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Abstract

Patients with co-morbidities often require multiple medications to manage their
conditions. However, existing medication recommendation systems only offer class-
level medications and regard all interactions among drugs to have the same level of
severity. This limits their ability to provide personalized and safe recommendations
tailored to individual needs. In this work, we introduce a deep learning-based fine-
grained medication recommendation system called REFINE, which is designed to
improve treatment outcomes and minimize adverse drug interactions. In order to
better characterize patient’s health conditions, we model the trend in medication
dosage titrations and lab test responses, and adapt the vision transformer to obtain
effective patient representations. We also model drug interaction severity levels
as weighted graphs to learn safe drug combinations and design a balanced loss
function to avoid overly conservative recommendations and miss medications that
might be needed for certain conditions. Extensive experiments on two real-world
datasets shows that REFINE outperforms state-of-the-art techniques.

1 Introduction

The widespread adoption of digital patient records in hospitals has led to the creation of a rich knowl-
edge base in the form of Electronic Health Records (EHR). This valuable resource can be utilized for
various tasks in the medical domain, such as mortality prediction [19], outcome prediction [14], and
medication recommendation [16, 2]. Concurrently, advances in drug therapy have resulted in growing
interest in research aimed at enabling personalized and safe treatment recommendations for managing
patient conditions. Current medication recommendation systems are coarse-grained, providing rec-
ommendation at the class level rather than individual drugs, and are unable to differentiate between
patients who require single versus multiple drugs from the same class. For example, while diabetic
patients are often prescribed Metformin to manage their blood sugar levels, patients with uncontrolled
blood sugar level may be given additional blood glucose lowering drug such as Glipizide which
belong to the same medication class A10B1 as Metformin. As such, the recommended treatment
regime is the same for both types of patients which is suboptimal. Thus, it is essential to develop a
fine-grained recommender system capable of providing recommendations at the drug level.

Existing recommender systems that consider drug interactions assume that all the interactions have
the same severity. This is not true in practice as resources on drug information such as the DDInter
database [23] record different levels of interaction severity, ranging from mild to moderate to severe.
By assuming all interactions are equally severe, existing recommender systems tend to avoid any
combination of drugs with known interactions, even when the benefits outweigh the potential risks.
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For example, in the benchmark MIMIC-IV [10], Metformin and Lisinopril are prescribed together
36% of the time for patients with diabetes and hypertension to better manage their conditions, despite
having a moderate level of interaction severity.

In this work, we propose a fine-grained medication recommender system that takes into account
the severity of drug interactions and leverages information gathered over past visits to provide safe
and personalized drug treatment regimes. We represent the varying severity of drug interactions as
a weighted graph and employ a graph attention network to obtain drug interaction representations,
enabling the system to learn safe drug pair combinations. Moreover, to avoid overly conservative
recommendations, we design a balanced loss function that weighs the benefits of a pair of drugs
against the severity of any potential drug interaction. This approach allows for more effective and
personalized treatment recommendations while minimizing the risk of adverse drug interactions.
Additionally, since clinicians often titrate treatment regimes for patients based on their past lab
test responses and medication dosages, we incorporate such trend information and adapt the vision
transformer [7] (ViT) to learn an effective patient representation.

Our contributions can be summarized as follows: (1) We design a novel deep learning system that
combines knowledge from patient information over multiple visits and severity-based drug interaction
database to provide personalized, safe, and accurate fine-grained medication recommendation. (2)
We propose to extract and model trend information from the medication dosage titrations and lab
test responses over multiple visits to obtain effective patient representation. This enables the system
to adjust the treatment regime as the patient condition changes. (3) We design a balanced DDI
loss function that weighs the benefits of a pair of drugs against the severity of any potential drug
interaction. (4) We provide comprehensive quantitative and qualitative evaluations on a benchmark
medical dataset MIMIC-IV [10] and a proprietary outpatient dataset to demonstrate the capability
and effectiveness of our proposed approach in providing fine-grained medication recommendations
while considering drug interaction severity and patient history.

2 Related Work

Early works in medication recommendation focus on learning a collection of rules from EHR. Solt
and Tikk [17] extract rules from discharge summaries, while Lakkaraju et al. [11] use Markov
Decision Processes to learn the mapping between the patient characteristics and treatments. However,
this approach may introduce conflicting rules, and is difficult to generalize and scale. Subsequent
works employ recurrent neural networks to model sequential dependency in patient’s past visits to
improve the performance of medication recommendation [1, 12]. However, they do not consider drug
interactions, which are crucial to minimize adverse drug reactions.

