Supplement

These appendices supplement the paper Gradient Free Kernel Stein Discrepancy. The proofs for the-
oretical results stated in the main text are contained in Appendix A. Theoretical analysis of stochastic
gradient estimators for use in the context of Stein Variational Inference is contained in Appendix B,
as advertised in Section 4.2 of the main text. All additional details related to empirical assessment
are contained in Appendix C.

A Proof of Results in the Main Text

This appendix contains proofs for all novel theoretical results reported in the main text.

Proof of Proposition 1. First we show that the integral in the statement is well-defined. Since A
and its first derivatives are bounded, we can define the constants C := sup{||h(z)| : € R?} and
Cy = sup{|V - h(x)| : * € R?}. Then

/Sp7qh|dp—/‘%[V~h+h-Vlogq}’ dp:/|V-h+h-Vlogq| dq
< cl+co/||wogq|| dg < oo,

so indeed the integral is well-defined. Now, let B, = {z € R?: ||z|| <7}, S, = {z e R? : ||z|| =
7}, and t(r) := sup{q(x) : x € S,.}, so that by assumption r¢=1¢t(r) — 0 as 7 — oc. Let L p(z) =
lifz € Band 0if 2 ¢ B. Then [ S, 4h dp =lim, s [ 1p,Sp¢h dp and, from the divergence
theorem,

/IlBTSp)qhdp:/1137,%[V-h+h-v10gq] dp

gV -h+h-Vq| dz

r

V - (gh) dz

r

ST

27Td/2 d—1 r—o0 0

gh-ndz <t(r) x I‘(d/2)r

r

7

I
e SN

as required. O

Proof of Proposition 2. Since k and its first derivatives are bounded, we can set

d
ct = sup Vk(z, ), CY := sup Z(& ® 0;)k(z, ).
i=1

z€RC z€RY

From Cauchy-Schwarz and the reproducing property, for any f &€ H(k) it holds that
[F @) =1 kG 2)nm | < 1l lIEC 2w = 1 12 v/ K 2), kG @) =
| fll2¢(k)\/k(z, ). Furthermore, using the fact that & is continuously differentiable, it can be

shown that |0; f (z)| < || f|l2(x) v/ (0i ® 0;)k(x, x); see Corollary 4.36 of Steinwart and Christmann
[2008]. As a consequence, for all h € H(k)? we have that, for all 2 € R?,

d d
(@)l = | D hi(@)? < 4| Y k@, @) [1hill2 g = CEllAll2ws

i=1 i=1

d
>0, hi(x)| <

i=1

V)| =

d
> V(0 @ 00k, 2) | hillagcey | < CFlIB3eaye-
1=1
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To use analogous notation as in the proof of Proposition 1, set Co := C§||hl3 ()2 and C :=
CFl|hll3¢(ky2- Then, using Holder’s inequality and the fact that (a + b)® < 2°71(a® + b°) with
8 =a/(a—1), we have

1Spahll s im) =/|sp,qh|dﬂ=/ ‘%[v-mh-wogq}‘ dr

< (/ <%> dﬂ)& </(V-h+h-VIqu)au] dw) ’
1 o % _a _a Ta
<2t ([ (4) an)" (cF 4 [ 19t0gal ™ ar)
AN =
< 2% |1y ( / (5) dw) (<cl>a (e [l ldw)

as required. O

To prove obtain explicit computable formulae for the GF-KSD, two intermediate results are required:
Proposition 4. Let k and 7 satisfy the preconditions of Proposition 2. Then the function

R >z f(z):= ;%[Vgck(ac7 )+ k(z,-)Viog q(z)] ©)

takes values in H(k)?, is Bochner m-integrable and, thus, & := [ f dr € H(k)%

Proof. Since k has continuous first derivatives  — (0; ® 0;)k(x, z), Lemma 4.34 of Steinwart and
Christmann [2008] gives that (0; ® 1)k(z, ) € H(k), and, thus f € H(k)%. Furthermore, f : R? —
H(k)? is Bochner 7r-integrable since

1@y anta) = | %wzkm )+ k{2, )V log ()| pugeye ()

</< ) > (/IIV k(z, ) + k(x 7.)Vlogq(a:)”7ﬁ)d dﬁ(z)>a
7io) d”) (“’k)“ () [ 19 logal 1 ar) 7

where we have employed the same C§ and C¥ notation as used in the proof of Proposition 2. Thus,
from the definition of the Bochner integral, £ = [ f d exists and is an element of H(k)? O

IN

Q=

IN

2

Proposition 5. Let k and 7 satisfy the preconditions of Proposition 2. Then

Dy q(m)? = / / x)qy) k(. y) dr(z)dn(y) @
where

kq(z,y) = Vi - Vyk(z,y) + (Vok(z,y), Vylogq(y)) + (Vyk(z,y), V. log g(x))
+ k(z,y)(Vzlogq(x), Vy, log q(y)). )

Proof. Let f be as in Equation (3). From Proposition 4, { = [ f dr € H(k)<. Moreover, since f is
Bochner m-integrable and T'f = (h, f)3 (1)« is a continuous linear functional on H(k)?, from basic
properties of Bochner integrals we have T7¢ =T [ f dm = [ T'f dr. In particular,

e ) pays = <h / j% (Voh(z, ) + k(z, )V log () dw<w>>
2)

H(k)d

Q

(Valh, (2, ) pgmya + (h k()30 V og ()] drr(x)

