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Abstract

Token embeddings, a mapping from discrete lexical symbols to continuous vectors,
are at the heart of any language model (LM). However, lexical symbol meanings
can also be determined and even redefined by their structural role in a long context.
In this paper, we ask: is it possible for a language model to be performant without
any fixed token embeddings? Such a language model would have to rely entirely
on the co-occurence and repetition of tokens in the context rather than the a priori
identity of any token. To answer this, we study lexinvariant language models that
are invariant to lexical symbols and therefore do not need fixed token embeddings
in practice. First, we prove that we can construct a lexinvariant LM to converge to
the true language model at a uniform rate that is polynomial in terms of the context
length, with a constant factor that is sublinear in the vocabulary size. Second, to build
a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such
that each token maps to the same representation within each sequence but different
representations across sequences. Empirically, we demonstrate that it can indeed
attain perplexity comparable to that of a standard language model, given a suffi-
ciently long context. We further explore two properties of the lexinvariant language
models: First, given text generated from a substitution cipher of English, it implicitly
implements Bayesian in-context deciphering and infers the mapping to the under-
lying real tokens with high accuracy. Second, it has on average 4X better accuracy
over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard
language models towards lexinvariance and potential practical applications.

1 Introduction

All language processing systems rely on a stable lexicon, which assumes that a token (a word or
subword such as tree) has a consistent contribution to the meaning of a text (though of course this
meaning is mediated by context). In neural language models (LMs), this contribution is the token
embedding, which stably maps each token into a continuous vector [21, 16, 17, 7, 6]. However, in
real language, a token’s contribution might be determined by its structural role; in math and code, novel
variable names are arbitrarily defined to carry new meaning, and poems such as Jabberwocky exploit
humans’ lexical flexibility in interpreting novel words such as vorpal. Besides standard language
understanding, this lexical flexibility also correlates with a stronger in-context reasoning performance.
For example, GPT-3 [6] and other large language models that demonstrate high lexical flexibility show
strong performance on tasks involving in-context reasoning over new concepts and rules.
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Figure 1: Definition (a) and construction (b) of lexinvariant language model

Motivated by the above, we ask whether we can push this flexibility to the extreme: can we build a lan-
guage model without any stable lexical mapping? To this end, we formulate and study such lexinvariant
language models. We define a lexinvariant language model as a language model that assigns the same
probability to all lexical permutations of a sequence. Formally, we define a lexical permutation π to
be a one-to-one mapping of a set of lexical symbols 1 onto itself. Then the lexinvariant language model
is defined as a language model over the symbol sequence x1,...,xn with the following property:

p(x1,...,xn)=p(π(x1),...,π(xn)) ∀π (1)

For example, a lexinvariant language model (whose vocabulary is letters and space) should assign
the same probability to the phrase “a big banana” as “e cop cekeke” because the two are the same
up to the permutation π={a :e,b :c,i :o,n :k,g :p,···} (Figure 1a).

The central question is: how well can lexinvariant language models predict the next token given an
increasingly long context? We find the answer is almost as well as standard language models, both
theoretically and empirically. This is rather surprising given that lexinvariance seems like a strong
limitation (a model doesnt́ know what any individual symbol means!) However, the intuition is that
given longer contexts, a lexinvariant model can both infer the latent permutationπ (lazily) up to whatever
ambiguity is present in the language model, and do the standard next word prediction task jointly.

Theoretically, we prove that a constructed lexinvariant language model can converge to the true
language model as the context length increases—that is, the average L1 distance between the
predictions of the two models decreases with a convergence rate of O

(
( d
T )

1
4

)
, where T is the length

of the context and d is the vocabulary size, and where the big-O notation hides polylogarithmic factors
of d and T and an absolute constant that is independent of the language model.

Empirically, we train a lexinvariant LM by replacing standard embeddings in a decoder-only Trans-
former [24] with per-sequence random Gaussian vectors, such that the same symbols get the same
embedding within each sequence but get different embedding across sequences (Figure 1b). We indeed
see that the perplexity gap between the lexinvariant LM and the standard LM shrinks as context length
increases, as shown in Section 3.2. With a 150M parameters Transformer and a small character-level
vocabulary (130 tokens), the average perplexity gap shrinks from 9X to less than 1X the average per-
plexity of a standard LM after observing 512 tokens over The Pile [9]. With a larger 32K vocabulary, the
gap also shrinks, especially on the more structured text like GitHub code, albeit at a much slower rate.

We then explore two additional properties of the lexinvariant LM: in-context deciphering and symbol
manipulation. First, we show that given a ciphertext generated by applying a substitution cipher to
English text, the lexinvariant LM can be seen as implicitly approximating Bayesian inference of the
lexical permutation, i.e., cipher key, in-context. To show this empirically, we train a small MLP probe
on top of a frozen pretrained lexinvariant LM to predict the deciphered token corresponding to the last

1We specifically consider lexical symbols as tokens, not necessarily words or other linguistic units.
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seen cipher token. We can then read out the inferred cipher key with each prefix of the sequence. We
show that the accuracy of this inferred cipher key quickly improves as context length grows, reaching
99.6% average accuracy. We also show examples in Section 3.4 that visualize the uncertainties
over different possible lexical mappings maintained by the lexinvariant LM when the cipher key is
ambiguous and that the semantic meaning of a symbol with very rare occurrence can be inferred
efficiently relative to other common symbols in context. Second, we show that lexinvariant models
perform better than traditional models over synthetic pure in-context reasoning tasks that involve
symbol manipulation. We observe a significant 4X improvement over a standard language model.

While the primary motivation of this paper is scientific exploration of a new idea, lexinvariance, we
were also curious to see if it could help improve certain tasks, generalizing the performance gain we see
on synthetic tasks. We stress that for most practical applications, lexinvariance is far too strong, so these
experiments are intended to be illustrative rather than be a recipe for improving state-of-the-art. We
discuss potential approaches to integrate the idea of lexinvariant LM into standard language modeling as
a form of regularization, such that the LM assumes some form of partially stable symbol representations.
The resulting LM can improve upon a standard language model over some BIG-bench tasks [23].

2 Lexinvariant Language Model

We define a language model as a probability distribution p(x1,...,xn) over input token sequences
x1,...,xn∈Vn, where V is some vocabulary over symbols. A language model is lexinvariant if for all
permutations π :V→V and for all token sequences x1,...,xn∈Vn, p(x1,...,xn)=p(π(x1),...,π(xn)).
For example, if V = {a,b}, then the model should assign the same probability to aab and bba. One
example p that satisfies this could simply be

p(x)=

{
1/2 x∈{aab,bba}
0 otherwise

(2)

Can such a lexinvariant language model predict language well, even though it can only make next token
predictions based on the structure of co-occurence and repetition of input tokens in a single context?

2.1 Convergence on Language Modeling Performance

We show that we can construct a lexinvariant LM (as shown in Figure 2) to model the true language
distribution faithfully, given a long enough context. The lexinvariant language model can essentially
infer back the latent permutation π as it observes more symbols.

x1
π

π(x1)

x2 x3 xn

π(x1) π(x1) π(xn)
Figure 2: Probabilistic graphical model for the lexinvariant LM associated with the true language
distribution p(x1,...,xn).