LEAP [27] incorporates an external drug-drug interaction (DDI) database and uses a recurrent decoder
to model the drug-disease relationship in the current visit for recommending a set of medications.
GameNet [16] uses dynamic memory and Graph Convolutional networks (GCN) to personalize
the medication recommendations based on patients’ longitudinal visit history and drug interactions.
CompNet [21] is another GCN based recommender system that models relation among patient’s past
visits as well as the drug interactions by combining reinforcement learning with relational GCN.

PREMIER [2] introduces a two-stage recommender system that employs dual attention-based re-
current neural networks to model patient visits and adapts graph attention networks to model drug
co-occurrences and drug interactions. SafeDrug [25] uses RNN based patient visit representation and
incorporates drug molecular structure information to enhance the safety of the recommended drugs.
They introduce a threshold during training to penalize the recommended set of medications if the total
drug interaction in the set is above the threshold. MICRON [24] uses recurrent residual networks to
capture the medication changes over the visits, and incorporate drug interaction information from an
external database in the design of their DDI loss function.

COGNet [22] introduces a copy module, which generates the probability of a medication being
repeated from past visits. They model the drug interaction information with the help of a GCN and
a DDI loss function. MoleRec [26] introduces a hierarchical architecture to model the association
between drug substructures at the molecular level and the target disease to provide personalized
medication recommendation. [18] proposes a causal inference based medication recommendation
model. They model patient visit information as causal graphs and DDI as propositional satisfiability
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Figure 1: Overview of REFINE.

problem. However, they use additional information such as patient symptoms which are not available
in our datasets, making a direct comparison difficult.

Our approach differs from existing works in that we provide fine-grained medication recommendation
by explicitly modeling drug names, and the trend information in the medication dosages as well as
the lab test responses gathered over multiple visits. We also ensure the safety of the recommendations
by modeling the severity of drug interactions to reduce the risk of harmful combinations.

3 Methodology

Figure 1 shows the framework of the proposed system REFINE for REcommendation of FINE-grained
medication. The input is a list of patient visits. The ith visit is represented as xi = [di, li,mi]
where di is a multi-hot vector of diagnosis, li is a vector of lab tests and responses, mi is the vector
of medications and dosages, and i ∈ [1, T ]. All continuous values are normalized using min-max
normalization [9]. The goal is to predict a set of medications yT for the T th visit, taking into account
the patient history, the trend in the medication dosages and lab test responses, as well as the severity
of drug interactions.

3.1 Trend Information Extraction

We observe that the treatment regimes for patients with the same disease vary depending on whether
their conditions are well managed. This is typically reflected in the fluctuations in the lab test
responses over the various visits. Further, clinicians often titrate the dosage of first-line medications
before introducing additional medications to achieve the optimal treatment outcome. As such, we
extract trend information from medication dosages and lab test responses over the past visits in the
form of slope and variance from [15].

Let varmi and slopemi be the vectors of dosage variance and rate of dosage change for the medications
across visits 1 to i respectively. The dosage variance and rate of dosage change for the kth medication
can be computed as follows:

varmi [k] =

∑i
j=1(mj [k]− µm

i [k])2

(i− 1)
(1)

slopemi [k] =

∑i
j=1(tj − ti)(mj [k]− µm

i [k])∑i
j=1(tj − ti)2

(2)
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Figure 2: Patient representation obtained from transformer encoders.

where mj [k] is the dosage of the kth medication at the jth visit, µm
i [k] is the mean of the dosages of

the kth medication across visits 1 to i, tj is the interval (in days) between the 1st visit and the jth

visit, ti is the average tj for j ∈ [1, i]. The variance varli and slope slopeli for the lab test responses
are obtained in the similar manner.

We stack the variance varmi and slope slopemi and medication dosages mi to obtain a 2D array
∈ R3×Nm where Nm is the total number of medications. We flatten the 2D array into a 1D array
sequence, similar to the approach used in Vision Transformer (ViT) [7]. To do this, we concatenate
the three values (medication dosage, slope, and variance) for every medication in a visit to obtain
a 1D array sequence si. We repeat the process for the lab test response information to obtain a 1D
array sequence ri.