»Q’E

[
/3

x) + h(z) - Vlogg(z)] dn(z) = /anh dn(zx)
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which shows that ¢ is the Riesz representer of the bounded linear functional h — [ S, 4h dm on
H(k)?. 1t follows from Cauchy—Schwarz that the (squared) operator norm of this functional is

Dy (1) = €120 = (6:EDpys = < / % (Vak(z,) + k(. )V logq(x)] dr(z),

q(y)
19,0+ bl )V o) dw<y>>

/ / q(x) Z(@y/) z,y) dr(z)dr(y)

as claimed. Od

H (k)4

For concreteness, we instantiate Proposition 5 in the specific case of the inverse multi-quadric kernel,
since this is the kernel that we recommend in Section 2.2:

Corollary 1 (Explicit Form). For p, q, and 7 satisfying the preconditions of Proposition 2, and k
the inverse multi-quadric kernel in Equation (2), we have that

// { AB(B + 1)z — yl|* o8 [dJr (Vlogg(x) — Vlogg(y),z — y)
(02 + ||z — y[|2)5+2 (0% + [lz — y[[2)1+7

(Vlog g(x), Vlogq(y))
Tyt ©

P7q

Proof of Corollary 1. First we compute derivatives of the kernel & in Equation (2):

25
Vi k ’ = ‘ _
R FETIEEA
26
k = —
Vyk(z,y) (02 1 HCC—yHQ)B+1 (x —vy)
Vo Vyh(zy) = 2B+ Dz =yl 28d

(02 +llz = yl2)° (02 + [l — )"
Letting u(z) := V log ¢(x) form a convenient shorthand, we have that

kQ(aj:y) = VI : vyk(l‘7y) + (ka(x7y),u(y)) + <Vyk(a:,y)7u(x)> + k(Ly)(u(a:),u(y))

_ 4B+ Dz —yl? o5 | 4t (ul@) —u(y), 2 —y) (u(z), uly))
(02 + [lo — y|2)**? (02 + lz — y|2)+* (02 + [z — y|2)°
which, combined with Proposition 5, gives the result. O

In addition to the results in the main text, here we present a spectral characterisation of GF-KSD.
The following result was inspired by an impressive recent contribution to the literature on kernel
Stein discrepancy due to Wynne et al. [2022], and our (informal) proof is based on an essentially
identical argument:

Proposition 6 (Spectral Characterisation). Consider a positive definite isotropic kernel k, and recall
that Bochner’s theorem guarantees k(x,y) = [ e~*>*=Y)du(s) for some i € P(R®). Then, under
regularity conditions that we leave implicit,

2

D,y(m? = [ H [ 55 {7 e Vate) — ise e o)) aut.

The Fourier transform Vq of Vg is defined as [ e “57)Vq(z) dz, and a basic property of the
Fourier transform is that the transform of a derivative can be computed using the expression
is [ e~ g(z) dz. This implies that the inner integral in (7) vanishes when 7 and p are equal.
Thus we can interpret GF-KSD as a quantification of the uniformity of dw/dp, with a weighting
function based on the Fourier derivative identity with regard to Vgq.
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Proof of Proposition 6. From direct calculation, and assuming derivatives and integrals can be in-
terchanged, we have that

Vok(z,y) = — / ise ") dp(s), ®)
V() = [ s dpts), ©)
V. Vyk(z,y) = / Jsl2e=#5a=2 dps). (10)
Now, let
1 . L q(z) ( _
_ z(s,x}v _ i(s,T) i(s,x Vl _ —i(s,x)
xT,S — 3 € xT 15€ T O X ZS@
n(e,9) = o5 { a() a0} =T {e ga() }

and note through direct calculation and Equations (8) to (10) that

/77(% s) - n(y, s) du(s)
_ MM ||| +is - Vlog q(z) ST .

_a(@) aly) { Vo - Vyk(z,y) + Vyk(z,y) - Viogq(z) }
p(z) p(y) +Vek(z,y) - Vlegq(y) + k(z,y)Viogg(z) - Viogq(y)
_ 4@ ay), (©.9).

p(x) p(y)
Thus, integrating with respect to 7, and assuming that we may interchange the order of integrals, we

have that
(2,5 dn(@)|| s 2,8) - 1(,5) dn(2)dn(y) dpu(s)
K = ]
- / / / 0z, s) - 1(5,5) dpu(s) dr(z)dn(y)

— [ B85k 2.9) dn(aint) = Dy

p(x) ply
where the final equality is Proposition 5. This establishes the result. O

To prove Theorem 1, two intermediate results are required:

Proposition 7. For an element 7 € P(R?), assume Z := [(q/p) dm € (0, 00). Assume that k and
7 satisfy the preconditions of Proposition 2, and that [ ||V log q||®/®=1)(q/p) dr < cc. Let 7 :=
(qm)/(pZ). Then 7 € P(RY) and

D, 4(m) = ZDg (7).

