-Supplementary Material-ConDaFormer: Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding

Anonymous Author(s) Affiliation Address email

1 S1 Ablation of window size

As stated in the main paper, our proposed disassembled window attention offers a notable advantage 2 over the vanilla 3D cubic window attention by significantly reducing computational effort, enabling 3 the potential enlargement of the receptive field through an increase in the window size. However, we 4 also acknowledge a limitation of our ConDaFormer, which is the degradation in performance when 5 utilizing a larger attention window. In this section, we present detailed ablation results to further 6 investigate this issue. To assess the impact of window size on the performance of ConDaFormer, 7 we conduct experiments using varying window sizes: $\{0.32m, 0.48m, 0.64m\}$, and present the 8 corresponding results in Table S1. It is worth noting that as the window size expands, the training 9 loss (Loss_t) gradually decreases, and the performance on the training set ($mIoU_t$) steadily improves. 10 However, contrary to expectations, the performance on the validation set experiences a decline, 11 indicating the occurrence of over-fitting. This phenomenon aligns with the observation made in 12 13 LargeKernel [1] when increasing the convolutional kernel size. The introduction of a larger attention 14 window incorporates additional positional embeddings, potentially resulting in optimization difficulties and leading to over-fitting. To address this issue, future research can explore techniques such 15 as self-supervised or supervised pre-training on large-scale datasets. These approaches have shown 16 promise in mitigating over-fitting and improving generalization performance. By leveraging such 17 techniques, it is possible to enhance the robustness of ConDaFormer and enable the utilization of 18 larger attention windows without suffering from performance degradation. 19

20 S2 Ablation of position encoding

To enhance the modeling of crucial position information necessary for self-attention learning, we 21 employ the contextual relative position encoding (cRPE) scheme introduced by Stratified Trans-22 former [2]. In this context, we compare the performance of cRPE with two alternative position 23 encoding schemes: Swin [3], wherein the learned relative position bias is directly added to the simi-24 25 larity between query and key, and PTv2 [4], which generates the position bias through an MLP that takes the relative position as input and subsequently adds it to the similarity between query and key. 26 As shown in Table S2, cRPE outperforms the other schemes in two out of three metrics, indicating 27 the significance of contextual features in effectively capturing fine-grained position information. 28

Table S1. Ablation of window size.						Table S2. Ablation of position encoding.				
Window	mIoU	mAcc	OA	$Loss_t$	$mIoU_t$]	Method	mIoU	mAcc	OA
0.32m	72.6	78.4	91.6	0.52	95.8		cRPE	70.7	76.9	90.6
0.48m	72.1	78.3	91.5	0.47	96.0		Swin	69.6	76.1	90.6
0.64m	71.6	78.4	91.4	0.45	96.1]	PTv2	70.1	76.4	91.2

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

29 **References**

- [1] Yukang Chen, Jianhui Liu, Xiaojuan Qi, Xiangyu Zhang, Jian Sun, and Jiaya Jia. Scaling up kernels in 3d
 cnns. Adv. Neural Inform. Process. Syst., 2022.
- [2] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia.
 Stratified transformer for 3d point cloud segmentation. In *IEEE Conf. Comput. Vis. Pattern Recog.*, pages 8500–8509, 2022.
- [3] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
 transformer: Hierarchical vision transformer using shifted windows. In *Int. Conf. Comput. Vis.*, 2021.
- [4] Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2: Grouped
 vector attention and partition-based pooling. In *Adv. Neural Inform. Process. Syst.*, 2022.