As an intuitive example, suppose that V={a,b} and the true language only contains two sequences
babbbb and ababab (and their prefixes) with even probability. When given only the first three letters, a
lexinvariant model can’t tell the latent permutation and can only assign the same probability toa and b for
the next letter: Due to the lexinvariant property, it assigns the same probability to p(a|aba)=p(b|bab)
as well as to p(b|aba)=p(a|bab). Further, p(a|aba)=p(b|aba) because the permutations to prefixes
aba and bab are equally probable. In contrast, when considering the prefix abab, the fourth letter
resolves the ambiguity in possible permutations π. (Since baba is not in the true language distribution,
π cannot map a to b.) Therefore, the model can correctly predict that p(a|abab)=1 and p(b|abab)=0.

Formally, for a given language model p, we define the associated lexinvariant language model
p′(x1,...,xn) as Eπ[p(π

−1(x1),...,π
−1(xn))]. Analyzing it, we have the following theorem:

Theorem 2.1. Let x1,...,xn be any token sequence generated by an arbitrary language distribution
p with an alphabet of size d. Let p′(x1, ... , xn) = Eπ[p(π

−1(x1), ... , π
−1(xn))]. Then, for any
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0<ϵ,δ<1/2,

1

T

T∑
t=1

∥p(xt|x1,...,xt−1)−p′(xt|x1,...,xt−1)∥1≤ϵ

with probability greater than 1−δ, when T ≥ d
ϵ4 polylog(d, 1ϵ ,

1
δ ), where the polylogarithmic term

hides an absolute constant that is independent of p.

This theorem says that this associated lexinvariant language model converges to modeling the
true language distribution fairly efficiently—with polynomial rate and near-linear dependence on
vocabulary size d. Strikingly, this holds irrespective of the properties of the language distribution p
2. In other words, a language model can indeed infer the operational meaning of the tokens in context
based solely on the structure of the symbols!

We give a complete proof of this theorem in Appendix A. At a high level, this convergence happens
because at most timesteps t, the new observation xt either provides new information about the
permutation π, or xt has similar likelihood under the permutations that are likely given x1,...,xt−1.
In the simplest case, if the posterior P(π |x1,...,xn) concentrates on the correct π, then we converge
to the standard LM. But even if it doesn’t, that means the uncertainty about π should not matter for
predicting the next token. We make this precise by interpreting p′(xt|x1,...,xt−1) as performing a
multiplicative weights algorithm with the Hedge strategy of Freund and Schapire [8], and then relate
the regret bounds to the average KL divergence between the predictions of p and p′, and ultimately
the average L1 distance between these predictions.

2.2 In-context Bayesian Deciphering

We can see the associated lexinvariant language model as implicitly learning to approximate an
in-context Bayesian deciphering process, i.e. inferring a probability distribution over possible lexical
permutations based on seen tokens, with the language modeling prior:

p′(xn+1|x1,...,xn)

=
∑
π

1

d!

p(π−1(x1),...,π
−1(xn+1))

p′(x1,...,xn)

=
∑
π

p(π−1(x1),...,π
−1(xn+1))

p(π−1(x1),...,π−1(xn))

1
d!p(π

−1(x1),...,π
−1(xn))

p′(x1,...,xn)

=
∑
π

p(π−1(xn+1)|π−1(x1),...,π
−1(xn))︸ ︷︷ ︸

language modeling

P(π|x1,...,xn)︸ ︷︷ ︸
inferring lexical permutation

(3)

As shown above, p′ can be reduced to two parts, where the first part is normal language modeling and
the second part is the probability distribution of lexical permutations based on seen tokens. So the
lexinvariant language model is implicitly learning to model P(π|x1,...,xn).

We can make this approximate in-context Bayesian deciphering explicit by training a small probe
to predict P(π|x1,...,xn) given the internal representation of the lexinvariant language model. We
will show that this indeed recovers π reasonably accurately in the experiment section.

2.3 Constructing a Lexinvariant Language Model

We now consider how to construct a lexinvariant LM in practice. A typical neural language model, such
as a Transformer, converts input tokens to continuous vectors using token embedding and then passes
these vectors as input to the rest of the neural network. Thus, the language model p it parameterizes
depends on the token embedding E :V→Rd:

p(x1,...,xn)=T (E(x1),...,E(xn)) (4)

To make a neural LM lexinvariant, we can replace the standard stable token embedding E with a
randomized E and take the expectation over E. Each token x ∈ V has an independent embedding

2The convergence rate could be better depending on the language distribution, such as on math and code, where
the symbols should have clear functional meaning in context. We explore this empirically in the experiment section.
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E(x)∼N (0,Id), and the language model becomes

p(x1,...,xn)=E[T (E(x1),...,E(xn))] (5)

Since E
d
=E ◦π , the right-hand side is the same when xi are applied with any permutation π, i.e.,

for any x1,...,xn:

E[T (E(x1),...,E(xn))]=E[T (E(π(x1)),...,E(π(xn)))], (6)

showing that the Transformer with randomE is lexinvariant as in Eq. 1. Now we can train this lexinvari-
ant LM similarly to a standard LM. Concretely, we sample a newE for each training sequence and mini-
mize the standard language modeling loss as in a standard neural LM. Here we are stochastically optimiz-
ing a variational lower bound of the standard language modeling loss with this randomized model by tak-
ing the expectation to the outside of the loss over log likelihood. Effectively, the same token gets the same
random embedding within each training sequence, but different embedding across training sequences.

In practice, we focus on training decoder-only Transformers with a next token prediction objective
in this work, where the model directly models p(xn+1|x1,...,xn) instead of the joint distribution. Our
definitions and analysis above still hold in general. The only modification is that the final readout
matrix also needs to be replaced with the same E, so that the Transformer can predict the embedding
of the next token based on the embeddding of input tokens.

3 Experiments
3.1 Setup

Architecture. For all experiments, we use decoder-only Transformer architecture with T5 relative
position bias [19]. We use models with 150M parameters, with 12 layers, 8 heads, head dimension 128,
and MLP dimension 4096.

Training. We use the Adafactor optimizer [22], with a cosine decay learning rate schedule [13] from
0.01 to 0.001 based on preliminary experiments. We train the models from scratch for 250K steps on
all the settings, with 512 sequence length and 64 batch size. We ran all of our experiments on 8 TPU
cores. Our models are implemented in JAX [5].

Datasets. For datasets, we mainly use the Pile [9], a large open-source corpus that contains text
collected from 22 diverse high-quality sources. We also run experiments on two additional datasets
to explore their effects on the behavior of lexinvariant models: Wiki-40B [10], which contains high
quality processed Wikipedia text in 40+ languages, and GitHub (subset of the Pile), which contains
code from GitHub repositories with more than 100 stars and less than 1GB files.

3.2 Convergence to Standard Language Models

We first show empirically that lexinvariant LMs can mostly recover the next token prediction
performance of standard LMs after a long enough context. As already discussed in section 2.1, the
lexinvariant LM will theoretically converge to a standard LM as the context becomes long enough
to resolve ambiguity. Here we verify this experimentally and show the variation of this convergence
across corpora and tokenizations.

