eigenvalues can be derived in the same way as in (49). For 1 ≤ i ≤ M , we have:

ξ̂∗xi =
α

2κπµ̄S(γi)
Im lim

z→γi−i0+

{
1

ζ∗3

[
GρX

(√z − ζ∗1
κζ∗3

)
+ GρX

(
−
√

z − ζ∗1
κζ∗3

)]}
(96)

And, for all M + 1 ≤ i ≤ N :

ξ̂∗xi =
α

2κ(α− 1)π
Im lim

z→−i0+

{
1

ζ∗3

[
GρX

(√z − ζ∗1
κζ∗3

)
+ GρX

(
−
√

z − ζ∗1
κζ∗3

)]}
(97)

F.1.4 Numerical Examples

For matrices Y ,W ∈ RN×M with i.i.d. Gaussian entries of variance 1/N and M > N , we have that
C(1/α)
µY (z) = C(1/α)

µW (z) = z which leads to a simplification of equations (92):




ζ∗1 = 1
αp

∗
2, ζ∗2 = z − 1

Gµ̄S
(z) , ζ∗3 = 1

αp
∗
2

p∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z , p∗2 = Gµ̄S

(z), p∗3 =
z−ζ∗

1

αζ∗
3
Gµ̄S

(z) +
z−ζ∗

1

ζ∗
3

(
1− 1

α

)
1
z − 1

ζ∗
3

(98)
Therefore, ζ∗1 = ζ∗3 = 1

αGµ̄S
(z).

In Figure 23, the MSE of the Oracle estimator and the RIE (96), (97) is illustrated for shifted Wigner
X with c = 3, and Wishart with aspect-ratio α′ = 1/4.

Effect of aspect-ratio α. In Figure 24, we take X to be a shifted Wigner matrix with c = 3, and
the MSE is depicted for various values of the aspect-ratio α > 1. We see that as M decreases (α
increases) the estimation error (of Y ) increases.
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Figure 24: MSE of estimating X as a function of aspect-ratio α > 1, prior on X is shifted Wigner with c = 3,
and κ = 5. MSE is normalized by the norm of the signal, ∥X∥2F. Both Y and W are N ×M matrices with i.i.d.
Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results are averaged
over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

X(S) and Oracle estimator is also
reported.

F.2 Estimating Y

F.2.1 Relation between overlap and the resolvent

For the vectors ri =
[

0N

y
(r)
i

]
, li =

[
y
(l)
i

0M

]
with y

(r)
i ,y

(l)
i right/ left singular vectors of Y , we

have

r⊺i
(
ImGS(x− iϵ)

)
li =

2M∑

k=1

ϵ

(x− γ̃k)2 + ϵ2
(
r⊺i sk

)(
l⊺i sk

)
+

ϵ

x2 + ϵ2

M+N∑

k=2M+1

(
r⊺i sk

)(
l⊺i sk

)

(99)

Given the structure of sk’s in (87), we have:

(
r⊺i sk

)(
l⊺i sk

)
=





1
2

(
u⊺
ky

(l)
i

)(
v⊺
ky

(r)
i

)
for 1 ≤ k ≤ M

− 1
2

(
u⊺
k−My

(l)
i

)(
v⊺
k−My

(r)
i

)
for M + 1 ≤ k ≤ 2M

0 for 2M + 1 ≤ k ≤ N +M

Therefore, in the limit N → ∞, we have:

r⊺i
(
ImGS(x− iϵ)

)
li

N→∞−−−−→ 1

α

∫

R

ϵ

(x− t)2 + ϵ2
OY (t, σi)µ̄S(t) dt (100)

where the overlap function OY (t, λi) is extended (continuously) to arbitrary values within the support
of µ̄S with the property that OY (−t, λi) = −OY (t, λi) for t ∈ supp(µS) . Sending ϵ → 0, we find

r⊺i
(
ImGS(x− iϵ)

)
li ≈

1

α
πµ̄S(x)OY (x, σi) (101)
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F.2.2 Resolvent relation

