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Abstract

We propose an algorithm for robust recovery of the spherical harmonic expansion
of functions defined on the d-dimensional unit sphere Sd−1 using a near-optimal
number of function evaluations. We show that for any f ∈ L2(Sd−1), the number
of evaluations of f needed to recover its degree-q spherical harmonic expansion
equals the dimension of the space of spherical harmonics of degree at most q, up to
a logarithmic factor. Moreover, we develop a simple yet efficient kernel regression-
based algorithm to recover degree-q expansion of f by only evaluating the function
on uniformly sampled points on Sd−1. Our algorithm is built upon the connections
between spherical harmonics and Gegenbauer polynomials. Unlike the prior results
on fast spherical harmonic transform, our proposed algorithm works efficiently
using a nearly optimal number of samples in any dimension d. Furthermore, we
illustrate the empirical performance of our algorithm on numerical examples.

1 Introduction

We consider the fundamental problem of recovering a function from a finite number of (noisy)
observations. To provide accurate and reliable predictions at unobserved points we need to avoid
overfitting which is typically achieved through restricting our estimator or interpolant to a family of
smooth or structured functions. In this paper, we focus on interpolating square-integrable functions
on the d-dimensional unit sphere, with low-degree spherical harmonics, a critical task in scenarios
where rotational invariance is a fundamental property. Spherical harmonics are essential in various
theoretical and practical applications, including the representation of electromagnetic fields [Wei95],
gravitational potential [Wer97], cosmic microwave background radiation [KKS97] and medical
imaging [CLL15], as well as modelling of 3D shapes in computer graphics [KFR03] and computer
vision [GCL+22]. Further notable real-life applications include molecular/atom systems, where
understanding the underlying functions within a spherical context can significantly enhance predictive
modeling and simulation accuracy [EEHM17, LWL+21, ZDK+22].

We begin by observing that any function f in L2(Sd−1), i.e., the family of square-integrable functions
on the sphere Sd−1, can be uniquely decomposed into orthogonal spherical harmonic components.
Specifically, if we denote the space of spherical harmonics of degree ` in dimension d byH`(Sd−1),
any f ∈ L2(Sd−1) has a unique orthogonal expansion f =

∑∞
`=0 f` with f` ∈ H`(Sd−1) (Lemma 2).

With this observation, we aim to find the best spherical harmonic approximation of degree ≤ q to f
using minimal number of samples (essentially treating higher order terms in f ’s expansion as noise).
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Problem 1 (Informal Version of Problem 2). For an unknown function f ∈ L2(Sd−1) and an integer
q ≥ 1, efficiently (both in terms of number of samples from f and computations) learn the first q + 1
spherical harmonic components

{
f` ∈ H`(Sd−1)

}q
`=0

of f which minimize∥∥∥∥∥
q∑
`=0

f` − f

∥∥∥∥∥
2

Sd−1

:=

∫
Sd−1

∣∣∣∣∣
q∑
`=0

f`(w)− f(w)

∣∣∣∣∣
2

dw. (1)

The angular power spectrum of f commonly obeys a power law decay of the form ‖f`‖2Sd−1 ≤
O(`−s), for some s > 0, depending on the order of differentiability of f . In fact, for any infinitely
differentiable f , ‖f`‖2Sd−1 decays asymptotically faster than any rational function of `. Furthermore,
for any real analytic f on the sphere, ‖f`‖2Sd−1 decays exponentially. Thus, the first q + 1 spherical
harmonic components of f typically well approximate f for even modest q, and answering Problem 1
is meaningful for a wide range of differentiable functions.

1.1 Our Main Results

We reformulate Problem 1 as a least-squares regression and then solve it using randomized numerical
linear algebra techniques. We first consider an orthonormal projection operator that maps functions
in L2(Sd−1) onto the space of bounded-degree spherical harmonics

⊕q
`=0H`(Sd−1). Specifically, if

K(q)
d is an operator that maps any f with expansion f =

∑∞
`=0 f` where f` ∈ H`(Sd−1), onto f ’s

first q + 1 expansion components, i.e., K(q)
d f =

∑q
`=0 f`, then Problem 1 can be formulated as

min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

However, solving this regression problem with “continuous” cost function is challenging. To avoid
such continuous optimizations, we adopt the approach of [AKM+19] which discretizes the afore-
mentioned regression problem according to the leverage scores of the operator K(q)

d . It turns out
that if we can draw random samples with probabilities proportional to the leverage scores of K(q)

d

then we can recover the degree-q spherical harmonic expansion of f , i.e.
∑q
`=0 f`, with finite

number of observations. Particularly, by exploiting the connections between spherical harmonics
and Zonal (Gegenbauer) Harmonics and the fact that zonal harmonics are the reproducing kernels
ofH`(Sd−1) (Lemma 3), we prove that the leverage scores of K(q)

d are constant everywhere on the
sphere Sd−1. Thus, solving a discrete regression problem with uniformly sampled observations yields
a near-optimal solution to Problem 1. Informal statements of our results are as follows.
Theorem 1 (Informal Version of Theorem 5). Let βq,d be the dimension of spherical harmonics
of degree at most q, i.e., βq,d ≡ dim

(⊕q
`=0H`(Sd−1)

)
. There exists an algorithm that finds a

(1 + ε)-approximation to the optimal solution of Problem 1, given s = O(βq,d log βq,d + ε−1βq,d)
observations of function f at uniformly sampled points on Sd−1, with O(s2d+ sω)1 runtime.

We also prove that our bound on the number of required samples is optimal up to a logarithmic factor.
Theorem 2 (Informal Version of Theorem 6). Any (randomized) algorithm that takes s < βq,d
samples on any input fails with probability greater than 9/10, where βq,d ≡ dim

(⊕q
`=0H`(Sd−1)

)
.

1.2 Related Work

Efficient reconstruction of functions as per Problem 1 has been extensively studied in various
fields. Many prior papers considered reconstructing 1-dimensional functions from finite number of
samples on a finite interval under smoothness assumption about the underlying function. Notably, the
influential line of work of [SP61, LP61, LP62, XRY01] focused on reconstructing Fourier-bandlimited
functions and [CKPS16, KVZ19, EMM20, BKM+23] considered interpolating Fourier-sparse signals.
Recently, [AKM+19] unified these reconstruction methods in dimension d = 1 and gave a universal
sampling framework for reconstructing nearly all classes of functions with Fourier-based smoothness
constraints. One can view 1-dimensional functions on a finite interval as functions on the unit circle

1ω < 2.3727 is the exponent of the fast matrix multiplication algorithm [Wil12]
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S1. Thus, Problem 1 is indeed a generalization of the aforementioned prior work to high dimensions
under the assumption that the generalized Fourier series (Lemma 2) of the underlying function
only contains bounded-degree spherical harmonics. This degree constraint on spherical harmonic
expansions can be viewed as the d-dimensional analog of Fourier-bandlimitedness on circle S1.

Computing the spherical harmonic expansion in dimension d = 3 has received considerable attention
in physics and applied mathematics communities. The algorithms for this special case of Problem 1
are known in the literature as “fast spherical harmonic transform” [SS00, ST02]. Most notably, [RT06]
proposed an algorithm for computing spherical harmonic expansion of degree≤ q to precision ε using
O(βq,3) samples andO(βq,3 log βq,3 ·log(1/ε)) time. These fast algorithms were developed based on
fast Fourier and associated Legendre transforms and make use of a (well-conditioned) orthogonal basis
for H`(Sd−1), which happened to be the associated Legendre polynomials when d = 3. However,
it is in general very difficult to compute an orthogonal basis for spherical harmonics [MNY06], so
unlike our Theorem 1, it is inefficient to extend these prior results to higher d.

From the techniques point of view, a related work is [GMMM21], which employs harmonic analysis
over Sd−1 to analyze the generalization of two-layered neural tangent kernels. They show that an
unknown function defined on Sd−1 can be efficiently recovered using kernel regression w.r.t. neural
tangent kernel on uniform random samples from the function. However, the number of samples
that [GMMM21] requires for recovering bounded degree spherical harmonics, especially when the
degrees are high, is sub-optimal and is strictly worse than our result. Additionally, [GMMM21] does
not guarantee recovery with relative error, while our Theorem 5 provides relative error guarantees.