To show this, we train lexinvariant and standard LMs with both character-level vocabulary (128 ascii
characters) and T5 default vocab (32k tokens) over the three datasets. For each model, we measure

0 100 200 300 400
Context Length

0

10

20

30

40

P
er

pl
ex

ity

Model Perplexity with Character-level Vocabulary

standard
lexinvariant

0 100 200 300 400
Context Length

0

2000

4000

6000

8000

10000

12000

14000

P
er

pl
ex

ity

Model Perplexity with T5 default vocab

standard
lexinvariant

Figure 3: Perplexity over the Pile with character-level vocabulary (left) and T5 default vocab (right).
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the perplexity of each token in each sequence w.r.t. context length, smoothed by moving average
within each sequence, i.e. P (xi,...,xi+k|x1,...,xi)

1
k for context length i. We set the moving average

window k=100. We plot results over 100 sequences. As shown in figure 3, the perplexity gap between
lexinvariant LM and standard LM gradually shrinks as the prefix becomes longer and longer, albeit
much more slowly with a larger vocabulary. This makes intuitive sense since a larger vocabulary has
more possibilities of permutations and requires many more prefix tokens to disambiguate. For the 32K
vocabulary, the 512 context length will only allow the model to see a very small number of tokens,
let alone to see tokens more than once. Nonetheless, the model still manages to show the trend of
convergence, since even a small number of repetitions can form common patterns in grammar (such
as the usage of spaces, punctuation, articles, etc). For the character-level vocabulary, the perplexity gap
shrinks from 9X to less than 1X the average perplexity of the standard LM. With a context length of 511,
the lexinvariant LM converges to perplexity 3.38, almost comparable to the perplexity of the standard
LM of 2.00. Additionally, we observe that the gap shrinks significantly faster for models trained over
Github than standard English text like Wiki-40B since code is more structured and it is easier to decipher
the token permutation. We show the comparison across different datasets in Figure 7 in Appendix.

3.3 Recovering Substitution Ciphers

Here we show that lexinvariant LM is implicitly performing Bayesian in-context deciphering by testing
its ability to recover cipher keys (e.g. Figure 4a) from character-level substitution ciphers, e.g. uC;
kvR5W 4mfzd @f| Svcgn fw;m uCRmu;;d ]%~} :fBn. For the lexinvariant LM, this cipher text
is perceived as the same as the quick brown fox jumps over thirteen lazy dogs, due to the
lexinvariant property. It will then proceed to complete the cipher text with %d: uC; @f| with the
same probability as it will complete the normal text with and the fox.

Because of this, we cannot directly read out the distribution of possible cipher keys P(π|x1,...,xn−1)
implicitly inferred by the lexinvariant LM. To do this, we train a small two-layer MLP probe on top
of a frozen trained lexinvariant LM. For each training sequence, we first embed the input sequence
with a randomly sampled token embedding E as described in section 2.3 and obtain the hidden
activation of the final layer generated by the frozen lexinvariant LM. Then, we pass this activation
through the two-layer MLP probe. Finally, instead of decoding the output activations to classification
logits with the same E as in the lexinvariant LM, we instead use another learnable non-randomized
token embedding matrix E′ so that the probe can recover the deciphered token with stable token
embeddings. Overall, we train the probe jointly with this embedding matrix E′ to predict the current
token. Effectively, we are training the probe to decipher the current token using the representation
provided by the lexinvariant LM. We train the probe over the same corpus as the original lexinvariant
LM for 10k steps. With this probe, we can directly visualize P(π−1(xn)|x1,...,xn) inferred by the
lexinvariant LM, which is effectively one row in the permutation matrix representing π.

Now we can use this probe to explicitly recover the cipher key. An example ground truth cipher key
that we want to recover is shown in Figure 4a. Note that although the substitution cipher is only among
lowercase letters, the character-level lexinvariant model we use assumes that all permutations among
the 128 characters are possible , making the deciphering even more challenging.
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(a) Ground truth
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(b) Majority vote prediction
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Figure 4: (a) (b): Cipher key matrix, where the vertical axis shows the cipher characters and the
horizontal axis shows the deciphered letters. The highlighted entries show the correspondences
between cipher characters and the actual letters, e.g. % deciphers to l. (c): Cipher key prediction
accuracy, averaged across 1000 input sequences. Context length denotes the start index of the window.
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Figure 5: Predicted cipher key for windows of size 50, at indices 0, 50, 100, 200, and 400. Generated
using temperature of T =1.

Concretely, we first input ciphertext through the frozen lexinvariant LM with the probe to produce
a deciphered sequence. We then select a window of size 100 in the middle of the sequence and perform
a majority vote over the corresponding deciphered tokens of each cipher token seen in this window.
This essentially produces a predicted cipher key matrix for each window, and we can measure its
precision against the ground truth. As shown in Figure 4c, such a cipher key prediction generally has
increasingly higher precision as the window is selected later in the context, and it becomes near-perfect
by the end of the sequence. Specifically, the cipher key matrix produced by the last window has an
average precision of 99.6% over 1000 input sequences.

Finally, we aggregate over the last window of the 1000 sequences to recover a full cipher key, in case
certain letters never appear in the last window of certain sequences. We again recover a full cipher
key via majority vote. In Figure 4b, we show the highly accurate predicted cipher key recovered from
ciphertext produced using the example ground truth cipher key in Figure 4a.

To perform a more detailed analysis showing the Bayesian deciphering process of the lexinvariant
model, we use the logits of the probe to recover the predicted distribution of the cipher key
P(π|x1,...,xn−1). Instead of taking the majority vote of the predicted decipher tokens in the window,
we take the mean of logits predicted for each ciphered token. This essentially gives a locally averaged
predicted distribution of cipher key matrices. Specifically, the cipher key matrices are generated across
windows of 50 characters, and the probabilities are averaged over 1000 input sequences encoded using
the same ground truth cipher. As shown in Figure 5, the predicted distribution of cipher key matrix
becomes sharper as the prefix becomes longer.

3.4 In-context Bayesian Deciphering Examples

Here, we show several qualitative examples of in-context Bayesian deciphering. We first show how the
lexinvariant LM maintains uncertainty over possible lexical permutations while iteratively updating
them at each index, using examples from a character-level lexinvariant model. Then, we also show
an example of semantic in-context deciphering with a 32K vocabulary lexinvariant model, where the
meaning of a novel word is inferred relative to common words in-context.

3.4.1 Uncertainty over Lexical Permutations

In Figure 6a, we input the following ciphered sequence to the frozen character-level lexinvariant LM
with the probe: “I saw lots of people in town today, walking and talking around me.
I greeted my friend Alice and my classmate Alex. I saw a guy, Joe, walking
outside carrying a zat. Joe’s zat was taken off zy wind. Today’s wind was
strong, so Joe’s zat flew zackward. Joe lost Joe’s zat for good. Joe will
miss Joe’s zat.” For each instance of z in the sequence, we display the predicted deciphering of
that instance as a row of probabilities across non-cipher letters a-z.

