ReDS: Offline Reinforcement Learning With
Heteroskedastic Datasets via Support Constraints

Anikait Singh'*, Aviral Kumar'*, Quan Vuong?, Yevgen Chebotar?, Sergey Levine'

1UC Berkeley, 2Google DeepMind (*Equal contribution)
asap7772@berkeley.edu

Abstract

Offline reinforcement learning (RL) learns policies entirely from static datasets.
Practical applications of offline RL will inevitably require learning from datasets
where the variability of demonstrated behaviors changes non-uniformly across
the state space. For example, at a red light, nearly all human drivers behave
similarly by stopping, but when merging onto a highway, some drivers merge
quickly, efficiently, and safely, while many hesitate or merge dangerously. Both
theoretically and empirically, we show that typical offline RL methods, which are
based on distribution constraints fail to learn from data with such non-uniform
variability, due to the requirement to stay close to the behavior policy to the
same extent across the state space. Ideally, the learned policy should be free to
choose per state how closely to follow the behavior policy to maximize long-term
return, as long as the learned policy stays within the support of the behavior policy.
To instantiate this principle, we reweight the data distribution in conservative Q-
learning (CQL) to obtain an approximate support constraint formulation. The
reweighted distribution is a mixture of the current policy and an additional policy
trained to mine poor actions that are likely under the behavior policy. Our method,
CQL (ReDS), is theoretically motivated, and improves performance across a wide
range of offline RL problems in games, navigation, and pixel-based manipulation.

1 Introduction

Recent advances in offline RL [39, 36] hint at exciting possibilities in learning high-performing
policies, entirely from offline datasets, without requiring dangerous [19] or expensive [25] active
interaction. Analogously to the importance of data diversity in supervised learning [9], the practical
benefits of offline RL depend heavily on the coverage of behavior in the offline datasets [35].
Intuitively, the dataset must illustrate the consequences of a diverse range of behaviors, so that
an offline RL method can determine what behaviors lead to high returns, ideally returns that are
significantly higher than the best single behavior in the dataset.

One easy option to attain this kind of coverage is to combine many realistic sources of data, but doing
so can lead to the variety of demonstrated behaviors varying in highly non-uniform ways across the
state space, i.e. the dataset is heteroskedastic. For example, a driving dataset might show very high
variability in driving habits, with some drivers being timid and some more aggressive, but remain
remarkably consistent in “critical” states (e.g., human drivers are extremely unlikely to swerve in an
empty road or drive off a bridge). A good offline RL algorithm should combine the best parts of each
behavior in the dataset — e.g., in the above example, the algorithm should produce a policy that is as
good as the best human in each situation, which would be better than any human driver overall. At
the same time, the learned policy should not attempt to extrapolate to novel actions in subset of the
state space where the distribution of demonstrated behaviors is narrow (e.g., the algorithm should not
attempt to drive off a bridge). How effectively can current offline RL methods selectively choose on a
per-state basis how closely to stick to the behavior policy?

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Most existing methods [32, 33, 28, 27, 53, 17, 23] constrain the learned policy to stay close to the
behavior policy with so-called “distribution constraints". Using a combination of empirical and
theoretical evidence, we first show that distribution constraints are insufficient when the heteroskedas-
ticity of the demonstrated behaviors varies non-uniformly across states, because the strength of
the constraint is state-agnostic, and may be overly conservative at some states even when it is not
conservative enough at other states. We also devise a measure of heteroskedasticity that enables us to
determine if certain offline datasets would be challenging for distribution constraints.

Our second contribution is a simple observation: distribution constraints against a reweighted version
of the behavior policy give rise to support constraints. That is, the return-maximization optimization
process can freely choose per-state how much the learned policy should stay close to the behavior
policy, so long as the learned policy remains within the data support. We show that it is convenient to
instantiate this insight on top of conservative Q-learning (CQL) [33], a recent offline RL method. The
new method, CQL (ReDS), changes minimally the form of regularization, design decisions employed
by CQL and inherits existing hyper-parameter values. CQL (ReDS) attains better performance than
recent distribution constraints methods on a variety of tasks with more heteroskedastic distributions.

2 Preliminaries

The goal in offline RL is find the optimal policy in a Markov decision process (MDP) specified
by the tuple M = (S, A,T,r, uo,7y). S, A denote the state and action spaces. T'(s’|s,a) and
r(s,a) represent the dynamics and reward function. po(s) denotes the initial state distribution.
~ € (0,1) denotes the discount factor. We wish to learn a policy that maximizes return, denoted by
J(m) = ﬁ]E(st,at)Nﬂ[zt ~ir(s¢, a;)]. We must find this policy while only having access to an
offline dataset of transitions collected using a behavior policy 7z, D = {(s, a,r,s’)}.

Offline RL via distributional constraints. Most offline RL algorithms regularize the learned policy
7 from querying the target Q-function on unseen actions [17, 30], either implicitly or explicitly.
For our theoretical analysis, we will abstract the behavior of distributional constraint offline RL
algorithms into a generic formulation following Kumar et al. [33]. As shown in Equation 1, we
consider the problem where we must maximize the return of the learned policy 7 (in the empirical

o~

MDP) J (), while also penalizing the divergence from 7g:
max E,_g. [J(r) - aD(m,74)(s)] (1)

where D denotes a divergence between the learned policy 7 and the behavior policy 7g at state s.