The resolvent relation for the model (60) with M < N is the same as in (72) with parameters
satisfying:




β∗
1 = 1

α

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 =

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 = 1
α

(z−β∗
2 )β

∗
4
2

Z2(z)2
GρY

(Z1(z)
Z2(z)

)
+ 1

α
β∗
3

Z2(z)
+ α−1

α
1

z−β∗
1

q∗2 =
z−β∗

1

Z2(z)
GρY

(Z1(z)
Z2(z)

)

q∗3 = 1
α

(z−β∗
1 )Z1(z)

Z2(z)2
GρY

(Z1(z)
Z2(z)

)
− 1

α
z−β∗

1

Z2(z)

q∗4 = 1
α

β∗
4Z1(z)
Z2(z)2

GρY

(Z1(z)
Z2(z)

)
− 1

α
β∗
4

Z2(z)

with
{
Z1(z) = (z − β∗

1)(z − β∗
2)

Z2(z) = β∗
4
2 + β∗

3(z − β∗
1)

(102)
With the same procedure as (73),(74), the saddle point equations (102) can be rewritten in a simplified
form:





β∗
1 = 1

α

C(α)
µW

(q∗1q
∗
2 )

q∗1
+ 1

2

√
q∗3
q∗1

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
2 =

C(α)
µW

(q∗1q
∗
2 )

q∗2

β∗
3 = 1

2

√
q∗1
q∗3

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
−RρX

(
q∗4 −

√
q∗1q

∗
3

))

β∗
4 = 1

2

(
RρX

(
q∗4 +

√
q∗1q

∗
3

)
+RρX

(
q∗4 −

√
q∗1q

∗
3

))

q∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z

q∗2 = Gµ̄S
(z)

q∗3 =
(z−β∗

1 )
2

β∗
4
2 q∗1 − z−β∗

1

β∗
4
2

q∗4 =
z−β∗

1

β∗
4

q∗1 − 1
β∗
4

(103)

Note that both sets of equations (101), (103) and (59), (76) match for α = 1.

F.2.3 Overlaps and optimal singular values

From (72), (101), we have:

OY (γ, σi) ≈
α

πµ̄S(γ)
Im lim

z→γ−i0+

β∗
4

Z2(z)
y
(r)
i

⊺
GY ⊺Y

(Z1(z)

Z2(z)

)
Y ⊺y(l)

i

=
α

πµ̄S(γ)
Im lim

z→γ−i0+
β∗
4

σi

Z1(z)− Z2(z)σ2
i

(104)

Similar to (78), we can compute the optimal singular values to be:

ξ̂∗yi =
α

πµ̄S(γi)
Im lim

z→γi−i0+
q∗4 (105)

F.2.4 Numerical examples

We consider the matrix W to have i.i.d. Gaussian entries with variance 1/N, so C(1/α)
µW (z) = z. And,

X = F + cI where F = F ⊺ ∈ RN×N has i.i.d. entries with variance 1/N, and c ̸= 0 is a real
number, so RρX

(z) = z + c. With these choices, the solution (103) simplifies to:




β∗
1 = 1

αq
∗
2 + q∗3 , β∗

2 = q∗1 , β∗
3 = q∗1 , β∗

4 = q∗4 + c

q∗1 = 1
αGµ̄S

(z) +
(
1− 1

α

)
1
z , q∗2 = Gµ̄S

(z)

q∗3 =
(z−β∗

1 )
2

β∗
4
2 q∗1 − z−β∗

1

β∗
4
2 , q∗4 =

z−β∗
1

β∗
4

q∗1 − 1
β∗
4

(106)
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Figure 25: Estimating Y . MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner
matrix with c = 3, and W has i.i.d. Gaussian entries of variance 1/N , and N/M = 2. The RIE is applied to
N = 2000,M = 1000, and the results are averaged over 10 runs (error bars are invisible).
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Figure 26: MSE of estimating Y as a function of aspect-ratio α > 1, Y has Gaussain entries of variance 1/N,
and κ = 5. MSE is normalized by the norm of the signal, ∥Y ∥2F. X is a shifted Wigner matrix with c = 3, and
W has i.i.d. Gaussian entries of variance 1/N . The RIE is applied to N = 2000,M = 1/αN , and the results
are averaged over 10 runs (error bars are invisible). Average relative error between RIE Ξ̂∗

Y (S) and Oracle
estimator is also reported.