Furthermore, recent applications of Gegenbauer polynomials, along with other orthonormal poly-
nomials like Hermite polynomials, have been found in designing efficient random features for
approximating various kernel functions. These applications extend to dot-product kernels [HZA22],
Neural Tangent Kernels [ZHA+21, HZL+22], and Gaussian kernels [WZ22, AKK+20].

2 Mathematical Preliminaries

We denote by Sd−1 the unit sphere in d dimension. We use |Sd−1| = 2πd/2

Γ(d/2) to denote the surface
area of sphere Sd−1 and U(Sd−1) to denote the uniform probability distribution on Sd−1. We denote
by L2

(
Sd−1

)
the set of all square-integrable real-valued functions on sphere Sd−1. Furthermore, for

any f, g ∈ L2
(
Sd−1

)
we use the following definition of the inner product on the unit sphere2,

〈f, g〉Sd−1 :=

∫
Sd−1

f(w)g(w)dw =
∣∣Sd−1

∣∣ · E
w∼U(Sd−1)

[f(w)g(w)]. (2)

The function space L2
(
Sd−1

)
is complete with respect to the norm induced by the above inner

product, i.e. ‖f‖Sd−1 :=
√
〈f, f〉Sd−1 , so L2

(
Sd−1

)
is a Hilbert space.

We often use the term quasi-matrix which is informally defined as a “matrix” in which one dimension
is finite while the other is infinite. A quasi-matrix can be tall (or wide) meaning that there is a finite
number of columns (or rows) where each one is a functional operator. For a more formal definition,
see [SA22].

Spherical Harmonics are the solutions of Laplace’s equation in spherical domains and can be thought
of as functions defined on Sd−1 employed in solving partial differential equations. Formally,

Definition 1 (Spherical Harmonics). For integers ` ≥ 0 and d ≥ 1, let P`(d) be the space of degree-`
homogeneous polynomials with d variables and real coefficients. Let H`(d) denote the space of
degree-` harmonic polynomials in dimension d, i.e., homogeneous polynomial solutions of Laplace’s
equation:

H`(d) := {P ∈ P`(d) : ∆P = 0},

where ∆ = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

is the Laplace operator on Rd. Finally, letH`
(
Sd−1

)
be the space of

(real) Spherical Harmonics of order ` in dimension d, i.e. restrictions of harmonic polynomials in

2Formally, L2
(
Sd−1

)
is a space of equivalence classes of functions that differ at a set of points with measure

0. For notational simplicity, here and throughout we use f to denote the specific representative of the equivalence
class f ∈ L2

(
Sd−1

)
. In this way, we can consider the point-wise value f(w) for every w ∈ Sd−1.
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H`(d) to the sphere Sd−1. The dimension of this space, α`,d ≡ dim
(
H`
(
Sd−1

))
, is

α0,d = 1, α1,d = d, α`,d =

(
d+ `− 1

`

)
−
(
d+ `− 3

`− 2

)
for ` ≥ 2.

2.1 Gegenbauer Polynomials

The Gegenbauer (a.k.a. ultraspherical) polynomial of degree ` ≥ 0 in dimension d ≥ 2 is given by

P `d(t) :=

b`/2c∑
j=0

cj · t`−2j · (1− t2)j , (3)

where c0 = 1 and cj+1 = − (`−2j)(`−2j−1)
2(j+1)(d−1+2j) · cj for j = 0, 1, . . . , b`/2c − 1. These polynomials are

orthogonal on the interval [−1, 1] with respect to the measure (1− t2)
d−3
2 , i.e.,∫ 1

−1

P `d(t) · P `
′

d (t) · (1− t2)
d−3
2 dt =

∣∣Sd−1
∣∣

α`,d · |Sd−2|
· 1{`=`′}. (4)

Zonal Harmonics. The Gegenbauer polynomials naturally provide positive definite dot-product
kernels on Sd−1 known as Zonal Harmonics, which are closely related to the spherical harmonics.
The following reproducing property of zonal harmonics plays a crucial role in our analysis.
Lemma 1 (Reproducing Property of Zonal Harmonics). Let P `d(·) be the Gengenbauer polynomial
of degree ` in dimension d. For any x, y ∈ Sd−1:

P `d(〈x, y〉) = α`,d · Ew∼U(Sd−1)

[
P `d (〈x,w〉)P `d (〈y, w〉)

]
,

Furthermore, for any `′ 6= `:

Ew∼U(Sd−1)

[
P `d (〈x,w〉) · P `

′

d (〈y, w〉)
]

= 0.

The proof of this and all subsequent results can be found in the appendix. The following useful fact,
known as the addition theorem, connects Gegenbauer polynomials and spherical harmonics.

Theorem 3 (Addition Theorem). For every integer ` ≥ 0, if
{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal

basis forH`
(
Sd−1

)
, then for any σ,w ∈ Sd−1 we have

α`,d
|Sd−1|

· P `d (〈σ,w〉) =

α`,d∑
j=1

y`j(σ) · y`j(w).

3 Reconstructing L2
(
Sd−1

)
Functions via Spherical Harmonics

In this section we show how to approximate any function f ∈ L2
(
Sd−1

)
by spherical harmonics

using the optimal number of samples. We begin with the fact that spherical harmonics form a
complete set of orthonormal functions and thus form an orthonormal basis for the Hilbert space
of square-integrable functions on sphere Sd−1. This is analogous to periodic functions, viewed
as functions defined on the circle S1, which can be expressed as a linear combination of circular
functions (sines and cosines) via the Fourier series.
Lemma 2 (Direct Sum Decomposition of L2(Sd−1)). The family of spaces H`

(
Sd−1

)
yields a

Hilbert space direct sum decomposition L2
(
Sd−1

)
=
⊕∞

`=0H`
(
Sd−1

)
: the summands are closed

and pairwise orthogonal, and every f ∈ L2
(
Sd−1

)
is the sum of a converging series (in the sense of

mean-square convergence with the L2-norm defined in Eq. (2)),

f =

∞∑
`=0

f`,

where f` ∈ H`
(
Sd−1

)
are uniquely determined functions. Furthermore, given any orthonormal

basis
{
y`1, y

`
2, . . . , y

`
α`,d

}
ofH`

(
Sd−1

)
we have f` =

∑α`,d

j=1 〈f, y`j〉Sd−1 · y`j .
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The series expansion in Lemma 2 is the analog of the Fourier expansion of periodic func-
tions, and is known as “generalized Fourier series” [Pen30] with respect to the Hilbert basis{
y`j : j ∈ [α`,d], ` ≥ 0

}
. We remark that it is in general intractable to compute an orthogonal basis for

the space of spherical harmonics [MNY06], which renders the generalized Fourier series expansion
in Lemma 2 primarily existential. While finding the generalized Fourier expansion of a function
f ∈ L2

(
Sd−1

)
is computationally intractable, our goal is to answer the next fundamental question,

which is about finding the projection of a function f onto the space of spherical harmonics, i.e., the
f`’s in Lemma 2. Concretely, we seek to solve the following problem.
Problem 2. For an integer q ≥ 0 and a given function f ∈ L2

(
Sd−1

)
whose decomposition over the

Hilbert sum
⊕∞

`=0H`
(
Sd−1

)
is f =

∑∞
`=0 f` as per Lemma 2, let us define the low-degree expansion

of this function as f (q) :=
∑q
`=0 f`. How efficiently can we learn f (q) ∈

⊕q
`=0H`

(
Sd−1

)
?

More precisely, we want to find a set {w1, w2, . . . , ws} ⊆ Sd−1 with minimal cardinality s along
with an efficient algorithm that given samples {f(wi)}si=1 can interpolate f(·) with a function
f̃ (q) ∈

⊕q
`=0H`

(
Sd−1

)
such that:∥∥∥f̃ (q) − f (q)

∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

For ease of notation, we denote the Hilbert space of spherical harmonics of degree at most q by
H(q)

(
Sd−1

)
:=
⊕q

`=0H`
(
Sd−1

)
. To answer Problem 2 we exploit the close connection between

the spherical harmonics and Gengenbauer polynomials, and in particular the fact that zonal harmonics
are the reproducing kernels of the Hilbert spacesH`

(
Sd−1

)
.

Lemma 3 (A Reproducing Kernel forH`
(
Sd−1

)
). For every f ∈ L2

(
Sd−1

)
, if f =

∑∞
`=0 f` is the

unique decomposition of f over
⊕∞

`=0H`
(
Sd−1

)
as per Lemma 2, then f` is given by

f`(σ) = α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
for σ ∈ Sd−1.

