
ReDS: Offline Reinforcement Learning With
Heteroskedastic Datasets via Support Constraints

Anikait Singh1,∗, Aviral Kumar1,∗, Quan Vuong2, Yevgen Chebotar2, Sergey Levine1
1UC Berkeley, 2Google DeepMind (∗Equal contribution)

asap7772@berkeley.edu

Abstract

Offline reinforcement learning (RL) learns policies entirely from static datasets.
Practical applications of offline RL will inevitably require learning from datasets
where the variability of demonstrated behaviors changes non-uniformly across
the state space. For example, at a red light, nearly all human drivers behave
similarly by stopping, but when merging onto a highway, some drivers merge
quickly, efficiently, and safely, while many hesitate or merge dangerously. Both
theoretically and empirically, we show that typical offline RL methods, which are
based on distribution constraints fail to learn from data with such non-uniform
variability, due to the requirement to stay close to the behavior policy to the
same extent across the state space. Ideally, the learned policy should be free to
choose per state how closely to follow the behavior policy to maximize long-term
return, as long as the learned policy stays within the support of the behavior policy.
To instantiate this principle, we reweight the data distribution in conservative Q-
learning (CQL) to obtain an approximate support constraint formulation. The
reweighted distribution is a mixture of the current policy and an additional policy
trained to mine poor actions that are likely under the behavior policy. Our method,
CQL (ReDS), is theoretically motivated, and improves performance across a wide
range of offline RL problems in games, navigation, and pixel-based manipulation.

1 Introduction
Recent advances in offline RL [39, 36] hint at exciting possibilities in learning high-performing
policies, entirely from offline datasets, without requiring dangerous [19] or expensive [25] active
interaction. Analogously to the importance of data diversity in supervised learning [9], the practical
benefits of offline RL depend heavily on the coverage of behavior in the offline datasets [35].
Intuitively, the dataset must illustrate the consequences of a diverse range of behaviors, so that
an offline RL method can determine what behaviors lead to high returns, ideally returns that are
significantly higher than the best single behavior in the dataset.

One easy option to attain this kind of coverage is to combine many realistic sources of data, but doing
so can lead to the variety of demonstrated behaviors varying in highly non-uniform ways across the
state space, i.e. the dataset is heteroskedastic. For example, a driving dataset might show very high
variability in driving habits, with some drivers being timid and some more aggressive, but remain
remarkably consistent in “critical” states (e.g., human drivers are extremely unlikely to swerve in an
empty road or drive off a bridge). A good offline RL algorithm should combine the best parts of each
behavior in the dataset – e.g., in the above example, the algorithm should produce a policy that is as
good as the best human in each situation, which would be better than any human driver overall. At
the same time, the learned policy should not attempt to extrapolate to novel actions in subset of the
state space where the distribution of demonstrated behaviors is narrow (e.g., the algorithm should not
attempt to drive off a bridge). How effectively can current offline RL methods selectively choose on a
per-state basis how closely to stick to the behavior policy?

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Most existing methods [32, 33, 28, 27, 53, 17, 23] constrain the learned policy to stay close to the
behavior policy with so-called “distribution constraints". Using a combination of empirical and
theoretical evidence, we first show that distribution constraints are insufficient when the heteroskedas-
ticity of the demonstrated behaviors varies non-uniformly across states, because the strength of
the constraint is state-agnostic, and may be overly conservative at some states even when it is not
conservative enough at other states. We also devise a measure of heteroskedasticity that enables us to
determine if certain offline datasets would be challenging for distribution constraints.

Our second contribution is a simple observation: distribution constraints against a reweighted version
of the behavior policy give rise to support constraints. That is, the return-maximization optimization
process can freely choose per-state how much the learned policy should stay close to the behavior
policy, so long as the learned policy remains within the data support. We show that it is convenient to
instantiate this insight on top of conservative Q-learning (CQL) [33], a recent offline RL method. The
new method, CQL (ReDS), changes minimally the form of regularization, design decisions employed
by CQL and inherits existing hyper-parameter values. CQL (ReDS) attains better performance than
recent distribution constraints methods on a variety of tasks with more heteroskedastic distributions.

2 Preliminaries
The goal in offline RL is find the optimal policy in a Markov decision process (MDP) specified
by the tuple M = (S,A, T, r, µ0, γ). S,A denote the state and action spaces. T (s′|s,a) and
r(s,a) represent the dynamics and reward function. µ0(s) denotes the initial state distribution.
γ ∈ (0, 1) denotes the discount factor. We wish to learn a policy that maximizes return, denoted by
J(π) := 1

1−γE(st,at)∼π[
∑
t γ

tr(st,at)]. We must find this policy while only having access to an
offline dataset of transitions collected using a behavior policy πβ , D = {(s,a, r, s′)}.
Offline RL via distributional constraints. Most offline RL algorithms regularize the learned policy
π from querying the target Q-function on unseen actions [17, 30], either implicitly or explicitly.
For our theoretical analysis, we will abstract the behavior of distributional constraint offline RL
algorithms into a generic formulation following Kumar et al. [33]. As shown in Equation 1, we
consider the problem where we must maximize the return of the learned policy π (in the empirical
MDP) Ĵ(π), while also penalizing the divergence from πβ :

max
π

Es∼d̂π

[
Ĵ(π)− αD(π, πβ)(s)

]
, (1)

where D denotes a divergence between the learned policy π and the behavior policy πβ at state s.
Conservative Q-learning. [33] enforces the distributional constraint on the policy implicitly. To see
why this is the case, consider the CQL objective, which consists of two terms:

min
θ

α (Es∼D,a∼π [Qθ(s,a)]− Es,a∼D [Qθ(s,a)])︸ ︷︷ ︸
R(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
, (2)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network, Q̄:
BπQ̄(s,a) := r(s,a) + γEa′∼π(a′|s′)[Q̄(s′,a′)]. The second term (in blue) is the standard TD
error [40, 18, 22]. The first termR(θ) (in red) attempts to prevent overestimation in the Q-values for
out-of-distribution (OOD) actions by minimizing the Q-values under a distribution µ(a|s), which is
automatically chosen to pick actions with high Q-values Qθ(s,a), and counterbalances by maximiz-
ing the Q-values of the actions in the dataset. Kumar et al. [33] show that Equation 2 gives rise to a
pessimistic Q-function that modifies the optimal Q function by the ratios of densities, π(a|s)/πβ(a|s)
at a given state-action pair (s,a). Formally, the Q-function obtained after one iteration is given by:

Qθ(s,a) := BπQ̄(s,a)− α

[
π(a|s)
πβ(a|s)

− 1

]
. (3)

The Q function is unchanged only if the density of the learned policy π matches that of the behavior
policy πβ . Otherwise, for state-action pairs where π(a|s) < πβ(a|s), Eq. 3 increases their Q values
and encourages the policy π to assign more mass to the action. Vice versa, if π(a|s) > πβ(a|s),
Eq. 3 encourages the policy π to assign smaller density to the action a. In Eq. 3, α is a constant for
every state, and hence the value function learned by CQL is altered by the ratio of action probabilities
to the same extent at all possible state-action pairs. As we will discuss in the next section, this can be
sub-optimal when the learnt policy should stay close to the behavior policy in some states, but not
others. We elaborate on this intuition in the next section.

2

3 Why Distribution Constraints Fail with Heteroskedastic Data
In statistics, heteroskedasticity is typically used to refer to the condition when the standard deviation
in a given random variable varies non-uniformly over time (see for example, Cao et al. [6]). We
call a offline dataset heteroskedastic when the variability of the behavior differs in different regions
of the state space: for instance, if for certain regions of the state space, the observed behaviors in
the dataset assign the most probability mass to a few actions, but in other regions, the observed
behaviors are more diverse. Realistic offline datasets are often heteroskedastic as they are typically
generated by multiple policies, each with its own characteristics, under different conditions. E.g.,
driving datasets come from multiple humans [11], and many robotic datasets are collected by multiple
teleoperators [10], resulting in systematic variability in different regions of the state space.

3.1 A Didactic Example

(a) Variability in Behavior Depends on State

(b) AWR stuck (c) CQL stuck

(d) CQL (REDS) succeeds

Figure 1: Failure mode of distribution constraints. In this
navigation task, an offline RL algorithm must find a path from
the start state to the goal state as indicated in (a). The offline
dataset provided exhibits non-uniform coverage at different
states, e.g., in the state marked as “B” located in a wide room
has more uniform action distribution, whereas the states in
the narrow hallways exhibit a more narrow action distribution.
This is akin to how the behavior of human drivers varies in
certain locations (“B”), but is very similar in other situations
(“A”). To perform well, an algorithm must stay close to the
data in the hallways (“A”), but deviate significantly from the
data in the rooms (“B”), where the data supports many dif-
ferent behaviors (most are not good). AWR and CQL get
stuck because they stay too close to the bad behavior policy
in the rooms, e.g. the left and right arrows near State B in Fig
(b) and (c). Our method, CQL (ReDS), learns to ignore the
bad behavior action in state B and prioritizes the good action,
indicated by the downward arrow near B in (d).

To understand why distribution constraints
are insufficient with heteroskedastic data,
we present a didactic example. Motivated
by the driving scenario, we consider a maze
navigation task shown in Fig. 1. The task
is to navigate from the position labeled as
“Start” to the position labeled as “Goal” us-
ing five actions at every possible state (L:
←, R:→, U: ↑, D: ↓, No: No Op), while
making sure that the executed actions do
not hit the walls of the grid.

Dataset construction. To collect a het-
eroskedastic dataset, we consider a mixture
of several behavior policies that attain a
uniform occupancy over different states in
the maze. However, the dataset action dis-
tributions differ significantly in different
states. The induced action distribution is
heavily biased to move towards the goal in
the narrow hallways (e.g., the behavior pol-
icy moves upwards at state A)). In contrast,
the action distribution is quite diverse in
the wider rooms. In these rooms, the be-
havior policy often selects actions that do
not immediately move the agent towards
the goal (e.g., the behavior policy at state B), because doing so does not generally hit the walls as
the rooms are wider, and hence the agent is not penalized. Whereas, the agent must take utmost
precaution to not hit the walls in the narrow hallways. More details are in Appendix B.

Representative distribution constraint algorithms such as AWR [44, 43] and CQL [33] fail to
perform the task, as shown in Figure 1. To ensure fair comparison, we tune each method to its
best evaluation performance using online rollouts. The visualization in Figure 1 demonstrates that
these two algorithms fail to learn reasonable policies because the learned policies match the random
behavior of the dataset actions too closely in the wider rooms, and therefore are unable to make
progress towards the Goal position. This is a direct consequence of enforcing too strong of a constraint
on the learned policy to stay close to the behaviors in the dataset. Therefore, we also evaluated the
performance of CQL and AWR in this example, with lower amounts of conservatism (Appendix B)
and found that utilizing a lower amount of conservatism suffers from the opposite failure mode:
it is unable to prevent the policies from hitting the walls in the narrow hallways. This means that
conservatism prevents the algorithm from making progress in the regions where the behavior in the
dataset is more diverse, whereas not being conservative enough hurts performance in regions where
the behaviors in the dataset agree with each other. The method we propose in this paper to tackle this
challenge, indicated as “CQL (ReDS)”, effectively traverses the maze, 80% of the time.

3.2 Challenges with Distribution Constraints
Having seen that distribution constraints can fail in certain scenarios, we now formally characterize
when offline RL datasets is heteroskedastic, and why distribution constraints may be ineffective in

3

Figure 2: Empirically computing Cπ
diff with three datasets: uniform (top), mixed (middle) and skewed (bottom)

on a gridworld. We also visualize D(π, πβ)(s) across states in the maze as the colors on different cells, a
histogram of D(π, πβ)(s) to visualize variation in this quantity and the performance of running standard CQL.
Top: The uniform distribution leads to low Cπ

diff, uniform D(π, πβ)(s), and highest success. Middle: The
mixed distribution leads to medium Cπ

diff, less uniformly distributed D(π, πβ)(s), and a drop in task success.
Bottom: The skewed distribution leads to a high Cπ

diff, non-uniform D(π, πβ)(s), and poor performance.

such scenarios. Similar to how standard analyses utilize concentrability coefficient [46], which upper
bounds the ratio of state-action visitation under a policy dπ(s,a) and the dataset distribution µ, i.e.,
maxs,a d

π(s,a)/µ(s,a) ≤ Cπ , we introduce a new metric called differential concentrability, which
measures dataset heteroskedasticity (i.e., the variability in the dataset behavior across different states).
Definition 3.1 (Differential concentrability.). Given a divergence D over the action space, the
differential concentrability of a given policy π with respect to the behavioral policy πβ is given by:

Cπ
diff = E

s1,s2∼dπ

(√D(π, πβ)(s1)

µ(s1)
−

√
D(π, πβ)(s2)

µ(s2)

)2
 . (4)

Eq. 4 measures the variation in the divergence between a given policy π(a|s) and the behavior
policy πβ(a|s) weighted inversely by the density of these states in the offline dataset (i.e., µ(s) in
the denominator). For simplicity, let us revisit the navigation example from Section 3.1 and first
consider a scenario where µ(s) = Unif(S). For any given policy π, if there are states where π
chooses actions that lie on the fringe of the data distribution (e.g., in the wider rooms), as well as
states where the policy π chooses actions at the mode of the data distribution (e.g., as in the narrow
passages), then Cπ

diff would be large any policy π that we learn. Crucially, Cπ
diff would be small even

if the learned policy π deviates significantly from the behavior policy πβ , such that D(π, πβ)(s) is
large, but |D(π, πβ)(s1)−D(π, πβ)(s2)| is small, indicating the dataset is not heteroskedastic.