Conservative Q-learning. [33] enforces the distributional constraint on the policy implicitly. To see
why this is the case, consider the CQL objective, which consists of two terms:

min o (Es~pa~r [Qs(s.2)] ~Esavp [Qo(s,a)D%Es,a,s/ND [(Qu(s,2) - B7Q(s,2)°], @

R(9)

where B™Q(s,a) is the Bellman backup operator applied to a delayed target Q-network, Q:
B™Q(s,a) := r(s,a) + YEara|s)[Q(s’,a’)]. The second term (in blue) is the standard TD
error [40, 18, 22]. The first term R(6) (in red) attempts to prevent overestimation in the Q-values for
out-of-distribution (OOD) actions by minimizing the Q-values under a distribution u(als), which is
automatically chosen to pick actions with high Q-values Qy (s, a), and counterbalances by maximiz-
ing the Q-values of the actions in the dataset. Kumar et al. [33] show that Equation 2 gives rise to a
pessimistic Q-function that modifies the optimal Q function by the ratios of densities, w(als)/7s(als)
at a given state-action pair (s, a). Formally, the Q-function obtained after one iteration is given by:

sa::B”_sa—aM—l}. 3
Qufs.a) = B Qls.) o | T2 ®
The Q function is unchanged only if the density of the learned policy 7 matches that of the behavior
policy mg. Otherwise, for state-action pairs where m(als) < mg(als), Eq. 3 increases their Q values
and encourages the policy 7 to assign more mass to the action. Vice versa, if w(a|s) > ng(als),
Eq. 3 encourages the policy 7 to assign smaller density to the action a. In Eq. 3, « is a constant for
every state, and hence the value function learned by CQL is altered by the ratio of action probabilities
to the same extent at all possible state-action pairs. As we will discuss in the next section, this can be
sub-optimal when the learnt policy should stay close to the behavior policy in some states, but not
others. We elaborate on this intuition in the next section.

3 Why Distribution Constraints Fail with Heteroskedastic Data

In statistics, heteroskedasticity is typically used to refer to the condition when the standard deviation
in a given random variable varies non-uniformly over time (see for example, Cao et al. [6]). We
call a offline dataset heteroskedastic when the variability of the behavior differs in different regions
of the state space: for instance, if for certain regions of the state space, the observed behaviors in
the dataset assign the most probability mass to a few actions, but in other regions, the observed
behaviors are more diverse. Realistic offline datasets are often heteroskedastic as they are typically
generated by multiple policies, each with its own characteristics, under different conditions. E.g.,
driving datasets come from multiple humans [11], and many robotic datasets are collected by multiple
teleoperators [10], resulting in systematic variability in different regions of the state space.

3.1 A Didactic Example
To understand why distribution constraints

are insufficient with heteroskedastic data, =l L -
. . . L R U D N
we present a didactic example. Motivated . i —!
A N . heteroskedastic (b) AWR stuck (c) CQL stuck
by the driving scenario, we consider a maze data LEGEND
navigation task shown in Fig. 1. The task m_N

state visitation

is to navigate from the position labeled as
“Start” to the position labeled as “Goal” us-
ing five actions at every possible state (L:
+,R: —, U: 1, D: |, No: No Op), while
making sure that the executed actions do
not hit the walls of the grid.

(a) Variability in Behavior Depends on State

(d) CQL (REDS) succeeds

Figure 1: Failure mode of distribution constraints. In this
navigation task, an offline RL algorithm must find a path from
the start state to the goal state as indicated in (a). The offline

Dataset construction. To collect a het- dataset provided exhibits non-uniform coverage at different

eroskedastic dataset, we consider a mixture
of several behavior policies that attain a
uniform occupancy over different states in
the maze. However, the dataset action dis-
tributions differ significantly in different
states. The induced action distribution is
heavily biased to move towards the goal in
the narrow hallways (e.g., the behavior pol-
icy moves upwards at state A)). In contrast,
the action distribution is quite diverse in
the wider rooms. In these rooms, the be-
havior policy often selects actions that do
not immediately move the agent towards

states, e.g., in the state marked as “B” located in a wide room
has more uniform action distribution, whereas the states in
the narrow hallways exhibit a more narrow action distribution.
This is akin to how the behavior of human drivers varies in
certain locations (“B”), but is very similar in other situations
(“A”). To perform well, an algorithm must stay close to the
data in the hallways (“A”), but deviate significantly from the
data in the rooms (“B”), where the data supports many dif-
ferent behaviors (most are not good). AWR and CQL get
stuck because they stay too close to the bad behavior policy
in the rooms, e.g. the left and right arrows near State B in Fig
(b) and (c¢). Our method, CQL (ReDS), learns to ignore the
bad behavior action in state B and prioritizes the good action,
indicated by the downward arrow near B in (d).

the goal (e.g., the behavior policy at state B), because doing so does not generally hit the walls as
the rooms are wider, and hence the agent is not penalized. Whereas, the agent must take utmost
precaution to not hit the walls in the narrow hallways. More details are in Appendix B.

Representative distribution constraint algorithms such as AWR [44, 43] and CQL [33] fail to
perform the task, as shown in Figure 1. To ensure fair comparison, we tune each method to its
best evaluation performance using online rollouts. The visualization in Figure 1 demonstrates that
these two algorithms fail to learn reasonable policies because the learned policies match the random
behavior of the dataset actions too closely in the wider rooms, and therefore are unable to make
progress towards the Goal position. This is a direct consequence of enforcing too strong of a constraint
on the learned policy to stay close to the behaviors in the dataset. Therefore, we also evaluated the
performance of CQL and AWR in this example, with lower amounts of conservatism (Appendix B)
and found that utilizing a lower amount of conservatism suffers from the opposite failure mode:
it is unable to prevent the policies from hitting the walls in the narrow hallways. This means that
conservatism prevents the algorithm from making progress in the regions where the behavior in the
dataset is more diverse, whereas not being conservative enough hurts performance in regions where
the behaviors in the dataset agree with each other. The method we propose in this paper to tackle this
challenge, indicated as “CQL (ReDS)”, effectively traverses the maze, 80% of the time.