Now we define a kernel operator, based on the low-degree Gegenbauer polynomials, which projects
functions onto their low-degree spherical harmonic expansion.

Definition 2 (Projection Operator ontoH(q)(Sd−1)). For any integers q ≥ 0 and d ≥ 2, define the
kernel operator K(q)

d : L2
(
Sd−1

)
→ L2

(
Sd−1

)
as follows: for f ∈ L2

(
Sd−1

)
and σ ∈ Sd−1,[

K(q)
d f

]
(σ) :=

q∑
`=0

α`,d
|Sd−1|

〈
f, P `d (〈σ, ·〉)

〉
Sd−1 =

q∑
`=0

α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
. (5)

This is an integral operator with kernel function kq,d(σ,w) :=
∑q
`=0

α`,d

|Sd−1| · P
`
d (〈σ,w〉).

Note that the operatorK(q)
d is self-adjoint and positive semi-definite. Moreover, using the reproducing

property of this kernel we can establish that K(q)
d is a projection operator.

Claim 1. The operator K(q)
d defined in Definition 2 satisfies the property

(
K(q)
d

)2

= K(q)
d .

Furthermore, by the addition theorem (Theorem 3), K(q)
d is trace-class (i.e., the trace is finite and

independent of the choice of basis) because:

trace
(
K(q)
d

)
=

∫
Sd−1

kq,d(w,w) dw =

q∑
`=0

α`,d
|Sd−1|

·
∫
Sd−1

P `d (〈w,w〉) dw

=

q∑
`=0

α`,d =

(
d+ q − 1

q

)
+

(
d+ q − 2

q − 1

)
− 1. (6)

By combining Theorem 3 and Lemma 2, and using the definition of the projection operator K(q)
d , it

follows that for any function f ∈ L2
(
Sd−1

)
with Hilbert sum decomposition f =

∑∞
`=0 f`, the low-

degree component f (q) =
∑q
`=0 f` ∈ H(q)

(
Sd−1

)
can be computed as f (q) = K(q)

d f . Equivalently,
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in order to learn f (q), it suffices to solve the following least-squares regression problem,

min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
. (7)

If g∗ is an optimal solution to the above regression problem then f (q) = K(q)
d g∗. In the next claim we

show that solving the least squares problem in Eq. (7), even to a coarse approximation, is sufficient to
solve our interpolation problem (i.e., Problem 2):
Claim 2. For any f ∈ L2

(
Sd−1

)
, any integer q ≥ 0, and any C ≥ 1, if g̃ ∈ L2

(
Sd−1

)
satisfies,∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ C · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
,

and if we let f (q) := K(q)
d f , where K(q)

d is defined as per Definition 2, then the following holds∥∥∥K(q)
d g̃ − f (q)

∥∥∥2

Sd−1
≤ (C − 1) ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

Claim 2 shows that solving the regression problem in Eq. (7) approximately provides a solution to
our spherical harmonics interpolation problem (Problem 2). But how can we solve this least-squares
problem efficiently? Not only does the problem involve a possibly infinite dimensional parameter
vector g, but the objective function also involves the continuous domain on the surface of Sd−1.

3.1 Randomized Discretization via Leverage Function Sampling

We solve the continuous regression in Eq. (7) by randomly discretizing the sphere Sd−1, thereby
reducing our problem to a regression on a finite set of points w1, w2, . . . , ws ∈ Sd−1. In particular,
we propose to sample points on Sd−1 with probability proportional to the so-called leverage function,
a specific distribution that has been widely applied in randomized algorithms for linear algebra
problems on discrete matrices [LMP13]. We start with the definition of the leverage function for
compact operators such as K(q)

d :
Definition 3 (Leverage Function). For integers q ≥ 0 and d > 0, we define the leverage function of
the operator K(q)

d (see Definition 2) for every w ∈ Sd−1 as follows,

τq(w) := max
g∈L2(Sd−1)

∥∥∥K(q)
d g

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d g
]

(w)
∣∣∣2. (8)

Intuitively, τq(w) is an upper bound of how much a function that is spanned by the eigenfunctions
of the operator K(q)

d can “blow up” at w. The larger the leverage function τq(w) implies the higher
the probability we will be required to sample w. This ensures that our sample points well reflect any
possibly significant components, or “spikes”, of the function. Ultimately, the integral

∫
Sd−1 τq(w) dw

determines how many samples we require to solve the regression problem Eq. (7) to a given accuracy.
It is a known fact that the leverage function integrates to the rank of the operator K(q)

d (which is
equal to the dimensionality of the Hilbert spaceH(q)(Sd−1)). This ultimately allows us to achieve a
Õ(
∑q
`=0 α`,d) sample complexity bound for solving Problem 2. To compute the leverage function,

we make use of the following useful alternative characterization of the leverage function.
Lemma 4 (Min Characterization of the Leverage Function). For any w ∈ Sd−1, let τq(w) be the
leverage function (Definition 3) and define φw ∈ L2(Sd−1) by φw(σ) ≡

∑q
`=0

α`,d

|Sd−1|P
`
d (〈σ,w〉).

We have the following minimization characterization of the leverage function:

τq(w) =

{
min

g∈L2(Sd−1)
‖g‖2Sd−1 , s.t. K(q)

d g = φw

}
. (9)

Using the min and max characterizations of the leverage function we can find upper and lower bounds
on this function. Surprisingly, in this case the upper and lower bounds match, so we actually have an
exact value for the leverage function.
Lemma 5 (Leverage Function is Constant). The leverage function given in Definition 3 is equal to
τq(w) =

∑q
`=0

α`,d

|Sd−1| for every w ∈ Sd−1.
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Algorithm 1 Efficient Spherical Harmonic Expansion

1: Input: accuracy parameter ε > 0, integer q ≥ 0
2: Set s = c · (βq,d log βq,d + βq,d/ε) for sufficiently large fixed constant c
3: Sample i.i.d. random points w1, w2, . . . , ws from U(Sd−1)
4: Compute K ∈ Rs×s with Ki,j =

∑q
`=0

α`,d

s·|Sd−1| · P
`
d (〈wi, wj〉) for i, j ∈ [s]

5: Compute f ∈ Rs with fj = 1√
s
· f(wj) for j ∈ [s]

6: Solve the regression by computing z = K†f
7: Return: y ∈ H(q)(Sd−1) with y(σ) :=

∑q
`=0

α`,d√
s·|Sd−1| ·

∑s
j=1 zj · P `d (〈wj , σ〉) for σ ∈ Sd−1

We prove this lemma in Appendix C. The integral of the leverage function, which determines the
total samples needed to solve our least-squares regression, is therefore equal to the dimensionality of
the Hilbert spaceH(q)(Sd−1).
Corollary 1. The leverage function defined in Definition 3 integrates to the dimensionality of the
Hilbert spaceH(q)(Sd−1), which we denote by βq,d, i.e.,∫

Sd−1

τq(w) dw = dim
(
H(q)(Sd−1)

)
=

q∑
`=0

α`,d ≡ βq,d.

We now show that the leverage function can be used to randomly sample the points on the unit sphere
to discretize the regression problem in Eq. (7) and solve it approximately.
Theorem 4 (Approximate Regression via Leverage Function Sampling). For any ε > 0, let s =

c·
(
βq,d log βq,d +

βq,d

ε

)
, for sufficiently large fixed constant c, and let x1, x2, . . . , xs be i.i.d. uniform

samples on Sd−1. Define the quasi-matrix P : Rs → L2(Sd−1) as follows, for every v ∈ Rd:

[P v](σ) :=

q∑
`=0

α`,d√
s · |Sd−1|

·
s∑
j=1

vj · P `d (〈xj , σ〉) for σ ∈ Sd−1.

Also let f ∈ Rs be a vector with fj := 1√
s
· f(xj) for j = 1, 2, . . . , s and let P ∗ be the adjoint of P .

If g̃ is an optimal solution to the least-squares problem g̃ ∈ arg ming∈L2(Sd−1) ‖P ∗g − f‖22, then
with probability at least 1− 10−4 the following holds,∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ (1 + ε) · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

We prove Theorem 4 in Appendix C. This theorem shows that the function g̃ obtained from solving
the discretized regression problem provides an approximate solution to Eq. (7).