Connection between variability in the action distribution and high Cπ
diff. Consider a simpler

formula where we remove the counts n(s) from the expression of differential concentrability and
set π in Cπ

diff to be the uniform distribution over actions. Then, we can show that the value of Cπ
diff

is exactly equal to twice the variance of D(π, πβ)(s) across states. Therefore, we will demonstrate
in Section 5 that arbitrary policy checkpoints π learned by offline RL algorithms generally attain a
low value of the variance in D(π, πβ)(s) on offline datasets from non-heteroskedastic sources, such
as those covered in the D4RL [13] benchmark. Of course, we cannot always exclude the counts of
states n(s), however, we note that in high-dimensional state spaces, such as those in our experiments,
each state in the offline data is likely to be unique, thus validating the condition that n(s) = 1. That
said, we do compute the exact value of Cπ

diff (with n(s)) in a didactic gridworld maze shown in
Figure 2. In this case, we find that our definition of Cπ

diff is actually able to reflect the intuitive notion
of heteroskedasticity.

We now use the definition of differential concentrability to bound both the improvement and de-
provement of π w.r.t. πβ for distribution constraint algorithms using the framework of safe policy

4

improvement [37, 33]. We show that when Cπ
diff is large, then constraints (Eq. 1) may not improve

significantly over πβ , even for the best value for the weight α (proof in Appendix C):
Theorem 3.2 (Informal; Limited policy improvement via distributional constraints.). W.h.p. ≥ 1− δ,
for any prescribed level of safety ζ, the maximum possible policy improvement over choices of α,
maxα [J(πα)− J(πβ)] ≤ ζ+, where ζ+ is given by:

ζ+ := max
α

h∗ (α)

(1− γ)2
s.t.

c1

√
log |S||A|

δ

(1− γ)2

√
Cπα

diff

|D|
−

αEs∼d̂πα [D(πα, πβ)(s)]

1− γ
≤ ζ, (5)

where h∗ is a monotonically decreasing function of α, and h(0) = O(1).
Theorem 3.2 quantifies the fundamental tradeoff with distribution constraints: to satisfy a given
ζ-safety constraint in problems with larger Cπ

diff, we would need a larger α. Since the maximum
policy improvement ζ+ is upper bounded by h∗(α), the policy may not necessarily improve over
the behavior policy if α is large. On the flip side, if we choose to fix the value of α to be small in
hopes to attain more improvement in problems where Cπ

diff is high for all policies, we would end up
compromising on the safety guarantee as ζ needs to be large for a small α and large Cπ

diff. Thus, in
this case, the policy may not improve over the behavior policy reliably.

Note that a larger value of Cπ
diff need not imply large Es∼d̂π [D(π, πβ)(s)] because the latter does not

involve µ(s). Cπ
diff also measures the dispersion of D(π, πβ)(s), while the latter performs a mean over

states. In addition, Theorem 3.2 characterizes the maximum possible improvement with an oracle
selection of α, though is not feasible in practice. Thus, when Cπ

diff is large, distribution constraint
algorithms could either not safely improve over πβ or would attain only a limited improvement with
any possible value of α. Finally, we remark that complementing [32, 39] that discuss failure modes
of distribution constraints with high-entropy behavior policies, Theorem 3.2 quantifies when this
would be the case: this happens when Cπ

diff is large.

4 Support Constraints As Reweighted Distribution Constraints
Thus far, we have seen that distribution constraints can be ineffective with heteroskedastic datasets. If
we can impose the distribution constraint such that the constraint strength can be modulated per state,
then in principle, we can alleviate the issue raised in Theorem 3.2 and Section 3.1.

Our key insight is that by reweighting the action distribution in the data before utilizing a distribution
constraint, we can obtain a method that enforces a per-state distribution constraint, which corresponds
to an approximate support constraint. This will push down the values of actions that are outside
the behavior policy support, but otherwise not impose a severe penalty for in-support actions, thus
enabling the policy to deviate from the behavior policy by different amounts at different states. Rather
than having a distribution constraint between π and πβ (Eq. 1), if we can impose a constraint between
π and a reweighted version of πβ , where the reweighting is state-dependent, then we can obtain an
approximate support constraint. Let the reweighted distribution be πre. Intuitively, if π(·|s) is within
the support of the πβ(·|s), then one can find a reweighting πre(·|s) such that D(π, πre)(s) = 0,
whereas if π(·|s) is not within the support of πre(·|s), then D(π, πre)(s) still penalizes π when π
chooses out-of-support actions, since no reweighting πre can put non-zero probability on out-of-
support actions. This allows us to handle the failure mode from Section 3: at states with wide behavior
policy, even with a large α, π is not anymore constrained to the behavior distribution, whereas at
other “critical” states, where πβ is narrow, a large enough α will constrain π(·|s) to stay close to
πβ(·|s). We call this Reweighting Distribution constraints to Support (ReDS).

4.1 Instantiating the Principle Behind ReDS
One option is to reweight πβ to πre, and enforce a distribution constraint D(π, πre) between π and
πre. However, this is problematic because the πre would typically be estimated by using importance
weighting or by fitting a parametric model, and prior work has shown that errors in estimating
the behavior policy [43, 20] using only one action sample often get propagated and lead to poor
downstream performance. For CQL, this issue might be especially severe if we push up the Q-values
under πre, because then these errors might lead to severe Q-value over-estimation.

Abstract idea of CQL (ReDS). Instead, we devise an alternative formulation for ReDS that modifies
the learned policy π to πre, such that applying a distribution constraint on this modified policy
imposes a support constraint. Thus, with CQL, now we instead push down the Q-values under πre.
We define πre as a mixture distribution of the learned policy π and a reweighted version of the
behavior policy as follows:

5

Figure 3: Comparison between support and distributional constraints: Left: CQL pushes down the
Q-function under the policy π, while pushing up the function under the behavior policy πβ . This means that the
Q-values for bad actions can go up. Right: In contrast, ReDS re-weights the data distribution to push down the
values of bad actions, alleviating this shortcoming.

πre(·|s) := 1

2
π(·|s) + 1

2
[πβ(·|s) · g (π(·|s))] , (6)

where g(·) is a monotonically decreasing function. We will demonstrate how pushing down the
Q-values under πre modifies CQL to enable a support constraint while reusing existing components
of CQL that impose a distribution constraint. As shown in Figure 3, the second term in Equation 6
increases the probability of actions that are likely under the behavior policy, but are less likely under
the learned policy (due to g being a decreasing function). We will show in Lemma 4.1 that utilizing
πre in CQL enforces a support constraint on π. Thus, the learned policy π can be further away from
πβ , allowing π to assign more probability to good actions that are within the behavior policy support,
even if they have lower probabilities under πβ . Section 4.2 illustrates theoretically why pushing down
the Q-values under Eq. 6 approximates a support constraint in terms of how it modifies the resulting
Q-values. For an illustration, please see Figure 3.

How should we pick g in practice? Since we wish to use πre as a replacement for π in the
minimization term in the CQL regularizer (Equation 2), we aim to understand how to design the
re-weighting g in practice. Since specifically CQL enforces a distribution constraint by maximizing
the Q-value on all actions sampled from the behavior policy πβ , our choice of g should aim to
counter this effect by instead minimizing the Q-value on “bad” actions within the support of the
behavior policy. Equation 6 quantifies the notion of these “bad” actions using a monontonically
decreasing function g(π(a|s)) of the policy probability. In practice, we find it convenient to define g
to be a function of the advantage estimate: Aθ(s,a) := Qθ(s,a)− Ea∼π[Qθ(s,a)], that the policy
π is seeking to maximize. In fact, if entropy regularization is utilized for training the policy (akin
to most offline RL algorithms), the density of an action under a policy is directly proportional to
exponentiated advantages, i.e., π(a|s) ∝ exp(Aθ(s,a)). Hence, we choose g(x) = 1/x, such that
g(exp(A(s,a))) = exp(−A(s,a)) (a decreasing function).

For the rest, we approximate the product distribution π(a|s) · g(π(a|s)) by fitting a parametric
function approximator ρψ(a|s). Since ρψ(a|s) is being trained to approximate a re-weighted version
of the behavior policy, we fit ρψ by minimizing using a weighted maximum log-likelihood objective,
as shown in prior work [44, 43]. The concrete form for our objective for training ρψ is shown below
(τ is a temperature hyperparameter typically introduced in prior work [44, 43]):

ρψ(·|s) = argmax
ρψ

Es∼D,a∼πβ(·|s)[log ρψ(a|s) · exp (−Aθ(s,a)/τ)]. (7)

The crucial difference between this objective and standard advantage-weighted updates is the dif-
ference of the sign. While algorithms such as AWR [43] aim to find an action that attains a high
advantage while being close to the behavior policy, and hence, uses a positive advantage, we utilize
the negative advantage to mine for poor actions that are still quite likely under the behavior policy.

The final objective for the Q-function combines the regularizer in Eq. 8 with a standard TD objective:

6

R(θ; ρ) = 1

2

(
E

s∼D,a∼π
[Qθ(s,a)] + E

s∼D,a∼ρ
[Qθ(s,a)]

)
− E

s,a∼D
[Qθ(s,a)] (8)

min
θ

JQ(θ) = R(θ; ρ) +
1

2
Es,a,s′∼D[(Qθ(s,a)− BπQ̄(s,a))2] (9)

4.2 Theoretical Analysis of CQL (ReDS)
Next, we analyze CQL (ReDS), showing how learning using the regularizer in Eq. 8 modifies the
Q-values and justifies our choice of the distribution ρ in the previous section.
Lemma 4.1 (Per-state change of Q-values.). Let g(a|s) be a shorthand for g(a|s) = g (τ · π(a|s)).
In the tabular setting, the Q-function obtained after one iteration of objective in Eq. 9 is given by:

Qθ(s,a) := BπQ̄(s,a)− α
π(a|s) + πβ(a|s)g(a|s)− 2πβ(a|s)

2πβ(a|s)
(10)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network.

Eq. 10 illustrates why the modified regularizer in Eq. 8 leads to a “soft" support constraint whose
strength is modulated per-state. Since g is a monotonically decreasing function of π, for state-action
pairs where π(a|s) has high values, g(a|s) is low and therefore the Q-value Q(s,a) for such state-
action pairs are underestimated less. Vice versa, for state-action pairs where π(a|s) attains low values,
g(a|s) is high to counter-acts the low π(a|s) values. Also, since πβ(a|s) appears in the denominator,
for out-of-support actions, where πβ(a|s) = 0, π(a|s) must also assign 0 probability to the actions
for the Q values to be well defined. An illustration of this idea is shown in Figure 9. We can use this
insight to further derive the closed-form objective optimized by ReDS.
Lemma 4.2 (CQL (ReDS) objective.). Assume that for all policies π ∈ Π,∀(s,a), π(a|s) > 0. Then,
CQL (ReDS) solves the following optimization problem:

max
π∈Π

Ĵ(π)− α

2(1− γ)
Es∼d̂π

[
D(π, πβ)(s) + E

a∼π(·|s)
[g (τ · π(a|s)) I {πβ(a|s) > 0}]

]
. (11)

Ĵ(π) corresponds to the empirical return of the learned policy, i.e., the return of the policy under the
learned Q-function. The objective in Lemma 4.3 can be intuitively interpreted as follows: The first
term, D(π, πβ)(s), is a standard distribution constraint, also present in naïve CQL, and it aims to
penalize the learned policy π if it deviates too far away from πβ . ReDS adds an additional second
term that effectively encourages π to be “sharp” within the support of the behavior policy (as g is
monotonically decreasing), enabling π to potentially put mass on actions that lead to a high Ĵ(π).