Proof. The assumption Z € (0,00) implies that 7 € P(RY).  Furthermore, the assumption
[V 1ogq||*/(@=Y(g/p) dr < oo implies that [ ||V loggq||*/(*~1) d7 < co. Thus the assump-
tions of Proposition 2 are satisfied for both 7 and 7, and thus both Dy, ;(7) and D, 4(7) are well-
defined. Now, with ¢ as in Proposition 4, notice that

M xZ,- Z,:- (0] X (X
[ 48 19k + ko) Vloga(o) an(e)

Dp,q(ﬂ') = Hf”?—t(k)s =

H(k)d
= H / [VEk(z, ) + k(z, - )Viog q(x)] Zd7(z) = 7Dy q4(7),
. H(k)d
as claimed. O
Proposition 8. Ler f: RY — [0,00) and 7 € P(RY). Then [ f*dr > 0= [ fdr >0, for all

a € (0,00).
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Proof. From the definition of the Lebesgue integral, we have that [ f* dr = sup{[sdr:
s a simple function with 0 < s < f*} > 0. Thus there exists a simple function s =Y _" s;1g,
with 0 < s < f* and f s dm > 0. Here the s; € R and the measurable sets S; C R? are disjoint.
In particular, it must be the case that at least one of the coefficients s; is positive; without loss of
generality suppose s; > 0. Then 5 := s}/alsl is a simple function with 0 < § < fand [ 5 dr > 0.
It follows that [ f dm = sup{ [ s dr : s a simple function with 0 < s < f} > 0. O

Proof of Theorem 1. Since [(q/p)* dmy, € (0,00) and ¢/p > 0, from Proposition 8 we have, for
each n, that Z, := [ ¢/p dm, > 0. Thus the assumptions of Proposition 7 are satisfied by &k and
each 7, which guarantees that D, ;(7,,) = Z,Dg () where 7, := (qm,,)/(pZ,) € P(RY).

Now, since W1 (my, p; ¢/p) — 0, taking f = 1 we obtain Z,, = [ fq/pdm, — [ fq/pdp=1.In
addition, note that

Wi(Tn,q) = S /f dm, — ./f dq‘
:L(S}J)I;I /f(0)+[f(a:) £(0)] 7, (x /f — f(0)] dg(=)
= / [f(z) = f(0)] dFfn(z) — / [f(z) — f(0)] dg(z)
el

Thus, from the triangle inequality, we obtain the bound

Wi(7n,q) = sup /fdﬁn —/qu’
L(f)<1
£(0)=0
= sup / fq dm, /ﬁdp‘
L(f)<1 p
£(0)=0
< sup /fqd /ﬁdﬂnJrsup /ﬁdﬂ'n—/ﬁdp‘
L(f)<1 p L(f)<1 p p
f(0)=0 £(0)=0
1-2,
= ( > /_ dﬂ-n +Wl (T(Tupv q)
Zn L(f)<1 D
S———"1(0)=0 ~——
—0

(%)

as n — oo. For (), since ¢/p > 0, the supremum is realised by f(z) = ||z|| and

= IMTFI 00
)= [ el 55 dmaa) <

Thus we have established that W (7,,, ¢) — 0. Since Vlog ¢ is Lipschitz with [ ||V logg|? dg <
oo and k has continuous and bounded second derivatives, the standard kernel Stein discrepancy has
1-Wasserstein convergence detection [Proposition 9 of Gorham and Mackey, 2017], meaning that
W1 (@, q) — 0implies that Dy 4(7,,) — 0 and thus, since Z,, — 1, D}, 4(m,,) — 0. This completes
the proof. O

To prove Proposition 3, an intermediate result is required:

Proposition 9. Let k(x,y) = ¢(x — y) be a kernel with ¢ twice differentiable and let q € P(R?)
with V log q well-defined. Then kq(z,z) = —Ap(0) + ¢(0)||Vlog q(x)||?, where A =V -V and
kq, was defined in Proposition 5.

17



Proof. First, note that we must have V¢(0) =0, else the symmetry property of k& would be
violated. Now, V;k(z,y) = (Vo)(x —y), Vyk(z,y) = —(Vé)(x —y) and V, - Vyk(z,y) =
—A¢(z —y). Thus Viok(z,y)|,_, = Vyk(z,y)l,_, =0 and Vu -V k(z,y)|,_, = —A¢(0).
Plugging these expressions into Equation (5) yields the result. O

Proof of Proposition 3. Let k, be defined as in Proposition 5. From Cauchy—Schwarz, we have that
kq(z,y) < \/ke(x,2)\/kq(y,y), and plugging this into Proposition 5 we obtain the bound

q(z)
D77r§/ k,(z,x) dr(x (11)
p Q( ) p(I) q( ) ( )

For a radial kernel k(x,y) = ¢(x — y) with ¢ twice differentiable, we have ¢(0) > 0 (else k must

be the zero kernel, since by Cauchy—Schwarz |k(x,y)| < /k(z,z)\/k(y,y) = ¢(0) forall z,y €
R9), and k,(z,x) = —A¢(0) + ¢(0)||V log g(x)||? (from Proposition 9). Plugging this expression
into Equation (11) and applying Jensen’s inequality gives that

Dyg(r? < [ 255 [-86(0) + 60)| T oga(a) ] d(o)

Now we may pick a choice of p, ¢ and (7, )nen (7 N p) for which this bound can be made arbi-
trarily small. One example is ¢ = N(0, 1), p = N(0, 02) (any fixed o > 1), for which we have

D, 4(r)? < / o2 exp(—y[2l]?) [~ A(0) + 6(0)[]?] dn(x)

where v = 1 — =2 > 0. Then it is clear that, for example, the sequence 7, = d(ne1) (where e; =
[1,0,..., O}T) satisfies the assumptions of Proposition 2 and, for this choice,

D;D,q(ﬂ'n)2 <o’ exp(—’}/’n?) [_A(b(()) + 45(0)”2] -0

and yet 7, 4 p, as claimed. O

Proof of Theorem 2. Since inf,cga q(z)/p(z) > 0, for each n we have Z, := [¢/pdm, >0
and, furthermore, the assumption [ ||Vloggq|/*/(“~Y(g/p) dm, < co implies that
[ IV 1ogg||*/@=Y dm, < co. Thus the assumptions of Proposition 7 are satisfied by & and
each 7, and thus we have D, ,(7,) = Z,,D.4(7) where 7, := (q7,,)/(pZy) € P(RY).