After a bit of algebra, we find that q∗4 is the solution to the following qubic equation:

2x3 + 3c x2 +
[
c2 + 2−

(
z − 1

α
Gµ̄S

(z)
)( 1

α
Gµ̄S

(z) +
α− 1

αz

)]
x

− c
[(
z − 1

α
Gµ̄S

(z)
)( 1

α
Gµ̄S

(z) +
α− 1

αz

)
− 1

]
= 0

(107)

In figure 25 the MSE of RIE and the oracle estimator is plotted for two cases of priors: Y with
Gaussian entries and Y with uniform spectral density.

Effect of aspect-ratio α. In Figure 26, we take Y to have Gaussian entries (with variance 1
N ), and

the MSE is depicted for various values of the aspect-ratio α > 1. We see that as M decreases (α
increases) the estimation error (of Y ) increases.

G Details on numerical implementations

G.1 Numerical approximation of Gµ̄S
(z)

The first step to construct the RIEs is to compute the Stieltjes transform of the observation matrix
S. In section 19.5 of [58], several approaches have been proposed to approximate the Stieltjes
transform of the spectral density of a given matrix. In our implementations, we use the Cauchy kernel
method in which for a given matrix A with N singular values (or eigenvalues)

(
σi

)
1≤i≤N

, GµA
(z)
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is approximated as:

GµA
(z) ≈ 1

N

N∑

i=1

1

z − σi − iηi

with ηi’s the "widths" of the kernel at each singular value (more precisely the imaginary part is a sum
of Lorentzians with width ηi around peaks at σi). The construction of the RIEs uses the Stieltjes
transform of the limiting symmetrized measure of S. In the numerical experiments we approximate
this quantity as:

Gµ̄S
(z) ≈ 1

2N

N∑

i=1

(
1

z − γi − iη
+

1

z + γi − iη

)
(108)

with a fixed width η =
√

1/2N. Note that for the case of α > 1 (M < N ), S has M non-trivially
zero singular values, and in the approximation above N should be replaced by M .

G.2 Construction of the RIEs

In the RIEs derived in [14,19], the final estimator for optimal singular values (eigenvalues) was rather
simple and only required to compute the Stieltjes transform on the real line which can be easily and
safely performed using the approximation above (see remark 2 in section 19.5.2 in [58]). However, in
the RIEs of this work, we need to solve a system of equations in the limit ϵ → 0 (z close to the real
line). For this, to compute the optimal singular value ξ̂∗yi (or optimal eigenvalues ξ̂∗xi), we evaluate
Gµ̄S

(z) for z = γi − i ε√
2N

. In this way, the other parameters (e.g. q∗4) are evaluated for z very close
to the real line, and the theoretical limit limϵ→0 in (49), (78) can be estimated numerically. Moreover,
as we considered a fixed width in our numerical approximation of Stieltjes transform (108), ε should
be chosen to compensate the width for the cases where the support of µ̄S is wider. For example, for
fixed N , as we increase SNR (from 1 to 5) the support of µ̄S grows, however we still have N singular
values and the kernel’s width in (108) is fixed, so ε should be larger for higher SNRs to get a more
accurate approximation of Gµ̄S

(z).

G.3 Mismatch between RIEs and Oracle estimators

The RIEs are conjectured to have the same performance as the Oracle estimators in the limit N → ∞.
Therefore, we believe that the mismatch between the proposed RIEs and the Oracle estimators is a
finite size effect. Moreover, this finiteness affects the accuracy of estimated parameters, since Gµ̄S

(z)
is approximated numerically and we do not use random matrix theory to find its exact form.