Specifically, this second term allows us control the strength of the distribution constraint per state: at
states where the support of the policy is narrow, i.e., the volume of actions such that πβ(a|s) > 0
is small (say, only a single action), the penalty in Equation 51 reverts to a standard distributional
constraint by penalizing divergence from the behavioral policy via D(π, πβ)(s) as the second term
cannot be minimized. At states where the policy πβ is broad, the second term counteracts the effect
of the distributional constraint within the support of the behavior policy, by enabling π to concentrate
its density on only good actions within the support of πβ with the same multiplier α. Thus even when
we need to set α to be large to stay close to πβ(·|s) at certain states (e.g., in narrow hallways in the
example in Sec. 3.1), D(π, πβ)(s) is not heavily constrained at other states.

In fact, we formalize this intuition below to show that for the best possible value of the hyperparame-
ters appearing in the training objective for CQL (ReDS) (Equation 51), CQL (ReDS) is guaranteed to
outperform the best-tuned version of CQL for any offline RL problem. A proof is in Appendix C.
Lemma 4.3 (CQL (ReDS) formal guarantee). We will add the following guarantee to show that the
policy learned by ReDS for the best possible value of τ (Equation 51) and α in CQL (Equation 3)
outperforms the best CQL policy. That is, formally we show:

max
α,τ

J(πReDS;α,τ) ≥ max
α

J(πCQL;α). (12)

5 Experimental Evaluation

The goal of our experiments is to understand how CQL (ReDS) compares to distributional constraint
methods when learning from heteroskedastic offline datasets. In order to perform our experiments,

7

we construct new heteroskedastic datasets that pose challenges representative of what we would
expect to see in real-world problems. We first introduce tasks and heteroskedastic datasets that we
evaluate on, and then present our results compared to prior state-of-the-art methods. We also evaluate
ReDS on some of the standard D4RL [13] datasets which are not heteroskedastic in and find that the
addition of ReDS, as expected, does not help, or hurt on those tasks.

5.1 Comparison on the D4RL Benchmark

Dataset BC 10%BC DT AWAC Onestep RL TD3+BC COMBO CQL IQL Ours
halfcheetah-medium-replay 36.6 40.6 36.6 40.5 38.1 44.6 55.1 45.5 44.2 52.3
hopper-medium-replay 18.1 75.9 82.7 37.2 97.5 60.9 89.5 95.0 94.7 101.5
walker2d-medium-replay 26.0 62.5 66.6 27.0 49.5 81.8 56.0 77.2 73.9 85.0
halfcheetah-medium-expert 55.2 92.9 86.8 42.8 93.4 90.7 90.0 91.6 86.7 89.5
hopper-medium-expert 52.5 110.9 107.6 55.8 103.3 98.0 111.1 105.4 91.5 110.0
walker2d-medium-expert 107.5 109.0 108.1 74.5 113.0 110.1 103.3 108.8 109.6 112.0
locomotion total 295.9 491.8 488.4 277.8 494.8 486.1 505 523.5 500.6 550.3

Table 1: Performance comparison on the D4RL benchmark. (Top 2 bolded)

Heteroskedastic data is likely to exist in real-world problems such as driving and manipulation,
where datasets are collected by multiple policies that agree and disagree at different states. While
standard benchmarks (D4RL [13] and RLUnplugged [21]) include offline datasets generated by
mixture policies (e.g. the “medium-expert” generated by two policies with different performance),
these policies are trained via RL methods (SAC) that constrain the entropy of the action distribution
at each state to be uniform. To measure heteroskedasticity, we utilize an approximation to Cπ

diff: the
standard deviation in the value of D(π, πβ)(s) across states in the dataset, using a fixed policy π
obtained by running CQL. We didn’t use Cπ

diff directly, as it is challenging to compute in continuous
spaces. In Table 3, the standard deviation is lower for the D4RL antmaze datasets, corroborating our
intuition that these datasets are significantly less heteroskedastic.

5.2 Comparisons on Heteroskedastic datasets Dataset std max

noisy (Ours) 18 253
biased (Ours) 9 31

diverse (D4RL) 2 11
play (D4RL) 2 13

Table 3: The new antmaze datasets
(Ours) are significantly more het-
eroskedastic than the standard D4RL
datasets. We measure heteroskedastic-
ity using the std and max of D(π, πβ)(s)
across states in the offline dataset.

Heteroskedastic datasets. To stress-test our method and
prior distribution constraint approaches, we collected new
datasets for the medium and large mazes used in the
antmaze navigation tasks from D4RL: noisy datasets,
where the behavior policy action variance differs in differ-
ent regions of the maze, representative of user variability
in navigation, and biased datasets, where the behavior
policy admits a systematic bias towards certain behaviors
in different regions of the maze, representative of bias to-
wards certain routes in navigation problems. Table 3 shows
that these datasets are significantly more heteroskedastic
to the D4RL datasets.

Using these more heteroskedastic datasets, we compare CQL (ReDS) with CQL and IQL [27],
recent popular methods, and two prior methods, BEAR [30] and EDAC [3], that also enforce
support constraints. For each algorithm, including ours, we utilize hyperparameters directly from the
counterpart tasks in D4RL. Due to the lack of an effective method for offline policy selection (see
Fu et al. [14]), we utilize oracle checkpoint selection for every method. We compute the mean and
standard deviation across 3 seeds. Table 2 shows that the largest gap between CQL (ReDS) and prior
methods is on noisy datasets, which are particularly more heteroskedastic (Table 3).

We also compare CQL (ReDS) with recent offline RL algorithms on D4RL, including DT [8],
AWAC [42], onestep RL [5], TD3+BC [16] and COMBO [57]. Table 1 shows that CQL (ReDS)
obtains similar performance as existing distributional constraint methods and outperforms BC-based
baselines. This is expected given that the D4RL datasets exhibit significantly smaller heteroscedastic-
ity, as previously explained. Also, a large fraction of the datasets is trajectories with high returns.
BC using the top 10% trajectories with the highest episode returns already has strong performance.
The previous results compares CQL (ReDS) to baselines in tasks where the MDP states are low-
dimensional vectors. Next, we study vision-based robotic manipulation tasks.

Visual robotic manipulation. We consider two types of manipulation tasks. In the “Pick & Place"
task, the algorithm controls a WidowX robot to grasp an object and place it into a tray located at a test

8

Task & Dataset EDAC BEAR CQL IQL INAC RW & AW EQL SQL XQL-C Ours

medium-noisy 0 0 55 44 0 5 0.0 0.7 4.3 73
medium-biased 0 0 73 48 0 0 6.5 8.0 11.7 74
large-noisy 0 0 42 39 0 10 7.1 2.9 11.3 53
large-biased 0 0 50 41 0 8 8.5 0.5 7.3 45

Table 2: CQL (ReDS) outperforms prior offline RL methods including methods (IQL, XQL-C),
and prior support constraint methods (BEAR, EDAC, SQL, EQL, RW & AW) on three out of four
scenarios when learning from heteroskedastic data in the antmaze task. The improvement over prior
methods is larger when learning from the noisy datasets, which are more heteroskedactic, as in
Table 3, compared to biased datasets.

Less Variability More Variability

Start

Goal

Figure 4: Examples rollouts in the heteroskedastic bin-sort data. In this task, an offline RL method must
sort objects in front of it into two bins with a dataset that has non-uniform coverage at different states, using
visual input. In the first half of the trajectory, the states exhibit a more narrow action distribution but the second
half admits a more uniform action distribution.

location, directly from raw 128×128×3 images and sparse 0/1 reward signal. The dataset consists of
behavior from suboptimal grasping and placing policies, and the positions of the tray in the offline
dataset very rarely match the target test location. The placing policies exhibit significant variability,
implying these datasets are heteroskedastic under our definition. We also consider “Bin Sort" task
(see Figure 4), where a WidowX robot is controlled to sort two objects into two separate bins. Here,
heteroskedacity is introduced when sorting objects into the desirable bins. Similar to the Pick &
Place task, the placing policy exhibits significant variability, showing an object placed in the incorrect
bin (e.g., recyclable trash thrown into the non-recyclable bin). However, the grasping policy is more
expert-like grasping the object with low variability. More details in Appendix E.

CQL (ReDS) CQL

Normalized Score

5
Po

lic
ie

s
2

Po
lic

ie
s

Figure 5: CQL vs ReDS: IQM nor-
malized score for 10 Atari games. We
consider two dataset compositions.

Table 4 presents the results on these tasks. We utilize oracle pol-
icy selection analogous to the antmaze experiments from Table 2.
Table 4 shows that CQL (ReDS) outperforms CQL attaining a
success rate of about 15.1% for the visual pick and place task,
whereas CQL only attains 6.5% success. While performance
might appear low in an absolute sense, note that both CQL and
ReDS do improve over the behavior policy, which only attains a
success rate of 4%. Thus offline RL does work on this task, and
utilizing ReDS in conjunction with the standard distributional
constraint in CQL does result in a boost in performance with this
heteroskedastic dataset. For the “Bin Sorting", our method out-
performs CQL by 3.5x when learning from more heteroskedastic
datasets. This indicates the effectiveness of our method in settings
with higher heteroskedasticity.

Task CQL CQL (ReDS) std D(π, πβ)(s) max D(π, πβ)(s)

Pick & Place 6.5 ± 0.4 15.1 ± 0.4 48.7 307.4
Bin Sort (Easy) 31.2 ± 0.3 31.4 ± 0.3 7.9 81.6
Bin Sort (Hard) 6.1 ± 0.2 23.1 ± 0.7 59.6 988.3

Table 4: CQL (ReDS) vs CQL on robotic manipulation tasks. CQL (ReDS) outperforms CQL significantly
when learning from more heteroskedastic datasets, as measured by Cπ

diff: the standard deviation and the maximum
of D(π, πβ)(s) across states.

9

Atari games. We collect data on 10 Atari games from multiple policies that behave differently at
certain states while having similar actions otherwise. We consider a case of two such policies, and a
harder scenario of five. We evaluate the performance of CQL (ReDS) on the Atari games using the
evaluation metrics from prior works [2, 34]. Figure 5 shows that in both testing scenarios: with the
mixture of two policies (top figure) and the mixture of five policies (bottom figure), CQL (ReDS)
outperforms CQL in aggregate.

To summarize, our results indicate that incorporating CQL (ReDS) outperforms distribution con-
straints with heteroskedastic datasets in a variety of domains.

6 Related Work
Offline Q-learning methods utilize mechanisms to prevent backing up unseen actions [39], by
applying an explicit behavior constraint that forces the learned policy to be “close” to the behavior
policy [23, 53, 44, 49, 53, 30, 28, 27, 52, 15], or by learning a conservative value function [33, 54, 41,
57, 56, 47, 24, 53]. Most of these offline RL methods utilize a distribution constraint, explicit (e.g.,
TD3+BC [15]) or implicit (e.g., CQL [33]), and our empirical analysis of representative algorithms
from either family indicates that these methods struggle with heteroskedastic data, especially those
methods that use an explicit constraint. Model-based methods [26, 56, 4, 51, 45, 38, 57] train value
functions using dynamics models, which is orthogonal to our method.

Some prior works have also made a case for utilizing support constraints instead of distribution
constraints, often via didactic examples [30, 29, 39], and devised algorithms that impose support
constraints in theory, by utilizing the maximum mean discrepancy metric [30] or an asymmetric
f-divergences [53] for the policy constraint [53]. Empirical results on D4RL [13] and the analysis
by Wu et al. [53] suggest that support constraints are not needed, as strong distribution constraint
algorithms often have strong performance. As we discussed in Sections 3.2 (Theorem 3.2 indicates
that this distribution constraints may not fail when Cπ

diff is small, provided these algorithms are
well-tuned.) and 4, these benchmark datasets are not heteroskedastic, as they are collected from
policies that are equally wide at all states and centered on good actions (e.g., Antmaze domains in
[13], control suite tasks in Gulcehre et al. [21]) and hence, do not need to modulate the distribution
constraint strength. To benchmark with heteroskedastic data, we developed some novel tasks which
may be of independent interest beyond this work, and find that our method ReDS can work well here.

7 Discussion, Future Directions, and Limitations
We studied the behavior of distribution constraint offline RL algorithms when learning from het-
eroskedastic datasets, a property we are likely encounter in the real world. Naïve distribution
constraint algorithms can be highly ineffective in such settings both in theory and practice, as they fail
to modulate the constraint strength per-state. We propose ReDS, a method to convert distributional
constraints into support-based constraints via reweighting, and validate it in CQL. A limitation of
ReDS is that it requires estimating the distribution ρψ to enforce a support constraint, which brings
about its some additional compute overhead. Additionally, the instantiation of ReDS we develop
in Section 4.1 is specific to methods that utilize a conservative regularizer such as CQL (or related
approaches like COMBO). We clarify that our main contribution in this work is an analysis of when
distributional constraints fail (which we study for AWR and CQL), and developing a principle for
reformulating distributional constraints to approximate support constraints via reweighting. Devising
approaches for enforcing support constraints that do not require extra machinery is a direction for
future work. Understanding if support constraints are less sensitive to hyperparameters or are more
amenable to model election is also a direction for future work.

