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Abstract

Stein discrepancies have emerged as a powerful statistical tool, being applied to
fundamental statistical problems including parameter inference, goodness-of-fit
testing, and sampling. The canonical Stein discrepancies require the derivatives
of a statistical model to be computed, and in return provide theoretical guarantees
of convergence detection and control. However, for complex statistical models,
the stable numerical computation of derivatives can require bespoke algorithmic
development and render Stein discrepancies impractical. This paper focuses on
posterior approximation using Stein discrepancies, and introduces a collection of
non-canonical Stein discrepancies that are gradient-free, meaning that derivatives
of the statistical model are not required. Sufficient conditions for convergence
detection and control are established, and applications to sampling and variational
inference are presented.

1 Introduction

Stein discrepancies were introduced in Gorham and Mackey [2015], as a way to measure the quality
of an empirical approximation to a continuous statistical model involving an intractable normalisa-
tion constant. Rooted in Stein’s method [Stein, 1972], the idea is to consider empirical averages of
a large collection of test functions, each of which is known to integrate to zero under the statisti-
cal model. To date, test functions have been constructed by combining derivatives of the statistical
model with reproducing kernels [Chwialkowski et al., 2016, Liu et al., 2016, Gorham and Mackey,
2017, Gong et al., 2021a,b], random features [Huggins and Mackey, 2018], diffusion coefficients and
functions with bounded derivatives [Gorham et al., 2019], neural networks [Grathwohl et al., 2020],
and polynomials [Chopin and Ducrocq, 2021]. The resulting discrepancies have been shown to be
powerful statistical tools, with diverse applications including parameter inference [Barp et al., 2019,
Matsubara et al., 2022], goodness-of-fit testing [Jitkrittum et al., 2017, Fernandez et al., 2020], and
sampling [Liu and Lee, 2017, Chen et al., 2018, 2019, Riabiz et al., 2022, Hodgkinson et al., 2020,
Fisher et al., 2021]. However, one of the main drawbacks of these existing works is the requirement
that derivatives both exist and can be computed.

The use of non-differentiable statistical models is somewhat limited but includes, for example,
Bayesian analyses where Laplace priors are used [Park and Casella, 2008, Ročková and George,
2018]. Much more common is the situation where derivatives exist but cannot easily be computed.
In particular, for statistical models with parametric differential equations involved, one often re-
quires different, more computationally intensive numerical methods to be used if the sensitivities
(i.e. derivatives of the solution with respect to the parameters) are to be stably computed [Cockayne
and Duncan, 2021]. For large-scale partial differential equation models, as used in finite element
simulation, computation of sensitivities can increase simulation times by several orders of magni-
tude, if it is practical at all.

The motivation and focus of this paper is on computational methods for posterior approximation,
and to this end we propose a collection of non-canonical Stein discrepancies that are gradient free,
meaning that computation of the derivatives of the statistical model is not required. Gradient-free
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Stein operators were introduced in Han and Liu [2018] in the context of Stein variational gradient
descent [Liu and Wang, 2016], but the theoretical properties of the corresponding discrepancy have
yet to be investigated. General classes of Stein discrepancies were analysed in Huggins and Mackey
[2018], Gorham et al. [2019], but their main results do not cover the gradient-free Stein discrepancies
developed in this work, for reasons that will be explained. The combination of gradient-free Stein
operators and reproducing kernels is studied in detail, to obtain discrepancies that can be explicitly
computed. The usefulness of these discrepancies depends crucially on their ability to detect the
convergence and non-convergence of sequences of probability measures to the posterior target, and
in both directions positive results are established.

Outline Gradient-free KSD (GF-KSD) is proposed and theoretically analysed in Section 2. The
proposed discrepancy involves certain degrees of freedom, including a probability density denoted
q in the sequel, and strategies for specifying these degrees of freedom are empirically assessed in
Section 3. Two applications are then explored in detail; Stein importance sampling (Section 4.1) and
Stein variational inference (Section 4.2). Conclusions are drawn in Section 5.

2 Methods

This section contains our core methodological (Section 2.1) and theoretical (Section 2.2) develop-
ment. The following notation will be used:

Real Analytic Notation For a twice differentiable function f : Rd → R, let ∂if denote the partial
derivative of f with respect to its ith argument, let ∇f denote the gradient vector with entries
∂if , and let ∇2f denote the Hessian matrix with entries ∂i∂jf . For a sufficiently regular bivariate
function f : Rd × Rd → R, let (∂i ⊗ ∂j)f indicate the application of ∂i to the first argument of f ,
followed by the application of ∂j to the second argument. (For derivatives of other orders, the same
tensor notation ⊗ will be used.)