The lexinvariant model starts off assuming uniform probability for all possible lexical permutations π.
After seeing more and more text, the lexinvariant model quickly realizes that z only has a few main plau-
sible decipherings (b, h, c, m). Eventually, the lexinvariant model is able to narrow the possibilities down
to z maps to b near the end of the sequence. The predicted probabilities shift with the seen context ac-
cordingly, demonstrating an example of how the predicted cipher key is iteratively updated at each index.

Figure 6b shows another example with a similar set up, but with text: “I saw a man in the pazk
with a zat. The man was walking with the zat zight beside him. I’ve nevez
seen anything like that befoze.” While context initially suggests that z may be deciphered as
c, it becomes clear that z must correspond to r after the appearance of “right”. The disambiguation
is reflected in the depicted probabilities.
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In Figure 6c and 6d, we show two deciphering examples over code. We consider two code examples in
which it is initially ambiguous whether the character z deciphers to : or {. The ambiguity is eventually
resolved by the use of Python-like or Java-like syntax.

3.4.2 Semantic Deciphering

In addition to character-level deciphering, we show examples of semantic deciphering with the
larger vocabulary of 32k. Although the lexinvariant LM could not possibly figure out the true lexical
permutation among 32k tokens using a small 512 context, it is possible to construct a simple context
that repetitively uses simple words so that these words are easier to decipher. Then the lexinvariant LM
can decipher the approximate semantics of the rare symbols relative to other easier-to-decipher words.

One example is the following: given the prompt ’crash!’ ’aaah!’ i looked up from my
cup of coffee. ’crash!’ - that was the cafe window. and ’aaah!’ [... more text...]
what one here is a drink - restaurants - music - coffee - father

the one here that drink is, where the word coffee, music, and father all only appear
once before the question and restaurants appeared 4 times, the model is able to correctly answer
that coffee is drinkable. See the full example in the appendix.

3.5 Synthetic Reasoning Tasks

As discussed in the introduction, lexical flexibility is correlated with in-context reasoning performance,
as demonstrated by existing large LMs. Thus, we study whether the lexinvariant model also learns
in-context reasoning capabilities through the challenging lexinvariant training.

Specifically, we measure the performance of lexinvariant models over two pure in-context symbol
manipulation tasks: LookUp, where the task is to predict the next token based on the given lookup
table, e.g. A->2 C->4 G->5 C-> (should predict 4 here); and Permutation, where the task
is to permute an arbitrary subsequence of the given sequence the same way as in the given few
demonstrations, e.g. A 2 C->C A 4 1 D-> (should predict D 4 here). In each of the tasks, the
symbols are randomly sampled from the vocabulary so that we measure the pure reasoning ability
independent from any knowledge of specific words. We measure the model performance in terms
of generated token accuracy over 1000 examples. The results are shown in Table 1. As shown in the
table, the lexinvariant models achieve drastically higher accuracy, with an average of 4X improvement.

Table 1: Accuracy over synthetic reasoning tasks.
Dataset Vocab LookUp Acc Permutation Acc

Standard LI Standard LI

Pile char 48.50 91.80 27.66 59.35
32k 21.45 92.10 22.84 55.63

Wiki-40B char 38.25 59.70 20.77 60.51
32k 8.75 59.35 9.94 50.91

Github char 42.40 86.65 21.03 71.59
32k 4.25 80.20 8.59 67.39

a b c d e f g h i j k l m n o p q r s t u v w x y z

...outside carrying a z
...a zat. Joe's z

...was taken off z
...strong, so Joe's z

...Joe's zat flew z
...Joe lost Joe's z

...will miss Joe's z

Deciphering pred logits for cipher char 'z'

(a) True deciphering: “z” → “b”, T =1.

a b c d e f g h i j k l m n o p q r s t u v w x y z

...man in the paz
...pazk with a z

...walking with the z
...with the zat z

...him. I've nevez
...like that befoz

Deciphering pred logits for cipher char 'z'

(b) True deciphering: “z” → “r”, T =1.

: ; <=> [ \ ] ^ _ a b c d e f g h i j k l mn o p q r s t u v w x y z { | }

       binary_search()z
      ...(high >= low)z
     ...(arr[mid] > x)z

       ...      } elsez
       ...}\n    } elsez
       ...void func2()z

(c) True deciphering: “z” → “{”, T =2.

: ; <=> [ \ ] ^ _ a b c d e f g h i j k l mn o p q r s t u v w x y z { | }

       binary_search()z
      ...(high >= low)z
    ...(arr[mid] == x)z
     ...(arr[mid] > x)z

       ...        elsez
 ..._search()\n    elsez
     ...-1\ndef func2()z

(d) True deciphering: “z” → “:”, T =3.

Figure 6: Probe predictions for deciphering “z” at each occurrence of “z” in context.

8



3.6 Regularizing Language Models with Lexinvariance

Although lexinvariant LM has various interesting properties , it is not suitable for practical tasks since
it would require the context to be extremely long so that all required words and knowledge are defined
in the context. Here, we explore how to construct more practical semi-lexinvariant LMs that maintain
some properties of lexinvariant LMs via regularization. We emphasize that this exploration is intended
to be illustrative rather than directly improving state-of-the-art.

Instead of using random Gaussian embedding matrices in place of a learned embedding matrix entirely,
we can use random embeddings for only some of the tokens in each sequence, while others use the
learned embedding. This means that the learned LM assumes that certain tokens have stable meanings
but not others, which can be seen as a form of regularization towards lexinvariance. Specifically,
we randomly select tokens to randomize based on a Bernoulli distribution, which can essentially be
seen as a form of dropout on token embeddings. On the BIG-bench tasks, we found that a model with
dropout rate p=0.2 for randomization was 25% more likely to improve performance than to harm
performance when evaluated with three shots, relative to a comparably-sized LM, with improvements
especially over retrieval type of tasks. See full details in the Appendix G.

More broadly, this regularization view could potentially bring the benefit of lexinvariant LMs to
practical applications. For example, the regularization could improve 1) the robustness of LMs by
making them less sensitive to adversarial attacks or noise in the input data, 2) generalization across
different languages or domains by being less tied to specific lexical items and more prone to learn
the shared language structure, and 3) reasoning over more realistic tasks as we have started to explore
with BIG-Bench. These areas are promising directions for future work to explore.

4 Related Work

4.1 Symbol Grounding

Beyond a modeling choice, the main question of our paper (that being whether an LM can learn language
without a stable token representation) is also analogous to the symbol grounding problem: Can meaning
be acquired when symbols are not even grounded stably, i.e. they can be mapped to completely random
meanings in different sequences? It has long been argued by the symbol grounding literature that
symbolic representations must be grounded bottom-up in nonsymbolic representations [11], with
famous arguments like Searle’s Chinese room: It describes a person in a room given a step-by-step set
of instructions by which they can respond to Chinese text with reasonable-sounding Chinese text. To an
outside observer, the person in the room appears to understand Chinese, but the individual does not know
a word of Chinese. This is widely used to argue that understanding language requires grounding the
symbols in the real world. It leads to an ongoing debate on whether LMs can learn meaning purely from
large amounts of text, without grounding to any real-world objects [4]. Although intuitively, lexinvariant
LMs appears one step further removed from physical grounding than standard LM, we find that given
enough context they can still infer the meaning of symbols based on lexical structures within the context.