From assumption, Z,, > inf cra ¢(z)/p(z) is bounded away from 0. Thus if D, 4(7,) — O then

Dy ¢(7n) — 0. Furthermore, since ¢ € Q(R?) and the inverse multi-quadric kernel & is used, the
standard kernel Stein discrepancy has convergence control, meaning that D, ,(7,) — 0 implies

Tn i q [Theorem 8 of Gorham and Mackey, 2017]. It therefore suffices to show that 7, g q
implies 7, 4 p.

From the Portmanteau theorem, 7, 4 pis equivalent to f g dm, — f g dp for all functions g which
are continuous and bounded. Thus, for an arbitrary continuous and bounded function g, consider

f = gp/q, which is also continuous and bounded. Then, since 7, 4 q, we have (again from the
Portmanteau theorem) that Z,;* [ g dm, = [ f d7, — [ f dg = | g dp. Furthermore, the specific
choice g = 1 shows that Z, ! — 1, and thus J g dm, — [ g dp in general. Since g was arbitrary,

we have established that 7, N p, completing the proof. O

To prove Theorem 3, an intermediate result is required:

Proposition 10. Let Q € P(R?) and let k,: R xR — R be a reproducing kernel with
[ kg(z,-) dg =0 for all z € R Let (z,)nen be a sequence of random variables independently
sampled from q and assume that | exp{~vk,(z,z)} dg(z) < oo for some v > 0. Then

Dy, (% 3 5(;01»)) =0

almost surely as n — oc.
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Proof. This is Lemma 4 in Riabiz et al. [2022], specialised to the case where samples are indepen-
dent and identically distributed. Although not identical to the statement in Riabiz et al. [2022], one
obtains this result by following an identical argument and noting that the expectation of kq(z;, x;)
is identically O when ¢ # j (due to independence of x; and x;), so that bounds on these terms are
not required. O

Proof of Theorem 3. Since m,, has finite support, all conditions of Theorem 2 are satisfied. Thus it is
sufficient to show that almost surely D,, ,(,,) — 0. To this end, we follow Theorem 3 of Riabiz et al.
[2022] and introduce the classical importance weights w; = p(x;)/q(x;), which are well-defined
since ¢ > 0. The normalised weights w; = w; /Wy, W,, := ijl w; satisfy 0 < w4, ..., %, and
wy + - -+ + W, = 1, and thus the optimality of w*, together with the integral form of the GF-KSD
in Equation (4), gives that

n

Dqu (ZUJ(RIJ) < Dp,q <Z ('731 ) = szq($laxj)

=1 5=

1 ! 1<
:(EW,L> Dy (52‘““)) (12)

From the strong law of large numbers, almost surely n~'W,, — [ g dg = 1. Thus it suffices to

show that the final term in Equation (12) converges almost surely to 0. To achieve this, we can
check the conditions of Proposition 10 are satisfied.

Since g and h(-) = S, 4k(z, -) satisfy the conditions of Proposition 1, the condition [ k4(z,-) dg =
0 is satisfied. Let ¢(2) = (1 +||2]|>)~? so that k(z,y) = ¢(x — ) is the inverse multi-quadric
kernel. Note that ¢(0) = 1 and A$(0) = —d. Then, from Proposition 9, we have that k,(x, z) =
—AG(0) + 6(0)]|V log gl]> = d + |V log g|/>. Then

/ exp{kq(z, 2)} dg(z) = exp{rd} / exp{7]|V log >} dg < oo,

which establishes that the conditions of Proposition 10 are satisfied and completes the proof. O

B Stein Variational Inference Without Second-Order Gradient

This section contains sufficient conditions for unbiased stochastic gradient estimators to exist in the
context of Stein Variational Inference; see Section 4.2 of the main text. The main result that we
prove is as follows:

Proposition 11 (Stochastic Gradients). Let p,q, R € P(R%) and T? : R? — R? for each 6 € RP.
Let 0 — VT (x) be bounded. Assume that for each ¥ € RP there is an open neighbourhood Ny C

RP such that
6 T 2
/eseu]\lz)ﬁ (%) dR(z) < oo,

[ oty

(a)
()
[ s ar §§§||v2logr<T9<w>>| dR(z) < oo,

0eNy P (

U\ G 1og (9 (2) | dR(2) < oo,

for each of v € {p,q}. Let k be the inverse multi-quadric kernel in Equation (2) and let u(z,y)
denote the integrand in Equation (6). Then

VoD, (m9)*> = E ZVgu (T(x;), T (x;))
#J
where the expectation is taken with respect to independent samples x1, . ..,x, ~ R.
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The role of Proposition 11 is to demonstrate how an unbiased gradient estimator may be constructed,
whose computation requires first-order derivatives of p only, and whose cost is O(n?). Although
the assumption that 6 — V,T?(x) is bounded seems strong, it can typically be satisfied by re-
parametrisation of § € RP.