3.2 Challenges with Distribution Constraints

Having seen that distribution constraints can fail in certain scenarios, we now formally characterize
when offline RL datasets is heteroskedastic, and why distribution constraints may be ineffective in

1.82 Success Rate: 97.5 %

Success Rate: 54.3 %

Uniform behavior distribution - D(z, ;r/‘)(\) is roughly uniform between states, CJ,

=

Mixed behavior distribution - D(r, Ir/,)(‘\) is less uniform between states, (‘(,”W =5.74

Skewed behavior distribution - D(r,)(s) varies quite heavily between states, Cj- = 17.52 Success Rate: 0.0 %

Figure 2: Empirically computing CJ; with three datasets: uniform (top), mixed (middle) and skewed (bottom)
on a gridworld. We also visualize D(7, m3)(s) across states in the maze as the colors on different cells, a
histogram of D(7, 73)(s) to visualize variation in this quantity and the performance of running standard CQL.
Top: The uniform distribution leads to low C, uniform D(7, 75)(s), and highest success. Middle: The
mixed distribution leads to medium CFy, less uniformly distributed D (7, 73)(s), and a drop in task success.
Bottom: The skewed distribution leads to a high Cf, non-uniform D (7, 7g)(s), and poor performance.

such scenarios. Similar to how standard analyses utilize concentrability coefficient [46], which upper
bounds the ratio of state-action visitation under a policy d™ (s, a) and the dataset distribution p, i.e.,
maxs o d"(s,a)/u(s,a) < C™, we introduce a new metric called differential concentrability, which
measures dataset heteroskedasticity (i.e., the variability in the dataset behavior across different states).

Definition 3.1 (Differential concentrability.). Given a divergence D over the action space, the
differential concentrability of a given policy m with respect to the behavioral policy 7z is given by:

Cia=_ E . (\/ D<7ZZZZ))<51) - \/ D(W,},ZTS‘;))@Q)) :)

Eq. 4 measures the variation in the divergence between a given policy 7(als) and the behavior
policy ms(als) weighted inversely by the density of these states in the offline dataset (i.e., y(s) in
the denominator). For simplicity, let us revisit the navigation example from Section 3.1 and first
consider a scenario where p(s) = Unif(S). For any given policy , if there are states where 7
chooses actions that lie on the fringe of the data distribution (e.g., in the wider rooms), as well as
states where the policy 7 chooses actions at the mode of the data distribution (e.g., as in the narrow
passages), then CJ; would be large any policy 7 that we learn. Crucially, C; would be small even
if the learned policy 7 deviates significantly from the behavior policy g, such that D(m, 75)(s) is
large, but | D(m, 75)(s1) — D(m,m)(s2)| is small, indicating the dataset is not heteroskedastic.

Connection between variability in the action distribution and high Cf. Consider a simpler
formula where we remove the counts n(s) from the expression of differential concentrability and
set 7 in CJ to be the uniform distribution over actions. Then, we can show that the value of C
is exactly equal to twice the variance of D(m, 73)(s) across states. Therefore, we will demonstrate
in Section 5 that arbitrary policy checkpoints 7 learned by offline RL algorithms generally attain a
low value of the variance in D(m, 7g)(s) on offline datasets from non-heteroskedastic sources, such
as those covered in the D4RL [13] benchmark. Of course, we cannot always exclude the counts of
states n(s), however, we note that in high-dimensional state spaces, such as those in our experiments,
each state in the offline data is likely to be unique, thus validating the condition that n(s) = 1. That
said, we do compute the exact value of CJ (with n(s)) in a didactic gridworld maze shown in
Figure 2. In this case, we find that our definition of Cj is actually able to reflect the intuitive notion
of heteroskedasticity.

We now use the definition of differential concentrability to bound both the improvement and de-
provement of 7 w.r.t. wg for distribution constraint algorithms using the framework of safe policy

improvement [37, 33]. We show that when CJ; is large, then constraints (Eq. 1) may not improve
significantly over g, even for the best value for the weight o (proof in Appendix C):

Theorem 3.2 (Informal; Limited policy improvement via distributional constraints.). W.h.p. > 1 —,
for any prescribed level of safety (, the maximum possible policy improvement over choices of «,
max, [J(ma) — J(7p)] < ¢, where (T is given by:

S||.A T
. W) enlog B CiE 0B o (D4, ms)(s)]
= max 25.[. 3 —
a (1-9) (1—=7) |D| 1—v

where h* is a monotonically decreasing function of a, and h(0) = O(1).

<¢ 0O

Theorem 3.2 quantifies the fundamental tradeoff with distribution constraints: to satisfy a given
(-safety constraint in problems with larger CJ, we would need a larger «. Since the maximum
policy improvement ¢ is upper bounded by h*(«), the policy may not necessarily improve over
the behavior policy if « is large. On the flip side, if we choose to fix the value of a to be small in
hopes to attain more improvement in problems where Cj; is high for all policies, we would end up
compromising on the safety guarantee as { needs to be large for a small o and large C'f;. Thus, in
this case, the policy may not improve over the behavior policy reliably.

Note that a larger value of Cf; need not imply large E__ 5. [D(7, 73)(s)] because the latter does not
involve u(s). CF also measures the dispersion of D(, 75)(s), while the latter performs a mean over
states. In addition, Theorem 3.2 characterizes the maximum possible improvement with an oracle
selection of a, though is not feasible in practice. Thus, when CJ; is large, distribution constraint
algorithms could either not safely improve over g or would attain only a limited improvement with
any possible value of a. Finally, we remark that complementing [32, 39] that discuss failure modes
of distribution constraints with high-entropy behavior policies, Theorem 3.2 quantifies when this
would be the case: this happens when CJy is large.

4 Support Constraints As Reweighted Distribution Constraints

Thus far, we have seen that distribution constraints can be ineffective with heteroskedastic datasets. If
we can impose the distribution constraint such that the constraint strength can be modulated per state,
then in principle, we can alleviate the issue raised in Theorem 3.2 and Section 3.1.