10

References
[1] Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained policy optimization. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70, pp. 22–31. JMLR. org,
2017.

[2] Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforce-
ment learning. In International Conference on Machine Learning (ICML), 2020.

[3] An, G., Moon, S., Kim, J.-H., and Song, H. O. Uncertainty-Based Offline Reinforcement
Learning with Diversified Q-Ensemble. arXiv e-prints, art. arXiv:2110.01548, October 2021.

[4] Argenson, A. and Dulac-Arnold, G. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[5] Brandfonbrener, D., Whitney, W. F., Ranganath, R., and Bruna, J. Offline RL without off-policy
evaluation. CoRR, abs/2106.08909, 2021. URL https://arxiv.org/abs/2106.08909.

[6] Cao, K., Chen, Y., Lu, J., Arechiga, N., Gaidon, A., and Ma, T. Heteroskedastic and imbalanced
deep learning with adaptive regularization. arXiv preprint arXiv:2006.15766, 2020.

[7] Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Bellemare, M. G. Dopamine: A Research
Framework for Deep Reinforcement Learning. 2018. URL http://arxiv.org/abs/1812.
06110.

[8] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A.,
and Mordatch, I. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

[9] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

[10] Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Georgakis, G., Daniilidis, K., Finn, C., and
Levine, S. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

[11] Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C. R.,
Zhou, Y., et al. Large scale interactive motion forecasting for autonomous driving: The waymo
open motion dataset. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9710–9719, 2021.

[12] Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing bottlenecks in deep Q-learning algorithms.
arXiv preprint arXiv:1902.10250, 2019.

[13] Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[14] Fu, J., Norouzi, M., Nachum, O., Tucker, G., ziyu wang, Novikov, A., Yang, M., Zhang,
M. R., Chen, Y., Kumar, A., Paduraru, C., Levine, S., and Paine, T. Benchmarks for deep
off-policy evaluation. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=kWSeGEeHvF8.

[15] Fujimoto, S. and Gu, S. S. A minimalist approach to offline reinforcement learning. arXiv
preprint arXiv:2106.06860, 2021.

[16] Fujimoto, S. and Gu, S. S. A minimalist approach to offline reinforcement learning. CoRR,
abs/2106.06860, 2021. URL https://arxiv.org/abs/2106.06860.

[17] Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018.

[18] Fujimoto, S., van Hoof, H., and Meger, D. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning (ICML), pp. 1587–1596,
2018.

[19] Garcıa, J. and Fernández, F. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437–1480, 2015.

[20] Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. Emaq: Expected-max q-learning operator
for simple yet effective offline and online rl. In International Conference on Machine Learning,
pp. 3682–3691. PMLR, 2021.

11

https://arxiv.org/abs/2106.08909
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
https://openreview.net/forum?id=kWSeGEeHvF8
https://arxiv.org/abs/2106.06860

[21] Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Colmenarejo, S. G., Zolna, K., Agarwal,
R., Merel, J., Mankowitz, D., Paduraru, C., et al. Rl unplugged: Benchmarks for offline
reinforcement learning. 2020.

[22] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,
A., Abbeel, P., and Levine, S. Soft actor-critic algorithms and applications. Technical report,
2018.

[23] Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C., Lapedriza, A., Jones, N., Gu, S., and
Picard, R. Way off-policy batch deep reinforcement learning of implicit human preferences in
dialog. arXiv preprint arXiv:1907.00456, 2019.

[24] Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline rl? arXiv preprint
arXiv:2012.15085, 2020.

[25] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E.,
Kalakrishnan, M., Vanhoucke, V., et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pp. 651–673, 2018.

[26] Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. Morel: Model-based offline
reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[27] Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement learning with implicit q-learning.
arXiv preprint arXiv:2110.06169, 2021.

[28] Kostrikov, I., Tompson, J., Fergus, R., and Nachum, O. Offline reinforcement learning with
fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

[29] Kumar, A. Data-driven deep reinforcement learning. https://bair.berkeley.edu/blog/
2019/12/05/bear/, 2019. BAIR Blog.

[30] Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. Stabilizing off-policy q-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems, pp.
11761–11771, 2019.

[31] Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing Off-Policy Q-Learning via Bootstrap-
ping Error Reduction. arXiv e-prints, art. arXiv:1906.00949, June 2019.

[32] Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing off-policy q-learning via bootstrapping
error reduction. 2019. URL http://arxiv.org/abs/1906.00949.

[33] Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative q-learning for offline reinforce-
ment learning. arXiv preprint arXiv:2006.04779, 2020.

[34] Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Implicit under-parameterization inhibits data-
efficient deep reinforcement learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=O9bnihsFfXU.

[35] Kumar, A., Hong, J., Singh, A., and Levine, S. Should i run offline reinforcement learning or
behavioral cloning? In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=AP1MKT37rJ.

[36] Lange, S., Gabel, T., and Riedmiller, M. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

[37] Laroche, R., Trichelair, P., and Combes, R. T. d. Safe policy improvement with baseline
bootstrapping. arXiv preprint arXiv:1712.06924, 2017.

[38] Lee, B.-J., Lee, J., and Kim, K.-E. Representation balancing offline model-based reinforcement
learning. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=QpNz8r_Ri2Y.

[39] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[40] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[41] Nachum, O., Dai, B., Kostrikov, I., Chow, Y., Li, L., and Schuurmans, D. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[42] Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforcement learning with
offline datasets. CoRR, abs/2006.09359, 2020. URL https://arxiv.org/abs/2006.09359.

12

https://bair.berkeley.edu/blog/2019/12/05/bear/
https://bair.berkeley.edu/blog/2019/12/05/bear/
http://arxiv.org/abs/1906.00949
https://openreview.net/forum?id=O9bnihsFfXU
https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=QpNz8r_Ri2Y
https://openreview.net/forum?id=QpNz8r_Ri2Y
https://arxiv.org/abs/2006.09359

[43] Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[44] Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[45] Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. Offline reinforcement learning from images
with latent space models. Learning for Decision Making and Control (L4DC), 2021.

[46] Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021, 2021.

[47] Rezaeifar, S., Dadashi, R., Vieillard, N., Hussenot, L., Bachem, O., Pietquin, O., and Geist, M.
Offline reinforcement learning as anti-exploration. arXiv preprint arXiv:2106.06431, 2021.

[48] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization.
In International conference on machine learning, pp. 1889–1897, 2015.

[49] Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdolmaleki, A., Neunert, M., Lampe, T.,
Hafner, R., and Riedmiller, M. Keep doing what worked: Behavioral modelling priors for
offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

[50] Singh, A., Yu, A., Yang, J., Zhang, J., Kumar, A., and Levine, S. Cog: Connecting new skills to
past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.

[51] Swazinna, P., Udluft, S., and Runkler, T. Overcoming model bias for robust offline deep
reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

[52] Wang, Z., Novikov, A., Żołna, K., Springenberg, J. T., Reed, S., Shahriari, B., Siegel, N., Merel,
J., Gulcehre, C., Heess, N., et al. Critic regularized regression. arXiv preprint arXiv:2006.15134,
2020.

[53] Wu, Y., Tucker, G., and Nachum, O. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[54] Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. Bellman-consistent pessimism for
offline reinforcement learning. Advances in neural information processing systems, 34, 2021.

[55] Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel, P., Lazaric, A., and Pinto, L. Don’t
change the algorithm, change the data: Exploratory data for offline reinforcement learning.
arXiv preprint arXiv:2201.13425, 2022.

[56] Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. Mopo:
Model-based offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[57] Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S., and Finn, C. Combo: Conservative
offline model-based policy optimization. arXiv preprint arXiv:2102.08363, 2021.

13

Appendices
A Practical ReDS Algorithm

Algorithm 1 CQL (ReDS) pseudo-code

1: Initialize Q-function, Qθ, a policy, πϕ, and distribution ρψ
2: for step t in {1, . . . , N} do
3: Update ρψ with the objective in Eq. 7:
4: ψt := ψt−1 + ηρ E

s,a∼D
[log ρψ(a|s) · exp(−Aθ(s, a)/τ)]

5: Train the Q-function using JQ(θ) in Eq. 9: θt := θt−1 − ηQ∇θJQ(θ)
6: Train πϕ as: ϕt := ϕt−1 + ηπEs∼D,a∼πϕ(·|s)[Qθ(s, a)−log πϕ(a|s)]
7: end for

Our algorithm, CQL (ReDS) is illustrated in Algorithm 1. A complete implementation of the functions
in python-style is provided in Appendix D.2. CQL (ReDS) first performs one gradient descent step
on ρψ using Eq. 7 (Lines 3), then performs one gradient step on the Q-function using the objective in
Eq. 9 (Line 4), then performs one gradient descent step on the policy πϕ (Line 5), and repeats.

B Details of the Didactic Navigation Example from Section 3.1

Temperature 0.1 Temperature 1 Temperature 10

AWR Visitations

Figure 6: Results of running AWR on the gridworld maze for a variety of temperature values
annotated with state-occupancy values. Observe that AWR is unable to reach the goal across a wide
range of temperatures for the AWR hyperparameter. Even though for some of these hyperparameters,
such as τ = 0.1, it is able to traverse quickly into the third region, it does spend a larger fraction of
its state visitation in the narrow hallways in this case (e.g., the final narrow hallway it is able to reach
to) indicating that it gets stuck. Increasing the temperature to τ = 1.0 does not solve it either, since
now it does not even reach this hallway with as high of an occupancy.
In this section, we present some details regarding the navigation example we considered in Sec-
tion 3.1. To create this example, we modified the gridworld code from Fu et al. [12] (code taken
from: https://github.com/justinjfu/diagnosing_qlearning) to create the corresponding
gridworld maze. We utilize a 24× 16 gridworld as shown in the figures below, larger than the 8× 8
or 16× 16 gridworlds studied in this repository in the past. We utilize a smooth representation of the
observation space. This is constructed by first sampling random Gaussian feature vectors from R50

for each grid cell (each grid cell is a state). Smoothing of these features vectors is then done locally,
following the protocol for “grid-*-smoothobs” in Fu et al. [12]. This observation type presents a
challenge for Q-learning algorithms that may often generalize incorrectly. This is because aliasing
occurs with the predictions of nearby states that exhibit very different dynamics but not so different

14

https://github.com/justinjfu/diagnosing_qlearning

CQL Visitations

Alpha 0.1 Alpha 1 Alpha 10

Figure 7: Results of running CQL on the gridworld maze for a variety of temperature values.
Observe that CQL is unable to reach the goal and gets stuck for all the α values we studied.

observation vectors. The agents gets a sparse binary 0/1 reward: +1 is attained only when the agent
reaches the goal (marked in black) from the start location (marked in green).

The behavior policy in each part of the maze is based on a mixture of different policies. In the wider
rooms of the maze, one of the policies is a uniform policy, that uniformly chooses every action at a
state. The second policy is a biased policy, that drives the agent away from the goal. In the narrow
hallways, the behavior policy deterministically drives the agent towards the goal. For wide rooms, in
contrast, a bias exists for actions taken in the direction away from the goal. This bias was set to be
0.8. This means that for rooms where you need to exit the wide passage by going down, the action
of going up was selected 80% of the time by the behavior policy and each of the other action was
randomly sampled with 20% probability. The opposite decision was taken for rooms where the goal
was towards the top of the wide passage where 80% of the time the down action was selected.

Result visualizations. We now present some visualizations of the policies learned by various
methods: AWR, CQL and CQL (ReDS). Since the reward values are binary and sparse, return curves
for AWR and CQL are not as informative, since they attain a 0 return in any episode, even if they
make some progress. Therefore, we present the results in the form of state-visitation density plots
under rollouts from the learned policy. Observe in Figures 6 and 7 that neither AWR or CQL are able
to actually successfully traverse the maze, and get stuck in it. Note that τ and α control the strength
of the distributional constraint in the methods AWR and CQL respsectively. Varying the temperature
hyperparameter τ for AWR and α for CQL does modify the density in the narrow hallways, but
utilizing too small of a parameter leads the agent to more frequent crashes in the narrow hallways.
This makes the agent spend a higher fraction of its visitation in one such narrow region, whereas a
higher τ or α does not even reach the third narrow hallway with a high-enough visitation.