3.2 Patient Representation

To obtain a comprehensive representation of a patient’s evolving health condition, it is crucial to
capture and combine the sequential dependencies present in their EHR data. Specifically, we utilize
three separate transformers [7, 20] to model the sequential dependencies in the patient’s diagnosis,
lab test response, and medication information over multiple visits. These transformer modules can be
used individually or in combination to derive a patient representation even when some information
sources are missing from the EHR data. The embeddings de

i , rei , and sei for diagnosis, lab test
response, and medication dosage respectively are passed to their respective transformers to generate
the patient representation qT as shown in Figure 2.

Each transformer is composed of multiple layers of encoders, and each encoder has a multi-head
self-attention block followed by a position-wise feed-forward network. For the ith visit, the encoder
in the first layer of the transformer takes as input the concatenation of the respective input embeddings
from visits 1 to i. The input to the subsequent encoders is the concatenation of the outputs from the
encoder of the previous layer. This helps to preserve and process the information from the patient’s
visit history. Residual connections are employed around self-attention mechanism to facilitate the
propagation of lower layer features to higher layers. To stabilize and accelerate neural network
training, we apply layer normalization after the multi-head self-attention block and the position-wise
feed-forward network. We also apply dropout to avoid over-fitting. The outputs of the transformers for
the ith visit are hd

i , hr
i , and hs

i for diagnosis, lab test response, and medication dosage respectively.

Since our goal is to predict the set of medications for the current visit T , we fuse the encoded
sequential representation for the diagnosis and lab test response up to the current visit, and the
encoded representation for the medication dosage information up to the previous visit to obtain the
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Figure 3: Details of modeling drug information from the EHR as well as the drug interaction database.

final patient representation qT as follows:

qT = hd
T + hr

T + hs
T−1 (3)

3.3 Drug Information Representation

We observe that clinicians take into account the severity levels of interacting drug pairs and the
severity of drug interactions can vary significantly. This information is crucial when prescribing
medications to ensure patient safety. In addition, the frequency of co-occurrence of drug pairs
observed in the EHR can provide valuable insights into commonly or rarely prescribed combinations,
further guiding the decision-making process.

We represent drug co-occurrence information from the EHR and drug interaction from the DDI
database DDInter [23] as two separate graphs GC = (V,EC) and GD = (V,ED) respectively.
Each node ni ∈ V depicts a drug i. The weighted edges in EC and ED depicts the co-occurrence
frequency and interaction severity between drug pairs, respectively. For co-occurrence, a weighted
edge (ni,nj , w

C
ij) ∈ EC gives the co-occurrence of drug i and drug j with a frequency of wC

ij . The
co-occurrence frequency is calculated by counting the number of occurrences of a drug pair in the
prescribed medication sets in the EHR. These values are normalized to range between 0 and 1.

For drug interactions, a weighted edge (ni,nj , w
D
ij ) ∈ ED gives the interaction between drug i

and drug j with a severity of wD
ij . The severity information is given as Major, Moderate, Minor, or

Unknown/No interaction in the DDInter database. In this work, we represent these severity levels
numerically as 1, 0.66, 0.33, and 0, respectively.

We adapt GATv2 [5] to learn node representations from the weighted drug interaction graph GD.
GATv2 has two layers with z attention heads in the first layer, and 1 attention head in the second
layer (see Figure 3). For the first layer, the attention weight between nodes nj and nk at the bth

attention head is calculated as follows:

δbjk =
wD

jk × exp(a′LeakyReLU(Eb · [nj∥nk]))∑
ni∈Sj

wD
ij × exp(a′LeakyReLU(Eb · [nj∥ni])

(4)

where Sj is the set of drugs that interact with drug j, a′ is the transpose of the weight vector of a
single layer feed-forward neural network, Eb∗ is the embedding matrix for the bth attention head
with Eb = [Eb∗∥Eb∗ ] [5], wD

jk is the edge weight depicting the severity of interaction between drugs
j and k, and ∥ denotes the concatenation operation. The output from the first layer for node nj is
given by:

oD
j = ∥zb=1σ

 ∑
nk∈Sj

δbjkE
b∗ · nk

 (5)
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where σ is the sigmoid function. With this, the output from the second layer for node nj is given by:

uD
j = σ

 ∑
nk∈Sj

δjkE · oD
k

 (6)

where E is the embedding matrix for the second layer, and δjk is obtained by applying Equation 4 on
the output of the first layer for nodes j and k with wD

jk updated to the average of δbjk for 1 ≤ b ≤ z.

