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A Identification of Influencing Factors

In order to understand the factors that influence the recommendation provided by REFINE we
calculate the contribution scores of the input information sources. Let us look into the factors
influencing the recommendation of the jth medication for the current visit T of a patient. From
Equation 8 (in main paper) we can obtain the contribution score of each diagnosis as follows:

ηd = ∥Ti=1a
d
T [i]× (W y[j, :] ·Ed[:, k])× di[k] (1)

where di[k] denotes the kth diagnosis in the ith visit, Ed is the embedding matrix for diagnosis, W y

is the gradient matrix of the final linear layer, ad
T is the average of attention weights across all the

heads and layers of the encoders in the transformer for the diagnosis information for time T , adT [i] is
the ith entry in ad

T .

The contribution score of each lab test is given by:

ηr = ∥Ti=1a
r
T [i]× (W y[j, :] ·Er[:, k])× ri[k] (2)

where ri[k] denotes the kth lab test information in the ith visit, Er is the embedding matrix for lab
test, ar

T is the average of attention weights across all the heads and layers of the encoders in the
transformer for the lab test response information for time T , arT [i] is the ith entry in ar

T .

Similarly, the contribution score of the past prescribed medication is given by:

ηs = ∥T−1
i=1 asT−1[i]× (W y[j, :] ·Es[:, k])× si[k] (3)

where si[k] denotes the kth medication information in the ith visit, Es is the embedding matrix for
medication, as

T−1 is the average of attention weights across all the heads and layers of the encoders
in the transformer for the medication information for time T − 1, asT−1[i] is the ith entry in as

T−1.

Finally, the contribution score of drug co-occurrences and drug interactions are given by:

ηC = ∥k∈Sj
λ[k]× aCj [k]×W y[j, :] ·

(
EC · nk

)
(4)

ηD = ∥k∈Sj
w × λ[k]× aDj [k]×W y[j, :] ·

(
ED · nk

)
(5)

where nk is the one-hot vector representation of the kth node in the graphs, EC and ED are the
average of embedding matrices Eb over all heads in GATv2 for GC and GD respectively, aC

j
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and aD
j are the averages of attention weights across all heads and layers of GATv2 for the drug

information graphs GC and GD respectively for node j, aCj [k] and aDj [k] are the kth entry in aC
j and

aD
j respectively, λ[k] is the attention weight for the kth node as described in Section 3.3.

We normalize the contribution scores and rank them to obtain the top factors that may have influenced
the recommendation.

B Data Preprocessing

The MIMIC-IV and PRIVATE medical datasets use both ICD-9 and ICD-10 codes for diagnoses.
Therefore, to ensure consistency we convert all the diagnosis information based on ICD-10 encoding.
We use the medication name directly from the PRIVATE dataset. In contrast, the medication names
data present in MIMIC-IV are noisy and hence we use the NDC codes to obtain the medication
names. Specifically, we convert the NDC codes to RxNorm and then from RxNorm to medication
generic name. All dosage values are converted to either milligrams or milliliters to ensure uniformity.
Visits are identified based on unique hospital admission ID. Similar to the existing baselines, we
consider the medications prescribed in the first 24 hours. We exclude patients with less than two
visits. These pre-processing steps are crucial for eliminating noise and redundancy to ensure the
accuracy and reliability of the datasets. We present the distribution of the number of visits in both
datasets in Figure 1.

(a) MIMIC-IV (b) PRIVATE

Figure 1: Histogram depicting the distribution of visits in both datasets.

C Training and Hyperparameter Setting

Training. Algorithm 1 outline the steps involved in the training of REFINE. All the equations
mentioned in the Algorithm refer to equations in the main paper. We split the datasets in to training,
testing, and validation sets in the ratio 4:1:1. The performance of all the techniques is reported on the
test set. The model has a fixed embedding size of 64, which is the dimensionality of the vector used
to represent the input. During training, the Adam optimizer [2] is used with a learning rate of 0.0001.
For the baseline techniques, we provide diagnosis, medication, and lab test items as input from the
EHR. However, we do not incorporate the medication dosage information and the lab test response
information for the baselines. Also, for baselines using DDI we use DDInter database [4] with the
assumption that drug pairs with minor, moderate, and major interaction have the same weight of
value 1. The best performing model is selected based on its performance on the validation set after 40
epochs.