On the other hand, the method we propose in this paper, ReDS, when combined with CQL is able to
successfully traverse this maze, as shown in Figure 8.

Analysis. These experiments are consistent with our expectations. When distributional constraints
are faced with highly heteroskedastic action distributions at subsequent states, they failed to perform
good actions at these consecutive states. A strong distributional constraint leads to the agent being
too close to the behavior policy, whereas a weaker constraint fails to identify good actions at states
where the behavior policy is narrow.

B.1 Why and When Do Distributional Constraints Fail in scenarios with Heteroskedastic
Data?

In this section, we shall discuss why distributional constraints are especially worse than support
constraints in scenarios with heteroskedastic data. Let’s first consider a simple single-state bandit
problem. In this simple one-state problem, we must find a single optimal action by using offline
data. At first, it might appear that when faced with a wide behavior policy, distributional constraints

15

REDS State Visitations

Figure 8: Results of running CQL (ReDS) on the gridworld. Note that CQL (ReDS) does actually
succeed at solving the task.

would clearly fail since they would not deviate far away from the behavior policy. However, note that
by carefully choosing the strength of the distributional constraint, we can, in principle, control the
strength of the distributional constraint quite effectively. To see this concretely, consider applying
CQL (Equation 2) to a single-state bandit problem. The Q-values on actions not observed in the
training dataset will be clearly pushed down to −∞. In addition, choosing a non-zero α will allow us
to precisely control how close the action taken by the learned policy is to the best in-support action
vs how close the learned policy is to the behavior policy. Therefore, for an optimally chosen value of
α, distributional constraint methods should already work well in the single-state setting.

Figure 9: An illustration of how ReDS modulates the strength of the distributional constraint per state.
(i) Left: let (a) and (b) denote the two modes of the behavior policy πβ(·|s) at a state s. Consider in this setting
that the learned Q-values at these modes are also roughly similar. In this case, the reweighted distribution πre

(in red) puts a roughly identical weight on pushing down Q-values on actions appearing in each of these modes.
The resulting outcome is that the ReDS constraint behaves similarly to a distributional constraint. (ii) Right:
In this case, let’s consider a setting where actions appearing in one mode of the behavior policy attain very
low Q-values (mode (a)). The re-weighted distribution πre pushes down the actions appearing in the mode
with lower Q-values with a larger weight than the mode with higher Q-values. This counteracts the effect of
the push-up term in CQL that attempts to push up the Q-values for all actions under the behavior policy more
strongly in region (a). In effect, this ensures that the Q-value for any action in the high-density regions of the
behavior policy is not pushed up blindly, but the Q-values for only good, in-support actions (b) is pushed up.
The ReDS constraint, therefore allows the learned policy to selectively pick out the better mode in this case.

However, the precise challenge with distributional constraints arises in the multi-state setting, where
finding a single value of α that can work well at all states might be can be exceedingly challenging
in practice. This is the setting with heteroskedastic data that our paper considers, including in our
didactic example above. In such a setting, a strong distributional constraint is able to take a desirable
action when the behavior policy is narrow (for example in the narrow room). However, the action
distribution has wider support in the wider room and the strong distributional constraint would not
take a desirable action in this setting due to the high entropy of the behavioral distribution in this
setting. In contrast, with a weaker distributional constraint, a bad out-of-distribution action may be
taken where the behavior policy is narrow which can lead to instability in the policy. Note that these
challenges are not, however, present in the single-state scenario. Our method CQL (ReDS) can tackle

16

the problem in this setting by modulating the strength of the constraint per state. This allows the
agent to stay close to the behavior distribution in the narrow room as well as learning to output the
most desirable in-support action in the wider room.

B.2 Heteroskedastic Data vs Exploratory Data

There is a distinction between exploratory data [55] and heteroskedasticity. In the context of offline
RL, exploratory data typically refers to being able to cover all possible state-action pairs, as uniformly
as possible. On the other hand, heteroskedasticity is used to refer to disproportionate coverage:
when the action distribution in the offline data is more uniform at certain states, but very narrow at
others. Thus, a heteroskedastic dataset does not have high coverage in the sense of observing all
possible state-action pairs.

Mathematically, while the notion of coverage is typically quantified by the concentrability coefficient
which denotes the worst case density ratio between the distribution of the training dataset and the
distribution of the learned policy, as shown below:

Cπ = max
s,a

dπ(s,a)

µ(s,a)
,

where µ(s,a) denotes the state-action distribution induced by the dataset, while dπ(s,a) denotes the
state-action visitation distribution of a policy π. maxπ C

π is generally expected to be smaller when
µ(s,a) is more uniform. In contrast, we quantify the notion of heteroskedasticity by the variation
in density ratios (in this case, action density ratios, π(a|s)

πβ(a|s)) across the state space in Equation 4
(reproduced below for convenience).

Cπ
diff = E

s1,s2∼dπ

(√D(π, πβ)(s1)

µ(s1)
−

√
D(π, πβ)(s2)

µ(s2)

)2
 .

Even if the dataset has high coverage (i.e., it has a low concentrability coefficient, Cπ), it can attain a
higher Cπ

diff, because of higher variation in the density ratios across state spaces.

Out of all methods considered in Yarats et al. [55], we note that the methods classified as “Data”
(APT, ProtoRL) attempt to maximize state coverage, the methods classified as “Knowledge” (ICM,
Disagreement, RND) attempt to find surprising state-action pairs and visit them, and the methods
classified as “Competence” (SMM, DIAYN, APS) that maximize the mutual information between
the state distribution attained by the learned policy and the learned skills also implicitly optimize for
state coverage. In effect, all of these methods aim to visit all state-action pairs (or all states), which is
akin to the standard definition of concentrability, whereas heteroskedastic data corresponds distinctly
to disproportionate action coverage at different states.

B.3 Differential concentrability in theory vs practice

The intuitive explanation for what makes a dataset heteroskedastic – namely, that the variability in
the policy is different in different states – is provided primarily to build intuition. Unfortunately,
this notion by itself does not make a great formal definition, because it does not capture the count
of states n(s) that shows up in a safe-policy improvement bound (the constraint in Equation 5).
Therefore, in our analysis, we use the somewhat more complex notion of differential concentrability,
which captures a similar intuition (we make the mathematical connection between the intuition of
heteroskedasticity and our definition precise below) but provides us with the foundation on which to
build our theoretical analysis.

To better understand the relationship between the variance of the action distribution and our Definition
3.1, consider a simpler scenario where we remove the counts n(s) from the expression of differential
concentrability and set π in Cπ

diff to be the uniform distribution over actions. Then, we can show that
the value of Cπ

diff is exactly equal to twice the variance of entropy of the dataset action distribution
across states, which matches with the metric (variance = square of the standard deviation) we measure
in our experiments.

Of course, we cannot exclude the counts of states n(s) for technical accuracy, however, it should be
noted that in high-dimensional state space tasks, such as those examined in our experiments, each

17

state in the offline dataset is likely to be unique, thus validating the assumption that n(s) = 1. This
means that measuring the variance in the entropy of the action distribution is an accurate estimate of
differential concentrability in our experiments.

C Proofs
In this appendix, we will provide proofs for the various theoretical results in the main paper: Theo-
rem 3.2. We will first discuss some preliminaries and notation, then present the proof for Theorem 3.2,
and finally the remaining results.

C.1 Notation and Preliminaries

Let πβ(a|s) denote the behavior policy. Note that the dataset, Di is generated from the marginal
state-action distribution of πβ , i.e., D ∼ dπβ (s)πβ(a|s). Define d̂π as the state marginal distribution
introduced by π under the empirical MDP defined by the transitions in the dataset. Let DCQL(p, q)
denote the following distance between two distributions p(x) and q(x) with equal support X :

DCQL(p, q) :=
∑
x∈X

p(x)

(
p(x)

q(x)
− 1

)
.

We drop the subsrcipt “CQL” from DCQL for clarity. [33] showed that when optimizing the generic
distributional constraint algorithm shown in Equation 1, the resulting policy π∗ attains a high
probability safe-policy improvement guarantee, i.e., J(π∗) ≥ J(πβ)− ζ, where ζ is:

ζ = O
(

1

(1− γ)2

)
Es∼d̂π∗

[√
D(π∗, πβ)(s) + 1

|D(s)|

]
+

α

1− γ
Es∼d̂π [D(π∗, πβ)(s)]. (13)

We can further express |D(s)| = |D||µ(s)|. The first term in Equation 13 corresponds to the decrease
in performance due to sampling error and this term is high when the learned policy π∗ visits low
density states under the dataset distribution (i.e., µ(s) is small) and when the divergence from the
behavior policy πβ is higher under these states. We will use this safe policy improvement guarantee
in our proofs.

C.2 Formal Restatement of Theorem 3.2

Theorem C.1 (Formal version of Theorem 3.2). For any prescribed level of safety ζ , i.e., the learned
policy satisfies J(π)− J(πβ) ≥ −ζ, the maximum possible policy improvement over choices of α:

max
α

[J(πα)− J(πβ)] ≤ ζ+,

where ζ+ is given by:

ζ+ := max
α

h∗ (α) · 1

(1− γ)2
s.t.

c1

√
log |S||A|

δ

(1− γ)2

√
Cπα

diff

|D|
− ζ ≤ α ·

(
Es∼d̂πα [D(πα, πβ)(s)]

1− γ

)
︸ ︷︷ ︸

:=g(α)

(14)

where h∗ is a monotonically decreasing function of α, and h(0) = const.

Intuition behind the theorem: We will show in the proof of this theorem that g(α) is a monotonically
increasing function of α and g(0) = 0. This means that if the value of Cπ

diff is large for all policies π,
the value of α = g−1

(√
Cπ

diffc
′ − ζ

)
(where c′ is the constant and subsumes the term containing δ)

is also large. Further, note that h∗(α) is decreasing in α. This means that the larger the value of α,
the smaller the value of h∗(α), and hence, smaller the value of ζ+. This means that as Cπ

diff increases,
α needs to take larger values to satisfy the safety constraint, and this reduces the value of maximal
improvement, ζ+.

Conversely, to attain a larger improvement ζ+, if we choose a smaller α for a problem where Cπ
diff

is large for all policies, then, we must give up on the safety guarantee, and ζ would be large. This
means that the learned policy πα might substantially degrade beyond the behavior policy.

18

C.3 Proof of Theorem 3.2

In order to prove this result, we we will utilize a basic algebraic inequality mentioned below in
Lemma C.2.

Lemma C.2 (Algebraic variation). Given any N positive real numbers, x1, x2, · · · , xN :(
N∑
i=1

√
xi

)2

≥
N∑
i=1

xi ≥
1

(N − 1)

∑
i<j

(
√
xi −

√
xj)

2. (15)

Proof. For every xi, define yi =
√
xi. Then, the difference between the two sides in the equation

above is given by:

∑
i

y2i −
1

(N − 1)

∑
i<j

(y2i + y2j − 2yiyj) =
∑
i

y2i −
N − 1

N − 1
y2i +

1

N − 1

∑
i<j

2yiyj (16)

=
1

N − 1

∑
i<j

2yiyj ≥ 0, (17)

where the first step follows by rearranging yi and yj , and the final step follows by noting that yi ≥ 0
for all i. The other inequality follows trivially by noting that

√
xi are positive, and applying the

standard formula for sum of squares.

We will also require a Lemma that allows us to upper bound the performance difference J(π) −
J(πβ) in terms of the metric DCQL(π, πβ) that appears in the safe policy improvement guarantee in
Equation 13.

Lemma C.3 (Tight upper bound on policy improvement.). Assume that the reward function r(s,a)
of the MDP is bounded such that ∀s,a, r(s,a) ∈ [−Rmax, Rmax]. For any two policies π and πβ ,
we have the following:

J(π)− J(πβ) ≲ O
(

1

(1− γ)2

)
· Es∼dπ [D(π(·|s), πβ(·|s))] ·Rmax. (18)

Proof. The core of the proof of this lemma relies on the fact that for any given function ν(x) over
some space x, we can upper bound, ∆ν(p, q) := Ex∼p[ν(x)]− Ex∼q[ν(x)] in terms of D(p, q). To
show this, we expand this expression:

∆ν(p, q) :=
∑
x

(p(x)− q(x)) · ν(x) (19)

=
∑
x

q(x) ·
(
p(x)

q(x)
− 1

)
· ν(x) (20)

=
∑

x:
p(x)
q(x)

≥1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) +

∑
x:
p(x)
q(x)

<1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x)

+
∑

x:
p(x)
q(x)

≥1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) +

∑
x:
p(x)
q(x)

<1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x).