We obtain the drug interaction representation ZD by stacking uD
j , j ∈ {1, 2, ..., Nm} and Nm is

the total number of drugs. Similarly, we can obtain a drug co-occurrence representation ZC by
applying another GATv2 on the drug co-occurrence graph GC and stacking the node representation
uC
j , j ∈ {1, 2, ..., Nm}. The final drug information representation Z is given by:

Z = ZC + wZD (7)

where w is a parameter that controls the relative importance of the two representations.

The final output vector yT is obtained by applying attention-based aggregation on the patient
representation and the weighted drug information representation as follows:

yT = σ(W · (qT +Z · λ)) (8)

where λ = softmax( transpose(Z) · qT ) and W is the gradient matrix of the transformation function
in the linear layer.

We consider a medication is recommended if yT [k] > 0.5, k ∈ {1, 2, ..., Nm}. To understand
the factors influencing the model’s recommendations, Appendix A shows how we can derive the
contributions of the different information sources.

3.4 Training Objective

We formulate the recommendation task as a multi-label prediction task and employ the widely used
binary cross entropy loss Lbce and hinge loss Lhinge [16, 3]. To capture the trade-off between the
benefits and potential interactions of a drug pair, we propose a balanced drug interaction loss function
Lbdi defined as follows:

Lbdi =

T∑
i=1

Nm∑
j=1

Nm∑
k=1

(βwD
jk − (1− β)wC

jk) · yi[j] · yi[k] (9)

where wD
jk and wC

jk depict the severity of drug interaction and the frequency of co-occurrence obtained
from the graphs GD and GC respectively, β is a controllable factor which provides a balance between
drug interaction and drug co-occurrence information.

The final objective function is given by:

Ltotal = γ1 ∗ Lbce + γ2 ∗ Lhinge + (1− γ1 − γ2) ∗ Lbdi (10)

where γ1 and γ1 are hyperparameters.

4 Performance Study

We implement REFINE in PyTorch and carry out the training on two NVIDIA Titan RTX GPU.
We use two datasets, MIMIC-IV [10] and PRIVATE, in our experiments. MIMIC-IV is a publicly
available inpatient dataset consisting of 299,712 patient (mostly ICU patients) data collected between
2008 and 2019, whereas PRIVATE is a proprietary outpatient dataset from 6 primary care clinics over
a span of ten years. Table 1 gives the statistics. Patients with fewer than two visits are filtered out
(see details in Appendix B).

We evaluate the accuracy as well as the level of drug interactions in the recommended medication
set. For accuracy, we use the metrics precision-recall area under the curve (AUC), F1, and Jaccard
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Table 1: Characteristics of datasets.
Attribute MIMIC-IV PRIVATE
Number of patients 61310 85039
Number of diagnosis 2000 20
Number of lab tests 573 18
Number of medications 735 50
Avg number of visits per patient 4.0 6.9
Avg number of diagnosis per visit 12.5 1.8
Avg number of lab tests per visit 35.6 5.6
Avg number of medications per visit 8.9 4.1

Table 2: Results of comparative study.
Methods MIMIC-IV PRIVATE

AUC F1 wDDI AUC F1 wDDI
LR 0.632 ± 0.006 0.526 ± 0.004 0.055 ± 0.0009 0.639 ± 0.007 0.561± 0.002 0.146 ± 0.0004
RF 0.635 ± 0.004 0.531 ± 0.003 0.053 ± 0.0005 0.642 ± 0.003 0.565 ± 0.005 0.140 ± 0.0003

BART 0.637 ± 0.002 0.540 ± 0.002 0.056 ± 0.0006 0.646 ± 0.004 0.571 ± 0.004 0.142 ± 0.0005
LEAP 0.625 ± 0.003 0.514 ± 0.005 0.047 ± 0.0003 0.633 ± 0.005 0.558 ± 0.007 0.117 ± 0.0001
DMNC 0.633 ± 0.006 0.528 ± 0.002 0.056 ± 0.0002 0.640 ± 0.007 0.566 ± 0.002 0.158 ± 0.0005