To prove Proposition 11, we exploit the following general result due to Fisher et al. [2021]:

Proposition 12. Let R € P(RP). Let © C R? be an open set and let u : R4 x R4 — R, T : R? —
RY 0 € O, be functions such that, for all 9 € ©,

AL [f [u(T? (), T%(y))] dR(z)dR(y) < oo;
(A2) there exists an open neighbourhood Ny C © of O such that

/ / sup [[Vou(T(z). 7°(s)] dR()AR() < .

Then F(0) := [[u(T%(z),T(y)) dR(z)dR(y) is well-defined for all § € © and

VoF () = 1) > Vou(T(x), T%(x5)) |
i#]
where the expectation is taken with respect to independent samples x1, . ..,x, ~ R.
Proof. This is Proposition 1 in Fisher et al. [2021]. O

Proof of Proposition 11. In what follows we aim to verify the conditions of Proposition 12 hold for
the choice u(z, y) = kq(x,y), where k, was defined in Equation (5).

(Al): From the first line in the proof of Proposition 4, the functions S, k(z,-), x € R%, are
in H(k)?. Since (z,y) — u(z,y) = (Sp.ok(z, ), Sp.ok(y, )3 (k)e is positive semi-definite, from

u(z,y)| < yJu(z,z)y/u(y,y). Thus

/‘ (T (2), T (4))| dR(z)AR(y) = / ju(z )] ATSR(x)ATLR(y)

< ([ viwa deRu))z

Since k(z,y) = ¢(x — y), we have from Proposition 9 that

_ (1) i - og q(z)||?
e, = (48 [-2000) + 60}V og (o)

d
/ V(e z) dTR(x) < 4/ / (%)2 deR\/ / | = A6(0) + ¢(0) ]|V log g||?| dT4R

which is finite by assumption.

(A2): Fix z,y € R and let R, (0) := q(T%(x))/p(T°(y)). From repeated application of the product
rule of differentiation, we have that

Vou(T? (), T’ (y)) = kqo(T’(2), T°(y)) Vo [Ra(0) Ry (6)] + Ru(0) Ry (9)Voko(T? (), T (y)) .
(%) ()
Let by(z) := Vlogp(z), by(z):=Vlegq(z), b(z):=by(z)—by(x), and [V, T%(z));; =
(8/06;)T7 (). In what follows, we employ a matrix norm on R*? which is consistent with the Eu-

clidean norm on R%, meaning that ||V T (x)b(T%(x))| < [|[VeT?(z)||||b(T°(z))|| for each § € ©
and 2 € RY. Considering the first term (), further applications of the chain rule yield that

Vo [Ro(0)Ry(9)] = Rau(0)Ry(0)[VoT” (2)b(T*(x)) + VoI’ (y)b(T* (y))]
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and from the triangle inequality we obtain a bound
Ve [Ra(O)Ry (O] || < Ra(0)Ry (6) [IIV6T? () [|6(T° ()| + Vo T () IB(T° (y))]] -

Let < denote inequality up to an implicit multiplicative constant. Since we assumed that | V7 (z)||
is bounded, and the inverse multi-quadric kernel % is bounded, we obtain that

()] S Ra(O) Ry (0) [IID(T (@) + [16(T° )] -

Similarly, from Equation (5), and using also the fact that the inverse multi-quadric kernel k has
derivatives or all orders [Lemma 4 of Fisher et al., 2021], we obtain a bound

IVokq(T%(x), T* (W) < [1+ 1bg(T @)l + V0o (T (@))II] [1 + [1bg(T° ())]I]
+ (L4 [log (T ) + Vg (TP )] [1 + 1bg(T? ()]

which we multiply by R, (0)R,(6) to obtain a bound on (*x). Thus we have an overall bound

IVou(T (2), T* )| S Ra(0) Ry (8) { [1 + [1bg (T (2)) | + Voo (T° @) [] [1 + [1bg(T° ()]
+ L4 by (T ()| + 10 (T )] [L+ 1 (T° ()]} -

Substituting this bound into [[ supgey, [|Vou(T?(x), T%(y))|| dR(z)dR(y), and factoring terms
into products of single integrals, we obtain an explicit bound on this double integral in terms of the
following quantities (where r € {p, q}):

/ sup R.(0) dR(x)

6Ny

[ sup Bul6)1b(1°(@))] dR(o)

€Ny
[ s RO)IV5 (2 @) dR ()
6€ Ny
which we have assumed exist.

Thus the conditions of Proposition 12 hold, and the result immediately follows. O

C Experimental Details

These appendices contain the additional empirical results referred to in Section 3, together with full
details required to reproduce the experiments described in Section 4 of the main text.

C.1 Detection of Convergence and Non-Convergence

This appendix contains full details for the convergence plots of Figure 1. In Figure 1, we considered
the target distribution

3
p(e) = 3 wil (s i, 02),
=1

where N (z; 1, 02) is the univariate Gaussian density with mean ;. and variance o2, The parame-
ter choices used were (w1, we, w3) = (0.375,0.5625,0.0625), (11, 4o, p3) = (—0.4,0.3,0.06) and
(0f,03,0%) = (0.2,0.2,0.9).