Each of the four terms above can be bounded independently as follows: for the first two terms, we
multiply by p(x)

q(x) , the third term is clearly negative, and the final term is upper bounded by multiplying

19

by 1 + p(x)
q(x) :

∑
x:
p(x)
q(x)

≥1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤

∑
x:
p(x)
q(x)

≥1,ν(x)≥0

q(x)
p(x)

q(x)

(
p(x)

q(x)
− 1

)
ν(x) (21)

∑
x:
p(x)
q(x)

<1,ν(x)≥0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤

∑
x:
p(x)
q(x)

≤1,ν(x)≥0

q(x)
p(x)

q(x)

(
p(x)

q(x)
− 1

)
ν(x) (22)

∑
x:
p(x)
q(x)

≥1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤ 0 (23)

∑
x:
p(x)
q(x)

<1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)
ν(x) ≤

∑
x:
p(x)
q(x)

<1,ν(x)≤0

q(x)

(
p(x)

q(x)
− 1

)(
1 +

p(x)

q(x)

)
ν(x).

(24)

Finally, for each of these terms, we can now upper bound ν(x) by its maximum absolute value,
|ν(x)| ≤ ν0, and combine the terms to get the following bound on ∆ν(p, q):

∆ν(p, q) ≤ ν0
∑

x:ν(x)>0

p(x)

(
p(x)

q(x)
− 1

)
+ 0 + ν0

∑
x:
p(x)
q(x)

<1,ν(x)<0

(
p2(x)

q(x)
− q(x)

)
(25)

≤ ν0

[∑
x

p2(x)

q(x)
− 1

]
, (26)

where Equation 26 follows from using the fact that for the case when p(x)/q(x) > 1 but ν(x) ≤ 0,
p(x)

(
p(x)
q(x) − 1

)
> 0, and hence it upper bounds the RHS of Equation 23. For the last case, where

x : p(x)q(x) < 1, ν(x) < 0, we note that
∑

x:
p(x)
q(x)

<1,ν(x)<0
q(x) ≥

∑
x:
p(x)
q(x)

<1,ν(x)<0
p(x), and hence

the upper bound on this term in Equation 26 follows. To complete the argument note that DCQL
exactly takes the form obtained in the final equation, and hence:

∆ν(p, q) ≤ ν0 ·D(p, q).

We can now use this result to bound the return differences, by using standard results for bounding
the performance difference between policies [1, 48] in terms of 1

(1−γ)2 × D(π, πβ). At the core
of these results is a bound on Ea∼π(·|s)[f(s,a)]− Ea∼πβ(·|s)[f(s,a)], and hence the result proven
above directly applies. This proves the required result.

C.4 Additional Technical Lemmas

In this section, we will provide proofs of two technical lemmas, that allow us to conclude the proof
of Theorem 3.2. For these lemmas, we will consider a generic optimization problem,

max
x

f(x) + α g(x), (27)

where g(x) > 0 for any x, and α can only take non-negative values.

Lemma C.4 (Value of g(x) as a function of α). Let x∗
α be the value of x that maximizes Equation 27

for a given fixed value of α. Then the following statements hold:

1. For any α ≥ β ≥ 0, g(x∗
α) ≥ g(x∗

β).

2. For any α ≥ β ≥ 0, αg(x∗
α) ≥ βg(x∗

β).

Proof. For any given α, x∗
α satisfies the following inequality:

∀x′, f(x∗
α) + αg(x∗

α) ≥ f(x′) + αg(x′). (28)

20

Using the above relation, we can write down two inequalities relating x∗
α and x∗

β :

f(x∗
α) + αg(x∗

α) ≥ f(x∗
β) + αg(x∗

β) (29)

f(x∗
β) + βg(x∗

β) ≥ f(x∗
α) + βg(x∗

α) (30)

Now, adding the two inequalities above, and cancelling the terms f(x∗
α) + f(x∗

β) from both sides,
we obtain:

(α− β) g(x∗
α) ≥ (α− β) g(x∗

β). (31)

Since α− β is non-negative, it is either equal to 0, in which case g(x∗
α) = g(x∗

β) or it is positive, in
which case, g(x∗

α) ≥ g(x∗
β). Combining these two cases, we get the desired result in (1). For proving

the second part (2), note that we can write the difference of the two sides as:

αg(x∗
α)− βg(x∗

β) = αg(x∗
α)− αg(x∗

β) + αg(x∗
β)− βg(x∗

β) (32)

= α
[
g(x∗

α)− g(x∗
β)
]
+ (α− β)g(x∗

β) (33)

≥ 0 + 0 = 0, (34)

where the last inequality follows from the fact that g(x) ≥ 0 and α > β.

We will now provide a proof for Theorem 3.2.
Theorem C.5 (Theorem 3.2 restated). W.h.p. ≥ 1 − δ, for any prescribed level of safety ζ, the
maximum possible policy improvement over choices of α, J(πα)− J(πβ) ≤ ζ+, where ζ+ is given
by:

ζ+ := max
α

h∗ (α) · 1

(1− γ)2
s.t.

c1
(1− γ)2

√
Cπα

diff

|D|
− α

1− γ
Es∼d̂πα [D(πα, πβ)(s)] ≤ ζ,

(35)

where h∗ is a monotonically decreasing function of α, and h(0) = O(1).

Proof of Theorem C.5. To prove this theorem, we will apply Lemma C.2 on xi =
D(πα(·|si)||πβ(·|si))

µ(si)

and combine it with a the safe policy improvement guarantee for behavior regularization methods
that admit updates of the form shown in Equation 1.

First, we note by applying Lemma C.2 in its expectation form that:(
Es∼d̂πα

[√
D(πα(·|s)||πβ(·|s))

µ(s)

])2
≥ Es1∼d̂πα ,s2∼d̂πα

[√
D(πα(·|s1)||πβ(·|s1))

µ(s1)
−
√

D(πα(·|s2)||πβ(·|s2))
µ(s2)

]2
,

where the term on the RHS of the above equation corresponds to Cπ
diff.

Now we can plug this into the safe-policy improvement guarantee to obtain the resulting result
as follows. Note that the first term in the bound in Equation 13 can be lower bounded using the
differential concentrability as discussed above, and therefore, we get the following lower bound on ζ:

ζ ≥ O
(

1

(1− γ)2

)√
Cπα

diff

|D|
+ αEs∼d̂πα [D(πα, πβ)(s)] , (36)

which is exactly the same as the expression for the constraint in Theorem 3.2.

Next we provide an upper bound on the maximal improvement that can be possible, in terms of
D(πα, πβ). For this, we will utilize Lemma C.3, and we can directly upper bound J(πα)− J(πβ) as
follows:

J(πα)− J(πβ) ≲
1

(1− γ)2
Es∼d̂πα [D(πα, πβ)(s)] ·Rmax. (37)

Finally, we express this upper bound in terms of α.

Now, note that the RHS in Equation 37 depends on Es∼d̂πα [D(πα, πβ)(s)], which is directly the
term that a generic distributional constraint algorithm minimizes (Equation 1). We wish to understand
how this term evolves a function of α.

21

Now we will invoke Lemma C.4 to understand the behavior of the term above when solving the
optimization problem in Equation 1. To do so, consider any α, α′ and note that f(x) = Ĵ(π) and
g(x) = −Es∼d̂π [D(π, πβ)(s)]. Now applying Lemma C.4, Part (1), we note that:

Es∼d̂πα (s)[D(πα, πβ)(s)] ≤ Es∼d̂πα′ (s)[D(πα′ , πβ)(s)], (38)

for α′ ≤ α. This means that we can upper bound this quantity by a function h∗(α) that is monotoni-
cally decreasing in α.

Therefore, the maximal improvement is upper bounded by: h∗(α)O
(

1
(1−γ)2

)
, which completes the

proof of this theorem.

C.5 Proof of Lemma 4.1

Lemma C.6 ((Lemma 4.1 restated) Per-state modification.). Let g represents g (τ · π(·|s)). The
Q-function obtained after one TD-learning iteration using the objective in Eq. 9 is:

Qθ(s,a) := BπQ̄(s,a)− α
π(a|s) + πβ(a|s)g − 2πβ(a|s)

2πβ(a|s)
(39)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network.

Recall from Section 2 that the objective of CQL consists of two terms

min
θ

α (Es∼D,a∼π [Qθ(s,a)]− Es,a∼D [Qθ(s,a)])︸ ︷︷ ︸
R(θ)

+
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
, (40)

where BπQ̄(s,a) is the Bellman backup operator applied to a delayed target Q-network. In tabular
setting, the Q-function obtained after one iteration of TD-learning using the objective function in
Eq. 40 is given by:

Qθ(s,a) := BπQ̄(s,a)− α

[
π(a|s)
πβ(a|s)

− 1

]
. (41)

In CQL, the result in Eq. 41 is obtained by setting the derivative of the objective in Eq. 40 with
respect to the Q-values to 0, and solve for Qθ(s,a) [33]. The objective for ReDS is given by:

min
θ

JQ(θ) = R(θ; ρ) +
1

2
Es,a,s′∼D

[(
Qθ(s,a)− BπQ̄(s,a)

)2]
(42)

Notice that the main difference between the original CQL objective in Eq. 40 and the new objective
in Eq. 42 is the distribution with which we push down Q values. The objective in Eq. 40 pushes
Q values down under the learned policy π, whereas the objective in Eq. 42 pushes Q values down

under a mixture of π and ρ, i.e.
1

2
π +

1

2
ρ. Since ρ is parameterized by a neural network whose input

does not contain the Q values, its gradient with respect to the Q values is 0. Additionally, since the

mixture
1

2
π +

1

2
ρ plays the same role that π plays in the objective function in Eq. 40, we therefore

can obtain the solution for the Q-values after updating the Q-function using the objective function in
Eq. 42 simply by replacing π in Eq. 41 with the mixture. That is, in tabular setting, after updating the
Q-function using the objective in Eq.42, the Q-values are:

22

Qθ(s,a) = BπQ̄(s,a)− α

 1

2
π(a|s) + 1

2
ρ(a|s)

πβ(a|s)
− 1

 .

= BπQ̄(s,a)− α

[
π(a|s) + ρ(a|s)

2πβ(a|s)
− 1

]
.

= BπQ̄(s,a)− α

[
π(a|s) + ρ(a|s)− 2πβ(a|s)

2πβ(a|s)

]
.

= BπQ̄(s,a)− α

[
π(a|s) + πβ(a|s)g(.)− 2πβ(a|s)

2πβ(a|s)

]
.

since ρ subsumes πβ · g, giving us the desired result.

C.6 Proof of Lemma 4.3

Intuition: Comparison of CQL and CQL (ReDS) objectives We will first intuitively compare the
objectives in CQL and CQL (ReDS) to understand where the difference arises from. We write down
the CQL (ReDS) objective below:

max
π∈Π

Ĵ(π)− α

2(1− γ)
Es∼d̂π

[
D(π, πβ)(s) + · E

a∼π(·|s)
[g (τ · π(a|s)) I {πβ(a|s) > 0}]

]
. (43)

and now the CQL objective:

max
π∈Π

Ĵ(π)− α

(1− γ)
Es∼d̂π [D(π, πβ)(s)] . (44)

Observe that the only difference between CQL and ReDS stems from the fact that while the regularizer
in CQL only optimizes the policy to stay close to the behavior policy, the regularizer in ReDS
minimizes an additional term

∑
a π(a|s)g(τ · π(a|s)). This term attempts to make the behavior

policy more “sharp”, as g is a monotonically decreasing function of its argument, by preventing π to
be less sharp in states where πβ is broad. This enables π to find the action in the dataset support that
maximizes the learned return Ĵ(π), even when πβ is broad.

To prove Lemma 4.3, we will consider the following abstract update form for the policy evaluation
version of CQL (ReDS), that obtains the next Q-function iterate Qk+1:

min
Q

α

(
E

s∼D,a∼πre
[Q(s,a)]− E

s∼D,a∼πβ
[Q(s,a)]

)
+

1

2
E

s,a,s′∼D

[
(Q(s,a)− BπQk(s,a))

2
]
, (45)

Lemma C.7 (CQL (ReDS) restated more completely.). CQL (ReDS) solves the following optimization
problem, when α is large enough:

max
π

Ĵ(π)− α

2(1− γ)
Es∼d̂π

[
D(π, πβ)(s) + Ea∼π(·|s) [g (τ · π(a|s)) I {πβ(a|s) ≥ 0}]

]
.