3.2 Efficient Solution for the Discretized Least-Squares Problem

In this section, we demonstrate how to apply Theorem 4 algorithmically to approximately solve
the regression problem of Eq. (7). To achieve this, we leverage the kernel trick, following a similar
approach to previous works such as [AKM+19, CP19], which allows us to efficiently address the
randomly discretized least squares problem as detailed in Algorithm 1. The associated guarantee for
this approach is provided in Theorem 5.
Theorem 5 (Efficient Spherical Harmonic Interpolation). Algorithm 1 returns a function y ∈
H(q)(Sd−1) such that, with probability at least 1− 10−4:∥∥∥y − f (q)

∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
, where f (q) := K(q)

d f.

Suppose we can compute the Gegenbauer polynomial P `d(t) at every point t ∈ [−1, 1] in constant

time. Then Algorithm 1 queries the function f at s = O
(
βq,d log βq,d +

βq,d

ε

)
points on the sphere

Sd−1 and runs in O(s2 · d + sω) time. This algorithm evaluates y(σ) in O(d · s) time for any
σ ∈ Sd−1.
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We provide the proof of this theorem in Appendix D.
Remark 1 (Noise Robustness). In Theorem 5, our method’s robustness is demonstrated under a
noise model where the function f is not strictly a low-degree spherical harmonic and may include
high-degree components. In this scenario, the higher-degree components are considered as noise
added to the input function.

However, our algorithm is robust against alternative noise models, particularly additive i.i.d. Normal
noise that corrupts the function evaluations f in Algorithm 1 with iid Normal noise. More precisely,
suppose that we observe samples from the function f (q) contaminated by Gaussian noise, i.e.,
f(wj) = f (q)(wj) + nj in Algorithm 1 for i.i.d. n1, n2, . . . ns ∼ N (0, 1). The expected value of
perturbation’s norm in the output y of our algorithm caused by this noise is:

E
[∥∥∥y − f (q)

∥∥∥2

Sd−1

]
= (1/s) · trace

(
K†KK†

)
.

By Markov’s inequality, with 0.99 probability
∥∥y − f (q)

∥∥2

Sd−1 = O(1/s) · trace
(
K†KK†

)
. If we

let P be the operator defined in Theorem 4, then we can see that K = P ∗P . Using the properties
of the trace, one can see that trace

(
K†KK†

)
= 1/λ1 + 1/λ2 + . . ., where λi’s are the singular

values of the operator PP ∗. By matrix Chernoff inequalities one can show that all singular values
of the operator PP ∗ closely approximate the singular values of the projection operator K(q)

d up
to a constant factor. So, we have trace

(
K†KK†

)
= O(rank(K(q)

d )) = O(βq,d). Thus, because
s ≥ Ω(β/ε) and using union bound, with 0.98 probability:∥∥∥y − f (q)

∥∥∥2

Sd−1
≤ ε.

4 Lower Bound on The Number of Required Observations

We conclude by showing that the dimensionality of the Hilbert spaceH(q)(Sd−1) tightly characterizes
the sample complexity of Problem 2. Thus, our Theorem 5 is optimal up to a logarithmic factor.
Intuitively, there are βq,d degrees of freedom for specifying a spherical harmonic. Consequently,
any deterministic algorithm attempting to reconstruct such polynomials would need at least βq,d
samples. We aim to demonstrate that even a “randomized” algorithm, which succeeds with only a
constant probability, must still gather βq,d samples. This complements our upper bound, which is
established using a randomized algorithm. The crucial fact we use for proving the lower bound is that
all (non-zero) eigenvalues of the operator K(q)

d are equal to one. This fact follows from the addition

theorem presented in Theorem 3, i.e., if
{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal basis ofH`

(
Sd−1

)
,

then for any function f ∈ L2
(
Sd−1

)
,[

K(q)
d f

]
(σ) =

q∑
`=0

α`,d · E
w∼U(Sd−1)

[
P `d (〈σ,w〉) · f(w)

]
=

q∑
`=0

α`,d∑
j=1

〈y`j , f〉Sd−1 · y`j(σ). (10)

Theorem 6 (Lower Bound). Consider an error parameter ε > 0, and any (possibly randomized)
algorithm that solves Problem 2 with probability greater than 1/10 for any input function f and
makes at most r (possibly adaptive) queries on any input. Then r ≥ βq,d.

We describe a distribution on input function f on which any deterministic algorithm that takes
r < βq,d samples fails with probability ≥ 9/10. The theorem then follows by Yao’s principle.

Hard Input Distribution. For integer ` ≤ q, consider an orthonormal basis of H`
(
Sd−1

)
and

denote it by
{
y`1, y

`
2, . . . , y

`
α`,d

}
. Let Y` : Rα`,d → H`

(
Sd−1

)
be the quasi-matrix with y`j as

its jth column, i.e., [Y` · u](σ) :=
∑α`,d

j=1 uj · y`j(σ) for any u ∈ Rα`,d and σ ∈ Sd−1. Let
v(0) ∈ Rα0,d , v(1) ∈ Rα1,d , . . . , v(q) ∈ Rαq,d be independent random vectors with i.i.d. Gaussian
entries: v(`)

j ∼ N (0, 1). The random input is defined to be f :=
∑q
`=0 Y` · v(`). In other words, f =∑q

`=0 Y` · v(`) is a random linear combination of the eigenfunctions of K(q)
d . We prove that accurate
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reconstruction of f drawn from the aforementioned distribution yields accurate reconstruction of
random vectors v(0), v(1), . . . , v(q). Since each v(`) is α`,d-dimensional, this reconstruction requires
Ω(
∑q
`=0 α`,d) = Ω(βq,d) samples, giving us a lower bound for accurate reconstruction of f .

First we show that finding an f̃ (q) satisfying the condition of Problem 2 is at least as hard as accurately
finding all vectors v(0), v(1), . . . , v(q). The following lemma is proved in Appendix E.
Lemma 6. If a deterministic algorithm solves Problem 2 with probability at least 1/10 over our
random input distribution f =

∑q
`=0 Y` · v(`), then with probability at least 1/10, the output of the

algorithm f̃ (q) satisfies Y ∗` f̃
(q) = v(`) for all integers ` ≤ q.

Finally, we complete the proof of Theorem 6 by arguing that if f̃ (q) is formed using less than βq,d

queries from f , then
∑q
`=0

∥∥∥Y ∗` f̃ (q) − v(`)
∥∥∥2

2
> 0 with good probability, thus the bound of Lemma 6

cannot hold and f̃ (q) cannot be a solution to Problem 2. Assume for sake of contradiction that there
is a deterministic algorithm which solves Problem 2 with probability ≥ 1/10 over the random input
f =

∑q
`=0 Y` · v(`) that makes r = βq,d − 1 queries on any input (we can modify an algorithm that

makes fewer queries to make exactly β`,d − 1 queries). For every σ ∈ Sd−1 and integer ` ≤ q define

u`σ :=
[
y`1(σ), y`2(σ), . . . , y`α`,d

(σ)
]
. Also define uσ :=

[
u0
σ, u

1
σ, . . . , u

q
σ

]
∈ Rβq,d and v ∈ Rβq,d as

v :=
(
v(0), v(1), . . . , v(q)

)
. Additionally, define the quasi-matrix Y := [Y0, . . . ,Yq].

Using the above notations and the definition of the hard input instance f , each query to f is in
fact a query to the random vector v in the form of f(σ) = 〈uσ,v〉. Now consider a deterministic
function Q, that is given input V ∈ Ri×βq,d (for any positive integer i) and outputs Q(V ) ∈
Rβq,d×βq,d such that Q(V ) has orthonormal rows with the first i rows spanning the i rows of V . If
σ1, σ2, . . . , σr ∈ Sd−1 denote the points where our algorithm queries the input f , for any integer
i ∈ [r], let Qi be an orthonormal matrix whose first i rows span the first i queries of the algorithm,
i.e., Qi := Q

(
[uσ1 ,uσ2 , . . . ,uσi ]

>). Since the algorithm is deterministic, Qi is a deterministic
function of input v. The following claim is proved in [AKM+19]:
Claim 3 (Claim 23 of [AKM+19]). Conditioned on the queries f(σ1), f(σ2), . . . , f(σr) for r <
βq,d, the variable [Qr · v](βq,d) is distributed as N (0, 1).