The approximating sequences considered were location-scale sequences of the form L, u, where
L"(z) = an + bpx for some (an)nen and (b, )nen and u € P(R). For the converging sequences,
we set u = p and for the non-converging sequences, we set v = N(0,0.5). We considered three
different choices of (a,,)nen and (b, )nen, one for each colour. The sequences (a,, )nen and (b, )nen
used are shown in Figure S1. The specification of our choices of ¢ is the following:

e Prior: We took ¢ ~ N(0,0.752).

e Laplace: The Laplace approximation computed was g ~ A(0.3,0.20412).
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Figure S1: The sequences a,, and b,, used in the location-scale sequences. (a) The sequences a.,
and b,, used in the location-scale sequences in Figure 1. (b) The sequences a,, and b,, used in the
location-scale sequences in Figure 2. In each case, the colour used of each curve indicates which of
the sequences (), cn they correspond to.

* GMM: The Gaussian mixture model was computed using 100 samples from the target p. The number
of components used was 2, since this value minimised the Bayes information criterion [Schwarz,
1978].

* KDE: The kernel density estimate was computed using 100 samples from the target p. We utilised
a Gaussian kernel k(z,y) = exp(—(z — y)?/¢%) with the lengthscale or bandwidth parameter £
determined by Silverman’s rule of thumb [Silverman, 1986].

The values of GF-KSD reported in Figure 1 were computed using a quasi Monte Carlo approxi-
mation to the integral (6), utilising a length 300 low-discrepancy sequence. The low discrepancy
sequences were obtained by first specifying a uniform grid over [0, 1] and then performing the in-
verse CDF transform for each member of the sequence 7,,.

C.2 Avoidance of Failure Modes

This appendix contains full details of the experiment reported in Section 3.3 and an explanation
of the failure mode reported in Figure 2a. The sequences considered are displayed in Figure S2.
Each sequence was a location-scale sequences of the form L, u, where L"(z) = ay, + b, for some
(an)nen and (b, )nen and u € P(R). For the converging sequences, we set u = p. The specification
of the settings of each failure mode are as follows:

* Failure mode (a) [Figure 2a]: We took p as the target used in Figure 1 and detailed in Appendix C.1
and took ¢ ~ N(0, 1.5%). The a,, and b, sequences used are displayed in Figure Sla. The values
of GF-KSD reported were computed using a quasi Monte Carlo approximation, using a length
300 low discrepancy sequence. The low discrepancy sequences were obtained by first specifying
a uniform grid over [0, 1] and then performing the inverse CDF transform for each member of the
sequence 7.

* Failure mode (b) [Figure 2b]: We took p ~ N(0,1) and ¢ ~ N'(—0.7,0.12). The a,, and b,
sequences used are displayed in Figure S1b. The values of GF-KSD reported were computed
using a quasi Monte Carlo approximation, using a length 300 low discrepancy sequence. The
low discrepancy sequences were obtained by first specifying a uniform grid over [0, 1] and then
performing the inverse CDF transform for each member of the sequence 7,.

¢ Failure Mode (c) [Figure 2c]: In each dimension d considered, we took p ~ N (0,I) and g ~
N(0,1.11). The a,, and b,, sequences used are displayed in Figure S1b. The values of GF-KSD
reported were computed using a quasi Monte Carlo approximation, using a length 1,024 Sobol
sequence in each dimension d.

>Note that for d > 1, we still considered location-scale sequences of the form L™ (x) = an + bpx.
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Figure S2: Test sequences (7, )nen used in Figure 2. The colour and style of each sequence indicates
which of the curves in Figure 2 is being considered. In the second row from the top, the sequence
used when d = 1 in Figure 2c is shown in the final column.

e Failure mode (d) [Figure 2d]: We took p=g¢q, with p(z)=05N(z;—1,0.1%) +
0.5\ (x;1,0.12), where N(z; i, 02) is the univariate Gaussian density with mean z and vari-
ance 2. The a,, and b, sequences used are displayed in Figure S1b. For the non-converging
sequences we took u = A/(1,0.12) and used the a,, and b,, sequences specified in Figure S1b.
The values of GF-KSD reported were computed using a quasi Monte Carlo approximation, using
a length 300 low discrepancy sequence. The low discrepancy sequences were obtained by first
specifying a uniform grid over [0, 1] and then performing the inverse CDF transform for each
member of the sequence 7,.

In Figure S3, we provide an account of the degradation of convergence detection between ¢ = Prior
considered in Figure 1 and ¢ = A(0, 1.5%) of Failure mode (a). In Figure S3a, it can be seen that the
value of the integrals [(g/ p)? drr,, are finite for each element of the pink sequence 7,,. However,

in Figure S3b, it can be seen that the values of the integrals [(g/p)? dr,, are infinite for the last
members of the sequence 7, thus violating a condition of Theorem 1.

C.3 Gradient-Free Stein Importance Sampling

This appendix contains full details for the experiment reported in Section 4.1. We considered the
following Lotka—Volterra dynamical system:

a(t) = o'u(t) = fru)o(t),  0(t) = —y'o(t) + du)o(t),  (u(0),v(0)) = (ug,vp).
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Figure S3: Explanation of Failure Mode (a). (a) Values of (q/p)?m, for ¢ = Prior and for the
converging pink sequence displayed in Figure 1. (b) Values of (g/p)?m,, for ¢ = N(0, 1.5%) and for
the converging pink sequence displayed in the first column and first row of Figure S2. (c¢) Values of
q?/p for different choices of q.