Proof. For proving Lemma 4.3, we follow an argument similar to the proof of Theorem 3.1 from
Kumar et al. [33]. By differentiating the above objective w.r.t. Q, we note that the ReDS + CQL
objective above exhibits the following effective Bellman backup

∀s,a ∈ D, Qk+1(s,a) := (BπQk) (s,a)− α

(
πre(a|s)
πβ(a|s)

− 1

)
. (46)

This backup is equivalent to running pessimistic RL with a reward bonus equal to−α
(
πre(a|s)
πβ(a|s) − 1

)
,

and therefore, the policy obtained by maximizing the resulting Q-function can be expressed as:

max
π

Ĵ(π)− α
1

1− γ
Es∼d̂π

[
Ea∼π(·|s)

[(
πre(a|s)
πβ(a|s)

− 1

)]]
(47)

≡ max
π

Ĵ(π)− α
1

2(1− γ)
Es∼d̂π [D(π, πβ)(s)]−

α

2(1− γ)
Es,a∼d̂π [I{πβ(a|s) > 0}g (τ · π(a|s))] .

(48)

23

We retain the notion of support I{πβ(a|s) > 0} because πβ(a|s) in the denominator only cancels
out for actions within the support of the behavior policy, as for all other actions, this term the term
would be ill-defined as πβ(a|s) = 0 appears in the denominator. Hence this term in the above
equation cannot sum up over actions a not in the behavior policy in the second term (these actions
will be pushed down to have −∞ Q-values). If we just cancelled the πβ in the denominator, note
that g(τ · π(a|s)) is not guaranteed to be 0 on actions a, where πβ(a|s) = 0. Hence, we must retain
the indicator function to explain this result properly. Instead, for the case of standard CQL, the
divergence D(π, πβ)(s) term prevents π from putting a non-zero density on actions where πβ(a|s)
in CQL, or else D(π, πβ)(s) =∞, meaning that the Q-value for such a π would be −∞.

C.7 Proof of Lemma 4.3

Proof. The central fact we use is that for any given value of α, if the temperature τ in Equation 9 is
set to be extremely large, then exp(−A(s,a)/τ) approaches a constant value of 1 exponentially fast.
Hence, ρ(a|s)→ πβ(a|s). When this happens, πre(a|s) is given by:

πre(a|s) = 1

2
π(a|s) + 1

2
(πβ(a|s)). (49)

Plugging in the value of πre(a|s) into the expression for the regularizer R(θ; ρ), we note that the
conservatism regularizer in ReDS is exactly equal to 0.5 times the standard CQL regularizer. Formally,

RReDS(θ; ρ). = Ea∼πre(·|s)[Qθ(s,a)]−Ea∼πβ(·|s)[Qθ(s,a)].

=
1

2

(
Ea∼π(·|s)[Qθ(s,a)]−Ea∼πβ(·|s)[Qθ(s,a)]

)
= 0.5 · RCQL(θ).

(50)

This means that ReDS (Equation 10) and CQL (Equation 2) will exhibit identical learning dynamics
if αReDS = 2 ·αCQL. As a result, the performance of ReDS for the best possible α and τ will strictly
dominate the performance of CQL with the best possible α as CQL can be obtained as a special case
of ReDS. Formally, this has shown that

max
α,τ

J(πReDS;α,τ) ≥ max
α

J(πCQL;α). (51)

To conclude, the above guarantee shows that ReDS will never be worse than CQL in terms of
performance.

D Implementation details of CQL (ReDS)

In this section, we will provide implementation details about our algorithm, CQL (ReDS). The
pseudo-code in Algorithm 1 illustrates the different update steps of our algorithms. In addition, we
provided a detailed python-like algorithm description for ease of implementation. This can be found
below in Section D.2.

Most of the components of Algorithm 1 are straightforward and follow the same convention, training
update and, as we will discuss, hyperparameters as the CQL algorithm. This includes training the
policy πϕ, and for the most part training the critic Qθ. The main difference in the update for CQL
(ReDS) is utilizing the mixture of π and ρ in the CQL regularizer. For obtaining ρψ, we utilize a
standard advantage-weighted training update, following the papers [27, 43, 44]. Following these
prior works, we also clip the argument to the exponent between a minimum range and a maximum
range to be numerically stable:

Es,a∼D[log ρψ(a|s) · exp [clip (−Aπθ (s,a)/τ, σmin, σmax)] . (52)

In our experiments, we chose σmin = −10 and σmax = 5 across all the tasks and domains we study.
These details are standard in training advantage-weighted algorithms.

24

Hyperparameters Values

CQL Lagrange True
CQL Lagrange Target Action Gap 0.8
Critic Network 256-256-256-256
Actor Network 256-256
Reward Scale 10
Reward Bias -5
Critic Learning Rate 3× 10−4

Actor Learning Rate 3× 10−4

Figure 10: Full range of hyperparameters that we use for CQL(ReDS) building off of JaxCQL

D.1 Hyperparameters for CQL (ReDS)

D.2 Detailed algorithm description for CQL (ReDS)

Algorithm 1 provides the pseudo-code for CQL (ReDS). We provide the detailed description of
how each update step in Algorithm 1 is implemented using Python syntax based on the PyTorch
Framework in this section. We include 3 code listings below, illustrating the update steps for the
parametric Q-functions, the policy and the learnt distribution ρ.

Listing 1: Training Q networks given a batch of data, corresponding to step 3 in Algorithm 1

q _ d a t a = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , b a t c h [’ a c t i o n s ’])

n e x t _ d i s t = a c t o r (b a t c h [’ n e x t _ o b s e r v a t i o n s ’])
n e x t _ p i _ a c t i o n s , n e x t _ l o g _ p i s = n e x t _ d i s t . sample ()

t a r g e t _ q v a l = t a r g e t _ c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
n e x t _ p i _ a c t i o n s)

t a r g e t _ q v a l = b a t c h [’ r e w a r d s ’] + \
s e l f . gamma * (1 − b a t c h [’ dones ’]) * t a r g e t _ q v a l

t d _ l o s s = m s e _ l o s s (q_da ta , t a r g e t _ q v a l)

i m p o r t a n c e s a m p l in g term
num_samples = 4

assume env i s n o r m a l i z e d be tween [−1 , 1]
r a n d o m _ a c t i o n s = un i fo rm_sample ((num_samples ,

b a t c h [’ a c t i o n s ’] . shape [− 1]) , min = −1 , max=1)
random_pi = 0 . 5 ** b a t c h [’ a c t i o n s ’] . shape [−1]

d i s t = a c t o r (b a t c h [’ o b s e r v a t i o n s ’])
p i _ a c t i o n s , l o g _ p i s = d i s t . sample (num_samples)

r h o _ d i s t = rho (b a t c h [’ o b s e r v a t i o n s ’])
r h o _ a c t i o n s , l o g _ p r o b s _ r h o = r h o _ d i s t . sample (num_samples)

q _ r a n d _ i s = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
r a n d o m _ a c t i o n s) − random_pi

q _ p i _ i s = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
p i _ a c t i o n s) − l o g _ p i s

q _ r h o _ i s = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] ,
r h o _ a c t i o n s) − l o g _ p r o b s _ r h o

c a t _ q = c o n c a t e n a t e (q _ r a n d _ i s , q _ p i _ i s , new_axis =True)
c a t _ q = logsumexp (ca t_q , a x i s = −1)

25

c a t _ q _ r h o = logsumexp (q _ r h o _ i s , a x i s = −1)

average be tween rho and p i
push_down_te rm_reds = 0 . 5 * (c a t _ q + c a t _ q _ r h o)

r e d s _ l o s s = t d _ l o s s + \ \
((push_down_te rm_reds − q _ d a t a) . mean () * c q l _ a l p h a)

c r i t i c _ o p t i m i z e r . z e r o _ g r a d ()
r e d s _ l o s s . backward ()
c r i t i c _ o p t i m i z e r . s t e p ()

Listing 2: Training the policy (or the actor) given a batch of data (step 4 in Algorithm 1)

I d e n t i c a l t o CQL
r e t u r n d i s t r i b u t i o n o f a c t i o n s
d i s t = a c t o r (b a t c h [’ o b s e r v a t i o n s ’])

sample a c t i o n s w i t h a s s o c i a t e d l o g p r o b a b i l i t i e s
p i _ a c t i o n s , l o g _ p i s = d i s t . sample ()

c a l c u l a t e q v a l u e o f a c t o r a c t i o n s
q p i = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , a c t i o n s)
q p i = q p i . min (a x i s =0)

same o b j e c t i v e as CQL (kumar e t a l .)
a c t o r _ l o s s = (l o g _ p i s * s e l f . a l p h a − q p i) . mean ()

o p t i m i z e l o s s
a c t o r _ o p t i m i z e r . z e r o _ g r a d ()
a c t o r _ l o s s . backward ()
a c t o r _ o p t i m i z e r . s t e p ()

Listing 3: Training the ρψ distribution given a batch of data (step 5 in Algorithm 1)

AWR s t y l e upd a t e t o f i n d rho

sample p o l i c y a c t i o n s f o r advan tage c a l c u l a t i o n
d i s t = a c t o r (b a t c h [’ o b s e r v a t i o n s ’])
p i _ a c t i o n s , l o g _ p i s = d i s t . sample ()

c a l c u l a t e advan tage
q d a t a = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , b a t c h [’ a c t i o n s ’])
v a l u e = c r i t i c (b a t c h [’ o b s e r v a t i o n s ’] , a c t i o n s)
a d v a n t a g e = (q d a t a − v a l u e . min (0)) . mean ()

awr s t y l e c l i p p i n g
c l i p p e d _ a d v a n t a g e = c l i p (a d v a n t a g e / s e l f . t e m p e r a t u r e , \

min = −10 , max=5)

f i n d l o g rho (a | s)
r h o _ d i s t = _rho (b a t c h [’ o b s e r v a t i o n s ’])
l o g _ p r o b _ r h o = r h o _ d i s t . l o g _ p r o b (b a t c h [’ a c t i o n s ’])

Advantage Weigh ted Log P r o b a b i l i t i e s i s t h e l o s s f o r rho
r h o _ l o s s = −(exp (− c l i p p e d _ a d v a n t a g e) * l o g _ p r o b _ r h o)
r h o _ l o s s = r h o _ l o s s . mean ()

r h o _ o p t i m i z e r . z e r o _ g r a d ()

26

r h o _ l o s s . backward ()
r h o _ o p t i m i z e r . s t e p ()

E Task and Dataset Descriptions

In this section, we will describe the various tasks we introduce in this paper. We also provide
qualitative descriptions of these tasks here.

Heteroskedastic antmaze navigation. We introduce four new antmaze datasets which exhibit two
different dataset distributions each for the medium and large mazes from D4RL [13]. We reuse the
layouts of the mazes directly from D4RL, but modify the data collection protocol. For the noisy
datasets, given an observation from the environment, we first compute the action that would have
been taken by the D4RL behavior policy, and then add Gaussian noise to the action. While this alone
is not much harder, crucially, note that the variance of this added Gaussian noise differs depending on
the location of the Ant in the 2D Maze. In addition there is a small bias added to the D4RL behavior
policy, but this bias is dominated by noise. We present the noise standard deviations (indicated
“Noise”) and the bias added (indicated “Bias”) for this dataset as a function of different location
intervals in the maze in the left part of the Figure 11 below.

Figure 11: The distribution of noise and bias in the heteroskedastic antmaze datasets as a function of
the x-position of the ant in the maze. While the noisy datasets primarily add noise, the biased datasets
also add significant bias beyond the noise. The value of a given bar is the variance of the noise / bias
added in the region between the x-position for that bar, and the next one.

For the biased datasets, in addition to adding location-dependent Gaussian noise to the action
computed by D4RL behavior policies, we add a strong bias to the action (see Figure 11 (right)).
Crucially note that the direction of this bias (i.e., the sign) changes based on the location of the Ant
in the 2D maze, which mimics the scenario studied in our didactic navigation example in Section 3.1.
In summary, because in some 2D regions of the maze, the values of the noise and bias added to
the actions are larger, while in other 2D regions, they are smaller, the new offline datasets contain
more heteroskedastic data distribution, where an optimal learned policy must deviate away from the
data distribution much more in certain regions, whereas much lesser in other regions, which would
correspond to an increase in the differential concentrability. This is demonstrated quantitatively in
Table 3. Thus, we expect that learning well on these tasks modulating the strength of the distributional
constraints per state.

Visual robotic pick and place. We introduce a pick and place dataset, which exhibits a unique
dataset distribution for a robotic pick and place manipulation task, building on the framework from
Singh et al. [50]. As shown in Figure 13, the robotic setup is a 6-DOF WidowX robot in front of a
green bowl with 2 objects: a target object (the ball in this case) and a distractor object (the can). The
objective is to place the target object into the bin. The reward function is a sparse, binary indicator of
success, where a +1 reward is given when the object is placed in the bin. This task must be done from
128 × 128 × 3 raw visual observations, without access to either the robot state, or the state of the
objects, which can change as the objects can roll on the surface.