Our key insight is that by reweighting the action distribution in the data before utilizing a distribution
constraint, we can obtain a method that enforces a per-state distribution constraint, which corresponds
to an approximate support constraint. This will push down the values of actions that are outside
the behavior policy support, but otherwise not impose a severe penalty for in-support actions, thus
enabling the policy to deviate from the behavior policy by different amounts at different states. Rather
than having a distribution constraint between 7 and 7 (Eq. 1), if we can impose a constraint between
m and a reweighted version of mg, where the reweighting is state-dependent, then we can obtain an
approximate support constraint. Let the reweighted distribution be 7"¢. Intuitively, if 7(-|s) is within
the support of the m3(-|s), then one can find a reweighting 77°(-|s) such that D(7,7"¢)(s) = 0,
whereas if 7(+|s) is not within the support of 77¢(+|s), then D(m,7"¢)(s) still penalizes m when 7
chooses out-of-support actions, since no reweighting 7”¢ can put non-zero probability on out-of-
support actions. This allows us to handle the failure mode from Section 3: at states with wide behavior
policy, even with a large o, 7 is not anymore constrained to the behavior distribution, whereas at
other “critical” states, where 73 is narrow, a large enough « will constrain 7(-|s) to stay close to
m3(:|s). We call this Reweighting Distribution constraints to Support (ReDS).

4.1 Instantiating the Principle Behind ReDS

One option is to reweight 75 to 7€, and enforce a distribution constraint D (7, 77¢) between 7 and
7"¢. However, this is problematic because the 7"¢ would typically be estimated by using importance
weighting or by fitting a parametric model, and prior work has shown that errors in estimating
the behavior policy [43, 20] using only one action sample often get propagated and lead to poor
downstream performance. For CQL, this issue might be especially severe if we push up the Q-values
under 7"¢, because then these errors might lead to severe Q-value over-estimation.

Abstract idea of CQL (ReDS). Instead, we devise an alternative formulation for ReDS that modifies
the learned policy 7 to 7"¢, such that applying a distribution constraint on this modified policy
imposes a support constraint. Thus, with CQL, now we instead push down the Q-values under 7"¢.
We define 77¢ as a mixture distribution of the learned policy 7 and a reweighted version of the
behavior policy as follows:

CQL, Distributional Constraint ‘ CQL (ReDS), Support Constraint

Policy Density
Policy Density

How are actions modified?

Bad Actions Action Space Action Space

pushed up by CQL Out of support
e actions
Out of support
actions
are pushed

down by cQ.

are pushed
down by ReDS

QValue
QValue

Action Space Action Space

Resulting Q-Values

I Poor actions in support are
L

Bad Actions Good Acllons, H Bad Actions. Good Ac(ions’

T T
Behavior Policy Support @ I Qucrors B Crer Behavior Policy Support o Il Gocsore B Gupe

Figure 3: Comparison between support and distributional constraints: Left: CQL pushes down the
Q-function under the policy 7, while pushing up the function under the behavior policy 7. This means that the
Q-values for bad actions can go up. Right: In contrast, ReDS re-weights the data distribution to push down the
values of bad actions, alleviating this shortcoming.

1 1

me(fs) = gm(ls) + 5 [ms(tfs) - g (m(ls))]. ©)
where ¢(-) is a monotonically decreasing function. We will demonstrate how pushing down the
Q-values under 7"¢ modifies CQL to enable a support constraint while reusing existing components
of CQL that impose a distribution constraint. As shown in Figure 3, the second term in Equation 6
increases the probability of actions that are likely under the behavior policy, but are less likely under
the learned policy (due to g being a decreasing function). We will show in Lemma 4.1 that utilizing
"¢ in CQL enforces a support constraint on 7. Thus, the learned policy 7 can be further away from
7, allowing 7 to assign more probability to good actions that are within the behavior policy support,
even if they have lower probabilities under mg. Section 4.2 illustrates theoretically why pushing down
the Q-values under Eq. 6 approximates a support constraint in terms of how it modifies the resulting
Q-values. For an illustration, please see Figure 3.

How should we pick g in practice? Since we wish to use 77¢ as a replacement for 7 in the
minimization term in the CQL regularizer (Equation 2), we aim to understand how to design the
re-weighting ¢ in practice. Since specifically CQL enforces a distribution constraint by maximizing
the Q-value on all actions sampled from the behavior policy 7g, our choice of g should aim to
counter this effect by instead minimizing the Q-value on “bad” actions within the support of the
behavior policy. Equation 6 quantifies the notion of these “bad” actions using a monontonically
decreasing function g((als)) of the policy probability. In practice, we find it convenient to define g
to be a function of the advantage estimate: Ay(s,a) := Qp(s,a) — Ear[Qo (s, a)], that the policy
7 is seeking to maximize. In fact, if entropy regularization is utilized for training the policy (akin
to most offline RL algorithms), the density of an action under a policy is directly proportional to
exponentiated advantages, i.e., m(als) o« exp(Ay(s,a)). Hence, we choose g(z) = 1/x, such that
glexp(A(s,a))) = exp(—A(s,a)) (a decreasing function).

For the rest, we approximate the product distribution 7(als) - g(7(als)) by fitting a parametric
function approximator pq(a|s). Since py(als) is being trained to approximate a re-weighted version
of the behavior policy, we fit p,, by minimizing using a weighted maximum log-likelihood objective,
as shown in prior work [44, 43]. The concrete form for our objective for training p,; is shown below
(7 is a temperature hyperparameter typically introduced in prior work [44, 43]):

pu(ls) = argmax Espanm,(js)logpy(als) -exp(—Ap(s,a)/7)] @)
The crucial difference between this objective and standard advantage-weighted updates is the dif-
ference of the sign. While algorithms such as AWR [43] aim to find an action that attains a high
advantage while being close to the behavior policy, and hence, uses a positive advantage, we utilize
the negative advantage to mine for poor actions that are still quite likely under the behavior policy.