Using 21 observations 1, ...,us; and vy,...,ve; over times t; < ... < t31, we considered the
probability model

u; ~ Log-normal(log u(t;), (¢7)?), v; ~ Log-normal(log v(t;), (¢5)?).
In order to satisfy positivity constraints, we performed inference on the logarithm of the parameters
(a0, 8,7, 9, up,v0,01,02) = (log &, log 3',1log 7, log &', log ug), log v, log 07, log 0 ). We took the
following independent priors on the constrained parameters:

o’ ~ Log-normal(log(0.7),0.62), ' ~ Log-normal(log(0.02),0.3?),

4" ~ Log-normal(log(0.7),0.6%), &’ ~ Log-normal(log(0.02),0.3?),

ug ~ Log-normal(log(10), 1), v{ ~ Log-normal(log(10), 1),

o ~ Log-normal(log(0.25),0.02%), ¢} ~ Log-normal(log(0.25), 0.02?).
In order to obtain independent samples from the posterior for comparison, we utilised Stan [Stan
Development Team, 2022] to obtain 8, 000 posterior samples using four Markov chain Monte Carlo

chains. Each chain was initialised at the prior mode. The data analysed are due to Hewitt [1921] and
can be seen, along with a posterior predictive check, in Figure S4.

The Laplace approximation was obtained by the use of 48 iterations of the L-BFGS optimisation
algorithm [Liu and Nocedal, 1989] initialised at the prior mode. The Hessian approximation was
obtained using Stan’s default numeric differentiation of the gradient.

Finally, the quadratic programme defining the optimal weights of gradient-free Stein importance
sampling (refer to Theorem 3) was solved using the splitting conic solver of O’Donoghue et al.
[2016].

C.4 Stein Variational Inference Without Second-Order Gradient

This appendix contains full details for the experiment reported in Section 4.2. We considered the
following bivariate densities

pi(z,y) = N(w;0,n7) N(y; sin(az), n3),
pa(x,y) = N(x;0,07) N (y; bz*, 03),
where N (z; 11, 02) is the univariate Gaussian density with mean p and variance 0. The parameter

choices for the sinusoidal experiment p; were n? = 1.3%2, 72 = 0.092 and a = 1.2. The parameter
choices for the banana experiment py were 03 = 1,05 = 0.22 and b = 0.5.

The development of a robust stochastic optimisation routine for measure transport with GF-KSD
is beyond the scope of this work, and in what follows we simply report one strategy that was suc-
cessfully used in the setting of the application reported in the main text. This strategy was based on
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Figure S5: Tempering sequence (€,,)men used in each of the variational inference experiments.

tempering of p, the distributional target, to reduce a possibly rather challenging variational optimisa-
tion problem into a sequence of easier problems to be solved. Specifically, we considered tempered
distributions p,,, € P(R?) with log density

log pm () = €xlogpo(z) + (1 — €y) log p(),

where (€,,)men € [0, 1] is the tempering sequence and py € P(R?) is fixed. In this case py was
taken to be N(0, 27) in both the banana and sinusoidal experiment. Then, at iteration m of stochastic
optimisation, we considered the variational objective function

> log Dy, o(T)

where ¢ = 7y, , as explained in the main text. Tempering has been applied in the context of normal-
ising flows in Prangle and Viscardi [2023]. The tempering sequence used (€, )men for each of the
experiments is displayed in Figure S5.

For each experiment, the stochastic optimisation routine used was Adam [Kingma and Ba, 2015]
with learning rate 0.001. Due to issues involving exploding gradients due to the ¢/p term in GF-
KSD, we utilised gradient clipping in each of the variational inference experiments, with the max-
imum 2-norm value taken to be 30. In both the banana and sinusoidal experiment, the parametric
class of transport maps 1% was the inverse autoregressive flow of Kingma et al. [2016]. In the
banana experiment, the dimensionality of the hidden units in the underlying autoregressive neural
network was taken as 20. In the sinusoidal experiment, the dimensionality of the hidden units in the
underlying autoregressive neural network was taken as 30. For the comparison with standard kernel
Stein discrepancy, the same parametric class 7% and the same initialisations of ¢ were used.
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Figure S6: The 7 and tempering sequences used in the additional convergence detection experi-
ments. The colour of each curve indicates which of the sequences in Figure S7 and Figure S8 they
correspond with. (a) The 7 choices of each tempered sequence of distributions. (b) The tempering
sequences (€., )men considered.

C.5 Additional Experiments

Appendix C.5.1 explores the impact of p on the conclusions drawn in the main text. Appendix C.5.2
investigates the sensitivity of the proposed discrepancy to the choice of the parameters ¢ and g that
appear in the kernel. Appendix C.5.3 compares the performance of GF-KSD importance sampling,
KSD importance sampling and self-normalised importance sampling.

C.5.1 Exploring the Effect of p
In this section we investigate the robustness of the convergence detection described in Figure 1
subject to different choices of the target p. We consider two further choices of p:

4

pi(x) =Y eN (@5 s, 07),

i=1

4
po(x) = Z d; Student-T (z; v, m;, s;),
i=1
where N (z;p,02) is the univariate Gaussian density with mean ; and variance o2 and
Student-T(z; v, m, s) is the univariate Student-T density with degrees of freedom v, location pa-
rameter m and scale parameter s. The parameter choices for p; were
(c1,¢2,c3,c4) = (0.3125,0.3125,0.3125,0.0625),

(/"Lla M2, K3, /-1’4) = (_033 07 035 0)7

(03,05,03,07) = (0.12,0.05%,0.1%, 1).
The parameter choices for ps were v = 10 and

(d1,dz,d3,ds) = (0.1,0.2,0.3,0.4),
(ma, ma, mz, mq) = (—0.4,—0.2,0,0.3),
(s1, 82, 83,84) = (0.05,0.1,0.1,0.3).