Probabilistic Notation Let P(Rd) denote the set of probability distributions on Rd. Let δ(x) ∈
P(Rd) denote an atomic distribution located at x ∈ Rd. For π, π0 ∈ P(Rd), let π ≪ π0 indicate
that π is absolutely continuous with respect to π0. For π ∈ P(Rd) and (πn)n∈N ⊂ P(Rd), write
πn

d→ π to indicate weak convergence of πn to π. The symbols p and q are reserved for probability
density functions on Rd, while π is reserved for a generic element of P(Rd). For convenience,
the symbols p and q will also be used to refer to the probability distributions that these densities
represent.

2.1 Gradient-Free Kernel Stein Discrepancy

The aim of this section is to explain how a GF-KSD can be constructed. Let p ∈ P(Rd) be a target
distribution of interest. Our starting point is a gradient-free Stein operator, introduced in Han and
Liu [2018] in the context of Stein variational gradient descent [Liu and Wang, 2016]:
Definition 1 (Gradient-Free Stein Operator). For p, q ∈ P(Rd) with q ≪ p and ∇ log q well-
defined, the gradient-free Stein operator is defined as

Sp,qh :=
q

p
(∇ · h+ h · ∇ log q) ,

acting on differentiable functions h : Rd → Rd.

The Langevin Stein operator of Gorham and Mackey [2015] is recovered when p = q, but when
q ̸= p the dependence on the derivatives of p is removed. The operator Sp,q can still be recognised
as a diffusion Stein operator, being related to the infinitesimal generator of a diffusion process that
leaves p invariant; however, it falls outside the scope of the theoretical analysis of Huggins and
Mackey [2018], Gorham et al. [2019], for reasons explained in Remark 2. It can also be viewed as
a non-standard instance of the density method of Diaconis et al. [2004]; see Section 2 of Anastasiou
et al. [2023]. The inclusion of q introduces an additional degree of freedom, specific choices for
which are discussed in Section 3.
Remark 1. The ratio q/p in Definition 1 could be viewed as an importance weight, but the construc-
tion does not fully correspond to importance sampling due to the ∇ log q term, which is q-dependent.
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The Stein operator nomenclature derives from the vanishing integral property in Proposition 1 be-
low, which is central to Stein’s method [Stein, 1972]:

Proposition 1. In the setting of Definition 1, assume that ∥x∥d−1q(x) → 0 as ∥x∥ → ∞ and∫
∥∇ log q∥ dq < ∞. Then, for any function h : Rd → Rd whose first derivatives exist and are

bounded, it holds that
∫
Sp,qh dp = 0.

All proofs are contained in Appendix A. From Proposition 1, the expectation of Sp,qh with respect
to π ∈ P(Rd) will be zero when π and p are equal; conversely, the value of such an expectation
can be used to quantify the extent to which π and p are different. Consideration of multiple test
functions increases the number and nature of the differences between π and p that may be detected.
A discrepancy is obtained by specifying which test functions h are considered, and then taking a
supremum over the expectations associated to this set. For computational convenience we take h to
be contained in the unit ball of a reproducing kernel Hilbert space, as described next.

For a symmetric positive definite function k : Rd × Rd → R, called a kernel, denote the associated
reproducing kernel Hilbert space as H(k). Let H(k)d denote the Cartesian product of d copies of
H(k), equipped with the inner product ⟨h, g⟩H(k)d :=

∑d
i=1⟨hi, gi⟩H(k).

Proposition 2. Let π ∈ P(Rd). In the setting of Definition 1, assume there is an α > 1 such that∫
(q/p)α dπ < ∞ and

∫
∥∇ log q∥α/(α−1) dπ < ∞. Let k : Rd × Rd → R be a continuously dif-

ferentiable kernel such that both k and its first derivatives x 7→ (∂i ⊗ ∂i)k(x, x), i = 1, . . . , d, are
bounded. Then Sp,q is a bounded linear operator from H(k)d to L1(π).

For discrete distributions π, supported on a finite subset of Rd, the moment conditions in Proposi-
tion 2 are automatically satisfied. For general distributions π on Rd, the exponent α can be taken
arbitrarily close to 1 to enable the more stringent moment condition

∫
(q/p)α dπ < ∞ to hold. An

immediate consequence of Proposition 2 is that Definition 2 below is well-defined.