Generically, the mismatch between the RIE and Oracle estimator is larger for the case of estimating
X . We expect that this is because of the extra approximation step in the derivation of the optimal
eigenvalues. In the fifth line of (49), the sums are approximated by an integral which is the Stieltjes
transform of ρX . This approximation does not appear in derivation of the optimal singular values for
Y , see (78).

All in all, the small relative error (less than 1%) between RIEs and Oracle estimators in our numerical
results validates our optimality conjecture and demonstrates that RIEs can be successfully used in
practice.

H Spherical integrals and matrix lemmas

H.1 Spherical Integrals

For two symmetric matrices A,B ∈ RN×N , the spherical integral is defined as:

IN (A,B) =
〈
exp

{N
2
TrAUBU⊺}〉

U

where the average is w.r.t. the Haar measure over the group of (real) orthogonal N ×N matrices.
The spherical integrals can also be defined w.r.t. the unitary or symplectic group. These integrals
are often referred to as Harish Chandra-Itzykson-Zuber (HCIZ) integrals in mathematical physics
literature. The study of these objects dates back to the work of mathematician Harish Chandra [62]
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and they have since been extensively studied and developed in both physics and mathematics. In
particular, [21] studied the limit of the integral in the case where one of the matrices, say A, has finite
rank.
Theorem 1 (Rank-one spherical integral, Guionnet and Maïda [21]). Let θ be the only non-zero
eigenvalue of A (so it is rank one), and the empirical eigenvalue distribution of B converge weakly
towards ρB . Then, for θ sufficiently small (see details in Theorem 2 in [21]), we have:

lim
N→∞

1

N
ln IN (A,B) =

1

2

∫ θ

0

RρB
(t) dt ≡ 1

2
PρB

(θ) (109)

When A has higher (but finite) rank, theorem 7 in [21] states that the limit is the sum over eigenvalues
of the expression on the rhs of (109).

Non-symmetric case. In the non-symmetric case the rectangular spherical integral is defined, for
the matrices A ∈ RM×N ,B ∈ RN×M , as:

JN (A,B) =
〈
exp

{√
NM TrAUBV

}〉
U ,V

where U ∈ RN×N ,V ∈ RM×M , and the expectation is w.r.t. the Haar measure over orthogonal
matrices of size N ×N and M ×M .
Theorem 2 (Rank-one rectangular spherical integral, Benaych-Georges [22]). Let N/M → α ∈
(0, 1], and θ be the only non-zero singular value of A, and the empirical singular value distribution
of B converges weakly towards µB . Then, for θ sufficiently small (see details in Theorem 2.2 in [22]),
we have:

lim
N→∞

1

N
lnJN (A,B) =

∫ θ

0

C(α)
µB (t2)

t
dt =

1

2

∫ θ2

0

C(α)
µB (t)

t
dt ≡ 1

2
Q(α)

µB
(θ2) (110)

In our derivation, we use a generalization of this formula, namely when A has higher (but fixed) rank,
the limit is the sum over singular values of the expression on the rhs of (110). Although we are not
aware if this generalization has been proved, we believe that the ideas found in [63] can be applied to
show it holds.
Remark 6. It is known that additional terms may be present on the rhs of (109) and (110) when
the parameter θ is "large". This has been rigorously proved at least in the case of symmetric A and
B (see theorem 6 in [21]). In the replica calculation the order of magnitude of this parameter is
determined by the solutions of the saddle point equations, but it is difficult to fully control its order
of magnitude. However the numerics show very good agreement between our explicit RIEs and the
Oracle estimator, which strongly suggests it is sound to use (109) and (110).