4.2 Group invariances and Data augmentation

Our implementation of lexinvariant LMs can be seen as performing a form of very aggressive data
augmentation, where we randomize the identity of each token in each sequence. From this perspective,
it is somewhat similar to the data recombination in [14, 2] and augmentation of named entities in
[20], where certain parts of the sentence are swapped with other words while still maintaining the
original grammatical structure. In contrast to these augmentations, the training for our lexinvariant
LMs completely swaps out all parts of the input text.

4.3 Byte-level T5

There is existing work on absorbing tokenization completely into part of language modeling by using
extremely small tokens, such as Byte-level T5 [25]. In the extreme, such a model would become closer
and closer to lexinvariant LM, since bytes or bits have almost no stable meaning, so their embeddings
are likely not used for prediction. In this paper, we study general lexinvariant LMs with the lexinvariant
property baked in and without requiring specific tokenizers.
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4.4 Deciphering Substitution Cipher using LMs

In general, solving substitution ciphers, where the cipher key is a permutation of the original alphabet,
is a NP-hard problem when only having access to LMs that can assign probabilities to sequences
[18]. There have been several works focusing on solving substitution ciphers using LMs, including
approaches from searching over the permutation space guided by LMs’ scores [12] to training a
seq-to-seq model directly to perform deciphering as translation [3]. Although our work does not focus
specifically on the task of deciphering substitution ciphers, we show that our lexinvariant model can
efficiently perform in-context deciphering as a byproduct of language modeling.

4.5 Reasoning

It has been shown that large language models acquire surprising in-context reasoning capabilities
[6, 15, 23]. Many of them are related to lexical flexibility through training for purely next-token
prediction, such as modified arithmetic, data reformatting, and redefining single word etc. However,
LLMs also memorize an enormous amount of knowledge along the way, which is often unnecessary.
This work can also be seen as an exploration of whether a (semi-)lexinvariant LM can discount
knowledge and prioritize learning the diverse structural reasoning patterns in language, therefore
achieving the strong reasoning capability of LLMs with a smaller model.

5 Conclusion

In this work, we define and study lexinvariant language models, which do not have stable embeddings
and learn to infer the meaning of symbols in-context. We show several surprising properties of this
model theoretically and empirically, including convergence to standard language modeling, in-context
deciphering, and better reasoning capabilities. We also explore a less extreme lexinvariance regularized
language model and demonstrate its potential for solving more practical tasks efficiently.
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A Convergence Proof

Theorem A.1. Let x1,...,xn be any token sequence generated by an arbitrary language distribution
p with an alphabet of size d. Let p′(x1, ... , xn) = Eπ[p(π

−1(x1), ... , π
−1(xn))]. Then, for any

0<ϵ,δ<1/2,

1

T

T∑
t=1

∥p(xt|x1,...,xt−1)−p′(xt|x1,...,xt−1)∥1≤ϵ

with probability greater than 1−δ when T ≥ d
ϵ4 polylog(d,

1
ϵ ,

1
δ ).

Proof. For any desired error 0<ϵ<1/2 and failure rate 0<δ<1/2, we will first prove the analogous
statement for KL divergence instead of L1 distance, and then relate a bound on KL divergence back
to L1 distance via Pinsker’s inequality.

Throughout the rest of proof, we will work with a parameter ϵ′<O( ϵ
(log(1/δ))1/4

)< 1
2 , and will bound

our KL divergence by ϵ′.

To prove the bound in terms of KL divergence, it will be useful to ensure to work with a “smoothed”
version of p, which we denote by p̃, for which every token has some nonzero probability, σ/d, of
appearing at each timestep, for a parameter σ=δϵ′/T :

p̃(xT |x1,...,xT−1)=p(xT |x1,...,xT−1)(1−σ)+
σ

d
.

Similarly, let p̃′(x1,...,xn)=Eπ[p̃
−1(π(x1),...,π

−1(xn))]. We use P̃ to denote the probabilities under
this change. With probability at least 1−σT ≥1−ϵ′δ≥1− δ

2 , the realized sequencex1,...,xn drawn un-
der p can be regarded as being drawn from p̃ (as these distributions can be coupled with this probability).

The key idea is then to show that p̃′(yt+1|y1:t), where yt = π∗(xt) for some ground truth π∗

unknown to p′, is equivalent to using the multiplicative weights algorithm to predict yt+1 with
the Hedge strategy, with the experts being each possible permutation of the tokens and the
cost incurred by each expert being the negative log likelihood of the prediction. We denote
P̃π′(y1:n)= P̃(y1:n|π=π′)= p̃(π−1(y1),...,π

−1(yn)) and show this in Lemma A.2.

With this equivalence, we can then bound the difference between the prediction of p and p′ as the regret
of the multiplicative weights algorithm. Concretely, we show in Lemma A.3 that the regret of p′ to
any expert π is bounded as

1

T

T∑
t

log
P̃π(yt+1|y1:t)
p̃′(yt+1|y1:t)

≤2ϵ′2

for T ≥
(
4log2( dσ )log(d!)

)
/ϵ′4.

We can see p̃ as the particular expert/permutation P̃I . And we can further only consider the special case
that π∗ is also the identity permutation, then the same result holds over xt and with P̃π replaced by p̃, i.e.

1

T

T∑
t

log
p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)
≤2ϵ′2

Now we want to convert this bound on regret in terms of log likelihood to KL divergence, and
eventually to L1 distance. To convert it to KL divergence regret, we construct a martingale:

Zi=

i∑
t=1

(
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))−log

p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)

)
.

We verify that this is a martingale in Lemma A.4, with differences bounded by 2log 1
σ , and bound the

probability that ZT exceeds b=log d
σ

√
8T log 2

δ via Azuma’s inequality Lemma A.6: with probability
1−δ/2, we have that |ZT |≤b.
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Therefore, we have that with probability at least 1−δ/2

ZT =

T∑
t=1

(
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))−log

p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)

)
≤b

T∑
t=1

DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))≤
T∑

t=1

(
log

p̃(xt+1|x1:t)

p̃′(xt+1|x1:t)

)
+b

Putting this all together, since 1
T

∑T
t log

p̃i(xt+1|x1:t)
p̃′(xt+1|x1:t)

≤2ϵ′2 for T ≥
(
4log2( dσ )log(d!)

)
/ϵ′4, we have

the following:

T∑
1

DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))≤2ϵ′2T+b.

We now convert our bound on KL divergence to a bound on L1 distance via Pinsker’s inequality:

∥p̃(xt+1|x1:t)−p̃′(xt+1|x1:t)∥1≤
√

1

2
DKL(p̃(xt+1|x1:t)||p̃′(xt+1|x1:t)).

Further, at any given xt, the difference between the redistributed probability distribution p̃ and a
unmodified probability distribution p is at most σ, so

∥p(xt+1|x1:t)−p′(xt+1|x1:t)∥1≤∥p̃(xt+1|x1:t)−p̃′(xt+1|x1:t)∥1+2σ.