Now using Claim 3 we can write,

Pr
v

[
q∑
`=0

∥∥∥v(`) − Y ∗` f̃
(q)
∥∥∥2

2
= 0

]
= Pr

v

[
Qrv = QrY ∗f̃ (q)

]
≤ Pr

v

[
[Qrv]βq,d

=
[
QrY ∗f̃ (q)

]
βq,d

]
= E

[
Pr
v

[
[Qrv]βq,d

=
[
QrY ∗f̃ (q)

]
βq,d

∣∣∣∣ f(σ1), . . . , f(σr)

]]
,

where the expectation in the last line is taken over the randomness of f(σ1), . . . , f(σr). Conditioned
on f(σ1), . . . , f(σr),

[
QrY ∗f̃ (q)

]
(βq,d) is a fixed quantity because the algorithm determines f̃ (q)

given the knowledge of the queries f(σ1), . . . , f(σr). Furthermore, by Claim 3, [Qr · v](βq,d) is a
random variable distributed as N (0, 1), conditioned on f(σ1), . . . , f(σr). This implies that,

Pr
[

[Qr · v] (βq,d) =
[
QrY ∗f̃ (q)

]
(βq,d)

∣∣∣ f(σ1), . . . , f(σr)
]

= 0.

Thus, Pr

[∑q
`=0

∥∥∥v(`) − Y ∗` f̃
(q)
∥∥∥2

2
= 0

]
= Ef(σ1),...,f(σr)[0] = 0. However, we have assumed

that this algorithm solves Problem 2 with probability at least 1/10, and hence, by Lemma 6,
Pr
[∑q

`=0 ‖v(`) − Y ∗` f̃
(q)‖22 = 0

]
≥ 1/10. This is a contradiction, yielding Theorem 6.

5 Numerical Evaluation

Noise-free Setting. For a fixed q, we generate a random function f(σ) =
∑q
`=0 c`P

`
d(〈σ, v〉) where

v ∼ U(Sd−1) and c`’s are i.i.d. samples from N (0, 1). Then, f is recovered by running Algorithm 1
with s random evaluations of f on Sd−1. Note that ‖K(q)

d f−f‖Sd−1 = 0 since f ∈ H(q)(Sd−1), thus,
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(a) d = 3 (b) d = 4

Figure 1: (Left) Empirical success probabilities of Algorithm 1 varying the number of samples s
and the degree of spherical harmonic expansion q. (Right) The dimension βq,d of the Hilbert space
H(q)(Sd−1) as a function of q when (a) d = 3 and (b) d = 4, respectively.

(a) d = 3 (b) d = 4

Figure 2: (Left) Empirical success probabilities of Algorithm 1 in presence of additive noise, where
“success” means the error’s energy is below the noise level ‖f̃ (q) − f‖Sd−1 ≤ ‖n‖Sd−1 . (Right) The
error’s norm ‖f̃ (q) − f‖Sd−1 as a function of q when (a) d = 3 and (b) d = 4, respectively.

as shown in Theorem 4, Algorithm 1 can recover f “exactly” using s = O(βq,d log βq,d) evaluations,
where βq,d is the dimension of the Hilbert space H(q)(Sd−1). We predict f ’s value on a random
test set on Sd−1 and consider the algorithm fails if the testing error is greater than 10−12. We count
the number of failures among 100 independent random trials with different choices of d ∈ {3, 4},
q ∈ {5, . . . , 22}, and s ∈ {40, . . . , 2400}. The empirical success probabilities for d = 3 and 4 are
reported in Fig. 1(a) and Fig. 1(b), respectively. Fig. 1 illustrates that the success probabilities of our
algorithm sharply transition to 1 as soon as the number of samples approaches s ≈ βq,d for a wide
range of q and both d = 3, 4. These experimental results complement our Theorem 4 along with the
lower bound analysis in Section 4 and empirically verify the performance of our algorithm.

Noisy Setting. We repeated our experiments in the presence of an additive noise which is a linear
combination of random spherical harmonics of degrees q + 1 to 2q. More precisely, we let the noise
be n(σ) =

∑2q
`=q+1 c`P

`
d(〈v, σ〉) ∈ H(2q)(Sd−1) \ H(q)(Sd−1) for c`’s that are i.i.d. samples from

N (0, 1). We then re-scale the noise to have norm ‖n‖Sd−1 = 10−6. Furthermore, the function f is
defined as before, and f is recovered by Algorithm 1 with s random evaluations of f + n on Sd−1.
The heat-maps in Fig. 2 are generated by considering an instance of our algorithm as a “success” if the
error’s energy is below the noise level,

∥∥∥f̃ (q) − f
∥∥∥
Sd−1

≤ ‖n‖Sd−1 = 10−6. The success probability
transitions less sharply than the noiseless setting but the shift of probabilities starts at βs,q samples.

6 Conclusion

We studied the problem of robustly recovering spherical harmonic expansion of a function defined
on the sphere. The number of function evaluations needed to recover its degree-q expansion is the
dimension of spherical harmonics of degree at most q, up to a logarithmic factor. We develop a simple
yet efficient kernel regression-based algorithm to recover degree-q expansion of the function by only
evaluating the function on uniformly sampled points on the sphere. Unlike the prior results on fast
spherical harmonic transform, our algorithm works efficiently using a nearly optimal number of
samples in any dimension. We believe our findings would appeal to the readership of the community.
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A Properties of Gegenbauer Polynomials and Spherical Harmonics

In this section we prove the basic properties of the Gegenbauer Polynomials as well as the Spherical
Harmonics and establish the connection between the two. We start by the direct sum decomposition
of the Hilbert space L2(Sd−1) in terms of the spherical harmonics,

Lemma 2 (Direct Sum Decomposition of L2(Sd−1)). The family of spaces H`
(
Sd−1

)
yields a

Hilbert space direct sum decomposition L2
(
Sd−1

)
=
⊕∞

`=0H`
(
Sd−1

)
: the summands are closed

and pairwise orthogonal, and every f ∈ L2
(
Sd−1

)
is the sum of a converging series (in the sense of

mean-square convergence with the L2-norm defined in Eq. (2)),

f =

∞∑
`=0

f`,

where f` ∈ H`
(
Sd−1

)
are uniquely determined functions. Furthermore, given any orthonormal

basis
{
y`1, y

`
2, . . . , y

`
α`,d

}
ofH`

(
Sd−1

)
we have f` =

∑α`,d

j=1 〈f, y`j〉Sd−1 · y`j .

Proof. This is in fact a standard result. For example, see [Lan12] for a proof.

Now we show that the Gegenbauer polynomials and spherical harmonics are related through the so
called the addition theorem,

Theorem 3 (Addition Theorem). For every integer ` ≥ 0, if
{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal

basis forH`
(
Sd−1

)
, then for any σ,w ∈ Sd−1 we have

α`,d
|Sd−1|

· P `d (〈σ,w〉) =

α`,d∑
j=1

y`j(σ) · y`j(w).

Proof. The result can be proven analytically, using the properties of the Poisson kernel in the unit
ball. This is classic and the proof can be found in [AH12, Theorem 2.9].

Next we show that the Gegenbauer kernels can project any function into the space of their corre-
sponding spherical harmonics,

Lemma 3 (A Reproducing Kernel forH`
(
Sd−1

)
). For every f ∈ L2

(
Sd−1

)
, if f =

∑∞
`=0 f` is the

unique decomposition of f over
⊕∞

`=0H`
(
Sd−1

)
as per Lemma 2, then f` is given by

f`(σ) = α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
for σ ∈ Sd−1.

Proof. This is a classic textbook result, see [Mor98].

Now we prove that the Gegenbauer kernels satisfy the reproducing property for the Hilbert space
H`(Sd−1).

Lemma 1 (Reproducing Property of Zonal Harmonics). Let P `d(·) be the Gengenbauer polynomial
of degree ` in dimension d. For any x, y ∈ Sd−1:

P `d(〈x, y〉) = α`,d · Ew∼U(Sd−1)

[
P `d (〈x,w〉)P `d (〈y, w〉)

]
,

Furthermore, for any `′ 6= `:

Ew∼U(Sd−1)

[
P `d (〈x,w〉) · P `

′

d (〈y, w〉)
]

= 0.
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Proof. This result follows directly from the Funk–Hecke formula (See [AH12]). However, we
provide another proof here. First note that for every x ∈ Sd−1 the function P `d (〈x, ·〉) ∈ H`

(
Sd−1

)
.