H.2 Matrix analysis tools

Proposition 3 (Inverse of a block matrix, Bernstein [61]). For a block matrix F =

[
A B
C D

]
with

A ∈ RN×N ,B ∈ RN×M ,C ∈ RM×N ,D ∈ RM×M , if A and D −CA−1B, are non-singular,
then,

F−1 =

[
A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

]

Block structure of GS(z) The matrix GS(z) is:

GS(z) =
(
zI − S

)−1
=

[
zIN −S
−S⊺ zIM

]−1

Using Proposition 3, first we need to compute the inverse matrix
(
zIM − (−S⊺)(zIN )−1(−S)

)−1

which simply reads:
(
zIM − 1

z
S⊺S

)−1
= z

(
z2IM − S⊺S

)−1
= zGS⊺S(z

2)

Consequently, we find:

GS(z) =

[
1
zIN + 1

zSGS⊺S(z
2)S⊺ SGS⊺S(z

2)
GS⊺S(z

2)S⊺ zGS⊺S(z
2)

]
(111)
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Inverse of C∗
X For C∗

X since the blocks B,C are zero, the inverse is simply:

C∗
X

−1 =

[ [
(z − ζ∗1 )IN − ζ∗3X

2
]−1

0

0
[
(z − ζ∗2 )IM

]−1

]

=

[
1
ζ∗
3

[ z−ζ∗
1

ζ∗
3

IN −X2
]−1

0

0 1
z−ζ∗

2
IM

]

=

[
1
ζ∗
3
GX2

( z−ζ∗
1

ζ∗
3

)
0

0 1
z−ζ∗

2
IM

]
(112)

Inverse of C∗
Y Let the block structure of C∗

Y be as in Proposition 3, then

(D −CA−1B)−1 =
(
(z − β∗

2)IM − β∗
3Y

⊺Y − β∗
4
2

z − β∗
1

Y ⊺Y
)−1

=
(
(z − β∗

2)IM −
(
β∗
3 +

β∗
4
2

z − β∗
1

)
Y ⊺Y

)−1

= (z − β∗
1)
(
Z1(z)IM − Z2(z)Y

⊺Y
)−1

=
z − β∗

1

Z2(z)

(Z1(z)

Z2(z)
IM − Y ⊺Y

)−1

=
z − β∗

1

Z2(z)
GY ⊺Y

(Z1(z)

Z2(z)

)

where GY ⊺Y is the resolvent of the matrix Y ⊺Y . So, we have

C∗
Y
−1 =

[
(z − β∗

1)
−1IN +

β∗
4
2

(z−β∗
1 )Z2(z)

Y GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ β∗

4

Z2(z)
Y GY ⊺Y

(Z1(z)
Z2(z)

)
β∗
4

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
Y ⊺ z−β∗

1

Z2(z)
GY ⊺Y

(Z1(z)
Z2(z)

)
]

Lemma 3. Consider two vectors x,y ∈ RN . The symmetric matrix xy⊺ + yx⊺ has rank at most
two with non-zero eigenvalues x⊺y ± ∥x∥∥y∥.

Proof. Construct the matrices A ∈ R2×N ,B ∈ RN×2 as follows:

A =

[
x⊺

y⊺

]
, B = [ y x ]

Then, we have that xy⊺ + yx⊺ = BA. Using the lemma 4, we have that:

z2 det
(
zIN −BA

)
= zN det

(
zI2 −AB

)

So, the characteristic polynomial of xy⊺ + yx⊺ is zN−2 det
(
zI2 −AB

)
, which implies that the

xy⊺ + yx⊺ has eigenvalue 0 with multiplicity N − 2, plus the eigenvalues of the 2× 2 matrix AB.
The matrix AB is:

AB =

[
x⊺y ∥x∥2
∥y∥2 x⊺y

]

which has two eigenvalues x⊺y ± ∥x∥∥y∥.

Lemma 4. For matrices A ∈ RM×N ,B ∈ RN×M , we have:

zM det
(
zIN −BA

)
= zN det

(
zIM −AB

)

Proof. Construct the matrices C,D ∈ R(M+N)×(M+N) as follows:

C =

[
zIM A
B IN

]
, D =

[
IM 0M×N

−B zIN

]

We have:

detCD = zN det
(
zIM −AB), detDC = zM det

(
zIN −BA

)

The result follows from the fact that detCD = detDC.
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