We are interested in the average L1 across time steps:

1

T

T∑
t=1

∥p(xt+1|x1:t)−p′(xt+1|x1:t)∥1≤
1

T

T∑
t=1

(∥p̃(xt+1|x1:t)−p̃′(xt+1|x1:t)∥1+2σ)

≤ 1

T

T∑
t=1

√
1

2
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))+2σ

≤ 1

T

√√√√T

T∑
t=1

1

2
DKL(p̃(xt+1|x1:t)∥p̃′(xt+1|x1:t))+2σ,

where in the last inequality we applied Cauchy–Schwarz. Hence for T ≥
(
4log2 d

σ log(d!)
)
/ϵ′4,

1

T

T∑
t=1

∥p(xt+1|x1,...,xt)−p′(xt+1|x1,...,xt)∥1≤
1

T

√
T

2
(2ϵ′2T+b)+2σ

≤
√

ϵ′2+
b

2T
+2σ.

Simplifying this for b=log d
σ

√
8T log 2

δ , T ≥
(
4log2( dσ )log(d!)

)
/ϵ′4 and σ=ϵ′δ/T , we have

1

T

T∑
t=1

∥p(xt+1|x1,...,xt)−p′(xt+1|x1,...,xt)∥1≤

√√√√
ϵ′2+

√
2log 2

δ√
log(d!)

ϵ′2+
2ϵ′δ

T

≤ϵ′(
2δ

T
+

√√√√
1+

√
2log 2

δ

log(d!)
)

≤ϵ′(1+

√
1+

√
2log

2

δ
)≤ϵ′2

√
2(2log

2

δ
)1/4.
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We can bound this average L1 error by ϵ if we set ϵ′= ϵ
2
√
2(2log 2

δ )
1/4

< 1
2 , in which case our condition

that T ≥
(
4log2(dTδϵ′ )log(d!)

)
/ϵ′4 becomes T ≥

(
512log 2

δ log
2 dT
δϵ′ log(d!)

)
/ϵ4. The theorem now

follows by simplifying this expression. Since log 2
δ ≤2log 1

δ , and log(d!)≤dlog(d), we can relax the
condition on T as

T ≥
(
1024log

1

δ
log2(

d

δϵ′
)log2(T )dlog(d)

)
/ϵ4=log2(T )

d

ϵ4
polylog(d,

1

ϵ
,
1

δ
)

To remove the log2 T from the right side, note that for any W > 10, if T > 10 W log2W , then
T >Wlog2T , yielding the further relaxed the condition on T as

T ≥ d

ϵ4
polylog(d,

1

ϵ
,
1

δ
).

Lemma A.2. Consider an arbitrary ground truth permutation π∗. For all time steps t ∈ [1,n], let
yt=π∗(xt). Consider the online prediction game of predicting yt+1 at each time step given previous ob-
servation y1:t without knowing π∗ but knowing p̃. Then, p̃′(yt+1|y1:t) is equivalent to the multiplicative
weights algorithm’s prediction of yt+1 with the Hedge strategy of Freund and Schapire [8], where it

• Considers d! experts corresponding to guessing each permutation π′ is the ground truth
permutation.

• Maintains a weight w(t)
π′ for each expert at time step t, and the weights are initially as P̃(π).

• Picks a distribution across experts p(t)π′ =
w

(t)

π′
Φ(t) where Φ(t)=

∑
jw

(t)
j .

• Produces prediction of yt+1 as
∑

π′p
(t)
π′ P̃π′(yt+1|y1:t)

• Receives a cost vector of m(t)
π′ =− 1

ϵ logP̃π′(yt+1|y1:t).

• Updates the weights w(t+1)
i =w

(t)
i exp(−ϵm

(t)
i ) and repeat

Proof. We can first see that p(t)π′ = P̃(π′|y1:t) by induction:

Base case: p(0)π′ = P̃(π) by assumption.

Inductive Case:

With the cost vector as m
(t−1)
π′ = − 1

ϵ log P̃π′(yt|y1:t−1), the update at step t is
w

(t)
π′ =w

(t−1)
π′ P̃π′(yt|y1:t−1). Therefore, the probability over any particular expert π′ is

p
(t)
π′ =

w
(t)
π′

Φ(t)

=
w

(t−1)
π′ P̃π′(yt|y1:t−1)∑
jw

(t−1)
j P̃j(yt|y1:t−1)

=
p
(t−1)
π′ Φ(t−1)P̃π′(yt|y1:t−1)∑
jp

(t−1)
j Φ(t−1)P̃j(yt|y1:t−1)

=
p
(t−1)
π′ P̃π′(yt|y1:t−1)∑
jp

(t−1)
j P̃j(yt|y1:t−1)

This is equivalent to the update given by Bayes’ rule when plugging in p
(t)
π′ = P̃(π′|y1:t) :

P̃(π′|y1:t)=
P̃(π′|y1:t−1)P̃π′(yt|y1:t−1)

P̃(yt|y1:t−1)

16



So we can conclude that p(t)π′ = P̃(π′|y1:t), i.e. the process of updating the probability distribution
across experts within the prediction game is equivalent to the process of the language model updating
the probabilities P̃(π′|y1:t+1) across permutations π′. And this means that the algorithm’s prediction∑

π′p
(t)
π′ P̃π′(yt+1|y1:t)=

∑
π′P̃(π′|y1:t)P̃π′(yt+1|y1:t)= P̃(yt+1|y1:t)= p̃′(yt+1|y1:t)

Lemma A.3. When using the Hedge strategy for the multiplicative weights algorithm, the average
difference between the weighted distribution across experts and any particular expert π is bounded as

1

T

T∑
t

log
P̃π(yt+1|y1:t)
p̃′(yt+1|y1:t)

≤2ϵ2

for ϵ≤1 and for T ≥
(
4log2

(
d
σ

)
log(d!)

)
/ϵ4.

Proof. Consider an arbitrary expert π.

We first show that the cost vectors are bounded by ρ = − 1
ϵ log σ

d : Recall we defined
m

(t)
π = − 1

ϵ log P̃π(yt+1|y1:t). By the definition of our redistributed probability distribution,
at time step t∈ [1,...,T ],

σ

d
≤P̃π(yt+1|y1:t)≤1

log
σ

d
≤ logP̃π(yt+1|y1:t)≤0

0≤m(t)
π ≤−1

ϵ
log

σ

d

0≤m(t)
π ≤−1

ϵ
log

σ

d
.

By corollary 16.3 in [1], if we have cost vectors m(t) ∈ [−ρ,ρ]d!, then for time T ≥ (4ρ2log(d!))/ϵ2

where ϵ≤1,

1

T

T∑
t

p(t) ·m(t)≤ 1

T

T∑
t

m(t)
π +2ϵ.

Note that we can simplify T ≥
(
4log2

(
d
σ

)
log(d!)

)
/ϵ4.