Therefore the first claim follow by applying Lemma 3 on function f(σ) = P `d (〈x, σ〉) which also
satisfies f` = f . On the other hand, P `

′

d (〈y, ·〉) ∈ H`′
(
Sd−1

)
for every y ∈ Sd−1. Thus, for `′ 6= `,

using the fact that spherical harmonics are orthogonal spaces of functions, P `
′

d (〈y, ·〉) ⊥ H`
(
Sd−1

)
,

which gives the second claim.

Next we prove that the kernel operator defined in Definition 2 is in fact a projection operator,

Claim 1. The operator K(q)
d defined in Definition 2 satisfies the property

(
K(q)
d

)2

= K(q)
d .

Proof. For every f ∈ L2
(
Sd−1

)
and every σ ∈ Sd−1, using Definition 2 we have,[(

K(q)
d

)2

f

]
(σ) =

q∑
`′=0

α`′,d
|Sd−1|

〈
K(q)
d f, P `

′

d (〈σ, ·〉)
〉
Sd−1

=

q∑
`=0

q∑
`′=0

α`,dα`′,d · E
w∼U(Sd−1)

[
P `
′

d (〈σ,w〉) · E
τ∼U(Sd−1)

[
P `d (〈τ, w〉) f(τ)

]]

=

q∑
`=0

q∑
`′=0

α`,dα`′,d · E
τ∼U(Sd−1)

[
f(τ) · E

w∼U(Sd−1)

[
P `
′

d (〈σ,w〉)P `d (〈τ, w〉)
]]

=

q∑
`=0

α`,d · E
τ∼U(Sd−1)

[
f(τ) · P `d (〈σ, τ〉)

]
=
[
K(q)
d f

]
(σ),

where the fourth line above follows from Lemma 1. This proves the claim.

B Reducing the Interpolation Problem to a Least-Squares Regression

In this section we show that our spherical harmonic interpolation problem, i.e., Problem 2, can be
solved by approximately solving a least-squares problem as claimed in Claim 2. We start by showing
that for any function f ∈ L2(Sd−1), K(q)

d f gives its low-degree component. More precisely, let
f =

∑∞
`=0 f` be the decomposition of f over the Hilbert sum

⊕∞
`=0H`

(
Sd−1

)
as per Lemma 2. Now

if we let K(q)
d be the kernel operator from Definition 2 and if

{
y`1, y

`
2, . . . , y

`
α`,d

}
is an orthonormal

basis forH`
(
Sd−1

)
, then by Theorem 3 we have,[

K(q)
d f

]
(σ) =

q∑
`=0

α`,d · E
w∼U(Sd−1)

[
f(w)P `d (〈σ,w〉)

]
=

q∑
`=0

∣∣Sd−1
∣∣ · E
w∼U(Sd−1)

f(w) ·
α`,d∑
j=1

y`j(σ) · y`j(w)


=

q∑
`=0

α`,d∑
j=1

y`j(σ) ·
∣∣Sd−1

∣∣ · E
w∼U(Sd−1)

[
f(w) · y`j(w)

]
=

q∑
`=0

α`,d∑
j=1

〈f, y`j(w)〉Sd−1 · y`j(σ)

=

q∑
`=0

f`(σ) = f (q)(σ),
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where the the second line above follows from Theorem 3, the fourth line follows from Eq. (2), and
the last line follows from Lemma 2. This proves that the low-degree component f (q) = K(q)

d f .

Claim 2. For any f ∈ L2
(
Sd−1

)
, any integer q ≥ 0, and any C ≥ 1, if g̃ ∈ L2

(
Sd−1

)
satisfies,∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ C · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
,

and if we let f (q) := K(q)
d f , where K(q)

d is defined as per Definition 2, then the following holds∥∥∥K(q)
d g̃ − f (q)

∥∥∥2

Sd−1
≤ (C − 1) ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

Proof. First, note that g∗ = f is an optimal solution to the least-squares problem in Eq. (7). Thus we
have,

min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
=
∥∥∥K(q)

d f − f
∥∥∥2

Sd−1
=
∥∥∥f (q) − f

∥∥∥2

Sd−1
.

Next, we can write,∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
=
∥∥∥K(q)

d g̃ −K(q)
d f +

(
K(q)
d f − f

)∥∥∥2

Sd−1

=
∥∥∥K(q)

d (g̃ − f) +
(
K(q)
d f − f

)∥∥∥2

Sd−1

=
∥∥∥K(q)

d (g̃ − f)
∥∥∥2

Sd−1
+
∥∥∥K(q)

d f − f
∥∥∥2

Sd−1

=
∥∥∥K(q)

d g̃ − f (q)
∥∥∥2

Sd−1
+
∥∥∥f (q) − f

∥∥∥2

Sd−1
,

where the third line follows from the Pythagorean theorem becauseK(q)
d (g̃−f) ∈ H(q)

(
Sd−1

)
while

K(q)
d f − f = −

∑
`>q f`, thus

(
K(q)
d f − f

)
⊥ H(q)

(
Sd−1

)
. Combining the two equalities above

with inequality
∥∥∥K(q)

d g̃ − f
∥∥∥2

Sd−1
≤ C ·ming∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
given in the statement of

the claim, proves Claim 2.

C Approximate Regression via Leverage Score Sampling

In this section we ultimately prove our main result of Theorem 4. We start by proving useful properties
of the leverage function given in Definition 3. First, we show the fact that the leverage function can
be characterized in terms of a least-squares minimization problem, which is crucial for computing the
leverage scores distribution. This fact was previously exploited in [AKM+17] and [AKM+19] in the
context of Fourier operators.

Lemma 4 (Min Characterization of the Leverage Function). For any w ∈ Sd−1, let τq(w) be the
leverage function (Definition 3) and define φw ∈ L2(Sd−1) by φw(σ) ≡

∑q
`=0

α`,d

|Sd−1|P
`
d (〈σ,w〉).

We have the following minimization characterization of the leverage function:

τq(w) =

{
min

g∈L2(Sd−1)
‖g‖2Sd−1 , s.t. K(q)

d g = φw

}
. (9)

We remark that this lemma is in fact an adaptation and generalization of Theorem 5 of [AKM+19].
We prove this lemma here for the sake of completeness.

Proof. First we show that the right hand side of Eq. (9) is never smaller than the leverage function in
Definition 3. Let g∗w ∈ L2(Sd−1) be the optimal solution of Eq. (9) for any w ∈ Sd−1. Note that the
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optimal solution satisfies K(q)
d g∗w = φw. Thus, for any function f ∈ L2(Sd−1), using Definition 2,

we can write∣∣∣[K(q)
d f

]
(w)
∣∣∣2 =

∣∣∣∣∣
q∑
`=0

α`,d · E
σ∼U(Sd−1)

[
P `d (〈σ,w〉) · f(σ)

]∣∣∣∣∣
2

= |〈φw, f〉Sd−1 |2 =
∣∣∣〈K(q)

d g∗w, f
〉
Sd−1

∣∣∣2
=
∣∣∣〈g∗w,K(q)

d f
〉
Sd−1

∣∣∣2 (because K(q)
d is self-adjoint)

≤ ‖g∗w‖2Sd−1 ·
∥∥∥K(q)

d f
∥∥∥2

Sd−1
(by Cauchy–Schwarz inequality)

Therefore, for any f ∈ L2(Sd−1) with
∥∥∥K(q)

d f
∥∥∥
Sd−1

> 0, we have∣∣∣[K(q)
d f

]
(w)
∣∣∣2∥∥∥K(q)

d f
∥∥∥2

Sd−1

≤ ‖g∗w‖2Sd−1 . (11)

We conclude the proof by showing that the maximum value is attained. First, we show that the
optimal solution g∗w of Eq. (9) satisfies the property that K(q)

d g∗w = g∗w. Suppose for the sake of
contradiction that K(q)

d g∗w 6= g∗w. In this case, Claim 1 implies that,

K(q)
d

(
K(q)
d g∗w − g∗w

)
=
(
K(q)
d

)2

g∗w −K
(q)
d g∗w = K(q)

d g∗w −K
(q)
d g∗w = 0.

Thus, the function g = K(q)
d g∗w satisfies the constraint of the minimization problem in Eq. (9). Now,

using the above and the fact that K(q)
d is self-adjoint we can write,〈

K(q)
d g∗w,K

(q)
d g∗w − g∗w

〉
Sd−1

=
〈
g∗w,K

(q)
d

(
K(q)
d g∗w − g∗w

)〉
Sd−1

= 0.