Definition 2 (Gradient-Free Kernel Stein Discrepancy). For p, q, k and π satisfying the precondi-
tions of Proposition 2, the gradient-free KSD is defined as

Dp,q(π) = sup

{∫
Sp,qh dπ : ∥h∥H(k)d ≤ 1

}
. (1)

The GF-KSD coincides with the canonical kernel Stein discrepancy (KSD) when p = q, and is thus
strictly more general. Note that Dp,q(π) is precisely the operator norm of the linear functional
h 7→

∫
Sp,qh dπ, which exists due to Proposition 2. Most common kernels satisfy the assumptions

of Proposition 2, and a particularly important example is the inverse multi-quadric kernel

k(x, y) = (σ2 + ∥x− y∥2)−β , σ ∈ (0,∞), β ∈ (0, 1), (2)

which has bounded derivatives of all orders; see Lemma 4 of Fisher et al. [2021].

The use of reproducing kernels ensures that GF-KSD can be explicitly computed; see Proposi-
tion 5 and Corollary 1 in Appendix A. A general spectral characterisation of GF-KSD is provided
in Proposition 6 of the supplement, inspired by the recent work of Wynne et al. [2022]. Note that
the scale of Equation (6) does not matter when one is interested in the relative performance of dif-
ferent π ∈ P(Rd) as approximations of a fixed target p ∈ P(Rd). In this sense, GF-KSD may be
employed with p̃ in place of p, where p ∝ p̃/Z and Z is a normalisation constant. This feature makes
GF-KSD applicable to problems of posterior approximation, and will be exploited for both sampling
and variational inference in Section 4. On the other hand, GF-KSD is not applicable to problems in
which the target distribution pθ involves a parameter θ, such as estimation and composite hypothesis
testing, since then the normalisation term Zθ cannot be treated as constant.

Going beyond the discrepancies discussed in Section 1, several non-canonical discrepancies have
recently been proposed based on Stein’s method, for example sliced [Gong et al., 2021a,b], stochas-
tic [Gorham et al., 2020], and conditional [Singhal et al., 2019] Stein discrepancies (in all cases
derivatives of p are required). However, only a subset of these discrepancies have been shown to
enjoy important guarantees of convergence detection and control. Convergence control is critical for
the posterior approximation task considered in this work, since this guarantees that minimisation of
Stein discrepancy will produce a consistent approximation of the posterior target. The aim of the
next section is to establish such guarantees for GF-KSD.
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2.2 Convergence Detection and Control

The canonical KSD benefits from theoretical guarantees of convergence detection and control
[Gorham and Mackey, 2017]. The aim of this section is to establish analogous guarantees for
GF-KSD. To set the scene, for a Lipschitz function f : Rd → Rd, denote its Lipschitz constant
L(f) := supx ̸=y ∥f(x)− f(y)∥/∥x− y∥. Then, for measurable g : Rd → R, we denote the tilted
Wasserstein distance as W1(π, p; g) := supL(f)≤1

∣∣∫ fg dπ −
∫
fg dp

∣∣whenever this expression is
well-defined [Huggins and Mackey, 2018]. Note that the standard 1-Wasserstein distance W1(π, p)
is recovered when g = 1. There is no dominance relation between W1(·, ·; g) for different g; the
topologies they induce are different. Tilted Wasserstein distance induces a much weaker topology
than, for example, divergences such as Kullback–Leibler or Hellinger, since it does not require ab-
solute continuity of measures.

Theorem 1 (Convergence Detection). Let p, q ∈ P(Rd) with q ≪ p, ∇ log q Lipschitz and∫
∥∇ log q∥2 dq < ∞. Assume there is an α > 1 such that the sequence (πn)n∈N ⊂ P(Rd) sat-

isfies
∫
(q/p)αdπn ∈ (0,∞),

∫
∥∇ log q∥α/(α−1)dπn < ∞,

∫
∥∇ log q∥α/(α−1)(q/p) dπn < ∞,

and
∫
fq/p dπn < ∞ with f(x) = ∥x∥, for each n ∈ N. Let k be a kernel such that each of k,

(∂i ⊗ ∂i)k and (∂i∂j ⊗ ∂i∂j)k exist, are continuous, and are bounded, for i, j ∈ {1, . . . , d}. Then
W1(πn, p; q/p) → 0 implies Dp,q(πn) → 0.