We can now bound

1

T

T∑
t

(
p(t) ·m(t)−m(t)

π

)
≤2ϵ

1

T

T∑
t

(∑
π′

p
(t)
π′ m

(t)
π′ −m(t)

π

)
≤2ϵ

1

T

T∑
t

(∑
π′

P̃(π′|y1:t)
(
−1

ϵ
logP̃π′(yt+1|y1:t)

)
−
(
−1

ϵ
logP̃π(yt+1|y1:t)

))
≤2ϵ

1

ϵT

T∑
t

∑
π′

(
P̃(π′|y1:t)

(
logP̃π(yt+1|y1:t)−logP̃π′(yt+1|y1:t)

))
≤2ϵ

1

T

T∑
t

Eπ′ log
P̃π(yt+1|y1:t)
P̃π′(yt+1|y1:t)

≤2ϵ2

By Jensen’s inequality, we also have that

1

T

T∑
t

log
P̃π(yt+1|y1:t)

Eπ′P̃π′(yt+1|y1:t)
≤2ϵ2

1

T

T∑
t

log
P̃π(yt+1|y1:t)
p̃′(yt+1|y1:t)

≤2ϵ2
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Lemma A.4. Let

Zi=

i∑
t=1

(
DKL(P̃I(xt+1|x1:t)∥P̃(xt+1|x1:t))−log

P̃I(xt+1|x1:t)

P̃(xt+1|x1:t)

)
Zi is a martingale.

Proof. Consider

Exi+1∼P̃I
[Zi]=Exi+1∼P̃I

[
i∑

t=1

(
DKL(P̃I(xt+1|x1:t)∥P̃(xt+1|x1:t))−log

P̃I(xt+1|x1:t)

P̃(xt+1|x1:t)

)]

=Exi+1∼P̃I

[
DKL(P̃I(xi+1|x1:i)∥P̃(xi+1|x1:i))−log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)
+Zi−1

]
Observe that Zi−1 has no dependence on xi+1.

Exi+1∼P̃I
[Zi]=Exi+1∼P̃I

[
Exi+1∼P̃I

log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

]
−Exi+1∼P̃I

[
log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

]
+Zi−1

=Zi−1

Therefore, Zi is a martingale.

Lemma A.5. |Zi−Zi−1|≤ci where ci=2|log d
σ |

Proof. We have

|Zi−Zi−1|=

∣∣∣∣∣DKL(P̃I(xi+1|x1:i)∥P̃(xi+1|x1:i))−log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

∣∣∣∣∣
In our redistributed probability distribution P̃ , we have σ

d ≤P̃π(xi|x1:i−1)≤1 for any π at any time
i. Therefore,

log
σ

d
≤ log

P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)
≤ log

d

σ
.

Also, we can find an upper bound for the KL divergence by maximizing P̃I(xi+1|x1:i) to 1 and
minimizing P̃(xi+1|x1:i) to σ

d so that

DKL(P̃I(xi+1|x1:i)∥P̃(xi+1|x1:i))=
∑
xi+1

P̃I(xi+1|x1:i)log
P̃I(xi+1|x1:i)

P̃(xi+1|x1:i)

≤ log
d

σ

We can maximize |Zi − Zi−1| by maximizing the first term and minimizing the second term,
or vice versa. In the first case, |Zi − Zi−1| ≤ | log d

σ − log σ
d | = 2| log d

σ |. In the other case,
|Zi−Zi−1|≤|0−log d

σ |= |log d
σ |.

Therefore, |Zi−Zi−1|≤ci where ci=2|log d
σ |.

Lemma A.6. By Azuma’s inequality, with probability 1 − δ, we have that ∥ZT ∥ ≤ b where

b=2log d
σ

√
−8T log 1

δ
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Proof. By Azuma’s inequality, for all positive reals b,

P (ZT −Z1≥b)≤exp

(
−b2

2
∑T

k=2c
2
k

)

P (ZT −Z1≤b)≥1−exp

(
−b2

2
∑T

k=2c
2
k

)

≥1−exp

(
−b2

8
∑T

k=2log
2 d
σ

)

We can rewrite in terms of δ=exp
(

−b2

8
∑T

k=2log
2 d

σ

)
so

b=

√√√√−

(
8

T∑
k=2

log2
d

σ

)
logδ

≤ log
d

σ

√
−8T log

1

δ

Therefore,
P (ZT −Z1≤b)≥1−δ

B Model Architecture Details

In addition, we add a learnable scaling and bias parameter to the result of the embedding layer, so
that the model can still learn to scale it as needed.

C Convergence on other datasets

Figure 7 shows the perplexity of lexinvariant LMs across the three different datasets. Note that Github
converges significantly faster than standard Engish text like Wiki-40B, since code is more structured
and easier to decipher the token permutation.

D Code Deciphering Full Examples

Java:

b i n a r y _ s e a r c h ( ) z
i f ( h igh >= low ) z

mid = ( h igh + low ) / 2 ;
i f ( a r r [ mid ] == x )

r e t u r n mid ;
i f ( a r r [ mid ] > x ) z

h igh = mid − 1 ;
r e t u r n b i n a r y _ s e a r c h ( ) ;

} e l s e z
low = mid + 1 ;
r e t u r n b i n a r y _ s e a r c h ( ) ;

}
} e l s e z

r e t u r n −1;
}

}
vo id func2 ( ) z
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Figure 7: Smoothed Token Perplexity over the Pile, Wiki-40B and Github, with character-level and
T5 default vocab

Python:

b i n a r y _ s e a r c h ( ) z
i f ( h igh >= low ) z

mid = ( h igh + low ) / / 2
i f ( a r r [ mid ] == x ) z

r e t u r n mid
i f ( a r r [ mid ] > x ) z

h igh = mid − 1
r e t u r n b i n a r y _ s e a r c h ( )

e l s e z
low = mid + 1
r e t u r n b i n a r y _ s e a r c h ( )

e l s e z
r e t u r n −1

d e f func2 ( ) z

E Semantic Deciphering Full Example

’crash!’ ’aaah!’ i looked up from my cup of coffee. ’crash!’ - that was
the cafe window. and ’aaah!’ - that was kate. people in the cafe shouted.
kate and i ran to the window. there was no one there. then i turned to kate
and put my arm around her. ’are you all right?’ i asked. ’yes,’ she said.
’i think so.’ ’what is it?’ some one shouted and a short red-faced man ran
into the room. the man took my arm. ’matt! what are you doing to kate?’
he asked. ’nothing, papa,’ kate replied. ’it wasn’t him. it was from out
in the street.’ the red-faced man looked at the window and then at me. he
turned to his daughter. ’are you ok, kate?’ he asked. kate gave him a
little smile. ’yes, i think i am, papa,’ she said. then her father spoke
to me. ’sorry, matt. i heard kate and i thought...’ ’that’s ok, paolo,’ i
answered. it was ok. you see, this is soho, in the centre of london. in the
day it’s famous for music and films. at night people come and eat and drink
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in the restaurants. expensive restaurants and cheap restaurants; italian
restaurants and chinese restaurants. and day and night there are internet
cafes like the web cafe. in soho you can buy any thing and any one. there
are lots of nice people in soho. but there are also lots of people who are
not very nice. i know because i live and work here. i often take a drink to
a shop or cafe. i’m not rich and famous. and i don’t know a lot. but i do
know soho. what one here is a drink - restaurants - music - coffee - father
the one here that drink is

Example prediction of the lexinvariant with 32k vocabulary train on the Pile:

- coffee. and i

The probability (at temperature=1) of coffee being selected is 56%, substantially higher than the
next-highest probability of restaurant at 27%, music at 12%, or father at 5%.