GameNet 0.641 ± 0.003 0.543 ± 0.005 0.053 ± 0.0005 0.647 ± 0.001 0.575 ± 0.004 0.131 ± 0.0003
CompNet 0.638 ± 0.002 0.546 ± 0.006 0.050 ± 0.0002 0.645 ± 0.005 0.582 ± 0.001 0.134 ± 0.0005

PREMIER 0.655 ± 0.001 0.565 ± 0.002 0.047 ± 0.0001 0.669 ± 0.001 0.607 ± 0.003 0.122 ± 0.0001
MICRON 0.658 ± 0.003 0.567 ± 0.006 0.047 ± 0.0006 0.662 ± 0.002 0.597 ± 0.006 0.120 ± 0.0001
SafeDrug 0.652 ± 0.004 0.564 ± 0.002 0.045 ± 0.0001 0.671 ± 0.003 0.608 ± 0.006 0.113 ± 0.0002
COGNet 0.661 ± 0.002 0.573 ± 0.001 0.054 ± 0.0006 0.682 ± 0.005 0.616 ± 0.002 0.129 ± 0.0004
MoleRec 0.670 ± 0.004 0.579 ± 0.003 0.044 ± 0.0001 0.688 ± 0.002 0.623 ± 0.006 0.112 ± 0.0001
REFINE 0.708 ± 0.001* 0.635 ± 0.003* 0.043 ± 0.0001* 0.729 ± 0.004* 0.656 ± 0.003* 0.111 ± 0.0002*

* indicates that the result is statistically significant when compared to the second best with p-value < 0.05.

similarity [2, 25]. For the level of drug interactions, we introduce a weighted drug interaction score
(wDDI) defined as follows:

wDDI =
1

T

T∑
i=1

 2

|Mi||Mi − 1|
∑
j∈Mi

∑
k ̸=j∈Mi

wD
jk

 (11)

where Mi is the set of recommended medications at the ith visit for a patient, |Mi| is the cardinality
of Mi, wD

jk is the severity of interaction between drug j and drug k obtained from the graph GD. The
values of the various metrics are averaged over all the patients in the test set.

We split the datasets into training, validation and test sets in the ratio 4:1:1, and report the performance
on the test set. Appendix C provides details of the training and hyperparameter settings. Sensitivity
experiments and additional comparative and ablation studies can be found in Appendix D.

4.1 Comparative Analysis

We compare the performance REFINE with baseline methods such as Logistic Regression (LR) [13],
Random Forest (RF) [4], BART [6] LEAP [27], DMNC [12], GameNet [16], CompNet [21], PRE-
MIER [2], MICRON [24], SafeDrug [25], COGNet [22], and MoleRec [26]. We perform 10 rounds
of bootstrapping sampling and report the mean and standard deviation.

As can be seen from Table 2, REFINE demonstrates superior performance compared to the baseline
methods, with statistically significant differences (p-values < 0.05) based on a one-way ANOVA
test [8]. The improved performance of REFINE can be attributed to its ability to account for medica-
tion dosage and lab test response trends across patient visits. Further, REFINE also outperforms the
baselines in terms of wDDI, and is even lower than the wDDI present in MIMIC-IV (0.0448) and
PRIVATE (0.1159) datasets. This suggests that REFINE can effectively reduce the potential risk of
adverse drug interactions, which is a critical aspect of ensuring patient safety in clinical practice.

Table 3 shows the performance on a subset of patient instances where at least one change of medication
occurs between consecutive visits. As more than 90% of the instances in MIMIC-IV already involve
medication changes, we consider the performance reported in Table 2 to be representative of such
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Table 3: Results for instances with medication change.
Methods PRIVATE

AUC F1 Jaccard wDDI
LR 0.605 ± 0.006 0.536 ± 0.004 0.379 ± 0.008 0.1239 ± 0.0006
RF 0.607 ± 0.003 0.539 ± 0.005 0.381 ± 0.005 0.1234 ± 0.0002