Hyperparameter settings. For MIMIC-IV, REFINE uses a dropout of 0.4 on the input embedding
layer, with a transformer encoder consisting of four layers and 2 attention heads each. We model the
drug co-occurrence information and drug interaction information using two graph attention networks
(GATv2). Each GATv2 consists of two layers with the first layer consisting of 4 attention heads and
the second layer consisting of 1 attention head. The GATv2 parameter value is set to w = 0.45 based
on the validation set. The controllable factor β in Lbdi is set to 0.65. For all the Recurrent Neural
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Algorithm 1 Training steps of REFINE
Input: Training set X , training epochs N, Drug co-occurrence graph GC , Drug interaction graph
GD, Loss weights γ1 and γ2, w in Eq.(7), β in Eq.(9).
Parameter: Learnable parameters of REFINE
Output: Set of recommended medications y

1: Obtain Z by using Eq.(4)-(7).
2: for epoch = 1 to N do
3: for j = 1 to |X | do
4: Sample a patient X(j) = [x1,x2, ...,xTj ]
5: for i = 1 to Tj do
6: Generate varmi , slopemi , varli, slopeli using Eq.(1) and (2) for patient j
7: Obtain hd

i , hr
i , and hs

i−1 from transformer encoders and generate qi using Eq.(3)
8: Obtain yi from Eq.(8)
9: end for

10: Update parameters by optimizing Ltotal in Eq.(10)
11: end for
12: end for

Network based techniques, a GRU with a hidden dimension of 64 is used. The hyperparameters for
all the baselines were chosen on the validation set. The DMNC model uses a word size of 64 and a
memory size of 16, following the original work. We set the maximum drug combination size at 40
for both LEAP and DMNC. For GAMENet, we follow a DDI rate of 0.05, weight decay of 0.86, and
mixture weights π = [0.9, 0.1]. For CompNet, we use 3 convolutional layer with filter sizes set to 128
in the patient representation module. For PREMIER, we set γ1 = 0.80 and γ2 = 0.02 with a dropout
rate of 0.4 on the input embedding layer. For MICRON, the best performance is reported for visit
weight γ = 0.78, loss weights λi = 0.25, i = 1,2,3,4 and DDI threshold η = 0.07. For SafeDrug, we
set the loss weight α = 0.95, correcting factor Kp = 0.05, and acceptance rate γ = 0.07. For COGNet,
we set the number of beam search state at 4 and the maximum generation length at 40. For MoleRec,
the hyperparameters δ, β, τ , ϕ are set at 0.50, 0.90, 0.25, and 0.08 respectively.

For PRIVATE, REFINE uses a dropout of 0.5 on the input embedding layer, with a transformer
encoder consisting of four layers with 2 attention heads each. The drug co-occurrence information
and drug interaction information is modeled using two graph attention networks (GATv2) with two
layers consisting of 2 attention heads in the first layer, and 1 attention head in the second layer. The
GATv2 parameter value is set to w = 0.40. The controllable factor β in Lbdi is set to 0.55. For all
the Recurrent Neural Network based techniques, a GRU with a hidden dimension of 64 is used. The
hyperparameters for all the baselines were chosen on the validation set. The DMNC model uses a
word size of 64 and a memory size of 32. We set the maximum drug combination size at 30 for both
LEAP and DMNC. For GAMENet, we follow a DDI rate of 0.10, weight decay of 0.86, and mixture
weights π = [0.85, 0.15]. For CompNet, we use 3 convolutional layer with filter sizes set to 128 in
the patient representation module. For PREMIER, we set γ1 = 0.78 and γ2 = 0.05 with a dropout rate
of 0.5 on the input embedding layer. For MICRON, the best performance is reported for visit weight
γ = 0.75, loss weights λi = 0.25, i = 1,2,3,4 and DDI threshold η = 0.10. For SafeDrug, we set the
loss weight α = 0.95, correcting factor Kp = 0.05, and acceptance rate γ = 0.10. For COGNet, we set
the number of beam search state at 4 and the maximum generation length at 25. For MoleRec, the
hyperparameters δ, β, τ , ϕ are set at 0.50, 0.95, 0.22, and 0.13 respectively.