The final objective for the Q-function combines the regularizer in Eq. 8 with a standard TD objective:

s~D,a~T s~D,a~p

RO =5 (B Qs+ _E (Qea))- B Qea] ®

min Jq(6) = R(6:p) + %Es,a,s/w[(Qe(s, a) — B"Q(s,a))’] (€

4.2 Theoretical Analysis of CQL (ReDS)

Next, we analyze CQL (ReDS), showing how learning using the regularizer in Eq. 8 modifies the
Q-values and justifies our choice of the distribution p in the previous section.

Lemma 4.1 (Per-state change of Q-values.). Let g(a|s) be a shorthand for g(a|s) = g (7 - n(a]s)).
In the tabular setting, the Q-function obtained after one iteration of objective in Eq. 9 is given by:

Qo(s.a) = B"O(s,a) — o~ 2I8) T s(als)g(als) - 2ms(als)
o 7 27g(als)

(10)

where BT ()(s, a) is the Bellman backup operator applied to a delayed target Q-network.

Eq. 10 illustrates why the modified regularizer in Eq. 8 leads to a “soft" support constraint whose
strength is modulated per-state. Since g is a monotonically decreasing function of 7, for state-action
pairs where 7(als) has high values, g(a|s) is low and therefore the Q-value Q(s, a) for such state-
action pairs are underestimated less. Vice versa, for state-action pairs where 7(a|s) attains low values,
g(als) is high to counter-acts the low 7(a|s) values. Also, since 7z(a|s) appears in the denominator,
for out-of-support actions, where 73 (a|s) = 0, 7(a|s) must also assign 0 probability to the actions
for the Q values to be well defined. An illustration of this idea is shown in Figure 9. We can use this
insight to further derive the closed-form objective optimized by ReDS.

Lemma 4.2 (CQL (ReDS) objective.). Assume that for all policies 7 € T1,V(s,a), w(a|s) > 0. Then,
CQL (ReDS) solves the following optimization problem:
- «

max J(m) — 3=y Bear [P0 m)s) + E lo(r-m(@ls)){ms(als) > 0}]) . (A1)
J (7) corresponds to the empirical return of the learned policy, i.e., the return of the policy under the
learned Q-function. The objective in Lemma 4.3 can be intuitively interpreted as follows: The first
term, D (7, 7g)(s), is a standard distribution constraint, also present in naive CQL, and it aims to
penalize the learned policy if it deviates too far away from 7g. ReDS adds an additional second
term that effectively encourages 7 to be “sharp” within the support of the behavior policy (as g is

monotonically decreasing), enabling 7 to potentially put mass on actions that lead to a high J (7).

Specifically, this second term allows us control the strength of the distribution constraint per state: at
states where the support of the policy is narrow, i.e., the volume of actions such that 7g(als) > 0
is small (say, only a single action), the penalty in Equation 51 reverts to a standard distributional
constraint by penalizing divergence from the behavioral policy via D(w, 7g)(s) as the second term
cannot be minimized. At states where the policy mg is broad, the second term counteracts the effect
of the distributional constraint within the support of the behavior policy, by enabling 7 to concentrate
its density on only good actions within the support of 773 with the same multiplier c. Thus even when
we need to set « to be large to stay close to 7wg(+|s) at certain states (e.g., in narrow hallways in the
example in Sec. 3.1), D(m, m3)(s) is not heavily constrained at other states.

In fact, we formalize this intuition below to show that for the best possible value of the hyperparame-
ters appearing in the training objective for CQL (ReDS) (Equation 51), CQL (ReDS) is guaranteed to
outperform the best-tuned version of CQL for any offline RL problem. A proof is in Appendix C.

Lemma 4.3 (CQL (ReDS) formal guarantee). We will add the following guarantee to show that the
policy learned by ReDS for the best possible value of T (Equation 51) and o in CQL (Equation 3)
outperforms the best COL policy. That is, formally we show:

H&i_x J(WRCDS;Q,T) > mo?x J(WCQL;Q)- (12)

5 Experimental Evaluation

The goal of our experiments is to understand how CQL (ReDS) compares to distributional constraint
methods when learning from heteroskedastic offline datasets. In order to perform our experiments,

we construct new heteroskedastic datasets that pose challenges representative of what we would
expect to see in real-world problems. We first introduce tasks and heteroskedastic datasets that we
evaluate on, and then present our results compared to prior state-of-the-art methods. We also evaluate
ReDS on some of the standard D4RL [13] datasets which are not heteroskedastic in and find that the
addition of ReDS, as expected, does not help, or hurt on those tasks.

5.1 Comparison on the D4RL Benchmark

Dataset | BC 10%BC DT AWAC OnestepRL TD3+BC COMBO CQL IQL | Ours
halfcheetah-medium-replay 36.6 40.6 36.6 40.5 38.1 44.6 55.1 455 442 52.3
hopper-medium-replay 18.1 75.9 82.7 37.2 97.5 60.9 89.5 95.0 94.7 | 101.5
walker2d-medium-replay 26.0 62.5 66.6 27.0 49.5 81.8 56.0 772 73.9 85.0
halfcheetah-medium-expert 55.2 92.9 86.8 42.8 934 90.7 90.0 91.6 86.7 89.5
hopper-medium-expert 52.5 1109 107.6 55.8 103.3 98.0 1111 1054 915 | 110.0
walker2d-medium-expert 107.5 109.0 108.1 74.5 113.0 110.1 1033 108.8 109.6 | 112.0
locomotion total || 295.9 491.8 488.4 277.8 494.8 486.1 505 523.5 500.6 | 550.3

Table 1: Performance comparison on the D4RL benchmark. (Top 2 bolded)

Heteroskedastic data is likely to exist in real-world problems such as driving and manipulation,
where datasets are collected by multiple policies that agree and disagree at different states. While
standard benchmarks (D4RL [13] and RLUnplugged [21]) include offline datasets generated by
mixture policies (e.g. the “medium-expert” generated by two policies with different performance),
these policies are trained via RL methods (SAC) that constrain the entropy of the action distribution
at each state to be uniform. To measure heteroskedasticity, we utilize an approximation to CJ: the
standard deviation in the value of D(m,mg)(s) across states in the dataset, using a fixed policy 7
obtained by running CQL. We didn’t use Cj; directly, as it is challenging to compute in continuous
spaces. In Table 3, the standard deviation is lower for the D4ARL antmaze datasets, corroborating our

intuition that these datasets are significantly less heteroskedastic.