This shows that K(q)
d g∗w ⊥

(
K(q)
d g∗w − g∗w

)
, hence by Pythagorean theorem we have,

‖g∗w‖2Sd−1 =
∥∥∥K(q)

d g∗w

∥∥∥2

Sd−1
+
∥∥∥K(q)

d g∗w − g∗w
∥∥∥2

Sd−1
>
∥∥∥K(q)

d g∗w

∥∥∥2

Sd−1
= ‖g‖2Sd−1 ,

which is in contrast with the assumption that g∗w is the optimal solution of Eq. (9). Therefore, our
claim that K(`)

d g∗w = g∗w holds.

Now, we show that for f = g∗w, the maximum value in inequality Eq. (11) is attained. For any
w ∈ Sd−1 we have the following[

K(q)
d f

]
(w) =

〈
K(q)
d g∗w, f

〉
Sd−1

= 〈g∗w, g∗w〉Sd−1 = ‖g∗w‖2Sd−1 .

On the other hand we have
∥∥∥K(q)

d f
∥∥∥2

Sd−1
= ‖g∗w‖2Sd−1 . Thus,

∥∥∥K(q)
d f

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d f
]

(w)
∣∣∣2 =

‖g∗w‖2Sd−1 which implies that τq(w) = ‖g∗w‖2Sd−1 and thus proves the lemma.

Next we prove that the leverage function is constant.

Lemma 5 (Leverage Function is Constant). The leverage function given in Definition 3 is equal to
τq(w) =

∑q
`=0

α`,d

|Sd−1| for every w ∈ Sd−1.

Proof. First we prove that τq(w) ≤
∑q
`=0

α`,d

|Sd−1| using the min-characterization. If we let φw ∈
L2(Sd−1) be defined as φw(σ) :=

∑q
`=0

α`,d

|Sd−1|P
`
d (〈σ,w〉), then by Definition 2, for every σ ∈ Sd−1
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we can write,[
K(q)
d φw

]
(σ) =

q∑
`=0

α`,d · E
v∼U(Sd−1)

[
P `d (〈σ, v〉) · φw(v)

]
=

q∑
`=0

q∑
`′=0

α`,dα`′,d
|Sd−1|

· E
v∼U(Sd−1)

[
P `d (〈σ, v〉) · P `

′

d (〈v, w〉)
]

=

q∑
`=0

α`,d
|Sd−1|

P `d (〈σ,w〉) = φw(σ), (12)

where the third line above follows from Lemma 1. Therefore, the test function g := φw satisfies the
constraint of the minimization in Eq. (9), i.e., K(q)

d g = φw. Thus, Lemma 4 implies that,

τq(w) ≤ ‖g‖2Sd−1 = ‖φw‖2Sd−1 =

q∑
`=0

α`,d
|Sd−1|

,

where the equality above follows from Lemma 1 along with Eq. (2). This establishes the upper bound
on the leverage function that we sought to prove.

Now, using the maximization characterization of the leverage function in Definition 3, we prove that
τq(w) ≥

∑q
`=0

α`,d

|Sd−1| . Again, we consider the same test function g = φw and write,∥∥∥K(q)
d φw

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d φw

]
(w)
∣∣∣2 =

|φw(w)|2

‖φw‖2Sd−1

=

∣∣∣∑q
`=0

α`,d

|Sd−1|P
`
d (〈w,w〉)

∣∣∣2∑q
`=0

α`,d

|Sd−1|

=

∣∣∣∑q
`=0

α`,d

|Sd−1|P
`
d(1)

∣∣∣2∑q
`=0

α`,d

|Sd−1|
=

q∑
`=0

α`,d
|Sd−1|

,

where the first and second line above follow from Eq. (12) and Lemma 1, respectively. Therefore, the
max characterization of the leverage function in Definition 3 implies that,

τq(w) ≥
∥∥∥K(q)

d φw

∥∥∥−2

Sd−1
·
∣∣∣[K(q)

d φw

]
(w)
∣∣∣2 =

q∑
`=0

α`,d
|Sd−1|

.

This completes the proof of Lemma 5 and establishes that τq(w) is uniformly equal to
∑q
`=0

α`,d

|Sd−1| .

To prove Theorem 4, we need to use prior results about solving linear systems in continuous setting
via leverage score sampling. In particular, we use Theorem 6.3 from [CP19], which is restated below,

Theorem 7 (Theorem 6.3 of [CP19]). Consider any dimension n linear space F of functions
from a domain G to R. Let D be a distribution over G and f be some function from G
to R. Also, define the norm with respect to D of any function h : G → R as ‖h‖2D :=

Ex∼D[|h(x)|2] and let y = arg minh∈F ‖h− f‖
2
D. Fix any distribution D′ over G and let

KD′ := supx∈G suph∈F

{
D(x)
D′(x) ·

|h(x)|2
‖h‖2D

}
.

For i.i.d. sample query points x1, x2, . . . xs ∼ D′ and weights wi = D(xi)
s·D′(xi)

for i ∈ [s], let the

weighted ERM estimator f̃s be defined as f̃s := arg minh∈F
∑s
i=1 wi · |h(xi)− f(xi)|2. For any

ε > 0 and a sufficiently large fixed constant c, if the number of queries s ≥ c ·
(
KD′ log n+ KD′

ε

)
,

then the weighted ERM estimator f̃s satisfies,

Pr

[∥∥∥f̃s − y∥∥∥2

D
≤ ε · ‖f − y‖2D

]
≥ 1− 10−4.
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Now we are ready to prove Theorem 4. Our approach is to apply Theorem 7 to the space of degree q
spherical harmonicsH(q)

(
Sd−1

)
and use the fact that the leverage scores distribution of the operator

K(q)
d are uniform on the unit sphere Sd−1.

Theorem 4 (Approximate Regression via Leverage Function Sampling). For any ε > 0, let s =

c·
(
βq,d log βq,d +

βq,d

ε

)
, for sufficiently large fixed constant c, and let x1, x2, . . . , xs be i.i.d. uniform

samples on Sd−1. Define the quasi-matrix P : Rs → L2(Sd−1) as follows, for every v ∈ Rd:

[P v](σ) :=

q∑
`=0

α`,d√
s · |Sd−1|

·
s∑
j=1

vj · P `d (〈xj , σ〉) for σ ∈ Sd−1.

Also let f ∈ Rs be a vector with fj := 1√
s
· f(xj) for j = 1, 2, . . . , s and let P ∗ be the adjoint of P .

If g̃ is an optimal solution to the least-squares problem g̃ ∈ arg ming∈L2(Sd−1) ‖P ∗g − f‖22, then
with probability at least 1− 10−4 the following holds,

∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
≤ (1 + ε) · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

Proof. We prove this theorem by invoking Theorem 7. To do so, we first let the space F of function
from Sd−1 to R be F := H(q)

(
Sd−1

)
. It is clear that the space of spherical harmonics is a linear

space of functions because of the existence of the kernel operator K(q)
d which is a projection operator

ontoH(q)
(
Sd−1

)
, so F satisfies the first precondition of Theorem 7. Additionally, the dimension of

this space of functions is n = βq,d.

Also, letD be a uniform distribution over the unit sphere Sd−1. For this distribution, the norm defined
in Theorem 7 satisfies ‖h‖2Sd−1 = |Sd−1| · ‖h‖2D, for any h ∈ L2(Sd−1). Moreover, let D′ be a
uniform distribution over the unit sphere Sd−1 as well.