D Additional Experiments

D.1 Sensitivity Experiments

We examine the impact of input embedding dimension, number of heads per layer in GATv2, number
of layers and number of attention heads per layer in the transformer encoders as well as the loss
weights γ1, γ2 on the performance of REFINE.
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(a) Dimension of input embedding layer (b) Layers of transformer encoder

(c) Attention head of transformer encoder (d) Attention head of GATv2

Figure 2: Effect of embedding dimension and attention heads on REFINE.

(a) MIMIC-IV

(b) PRIVATE

Figure 3: Effect of loss weights on REFINE.

Figure 2(a) depicts the impact of varying input embedding dimension on the performance of REFINE.
We observe that the embedding dimension of 64 provides the optimal AUC for both MIMIC-IV and
PRIVATE datasets.
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Table 1: Results for comparative study.

Methods MIMIC-IV PRIVATE
AUC F1 Jaccard wDDI AUC F1 Jaccard wDDI

LR 0.632 ± 0.006 0.526 ± 0.004 0.401 ± 0.008 0.055 ± 0.0009 0.639 ± 0.007 0.561± 0.002 0.408 ± 0.004 0.146 ± 0.0004
RF 0.635 ± 0.004 0.531 ± 0.003 0.406 ± 0.004 0.053 ± 0.0005 0.642 ± 0.003 0.565 ± 0.005 0.411 ± 0.004 0.140 ± 0.0003

BART 0.637 ± 0.002 0.540 ± 0.002 0.408 ± 0.005 0.056 ± 0.0006 0.646 ± 0.004 0.571 ± 0.004 0.414 ± 0.002 0.142 ± 0.0005
LEAP 0.625 ± 0.003 0.514 ± 0.005 0.382 ± 0.006 0.047 ± 0.0003 0.633 ± 0.005 0.558 ± 0.007 0.405 ± 0.003 0.117 ± 0.0001
DMNC 0.633 ± 0.006 0.528 ± 0.002 0.397 ± 0.005 0.056 ± 0.0002 0.640 ± 0.007 0.566 ± 0.002 0.413 ± 0.004 0.158 ± 0.0005

GameNet 0.641 ± 0.003 0.543 ± 0.005 0.415 ± 0.003 0.053 ± 0.0005 0.647 ± 0.001 0.575 ± 0.004 0.421 ± 0.006 0.131 ± 0.0003
CompNet 0.638 ± 0.002 0.546 ± 0.006 0.413 ± 0.008 0.050 ± 0.0002 0.645 ± 0.005 0.582 ± 0.001 0.424 ± 0.006 0.134 ± 0.0005

PREMIER 0.655 ± 0.001 0.565 ± 0.002 0.421 ± 0.005 0.047 ± 0.0001 0.669 ± 0.001 0.607 ± 0.003 0.443 ± 0.004 0.122 ± 0.0001
MICRON 0.658 ± 0.003 0.567 ± 0.006 0.418 ± 0.002 0.047 ± 0.0006 0.662 ± 0.002 0.597 ± 0.006 0.438 ± 0.002 0.120 ± 0.0001
SafeDrug 0.652 ± 0.004 0.564 ± 0.002 0.415 ± 0.006 0.045 ± 0.0001 0.671 ± 0.003 0.608 ± 0.006 0.441 ± 0.008 0.113 ± 0.0002
COGNet 0.661 ± 0.002 0.573 ± 0.001 0.426 ± 0.001 0.054 ± 0.0006 0.682 ± 0.005 0.616 ± 0.002 0.453 ± 0.005 0.129 ± 0.0004
MoleRec 0.670 ± 0.004 0.579 ± 0.003 0.431 ± 0.002 0.044 ± 0.0001 0.688 ± 0.002 0.623 ± 0.006 0.459 ± 0.001 0.112 ± 0.0001
REFINE 0.708 ± 0.001* 0.635 ± 0.003* 0.462 ± 0.003* 0.043 ± 0.0001* 0.729 ± 0.004* 0.656 ± 0.003* 0.506 ± 0.002* 0.111 ± 0.0002*

* indicates that the result is statistically significant when compared to the second best with p-value < 0.05.