Visual robotic bin sorting. We introduce a bin sorting tasks, which are also built on the framework
from Singh et al. [50]. As shown in Figure 13, the robotic setup is a 6-DOF WidowX robot in front of
two identical white bins with 2 objects to sort. The objective is to sort each object into its respective

27

Figure 12: Visualizing a sample trajectory for the visual pick-place robotic manipulation task.
Here is an example successful trajectory in the dataset collected using a scripted policy. Th robot
reaches for the target object (the green ball), lifts it, and places it inside of the green container.

bins the target object in to the bin. The reward function is a sparse, binary indicator of success, where
a "+1" reward is given when both objects are placed in their correct bins. This task must be done
from 128× 128× 3 raw visual observations, without access to either the robot state, or the state of
the objects, which can change as the objects can roll on the surface.

Figure 13: Visualizing sample trajectories for the visual bin sorting robotic manipulation task.
Here are two sample trajectories for the binsorting domain. Top: A successful trajectory in the
dataset. Here the robot places the white cylinder in the right bin and the blue ball in the left bin,
succesfully sorting the objects into their respective bins. Bottom: A unsuccessful trajectory in the
dataset. Here the robot places both objects in the same bin. This is unsuccessful as an object was
placed in the incorrect bin thereby not sorting them in a correct manner.

To collect a heteroskedastic dataset, we run data collection using hardcoded scripted control policies,
whose success rate and variance can be controlled. Each trajectory in the dataset was collected in
the following manner. For the first phase, the robot reaches towards the object without any bias and
grasps it with a reasonable success rate. Here, though, the noise and stochasticity in the scripted data
collection and the inaccuracies in the scripted policy make it not succeed for every trial. During the
second phase, where the robot places the object in the bin, there was a bias towards placing the object
in a position in the workspace that does not correspond to the target location of the bin for which the
robot can attain a reward, and which the robot will observe during evaluation. For our experiments,
this bias was 85%. This forces the data distribution to be heteroskedastic: for the picking segment
of this task, the behavior policy is centered around the desired optimal behavior i.e., grasping the
object successfully, whereas for the placing segment, the behavior is biased towards carrying the
object to the incorrect regions, requiring significant deviations from the behavior policy to succeed.
An algorithm is now required to have a non-uniform amount of closeness to the behavior policy.

Atari game playing. For the Atari tasks we consider in the paper, we devised a heteroskedastic data
composition based on the DQN Replay dataset [2] which comprises of transitions found in the replay
buffer of a run of an online DQN. Since this dataset consist of all the policies that the DQN agent
produced over the course of training, and since Atari typically uses ϵ-greedy exploration, where the

28

value of ϵ decays over time, different trajectories of this dataset are generated from different behavior
policies, that all have different levels stochasticity. Naturally, since the value of ϵ decays over training
and the performance of online DQN increases, the trajectories with higher return generally correlate
with having lower stochasticity.

Given this information, we attempted to subsample a dataset that is heteroskedastic. For this purpose,
we first divide the full replay buffer into N equal chunks, where chunk 0 consists to experience
observed earliest in training, while the chunk N − 1 consists of experience seen near the final parts
of training. Then, we subsample 20% of the trajectories from each of these chunks independently to
obtain an intermediate dataset that comes from multiplies policies, observed at different times while
training online DQN. Then, for any given trajectory τ of length L in the replay chunk i, we only
retain the transitions occurring between time steps ⌊ (L−i)×NL ⌋ : ⌊ (L−i+1)×N

L ⌋ in our final dataset
and discard all the remaining transitions. This essentially means that the data closer to the initial
states of the game comes from a good, less stochastic policy, whereas the data close to the final states
of the game from a worse, highly stochastic policy. We develop two such datasets corresponding
to N = 2 and N = 5 chunks. These chunks concatenated together construct the replay buffer of
transitions that correspond to the 2 and 5 policy experiments seen in Section 5.

To see why this data is heteroskedastic, note that at different states of the game, we observe actions
with different amounts of stochasticity and bias. This is because, as the game progresses, the effective
behavior policy induced by the offline dataset exhibits a bias towards suboptimal actions (from the
chunks that are earlier in DQN training) while also exhibiting substantial noise. The states that are
closer to the initial states of the game, on the other hand, have an effective behavior policy that is
primarily centered around a good action, with very little noise. In order to succeed, an offline RL
algorithm must have different amount of conservatism at different states.

In our experiments, we considered 10 games including several standard games, and this is a subset of
games studied in prior work [34]. The games we considered are: ASTERIX, BREAKOUT, Q∗BERT,
SEAQUEST, SPACEINVADERS, BEAMRIDER, MSPACMAN, WIZARDOFWOR, JAMESBOND, PONG.

F Experimental Details

For our experiments on the AntMaze domains, we built on the following open-source implementation
of CQL: https://github.com/young-geng/JaxCQL, for our visual robotic experiments, we
utilized our own port of the following implementation from Singh et al. [50] in Jax: https://github.
com/avisingh599/cog, and for our Atari experiments, we use the official implementation of CQL
built on Dopamine [7]: https://github.com/aviralkumar2907/CQL/tree/master/atari.
For certain baselines (e.g EDAC, BEAR), we utilize the source implementation to stay consistent
with the author’s tested and tuned implementation. We additionally verified the results for D4RL
benchmark for these tasks. We will summarize the hyperparameters in the next sections.

F.1 Hyperparameters for cql (ReDS)

Antmaze domains. For the AntMaze domains, we utilized a temperature parameter τ = 0.3 in our
experiments (found by sweeping over τ ∈ [0.1, 0.3, 1.0, 5.0]), for all the four dataset types in Table 2.
Every other hyperparameter was kept identical to CQL, which for the case of antmaze corresponds to
applying the CQL regularizerR(θ) with the dual version of CQL, where the threshold on the CQL
regularizer is specified to be 1.0. Following CQL, we used 3-hidden layer critic and actor networks
with layers of size 256, a critic learning rate of 3e-4 and an actor learning rate of 1e-4. We utilized
the Bellman backup that computes the target value by performing a maximization over target values
computed for k = 10 actions sampled from the policy at the next state.

Atari domains. For our Atari experiments, we tuned the value of α in CQL (Equation 2) between two
values [0.1, 0.2], and present the sensitivity results in Figure 5, and found that α = 0.1 work better
for CQL. We swept the value of τ ∈ [2.0, 5.0, 7.0] and report the sensitivity sweep in Figure 14.

Visual Robotic Domains. For the visual pick and place domains, we follow exactly the same
hyperparameters as the CQL implementation from COG [50]: a critic learning rate of 3e-4, an
actor learning rate of 1e-4, using k = 4 actions from the policy for computing the target values for
computing the TD error, and using k = 4 actions to compute the log-sum-exp in CQL. For the value
of τ , we swept over τ ∈ [0.1, 1.0, 10.0, 100.0], and used a τ = 1.0 for our experiments.

29

https://github.com/young-geng/JaxCQL
https://github.com/avisingh599/cog
https://github.com/avisingh599/cog
https://github.com/aviralkumar2907/CQL/tree/master/atari

G Additional Ablation Studies

In this section, we present some results of an ablation study of the performance of CQL (ReDS) with
respect to the temperature hyperparameter τ that appears in Equation 7. Before discussing the results,
let us intuitively aim to understand the significance of this hyperparameter. When τ is extremely
small we would expect ρψ to be a distribution centered at the worst possible action, within the support
of the behavior policy. When τ is large, we would expect the learned ρψ to be close to the behavior
policy, since the exponentiated advantage term would essentially behave as a constraint against a
uniform distribution. Neither of these extremes are desirable, while the former does not behave much
differently than a distributional constraint (except that the Q-value at the action with the smallest
Q-value in the dataset support is not pushed up anymore), the latter also behaves like a distributional
constraint, but with just half the effective multiplier α on the CQL regularizer. We would therefore
expect an intermediate τ to perform the best.

To verify these insights, we study the sensitivity of the performance of CQL (ReDS) with respect to
α on the Atari datasets. Our results shown in Figure 15 confirm that indeed an intermediate value of
τ = 5.0 out of the tested values, τ ∈ [2.0, 5.0, 7.0] works the best.

Figure 14: Sensitivity of CQL (ReDS) to the temperature hyperparameter τ in Equation 7
evaluated on the Atari game experiments with 5 policies. Observe that an intermediate value of
temperature τ = 5.0 works best

In addition, we study the sensitivity of the performance of CQL (ReDS) with respect to α on the
Atari datasets. We report the performance for two different values of α ∈ {0.1, 0.2} from CQL
(Equation 2) in Figure 15. Observe that CQL (ReDS) with a given α outperforms base CQL for
the corresponding α. Additionally note that the degradation in performance of CQL (ReDS) as α
increases is lesser than base CQL.

Figure 15: Sensitivity of ReDS + CQL to the temperature hyperparameter α in Equation 2
We report the performance of CQL (ReDS) vs CQL on the IQM normalized score and the mean
normalized score over ten Atari games, for the case of two (top) and five (bottom) policies. We
consider this performance for two different values of α ∈ {0.1, 0.2} in CQL (Equation 2). Observe
that CQL (ReDS) with a given α outperforms base CQL for the corresponding α. Additionally note
that the degradation in performance of ReDS (CQL) as α increases is lesser than base CQL.

30

H Additional Baseline Comparison for Heteroskedastic Antmaze Navigation

In this section we will provide additional baseline comparison for REDS with two additional Offline
RL methods: EDAC [3] and BEAR [31].

Table 5: EDAC Hyperparameters

Param Values

N 10, 20, 50, 100
η 0, 1, 5, 10, 50, 100, 1000

Table 6: BEAR Hyperparameters

Param Values

Kernel Laplacian, Gaussian
σ 1, 10, 20, 50

H.1 Hyperparameters for EDAC

As done in An et al. [3], we tune the method over two hyperparameters. The first hyperparameter is
the ensemble size N which specifies the number of Q functions. The second parameter we consider
is η, the weight of the ensemble gradient diversity term. Below in table 5, we show the values
considered for each hyperparameter. There is significant overlap to these parameters with the ones
used in the Mujoco Gym and Adroit Domains that the authors used. We utilized the publicly available
code (https://github.com/snu-mllab/EDAC) released by the authors of EDAC and were able
to replicate the results they reported for the D4RL MuJoCo Gym environments in An et al. [3].

H.2 Hyperparameters for BEAR

As done in Kumar et al. [31], we tuned this method over two hyperparameters. The first is the
Kernel Type of the MMD between the behavior policy πβ and the actor π, and found that Laplacian
performed better. The second parameter considered is σ, which is needed for the Laplacian kernel as
defined. Below in table 6, we show the values considered for each hyperparameter. There is significant
overlap to these parameters with the ones used in the Mujoco Gym and Adroit Domains that the
authors used. We utilized the publicly available code (https://github.com/rail-berkeley/
d4rl_evaluations) released by the authors of BEAR and were able to replicate the results they
reported for the D4RL MuJoCo Gym environments in Kumar et al. [31].

31

https://github.com/snu-mllab/EDAC
https://github.com/rail-berkeley/d4rl_evaluations
https://github.com/rail-berkeley/d4rl_evaluations

	Introduction
	Preliminaries
	Why Distribution Constraints Fail with Heteroskedastic Data
	A Didactic Example
	Challenges with Distribution Constraints

	Support Constraints As Reweighted Distribution Constraints
	Instantiating the Principle Behind ReDS
	Theoretical Analysis of CQL (ReDS)

	Experimental Evaluation
	Comparison on the D4RL Benchmark
	Comparisons on Heteroskedastic datasets

	Related Work
	Discussion, Future Directions, and Limitations
	Practical ReDS Algorithm
	Details of the Didactic Navigation Example from Section 3.1
	Why and When Do Distributional Constraints Fail in scenarios with Heteroskedastic Data?
	Heteroskedastic Data vs Exploratory Data
	Differential concentrability in theory vs practice

	Proofs
	Notation and Preliminaries
	Formal Restatement of Theorem 3.2
	Proof of Theorem 3.2
	Additional Technical Lemmas
	Proof of Lemma 4.1
	Proof of Lemma 4.3
	Proof of Lemma 4.3

	Implementation details of CQL (ReDS)
	Hyperparameters for CQL (ReDS)
	Detailed algorithm description for CQL (ReDS)

	Task and Dataset Descriptions
	Experimental Details
	Hyperparameters for cql (ReDS)

	Additional Ablation Studies
	Additional Baseline Comparison for Heteroskedastic Antmaze Navigation
	Hyperparameters for EDAC
	Hyperparameters for BEAR