5.2 Comparisons on Heteroskedastic datasets Dataset | std max
Heteroskedastic datasets. To stress-test our method and noisy (Ours) 18 253
prior distribution constraint approaches, we collected new biased (Ours) H 9 31

datasets for the medium and large mazes used in the
antmaze navigation tasks from D4RL: noisy datasets,
where the behavior policy action variance differs in differ-
ent regions of the maze, representative of user variability T ple 3: The new antmaze datasets
in navigation, and biased datasets, where the behavior (Ours) are significantly more het-
policy admits a systematic bias towards certain behaviors .00 4-ctic than the standard D4RL
in different regions of the maze, representative of bias to-
wards certain routes in navigation problems. Table 3 shows
that these datasets are significantly more heteroskedastic
to the DARL datasets.

Using these more heteroskedastic datasets, we compare CQL (ReDS) with CQL and IQL [27],
recent popular methods, and two prior methods, BEAR [30] and EDAC [3], that also enforce
support constraints. For each algorithm, including ours, we utilize hyperparameters directly from the
counterpart tasks in D4RL. Due to the lack of an effective method for offline policy selection (see
Fu et al. [14]), we utilize oracle checkpoint selection for every method. We compute the mean and
standard deviation across 3 seeds. Table 2 shows that the largest gap between CQL (ReDS) and prior
methods is on noisy datasets, which are particularly more heteroskedastic (Table 3).

We also compare CQL (ReDS) with recent offline RL algorithms on D4RL, including DT [8],
AWAC [42], onestep RL [5], TD3+BC [16] and COMBO [57]. Table 1 shows that CQL (ReDS)
obtains similar performance as existing distributional constraint methods and outperforms BC-based
baselines. This is expected given that the D4RL datasets exhibit significantly smaller heteroscedastic-
ity, as previously explained. Also, a large fraction of the datasets is trajectories with high returns.
BC using the top 10% trajectories with the highest episode returns already has strong performance.
The previous results compares CQL (ReDS) to baselines in tasks where the MDP states are low-
dimensional vectors. Next, we study vision-based robotic manipulation tasks.

diverse (D4RL) 2 11
play (D4RL) 2 13

datasets. We measure heteroskedastic-
ity using the std and max of D (7, w3)(s)
across states in the offline dataset.

Visual robotic manipulation. We consider two types of manipulation tasks. In the “Pick & Place"
task, the algorithm controls a WidowX robot to grasp an object and place it into a tray located at a test

Task & Dataset || EDAC BEAR CQL IQL INAC RW &AW EQL SQL XQL-C | Ours

medium-noisy 0 0 55 44 0 5 0.0 0.7 4.3 73
medium-biased 0 0 73 48 0 0 6.5 8.0 11.7 74
large-noisy 0 0 42 39 0 10 7.1 29 11.3 53
large-biased 0 0 50 41 0 8 8.5 0.5 7.3 45

Table 2: CQL (ReDS) outperforms prior offline RL methods including methods (IQL, XQL-C),
and prior support constraint methods (BEAR, EDAC, SQL, EQL, RW & AW) on three out of four
scenarios when learning from heteroskedastic data in the antmaze task. The improvement over prior
methods is larger when learning from the noisy datasets, which are more heteroskedactic, as in
Table 3, compared to biased datasets.

Start

Goal
Less Variability More Variability

Figure 4: Examples rollouts in the heteroskedastic bin-sort data. In this task, an offline RL method must
sort objects in front of it into two bins with a dataset that has non-uniform coverage at different states, using
visual input. In the first half of the trajectory, the states exhibit a more narrow action distribution but the second
half admits a more uniform action distribution.

location, directly from raw 128 x 128 x 3 images and sparse 0/1 reward signal. The dataset consists of
behavior from suboptimal grasping and placing policies, and the positions of the tray in the offline
dataset very rarely match the target test location. The placing policies exhibit significant variability,
implying these datasets are heteroskedastic under our definition. We also consider “Bin Sort" task
(see Figure 4), where a WidowX robot is controlled to sort two objects into two separate bins. Here,
heteroskedacity is introduced when sorting objects into the desirable bins. Similar to the Pick &
Place task, the placing policy exhibits significant variability, showing an object placed in the incorrect
bin (e.g., recyclable trash thrown into the non-recyclable bin). However, the grasping policy is more
expert-like grasping the object with low variability. More details in Appendix E.

QM Table 4 presents the results on these tasks. We utilize oracle pol-

icy selection analogous to the antmaze experiments from Table 2.

| Table 4 shows that CQL (ReDS) outperforms CQL attaining a

success rate of about 15.1% for the visual pick and place task,

049 238 L0v 120 whereas CQL only attains 6.5% success. While performance

1 might appear low in an absolute sense, note that both CQL and

! ReDS do improve over the behavior policy, which only attains a

0.45 0.60 0.75 success rate of 4%. Thus offline RL does work on this task, and

Normalized Score utilizing ReDS in conjunction with the standard distributional

0 ca ‘ constraint in CQL does result in a boost in performance with this

heteroskedastic dataset. For the “Bin Sorting", our method out-

performs CQL by 3.5x when learning from more heteroskedastic

datasets. This indicates the effectiveness of our method in settings
with higher heteroskedasticity.

2 Policies

5 Policies

[] cat (Reps)

Figure 5: CQL vs ReDS: IQM nor-
malized score for 10 Atari games. We
consider two dataset compositions.