Similarly, we vary the number of layers as well as the number of heads per layer of transformer
encoders and report the performance of REFINE in Figure 2(b) and (c) respectively. We observe that
having 4 layers with 2 attention head each performs best for both the datasets.

Next, we study the impact of varying the number of attention heads in the first layer of the two
layer GATv2 used to model frequency based drug co-occurrence and severity based drug interaction
information. We observe in Figure 2(d) that 4 attention heads lead to best performance on MIMIC-IV
dataset while 2 attention heads provides optimal performance on the PRIVATE dataset.

Figure 3 shows the impact of loss weights γ1 and γ2 on the AUC, wDDI scores of REFINE for both
MIMIC-IV and PRIVATE dataset. We observe that as γ1 and γ2 increase the AUC improves while
the wDDI worsens for both datasets. For MIMIC-IV, γ1 = 0.75 and γ2 = 0.07 provides the desirable
trade-off between AUC and wDDI. Similarly, γ1 = 0.80 and γ2 = 0.05 provides desirable trade-off
for the PRIVATE dataset.

D.2 Comparative Experiments

Table 1 shows the complete set of results (including Jaccard similarity) for comparative study with
the standard deviations presented after ± in the tables.

We also analyze the impact of the number of visits on the performance of REFINE and two strong
baselines COGNet and SafeDrug as shown in Figure 4. For this analysis, we choose a cohort of
patients with 4 visits and 6 visits for MIMIC-IV and PRIVATE respectively. The number of visits is
chosen based on the average number of visits per patient in each dataset. It is interesting to note that
the gap in performance (especially in terms of AUC) between REFINE and the baselines increases
with the number of visits. This shows that the trend information learned by REFINE helps provide
a performance boost. Additionally, we see that REFINE outperforms COGNet and SafeDrug in
terms of AUC and wDDI even when few visit instances are available. This shows that effective
modeling of patient information along with the consideration of trade-off between benefits and
potential interaction of drug pairs is important for recommending personalized, accurate and safe
drug combinations.

D.3 Ablation Study

Here, we perform ablation study to understand the impact of different knowledge sources on the
performance of REFINE. To this end we implement the following variants of REFINE:

• REFINE w/o mi. Here we use all the information sources except the medication dosages
and their trends.

• REFINE w/o li. Here we use all the information sources except the lab test responses and
their trends.

• REFINE w/o med trend. In this variant we only omit the trend information (variance and
slope) obtained from the medication dosages.

• REFINE w/o lab trend. Here we only omit the trend information obtained from the lab test
responses.
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(a) MIMIC-IV

(b) PRIVATE

Figure 4: Effect of number of visits on performance of various methods.

Table 2: Results for ablation study.

Methods MIMIC-IV PRIVATE
AUC F1 Jaccard wDDI AUC F1 Jaccard wDDI

w/o mi 0.693 ± 0.002 0.610 ± 0.002 0.457 ± 0.001 0.0443 ± 0.0002 0.712 ± 0.001 0.640 ± 0.003 0.484 ± 0.001 0.1121 ± 0.0002
w/o li 0.690 ± 0.003 0.605 ± 0.002 0.452 ± 0.002 0.0438 ± 0.0003 0.707 ± 0.002 0.635 ± 0.001 0.481 ± 0.003 0.1116 ± 0.0001