Thus the convergence of πn to p, in the sense of the tilted Wasserstein distance with g = q/p, is
detected by the GF-KSD Dp,q . Note that the conditions on (πn)n∈N in Theorem 1 are automatically
satisfied when each πn has a finite support.

Despite being a natural generalisation of KSD, this GF-KSD does not in general provide weak
convergence control in the equivalent theoretical context. Indeed, Gorham and Mackey [2017] es-
tablished positive results on convergence control for distributions in Q(Rd), the set of probability
distributions on Rd with positive density function q : Rd → (0,∞) for which ∇ log q is Lipschitz
and q is distantly dissipative, meaning that

lim inf
r→∞

inf

{
−⟨∇ log q(x)−∇ log q(y), x− y⟩

∥x− y∥2
: ∥x− y∥ = r

}
> 0.

Under the equivalent assumptions, convergence control fails for GF-KSD in general:

Proposition 3 (Convergence Control Fails in General). Let k be a (non-identically zero) radial
kernel of the form k(x, y) = ϕ(x− y) for some twice continuously differentiable ϕ : Rd → R, for
which the preconditions of Proposition 2 are satisfied. Then there exist p ∈ P(Rd), q ∈ Q(Rd)
and a sequence (πn)n∈N ⊂ P(Rd), also satisfying the preconditions of Proposition 2, such that
Dp,q(πn) → 0 and yet πn

d↛ p.

The purpose of Proposition 3 is to highlight that GF-KSD is not a trivial extension of canonical
KSD; it requires a bespoke treatment. This is provided in Theorem 2, next. Indeed, to ensure that
GF-KSD provides convergence control, additional condition on the tails of q are required:

Theorem 2 (Convergence Control). Let p ∈ P(Rd), q ∈ Q(Rd) be such that p is continuous and
infx∈Rd q(x)/p(x) > 0. Assume there is an α > 1 such that the sequence (πn)n∈N ⊂ P(Rd) sat-
isfies

∫
(q/p)αdπn < ∞ and

∫
∥∇ log q∥α/(α−1)(q/p) dπn < ∞, for each n ∈ N. Let k be the

inverse multi-quadric kernel in Equation (2). Then Dp,q(πn) → 0 implies πn
d→ p.

The proof of Theorem 2 is based on carefully re-casting GF-KSD between π and p as a canonical
KSD between q and a transformed distribution π̄ (see Proposition 7 in the supplement), then appeal-
ing to the analysis of Gorham and Mackey [2017]. Compared to the analysis of KSD in Gorham and
Mackey [2017], the distant dissipativity condition now appears on q (a degree of freedom), rather
than on p (a distribution determined by the task at hand), offering a realistic opportunity for this
condition to be verified. For example, one could take a Gaussian measure q that dominates the target
distribution p for use in GF-KSD. Nevertheless, the conditions of Theorem 2 rule out distributions
p that are heavy-tailed. Suitable choices for q are considered in Section 3.

Remark 2 (Related Work). Convergence control was established for discrepancies based on general
classes of Stein operator in earlier work, but the required assumptions are too stringent when applied
in our context. In particular, to use Huggins and Mackey [2018] it is required that the gradient
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Figure 1: Empirical assessment of gradient-free kernel Stein discrepancy. (a) Test sequences
(πn)n∈N, defined in Appendix C.1. The first column displays sequences (solid) that converge to
the distributional target p (black), while the second column displays sequences (dashed) which con-
verge instead to a fixed Gaussian target. (b) Performance of gradient-free kernel Stein discrepancy,
when approaches to selecting q (described in the main text) are employed. The colour and style of
each curve in (b) indicates which of the sequences in (a) is being considered. [Here we fixed the
kernel parameters σ = 1 and β = 1/2.]

∇ log(q/p) is bounded1, while to use Gorham et al. [2019] it is required that q/p is Lipschitz2. In
our context, where q must be specified in ignorance of p, such conditions, which require that q is
almost as light as p in the tail, cannot be guaranteed to hold. The present paper therefore instead
contributes novel analysis for the regime where q may be appreciably heavier than p in the tail.

This completes our theoretical assessment, but the practical performance of GF-KSD remains to be
assessed. Suitable choices for both q and the kernel parameters σ and β are proposed and investi-
gated in Section 3, and practical demonstrations of GF-KSD are presented in Section 4.