Task | CcQL CQL (ReDS) | std D(m,mz)(s) max D(m,mg)(s)
Pick & Place 6.5+04 151+ 04 48.7 307.4
Bin Sort (Easy) || 31.24+0.3 314+0.3 7.9 81.6
Bin Sort (Hard) || 6.1 £0.2 23.1+£0.7 59.6 988.3

Table 4: CQL (ReDS) vs CQL on robotic manipulation tasks. CQL (ReDS) outperforms CQL significantly
when learning from more heteroskedastic datasets, as measured by Ci: the standard deviation and the maximum
of D(m,7g)(s) across states.

Atari games. We collect data on 10 Atari games from multiple policies that behave differently at
certain states while having similar actions otherwise. We consider a case of two such policies, and a
harder scenario of five. We evaluate the performance of CQL (ReDS) on the Atari games using the
evaluation metrics from prior works [2, 34]. Figure 5 shows that in both testing scenarios: with the
mixture of two policies (top figure) and the mixture of five policies (bottom figure), CQL (ReDS)
outperforms CQL in aggregate.

To summarize, our results indicate that incorporating CQL (ReDS) outperforms distribution con-
straints with heteroskedastic datasets in a variety of domains.

6 Related Work

Offline Q-learning methods utilize mechanisms to prevent backing up unseen actions [39], by
applying an explicit behavior constraint that forces the learned policy to be “close” to the behavior
policy [23, 53, 44, 49, 53, 30, 28, 27, 52, 15], or by learning a conservative value function [33, 54, 41,
57, 56,47, 24, 53]. Most of these offline RL methods utilize a distribution constraint, explicit (e.g.,
TD3+BC [15]) or implicit (e.g., CQL [33]), and our empirical analysis of representative algorithms
from either family indicates that these methods struggle with heteroskedastic data, especially those
methods that use an explicit constraint. Model-based methods [26, 56, 4, 51, 45, 38, 57] train value
functions using dynamics models, which is orthogonal to our method.

Some prior works have also made a case for utilizing support constraints instead of distribution
constraints, often via didactic examples [30, 29, 39], and devised algorithms that impose support
constraints in theory, by utilizing the maximum mean discrepancy metric [30] or an asymmetric
f-divergences [53] for the policy constraint [53]. Empirical results on D4RL [13] and the analysis
by Wu et al. [53] suggest that support constraints are not needed, as strong distribution constraint
algorithms often have strong performance. As we discussed in Sections 3.2 (Theorem 3.2 indicates
that this distribution constraints may not fail when CF; is small, provided these algorithms are
well-tuned.) and 4, these benchmark datasets are not heteroskedastic, as they are collected from
policies that are equally wide at all states and centered on good actions (e.g., Antmaze domains in
[13], control suite tasks in Gulcehre et al. [21]) and hence, do not need to modulate the distribution
constraint strength. To benchmark with heteroskedastic data, we developed some novel tasks which
may be of independent interest beyond this work, and find that our method ReDS can work well here.

7 Discussion, Future Directions, and Limitations

We studied the behavior of distribution constraint offline RL algorithms when learning from het-
eroskedastic datasets, a property we are likely encounter in the real world. Naive distribution
constraint algorithms can be highly ineffective in such settings both in theory and practice, as they fail
to modulate the constraint strength per-state. We propose ReDS, a method to convert distributional
constraints into support-based constraints via reweighting, and validate it in CQL. A limitation of
ReDS is that it requires estimating the distribution p,; to enforce a support constraint, which brings
about its some additional compute overhead. Additionally, the instantiation of ReDS we develop
in Section 4.1 is specific to methods that utilize a conservative regularizer such as CQL (or related
approaches like COMBO). We clarify that our main contribution in this work is an analysis of when
distributional constraints fail (which we study for AWR and CQL), and developing a principle for
reformulating distributional constraints to approximate support constraints via reweighting. Devising
approaches for enforcing support constraints that do not require extra machinery is a direction for
future work. Understanding if support constraints are less sensitive to hyperparameters or are more
amenable to model election is also a direction for future work.

10

References

[1] Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained policy optimization. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 22-31. IMLR. org,
2017.

[2] Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforce-
ment learning. In International Conference on Machine Learning (ICML), 2020.

[3] An, G., Moon, S., Kim, J.-H., and Song, H. O. Uncertainty-Based Offline Reinforcement
Learning with Diversified Q-Ensemble. arXiv e-prints, art. arXiv:2110.01548, October 2021.

[4] Argenson, A. and Dulac-Arnold, G. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

[5] Brandfonbrener, D., Whitney, W. E., Ranganath, R., and Bruna, J. Offline RL without off-policy
evaluation. CoRR, abs/2106.08909, 2021. URL https://arxiv.org/abs/2106.08909.

[6] Cao, K., Chen, Y., Lu, J., Arechiga, N., Gaidon, A., and Ma, T. Heteroskedastic and imbalanced
deep learning with adaptive regularization. arXiv preprint arXiv:2006.15766, 2020.

[7] Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Bellemare, M. G. Dopamine: A Research
Framework for Deep Reinforcement Learning. 2018. URL http://arxiv.org/abs/1812.
06110.

[8] Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A.,
and Mordatch, I. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

[9] Deng,J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.
[10] Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Georgakis, G., Daniilidis, K., Finn, C., and
Levine, S. Bridge data: Boosting generalization of robotic skills with cross-domain datasets.
arXiv preprint arXiv:2109.13396, 2021.

[11] Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C. R.,
Zhou, Y., et al. Large scale interactive motion forecasting for autonomous driving: The waymo
open motion dataset. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9710-9719, 2021.

[12] Fu,J., Kumar, A., Soh, M., and Levine, S. Diagnosing bottlenecks in deep Q-learning algorithms.
arXiv preprint arXiv:1902.10250, 2019.