w/o med trend 0.701 ± 0.001 0.618 ± 0.003 0.460 ± 0.002 0.0440 ± 0.0001 0.718 ± 0.003 0.645 ± 0.004 0.489 ± 0.002 0.1118 ± 0.0002
w/o lab trend 0.695 ± 0.002 0.613 ± 0.001 0.456 ± 0.003 0.0444 ± 0.0003 0.714 ± 0.004 0.643 ± 0.001 0.487 ± 0.004 0.1120 ± 0.0005
w/o any trend 0.682 ± 0.002 0.602 ± 0.002 0.445 ± 0.003 0.0446 ± 0.0002 0.703 ± 0.002 0.630 ± 0.001 0.474 ± 0.002 0.1123 ± 0.0004
w/o GC , GD 0.703 ± 0.003 0.629 ± 0.004 0.459 ± 0.001 0.0451 ± 0.0002 0.724 ± 0.002 0.652 ± 0.004 0.499 ± 0.002 0.1126 ± 0.0001

w/o Lbdi 0.697 ± 0.003 0.621 ± 0.004 0.453 ± 0.002 0.0464 ± 0.0003 0.716 ± 0.002 0.642 ± 0.001 0.493 ± 0.003 0.1153 ± 0.0002
w/o severity 0.694 ± 0.002 0.617 ± 0.001 0.450 ± 0.004 0.0461 ± 0.0005 0.713 ± 0.004 0.639 ± 0.002 0.490 ± 0.001 0.1148 ± 0.0003

w/o transformer 0.696 ± 0.003 0.625 ± 0.002 0.448 ± 0.001 0.0439 ± 0.0003 0.718 ± 0.002 0.642 ± 0.001 0.495 ± 0.003 0.1119 ± 0.0002
REFINE 0.708 ± 0.001* 0.635 ± 0.003* 0.462 ± 0.003* 0.0431 ± 0.0001* 0.729 ± 0.004* 0.656 ± 0.003* 0.506 ± 0.002* 0.1112 ± 0.0002*

* indicates that the result is statistically significant when compared to the second best with p-value < 0.05.

• REFINE w/o any trends. This variant represents a model without any trend information
from both medication dosage and lab test response.

• REFINE w/o GC , GD. Here we use all the information sources except the drug co-
occurrence and drug interaction graphs.

• REFINE w/o Lbdi. In this variant we only remove the Lbdi loss and replace it with the
traditional DDI loss [3] during the training of the model.

• REFINE w/o severity. In this variant we only replace the non-zero weight wD
ij with a value

of 1 in the graph GD. In other words, we do not use the severity information of the drug
interaction.

• REFINE w/o transformer. In this variant we replace the Transformer modules with RNN
modules.

Table 2 shows the complete set of results for the ablation study with the standard deviations presented
after ± in the table. In addition to the discussion on the variants of REFINE in the main paper
(see Section 4.2), it is interesting to note that REFINE w/o Lbdi records a drop in performance for
both wDDI and accuracy. This suggests that our proposed loss Lbdi helps to boost both the accuracy
and safety of the recommendations. REFINE w/o transformer demonstrates a slight decrease in
performance compared to its Transformer-based counterpart. This suggests that the improvement
achieved by our proposed solution goes beyond merely employing Transformer modules.
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Table 3: Results for comparative analysis on MIMIC-III.

Methods MIMIC-III
AUC F1 Jaccard wDDI

GameNet 0.664 ± 0.002 0.566 ± 0.004 0.437 ± 0.002 0.0480 ± 0.0003
SafeDrug 0.671 ± 0.001 0.579 ± 0.003 0.441 ± 0.001 0.0429 ± 0.0001
COGNet 0.683 ± 0.003 0.591 ± 0.002 0.452 ± 0.004 0.0501 ± 0.0002
MoleRec 0.692 ± 0.002 0.606 ± 0.003 0.459 ± 0.001 0.0421 ± 0.0004
REFINE 0.730 ± 0.002* 0.658 ± 0.001* 0.487 ± 0.002* 0.0393 ± 0.0002*

* indicates that the result is statistically significant when compared to the second best with p-value < 0.05.

D.4 Experiments on MIMIC-III

We also evaluate the performance of REFINE on the MIMIC-III [1] dataset. Table 3 compares the
results with state-of-the-art. We can see that REFINE achieves the best performance with statistically
significant improvements.
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