Now we show that for these choices of F , D,D′, the condition numberKD′ defined as per Theorem 7
is equal to βq,d. We can write,

KD′ := sup
x∈Sd−1

sup
h∈F

{
D(x)

D′(x)
· |h(x)|2

‖h‖2D

}
= |Sd−1| · sup

x∈Sd−1

sup
h∈F

{
|h(x)|2

‖h‖2Sd−1

}

= |Sd−1| · sup
x∈Sd−1

sup
g∈L2(Sd−1)


∣∣∣[K(q)

d g
]

(x)
∣∣∣2∥∥∥K(q)

d g
∥∥∥2

Sd−1


= |Sd−1| · sup

x∈Sd−1

τq(x)

= βq,d,

where the second line above follows from the fact thatD,D′ are both equal to the uniform distribution
over Sd−1 and ‖h‖2Sd−1 = |Sd−1| · ‖h‖2D. The third line above follows from the fact that any function
h ∈ H(q)

(
Sd−1

)
can be expressed as h = K(q)

d g for some g ∈ L2(Sd−1) because K(q)
d is the

projection operator ontoH(q)
(
Sd−1

)
. The fourth line follows from Definition 3 and last line follows

from Lemma 5.
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Finally, in order to invoke Theorem 7, we can write that the weighted ERM estimator f̃s is equal to
the following,

f̃s := arg min
h∈F

s∑
i=1

wi · |h(xi)− f(xi)|2

= arg min
g∈L2(Sd−1)

s∑
i=1

wi ·
∣∣∣[K(q)

d g
]

(xi)− f(xi)
∣∣∣2

= arg min
g∈L2(Sd−1)

s∑
i=1

∣∣∣∣ 1√
s
·
[
K(q)
d g

]
(xi)− fi

∣∣∣∣2
= arg min
g∈L2(Sd−1)

‖P ∗g − f‖22 ,

where the third line above uses the definition of fi = 1√
s
f(xi), and the last line follows from the

definition of adjoint of the quasi-matrix P . Therefore, the theorem follows by invoking Theorem 7.

D Efficient Algorithm for Spherical Harmonic Interpolation

In this section we prove our main theorem about our spherical harmonic interpolation algorithm.

Theorem 5 (Efficient Spherical Harmonic Interpolation). Algorithm 1 returns a function y ∈
H(q)(Sd−1) such that, with probability at least 1− 10−4:∥∥∥y − f (q)

∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
, where f (q) := K(q)

d f.

Suppose we can compute the Gegenbauer polynomial P `d(t) at every point t ∈ [−1, 1] in constant

time. Then Algorithm 1 queries the function f at s = O
(
βq,d log βq,d +

βq,d

ε

)
points on the sphere

Sd−1 and runs in O(s2 · d + sω) time. This algorithm evaluates y(σ) in O(d · s) time for any
σ ∈ Sd−1.

Proof. First note that the random points w1, w2, . . . , ws in line 3 of Algorithm 1 are i.i.d. sample
with uniform distribution on the surface of Sd−1. Therefore, we can invoke Theorem 4. More
specifically, if we let P be the quasi-matrix defined in Theorem 4 corresponding to the random
points w1, w2, . . . , ws sampled in line 3 and if we let f be the vector of function samples defined in
line 5 of the algorithm, then with probability at least 1− 10−4, any optimal solution to the following
least-squares problem

g̃ ∈ arg min
g∈L2(Sd−1)

‖P ∗g − f‖22 , (13)

satisfies the following,∥∥∥K(q)
d g̃ − f

∥∥∥2

Sd−1
≤ (1 + ε) · min

g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
. (14)

Now note that the least-squares problem in Eq. (13) has at least one optimal solution g̃ which is in the
eigenspace of the operator PP ∗. More specifically, there exists a vector z ∈ Rs such that g̃ = P · z
is an optimal solution for Eq. (13). Therefore, we can focus on finding this optimal solution by
solving the following least-squares problem

z ∈ arg min
x∈Rs

‖P ∗Px− f‖22 ,

and then letting g̃ = P · z. This g̃ is guaranteed to be an optimal solution for Eq. (13), thus it satisfies
Eq. (14). We solve the above least-squares problem using the kernel trick. In fact we show that P ∗P
is equal to the kernel matrix K computed in line 4 of Algorithm 1. To see why, note that for any
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i, j ∈ [s] we have,

[P ∗P ]i,j =

〈
q∑
`=0

α`,d√
s · |Sd−1|

· P `d (〈wi, ·〉) ,
q∑
`=0

α`,d√
s · |Sd−1|

· P `d (〈wj , ·〉)

〉
Sd−1

=

q∑
`=0

q∑
`′=0

α`,dα`′,d
s · |Sd−1|2

·
〈
P `d (〈wi, ·〉) , P `

′

d (〈wj , ·〉)
〉
Sd−1

=

q∑
`=0

q∑
`′=0

α`,dα`′,d
s · |Sd−1|

· E
v∼U(Sd−1)

[
P `d (〈wi, v〉) · P `

′

d (〈wj , v〉)
]

=

q∑
`=0

α`,d
s · |Sd−1|

· P `d (〈wi, wj〉) = Ki,j ,

where the fourth line above follows from Lemma 1. Therefore, we are interested in the optimal
solution of the following least-squares problem

z ∈ arg min
x∈Rs

‖Kx− f‖22 .

The least-squares solution to the above problem is z = K†f which is exactly what is computed
in line 6 of the algorithm. Now note that, the function g̃ = P · z satisfies Eq. (14). Because
g̃ = P · z ∈ H(q)(Sd−1) and because K(q)

d is an orthonormal projection operator intoH(q)(Sd−1),
we have K(q)

d · g̃ = g̃ = P · z. This together with Eq. (14) imply that,

‖P · z − f‖2Sd−1 ≤ (1 + ε) · min
g∈L2(Sd−1)

∥∥∥K(q)
d g − f

∥∥∥2

Sd−1
.

Now if we invoke Claim 2 with C = 1 + ε on the above inequality we find that,∥∥∥P · z − f (q)
∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
.

Finally, one can easily see that the function y ∈ H(q)(Sd−1) that Algorithm 1 outputs in line 7 is
exactly equal to y = P · z. This completes the accuracy bound of the theorem.

Runtime and Sample Complexity. these bounds follow from observing that:

• s · d time is needed to generate w1, w2, . . . , ws in line 3 of the algorithm. To do this, we
first generate random Gaussian points in Rd and then project then onto Sd−1 by normalizing
them.

• s2 · d operations are needed to form the kernel matrix K in line 4 of the algorithm.

• s queries to function f are needed to form the samples vector f in line 5 of the algorithm.

• sω time is needed to compute the least-squares solution z = K†f in line 6 of the algorithm.

• s · d operations are needed to evaluate the output function y(σ) in line 7 of the algorithm.

This completes the proof of Theorem 5.

E Lower Bound: Claims and Lemmas

In this section we prove the Claims and Lemmas used in our lower bound analysis for proving
Theorem 6.

Claim 4. Given the random input f =
∑q
`=0 Y` · v(`) generated as described in Section 4, to solve

Problem 2, an algorithm must return a function f̃ (q) ∈ H(q)
(
Sd−1

)
such that ‖f̃ (q) − f‖2Sd−1 = 0.
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Proof. Note that Problem 2 requires recovering a function f̃ (q) ∈ H(q)
(
Sd−1

)
such that:∥∥∥f̃ (q) − f (q)

∥∥∥2

Sd−1
≤ ε ·

∥∥∥f (q) − f
∥∥∥2

Sd−1
, (15)

where f (q) = K(q)
d f . Using the definition of the input function f =

∑q
`=0 Y` · v(`), we can write,

f (q) = K(q)
d f =

q∑
`=0

K(q)
d · Y` · v

(`)

=

q∑
`=0

(
q∑

`′=0

Y`′Y
∗
`′

)
· Y` · v(`)

=

q∑
`=0

Y` · v(`) = f,

where the equality in the second line above follows from Eq. (10) and the addition theorem in
Theorem 3, and the third line follows because the operator Y` has orthonormal columns and thus
Y ∗`′Y` = Iα`,d

· 1{`=`′}. Therefore, plugging this into Eq. (15) gives,∥∥∥f̃ (q) − f
∥∥∥2

Sd−1
=
∥∥∥f̃ (q) − f (q)

∥∥∥2

Sd−1
≤ ε · ‖f (q) − f‖2Sd−1 = ε · ‖f − f‖2Sd−1 = 0.

Lemma 6. If a deterministic algorithm solves Problem 2 with probability at least 1/10 over our
random input distribution f =

∑q
`=0 Y` · v(`), then with probability at least 1/10, the output of the

algorithm f̃ (q) satisfies Y ∗` f̃
(q) = v(`) for all integers ` ≤ q.

Proof. By Claim 4, the output of the algorithm that solves Problem 2, satisfies
∥∥∥f̃ (q) − f

∥∥∥2

Sd−1
= 0.

Therefore, by orthonormality of the columns of the operator Y`, we can write,

Y ∗` f̃
(q) = Y ∗` f + Y ∗` (f̃ (q) − f) =

q∑
`′=0

Y ∗` Y`′ · v(`′) = v(`).
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