[13] Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[14] Fu, J., Norouzi, M., Nachum, O., Tucker, G., ziyu wang, Novikov, A., Yang, M., Zhang,
M. R., Chen, Y., Kumar, A., Paduraru, C., Levine, S., and Paine, T. Benchmarks for deep
off-policy evaluation. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=kWSeGEeHvFS.

[15] Fujimoto, S. and Gu, S. S. A minimalist approach to offline reinforcement learning. arXiv
preprint arXiv:2106.06860, 2021.

[16] Fujimoto, S. and Gu, S. S. A minimalist approach to offline reinforcement learning. CoRR,
abs/2106.06860, 2021. URL https://arxiv.org/abs/2106.06860.

[17] Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018.

[18] Fujimoto, S., van Hoof, H., and Meger, D. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning (ICML), pp. 15871596,
2018.

[19] Garcia, J. and Ferndndez, F. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437-1480, 2015.

[20] Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. Emaq: Expected-max g-learning operator
for simple yet effective offline and online rl. In International Conference on Machine Learning,
pp- 3682-3691. PMLR, 2021.

11

[21] Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Colmenarejo, S. G., Zolna, K., Agarwal,
R.., Merel, J., Mankowitz, D., Paduraru, C., et al. Rl unplugged: Benchmarks for offline
reinforcement learning. 2020.

[22] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,
A., Abbeel, P.,, and Levine, S. Soft actor-critic algorithms and applications. Technical report,
2018.

[23] Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C., Lapedriza, A., Jones, N., Gu, S., and
Picard, R. Way off-policy batch deep reinforcement learning of implicit human preferences in
dialog. arXiv preprint arXiv:1907.00456, 2019.

[24] Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline r1? arXiv preprint
arXiv:2012.15085, 2020.

[25] Kalashnikov, D., Irpan, A., Pastor, P, Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E.,
Kalakrishnan, M., Vanhoucke, V., et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pp. 651-673, 2018.

[26] Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. Morel: Model-based offline
reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

[27] Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement learning with implicit g-learning.
arXiv preprint arXiv:2110.06169, 2021.

[28] Kostrikov, 1., Tompson, J., Fergus, R., and Nachum, O. Offline reinforcement learning with
fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

[29] Kumar, A. Data-driven deep reinforcement learning. https://bair.berkeley.edu/blog/
2019/12/05/bear/, 2019. BAIR Blog.

[30] Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. Stabilizing off-policy g-learning via
bootstrapping error reduction. In Advances in Neural Information Processing Systems, pp.
11761-11771, 2019.

[31] Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing Off-Policy Q-Learning via Bootstrap-
ping Error Reduction. arXiv e-prints, art. arXiv:1906.00949, June 2019.

[32] Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing off-policy g-learning via bootstrapping
error reduction. 2019. URL http://arxiv.org/abs/1906.00949.

[33] Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative g-learning for offline reinforce-
ment learning. arXiv preprint arXiv:2006.04779, 2020.

[34] Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Implicit under-parameterization inhibits data-
cfficient deep reinforcement learning. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=09bnihsF{XU.

[35] Kumar, A., Hong, J., Singh, A., and Levine, S. Should i run offline reinforcement learning or
behavioral cloning? In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=AP1MKT37r].

[36] Lange, S., Gabel, T., and Riedmiller, M. Batch reinforcement learning. In Reinforcement
learning, pp. 45-73. Springer, 2012.

[37] Laroche, R., Trichelair, P., and Combes, R. T. d. Safe policy improvement with baseline
bootstrapping. arXiv preprint arXiv:1712.06924, 2017.

[38] Lee, B.-1., Lee, J., and Kim, K.-E. Representation balancing offline model-based reinforcement
learning. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=QpNz8r_Ri2Y.

[39] Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[40] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[41] Nachum, O., Dai, B., Kostrikov, I., Chow, Y., Li, L., and Schuurmans, D. Algaedice: Policy
gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[42] Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforcement learning with
offline datasets. CoRR, abs/2006.09359, 2020. URL https://arxiv.org/abs/2006.09359.

12

[43] Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforcement learning with
offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[44] Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression: Simple and
scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

[45] Rafailov, R., Yu, T., Rajeswaran, A., and Finn, C. Offline reinforcement learning from images
with latent space models. Learning for Decision Making and Control (L4DC), 2021.

[46] Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021, 2021.

[47] Rezaeifar, S., Dadashi, R., Vieillard, N., Hussenot, L., Bachem, O., Pietquin, O., and Geist, M.
Offline reinforcement learning as anti-exploration. arXiv preprint arXiv:2106.06431, 2021.

[48] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization.
In International conference on machine learning, pp. 1889-1897, 2015.

[49] Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdolmaleki, A., Neunert, M., Lampe, T.,
Hafner, R., and Riedmiller, M. Keep doing what worked: Behavioral modelling priors for
offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

[50] Singh, A., Yu, A., Yang, J., Zhang, J., Kumar, A., and Levine, S. Cog: Connecting new skills to
past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.

[51] Swazinna, P., Udluft, S., and Runkler, T. Overcoming model bias for robust offline deep
reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

[52] Wang, Z., Novikov, A., Zoma, K., Springenberg, J. T., Reed, S., Shahriari, B., Siegel, N., Merel,
J., Gulcehre, C., Heess, N., et al. Critic regularized regression. arXiv preprint arXiv:2006.15134,
2020.

[53] Wu, Y., Tucker, G., and Nachum, O. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

[54] Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. Bellman-consistent pessimism for
offline reinforcement learning. Advances in neural information processing systems, 34, 2021.

[55] Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel, P., Lazaric, A., and Pinto, L. Don’t
change the algorithm, change the data: Exploratory data for offline reinforcement learning.
arXiv preprint arXiv:2201.13425, 2022.

[56] Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. Mopo:
Model-based offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.

[57] Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S., and Finn, C. Combo: Conservative
offline model-based policy optimization. arXiv preprint arXiv:2102.08363, 2021.

13