F Synthetic Reasoning Task

Table 2 shows a variant of the synthetic reasoning task results in Subsection 1, where the symbols
are instead sampled proportion to the token frequencies. Although the improvement still generally
holds, the standard LM with character-based vocabulary becomes significantly better. We believe that
this is because the model can get a significant advantage by guessing among the most common letter.

Dataset Vocab LookUp Acc Permutation Acc

Standard LI Standard LI

Pile char 72.80 90.95 40.63 60.47
32k 61.20 90.95 40.55 54.55

Wiki-40B char 75.55 63.45 42.71 59.86
32k 41.05 57.95 26.81 51.86

Github char 66.00 86.75 36.62 70.77
32k 59.25 78.45 37.46 65.04

Table 2: Synthetic Reasoning Tasks (adjusted for token frequencies)

G Language Models Regularized with Lexinvariance and BIG-bench Results

As described in the main paper, we implement a lexinvariance regularized Model in a way similar
to embedding dropout. Note that one problem in implementing it naively by using random Gaussian
embeddings and learned embedding in a mixture is that the two would become quickly distinguishable
from each other during training since learned embeddings often have larger norms, allowing the model
simply ignore the randomized tokens. So instead of using random Gaussian embedding matrices
in place of a learned embedding matrix, we explored another approach for training a lexinvariant
regularized LM: training a standard LM with learnable embedding matrix over sequences partially
applied with a random token permutation Bp(x1,π), ... ,Bp(x1,π), where Bp(xi,π) = π(xi) with
probability p and Bp(xi,π)=xi with probability 1−p. Since each token can be remapped to any other
token with equal chance, the produced model should ideally also be lexinvariant when p=1, though
with no strict guarantees. In practice, we found the models trained this way behave very similarly
to models with random Gaussian embedding.

We evaluate our model over BIG-bench tasks where the language model performance scales well,
and we prioritize evaluating generative tasks over multiple-choice tasks. Tasks we evaluated on:

gre reading comprehension.mul, linguistics puzzles.gen, linguistics puzzles.gen, rhyming.gen,
tellmewhy.gen, simple arithmetic multiple targets json.gen, simple arithmetic json subtasks.gen,
disfl qa.gen, arithmetic.gen, bridging anaphora resolution barqa.gen, matrixshapes.gen, sufficient
information.gen, logical args.mul, novel concepts.mul, code line description.mul, unnatural in context
learning.gen, unit interpretation.mul, english proverbs.mul, general knowledge.mul, geometric
shapes.gen, human organs senses.mul, contextual parametric knowledge conflicts.gen, crass ai.mul,
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auto categorization.gen, penguins in a table.gen, hindu knowledge.mul, english russian proverbs.mul,
modified arithmetic.gen, cryobiology spanish.mul, evaluating information essentiality.mul, intent
recognition.mul, understanding fables.mul, figure of speech detection.mul, empirical judgments.mul,
simple ethical questions.mul, swahili english proverbs.mul, language identification.mul, phrase relat-
edness.mul, nonsense words grammar.mul, undo permutation.mul, object counting.gen, identify odd
metaphor.mul, elementary math qa.mul, social iqa.mul, parsinlu qa.mul, metaphor understanding.mul,
timedial.mul, causal judgment.mul, list functions.gen, implicatures.mul, date understanding.mul,
codenames.gen, fact checker.mul, physics.mul, abstract narrative understanding.mul, emojis emotion
prediction.mul, metaphor boolean.mul, strategyqa.gen, ascii word recognition.gen, auto debugging.gen,
cause and effect.mul, conlang translation.gen, cryptonite.gen, cs algorithms.mul, dyck languages.mul,
gender inclusive sentences german.gen, hindi question answering.gen, international phonetic alphabet
transliterate.gen, irony identification.mul, logical fallacy detection.mul, movie dialog same or
different.mul, operators.gen, paragraph segmentation.gen, parsinlu reading comprehension.gen, repeat
copy logic.gen, rephrase.gen, simple arithmetic json.gen, simple arithmetic multiple targets json.gen,
sports understanding.mul, word unscrambling.gen, hyperbaton.mul, linguistic mappings.gen, anachro-
nisms.mul, indic cause and effect.mul, question selection.mul, hinglish toxicity.mul, snarks.mul,
vitaminc fact verification.mul, international phonetic alphabet nli.mul, logic grid puzzle.mul, natural
instructions.gen, entailed polarity.mul, list functions.gen, conceptual combinations.mul, goal
step wikihow.mul, logical deduction.mul, conlang translation.gen, strange stories.mul, odd one
out.mul, mult data wrangling.gen, temporal sequences.mul, analytic entailment.mul, disambiguation
qa.mul, sentence ambiguity.mul, swedish to german proverbs.mul, logical sequence.mul, chess
state tracking.gen, reasoning about colored objects.mul, implicit relations.mul, riddle sense.mul,
physical intuition.mul, simple arithmetic json multiple choice.mul, geometric shapes.gen, gem.gen,
simp turing concept.gen, common morpheme.mul, qa wikidata.gen, international phonetic alphabet
transliterate.gen, similarities abstraction.gen, rephrase.gen, emoji movie.gen, qa wikidata.gen, word
sorting.gen, emoji movie.gen, qa wikidata.gen, periodic elements.gen, hindi question answering.gen

Bellow, we plot the net percentage of tasks improved/deproved in each of the BIG-bench categories,
out of the tasks that are changed by at least a threshold amount.

H Compute

We use one TPU v3-8 for all our pretraining runs. It takes approximately 23 hours for each pretraining
run.

I Broader Impacts

Our work primarily provides a scientific exploration and understanding of the properties of lexinvariant
language models. More broadly, these properties could potentially help improve the robustness,
generalizability, and reasoning ability of LMs in the future works. In general we don’t foresee more
specific negative societal impacts from this work other than general misuse of language models.
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Figure 8: BIG-bench results with 0,1,2 and 3 shots.

23


	Introduction
	Lexinvariant Language Model
	Convergence on Language Modeling Performance
	In-context Bayesian Deciphering
	Constructing a Lexinvariant Language Model

	Experiments
	Setup
	Convergence to Standard Language Models
	Recovering Substitution Ciphers
	In-context Bayesian Deciphering Examples
	Uncertainty over Lexical Permutations
	Semantic Deciphering

	Synthetic Reasoning Tasks
	Regularizing Language Models with Lexinvariance

	Related Work
	Symbol Grounding
	Group invariances and Data augmentation
	Byte-level T5
	Deciphering Substitution Cipher using LMs
	Reasoning

	Conclusion
	Convergence Proof
	Model Architecture Details
	Convergence on other datasets
	Code Deciphering Full Examples
	Semantic Deciphering Full Example
	Synthetic Reasoning Task
	 Language Models Regularized with Lexinvariance and BIG-bench Results
	Compute
	Broader Impacts