Instead of using the location-scale sequences of Figure 1, we instead considered tempered sequences
of the form

log 7, () = € log mo(2) + (1 — €,) log u(z).
For the converging sequences considered we set u to be the target (either u = p; or u = py) and set
u = N (z;0,0.42) for each of the non-converging sequences. The different sequences vary in choice
of 7y and tempering sequence (€, )nen. These choices are displayed in Figure S6 and are taken as
the same for both of the targets considered.

The specification of our choices of ¢ is the following:
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e Prior: For py, we took ¢ ~ N(0,0.52). For py, we took ¢ ~ Student-T(10, 0, 0.5).

* Laplace: For pi, the Laplace approximation computed was ¢ ~ N(0,0.0512). For ps, the
Laplace approximation computed was ¢ ~ A/ (0,0.1252).

* GMM: For both targets, the Gaussian mixture model was computed using 100 samples from the
target. In both cases, the number of components used was 3, since this value minimised the Bayes
information criterion [Schwarz, 1978].

* KDE: For both targets, the kernel density estimate was computed using 100 samples from the target.
In both cases, we utilised a Gaussian kernel k(z,y) = exp(—(z — y)?/¢?) with the lengthscale or
bandwidth parameter ¢ determined by Silverman’s rule of thumb [Silverman, 1986].

Results for p; are displayed in Figure S7 and results for py are displayed in Figure S8. It can
be seen that for both target distributions and the different sequences considered, GF-KSD correctly
detects convergence in each case. For both targets and for ¢ = Laplace, it can be seen that GF-KSD
exhibits the same behaviour of Failure Mode (b), displayed in Figure 2b.

The values of GF-KSD reported in Figure S7 and Figure S8 were computed using a quasi Monte
Carlo approximation to the integral (6), utilising a length 300 low-discrepancy sequence. Due to
the lack of an easily computable inverse CDF, we performed an importance sampling estimate of
GF-KSD as follows

Dia(m) = [ (S0 © Sy )bl dm(o) dr(y)
_ ey TETW)
- //(Spyq ®Spﬁl])k( ’y)w(z)w(y) d ( )d (y)a

where w is the proposal distribution. For each element of a sequence m,, we used a Gaussian
proposal w,, of the form:

log wy, () = €, logmo(x) + (1 — €,) log N(;0,0.4).

Since 7y is Gaussian for each sequence, this construction ensures that each w,, is both Gaussian
and a good proposal distribution for m,,. The low-discrepancy sequences were then obtained by first
specifying a uniform grid over [0, 1] and the performing an inverse CDF transformation using w,.

C.5.2 Exploring the Effect of ¢ and

In this section we investigate the effect on convergence detection that results from changing the
parameters o and 3 in the inverse multi-quadric kernel (2). Utilising the same test sequences and
choices of ¢ used in Figure 1, we plot the values of GF-KSD in Figure S9. It can be seen that the
convergence detection is robust to changing values of o and S3.

C.5.3 GF-KSD vs. KSD Importance Sampling

In this section we investigate the performance of gradient-free Stein importance sampling, standard
Stein importance sampling, and self-normalised importance sampling, as the distribution ¢ varies in
quality as an approximation to p. We consider two different regimes:

1. p=N(0,I)and g = N(0,A]) for 0.7 < X\ < 1.3.
2. p=N(0,I)and ¢ = N(cl, 1) for —0.6 < ¢ < 0.6, where 1 = (1,...,1)T.

In both cases, we consider the performance of each approach for varying dimension d and number
of samples n. Results are reported in Figure S10 and Figure S11 for each regime respectively.
The quadratic programme defining the optimal weights of gradient-free Stein importance sampling
and Stein importance sampling (refer to Theorem 3) was solved using the splitting conic solver of
O’Donoghue et al. [2016].
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Figure S7: Additional empirical assessment of gradient-free kernel Stein discrepancy using the
target p; defined in Appendix C.5.1. (a) Test sequences (7, )nen, defined in Appendix C.5.1. The
first column displays sequences (solid) that converge to the distributional target p (black), while the
second column displays sequences (dashed) which converge instead to a fixed Gaussian target. (b)
Performance of gradient-free kernel Stein discrepancy, when different approaches to selecting ¢ are
employed. The colour and style of each curve in (b) indicates which of the sequences in (a) is being
considered. [Here we fixed the kernel parameters ¢ = 1 and 3 = 1/2.]
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Figure S8: Additional empirical assessment of gradient-free kernel Stein discrepancy using the
target py defined in Appendix C.5.1. (a) Test sequences (7, )nen, defined in Appendix C.5.1. The
first column displays sequences (solid) that converge to the distributional target p (black), while the
second column displays sequences (dashed) which converge instead to a fixed Gaussian target. (b)
Performance of gradient-free kernel Stein discrepancy, when different approaches to selecting g are
employed. The colour and style of each curve in (b) indicates which of the sequences in (a) is being
considered. [Here we fixed the kernel parameters 0 = 1 and 5 = 1/2.]
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Figure S10: Comparison of the performance of importance sampling methodologies in varying di-
mension d and number of sample points considered n under the regime ¢ = N'(0, AI). The approx-
imation quality is quantified as the logarithm of the Energy Distance (ED).
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Figure S11: Comparison of the performance of importance sampling methodologies in varying di-
mension d and number of sample points considered n under the regime ¢ = N(c, I). The approxi-
mation quality is quantified as the logarithm of the Energy Distance (ED).