BART 0.609 ± 0.002 0.541 ± 0.003 0.385 ± 0.004 0.1236 ± 0.0004
LEAP 0.602 ± 0.003 0.527 ± 0.005 0.374 ± 0.006 0.1111 ± 0.0002
DMNC 0.606 ± 0.006 0.532 ± 0.002 0.387 ± 0.005 0.1243 ± 0.0003

GameNet 0.619 ± 0.003 0.545 ± 0.005 0.392 ± 0.003 0.1124 ± 0.0006
CompNet 0.614 ± 0.002 0.552 ± 0.006 0.401 ± 0.008 0.1138 ± 0.0003

PREMIER 0.638 ± 0.001 0.576 ± 0.002 0.419 ± 0.005 0.1119 ± 0.0001
MICRON 0.647 ± 0.003 0.581 ± 0.006 0.422 ± 0.002 0.1114 ± 0.0004
SafeDrug 0.648 ± 0.004 0.591 ± 0.002 0.405 ± 0.006 0.1107 ± 0.0001
COGNet 0.665 ± 0.007 0.605 ± 0.002 0.437 ± 0.005 0.1129 ± 0.0007
MoleRec 0.667 ± 0.003 0.610 ± 0.001 0.442 ± 0.003 0.1106 ± 0.0002
REFINE 0.707 ± 0.002* 0.645 ± 0.001* 0.494 ± 0.003* 0.1097 ± 0.0001*

* indicates that the result is statistically significant when compared to the second best with p-value < 0.05.

Table 4: Average number of recommended, extra, and missed medications.
Methods MIMIC-IV PRIVATE

# Average # Extra # Missed # Average # Extra # Missed
PREMIER 9.85 4.60 3.47 5.13 2.3 1.35
MICRON 7.50 2.90 4.12 3.08 0.91 2.01
SafeDrug 7.01 2.57 4.29 2.93 0.77 2.02
COGNet 10.31 4.86 3.27 5.27 2.36 1.27
MoleRec 10.27 4.77 3.22 5.22 2.29 1.25
REFINE 9.48 3.70 2.94 4.91 1.93 1.20

cases. Therefore, we focus our analysis on the PRIVATE dataset, where around 50% of the instances
involve medication changes between visits. We observe a drop in performance for all methods. This is
expected as a change in treatment regime often implies a different patient response, making accurate
predictions more challenging. Nevertheless, REFINE still outperforms the baseline methods in this
challenging scenario. This indicates that even when faced with more complex situations involving
medication changes, REFINE’s integrated approach provides valuable insights and maintains a higher
level of performance compared to other methods.

We also analyze the average number of recommended medications, average number of extra medica-
tions recommended, and average number of missed medications per visit for REFINE and the best
performing baselines, as shown in Table 4. The average number of medications in the ground truth for
the test set is 8.72 and 4.18 for MIMIC-IV and PRIVATE dataset respectively. We see that COGNet,
PREMIER, and MoleRec generally recommend more medications whereas SafeDrug, MICRON tend
to recommend fewer medications; whereas the average number of medications recommended by
REFINE is closely aligned with the ground truth for both datasets. We find that COGNet has the
highest average of extra medications in the recommended set. In contrast, REFINE recommends
relatively lower extra medications. This can be attributed to the effective learning of patient condition
from lab test and medication dosage trends. For the average number of missed medications, SafeDrug
has the worst performance. On the contrary, REFINE misses the least number of medications from
the ground truth set. This indicates that not weighing the benefits and potential interactions of drug
pairs together may lead the system to omit medications necessary for managing a patient’s condition.

4.2 Ablation Study

We conduct an ablation study to evaluate the effect of trend information and drug interaction severity
on the performance of REFINE. We have four variants: (a) REFINE w/o med trend excludes
variance and slope of the medication dosages, (b) REFINE w/o lab trend omits the variance
and slope of the lab test responses, (c) REFINE w/o any trends does not incorporate any trend
information, and (d) REFINE w/o severity does not incorporate severity-based drug interaction.

Table 5 shows the results. We observe that REFINE w/o any trend has the lowest accuracy, indicating
that trend information is crucial for making accurate fine-grained medication recommendations.
There is a significant drop in performance for REFINE w/o severity, highlighting the importance of
considering drug interaction severity when recommending medications.
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Table 5: Results for ablation study.
Methods MIMIC-IV PRIVATE

AUC F1 wDDI AUC F1 wDDI
w/o med trend 0.701 ± 0.001 0.618 ± 0.003 0.044 ± 0.0001 0.718 ± 0.003 0.645 ± 0.004 0.112 ± 0.0002
w/o lab trend 0.695 ± 0.002 0.613 ± 0.001 0.044 ± 0.0003 0.714 ± 0.004 0.643 ± 0.001 0.112 ± 0.0005

w/o any trends 0.682 ± 0.002 0.602 ± 0.002 0.045 ± 0.0002 0.703 ± 0.002 0.630 ± 0.001 0.112 ± 0.0004
w/o severity 0.694 ± 0.002 0.617 ± 0.001 0.046 ± 0.0005 0.713 ± 0.004 0.639 ± 0.002 0.115 ± 0.0003

REFINE 0.708 ± 0.001 * 0.635 ± 0.003* 0.043 ± 0.0001* 0.729 ± 0.004 * 0.656 ± 0.003* 0.111 ± 0.0002*

* indicates that the result is statistically significant when compared to the second best with p-value < 0.05.

5 Case Studies

Finally, we present case studies to highlight REFINE’s ability to provide accurate medication
recommendations which ultimately contributes to better patient care. Figure 4(a) shows a sample
patient from the PRIVATE dataset who has been diagnosed with Type 2 Diabetes Mellitus and
Hyperlipidemia, and the HbA1c ranges from 7.4 to 9.8. In the second visit, we observe that a diabetes
medication Glipizide is added to the Metformin treatment to manage the increased HbA1c value.
REFINE successfully recommends the addition of Glipizide, while SafeDrug and COGNet do not.
This can be attributed to REFINE’s ability to learn lab test trends and incorporate balanced drug
interaction information. REFINE identifies the increase in HbA1c value for the current visit as the
influencing factor for Glipizide, which is consistent with clinical knowledge. Further, the decrease in
HbA1c in the third visit indicates that certain medication combinations with some risk of interaction
may indeed be necessary to effectively manage a patient’s condition.

Figure 4(b) shows another patient from the PRIVATE dataset who has been diagnosed with Diabetes
Mellitus, Hypertension, and Hyperlipidemia in visit 1, followed by chronic kidney disease in visit
2. We see that the medication Simvastatin is replaced by Atorvastatin in the second visit as it is
preferred over other hyperlipidemia medications for patients with chronic kidney disease 2. REFINE
closely follows the prescribed medication set and accurately recommends the medication change,
indicating REFINE’s ability to model co-morbidities. In contrast, SafeDrug and COGNet are unable
to effectively capture this aspect.

Figure 4(c) shows a patient from the MIMIC-IV dataset who has been diagnosed with multiple
diseases in visit 1, and is diagnosed with nontoxic multinodular goiter, and nausea with vomiting
in visit 2. We observe that REFINE is able to recommend medications that matches the prescribed
medications more closely compared to COGNet and SafeDrug. A closer inspection reveals that
SafeDrug tends to under-recommend to avoid the interacting medication pairs, whereas COGNet
tends to over-recommend many drugs outside the prescribed set.

6 Conclusion and Discussion

We have described a unique fine-grained medication recommender system that offers personalized
medication suggestions while considering the severity of potential drug interactions and explicitly
modeling the trends in medication dosage titrations and lab test responses over visits. To the best
of our knowledge, REFINE is the only system that factors in these trends while also assessing the
varying severity of drug interactions. Experiments on real-world datasets and case studies show the
effectiveness of REFINE in providing personalized, accurate, and safe medication recommendation.

The current system can be extended to include additional rich data from EHR such as clinician notes
to further refine the system’s recommendations. While we have shown that the severity of drug
interactions is a crucial factor, the dosage strength of the drugs could also have a significant impact.
A lower dosage of an interacting drug pair may sometimes be clinically acceptable and beneficial.
Future work could explore how dosage strength influences the acceptability of interacting drug pairs.
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(a) Patient with fluctuating HbA1c values.

(b) Patient with changes in co-morbidities.

(c) Patient from MIMIC-IV with multiple diagnosis.

Figure 4: Medications recommendeded for sample patients. Red color indicates interacting medications.
Symbols ↑ and ↓ depict an increase and decrease in the value of dosage or lab test response. The top influencing
factor for each recommended medication provide insights into why REFINE recommends it.
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