3 Implementation Detail

The purpose of this section is to empirically explore the effect of varying q, σ and β, aiming to
arrive at reasonable default settings. In the absence of an application-specific optimality criterion,
we aim to select values that perform well (in a sense to be specified) over a range of scenarios that
may be encountered. Here, to assess performance several sequences (πn)n∈N are considered, some
of which converge to a specified limit p and the rest of which converge to an alternative Gaussian
target; see Figure 1(a). An effective discrepancy should clearly indicate which of these sequences are
convergent and which are not. On this basis, recommendations for q are considered in Section 3.1,
and recommendations for σ and b in Section 3.2. Of course, we cannot expect default settings
to perform universally well, so in Section 3.3 we highlight scenarios where our defaults may fail.
Python code to reproduce the experiments reported below can be downloaded at [blinded].

3.1 Choice of q

In what follows we cast q as an approximation of p, aiming to inherit the desirable performance of
canonical KSD for which q and p are equal. The task to which the discrepancy is being applied will,

1To see this, take A = q/p in Theorem 3.2 of Huggins and Mackey [2018].
2To see this, take m = (q/p)I in Theorem 7 and Proposition 8 of Gorham et al. [2019].
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in practice, constrain the nature and form of the distributions q that can be implemented. For expos-
itory purposes (only), the following qualitatively distinct approaches to choosing q are considered:

• Prior In Bayesian settings where p is a posterior distribution, selecting q to be the prior distri-
bution ensures that the condition infx∈Rd q(x)/p(x) > 0 is satisfied.

• Laplace If the target p can be differentiated, albeit at a possibly high computational cost, it may
be practical to construct a Laplace approximation q to the target [Gelman et al., 2013].

• GMM One could take q to be a Gaussian mixture model fitted to approximate samples from p,
representing a more flexible alternative to Laplace.

• KDE Additional flexibility can be obtained by employing a kernel density estimator as a non-
parametric alternative to GMM.

Of course, there is a circularity to GMM and KDE which renders these methods impractical in general.
The specific details of how each of the q were constructed are contained in the code that accompanies
this paper, but the resulting q are displayed as insets in Figure 1(b). The performance of GF-KSD
with these different choices of q is also displayed in Figure 1(b). It was observed that all four
choices of q produced a discrepancy that could detect convergence of πn to p, though the detection
of convergence was less clear for Prior due to slower convergence of the discrepancy to 0 as n
was increased. On the other hand, all approaches were able to clearly detect non-convergence to
the target. That Laplace performed comparably with GMM and KDE was surprising, given that the
target p is not well-approximated by a single Gaussian component. These results are for a specific
choice of target p, but in Appendix C.5.1 a range of p are considered and similar conclusions are
obtained. Section 3.3 explores how challenging p must be before the convergence detection and
control properties associated to Laplace fail.

3.2 Choice of σ and β

For the investigation in Section 3.1 the parameters of the inverse multi-quadric kernel (2) were fixed
to σ = 1 and β = 1/2, the latter being the midpoint of the permitted range β ∈ (0, 1). In general,
care in the selection of these parameters may be required. The parameter σ captures the scale of the
data, and thus standardisation of the data may be employed to arrive at σ = 1 as a natural default. In
this paper (with the exception of Section 4.2) the standardisation x 7→ C−1x was performed, where
C is the covariance matrix of the approximating distribution q being used. In Appendix C.5.2 we
reproduce the investigation of Section 3.1 using a range of values for σ and β; these results indicate
the performance of GF-KSD is remarkably insensitive to perturbations around (σ, β) = (1, 1/2).

3.3 Avoidance of Failure Modes

GF-KSD is not a silver bullet, and there are a number of specific failure modes that care may be
required to avoid. The four main failure modes are illustrated in Figure 2. These are as follows: (a)
q is substantially heavier than p in a tail; (b) q is substantially lighter than p in a tail; (c) the dimension
d is too high; (d) p has well-separated high-probability regions. Under both (a) and (c), convergence
detection can fail, either because theoretical conditions are violated or because the terms πn must be
extremely close to p before convergence begins to be detected. Under (b), the values of GF-KSD at
small n can mislead. Point (d) is a well-known pathology of all score-based methods; see Wenliang
and Kanagawa [2021], Liu et al. [2023]. These four failure modes inform our recommended usage
of GF-KSD, summarised next.

Summary of Recommendations Based on the investigation just reported, the default settings
we recommend are Laplace with σ = 1 (post-standardisation) and β = 1/2. Although not uni-
versally applicable, Laplace does not require samples from p, and has no settings that must be
user-specified. Thus we recommend the use of Laplace in situations where a Laplace approxima-
tion can be justified and computed. If Laplace not applicable, then one may attempt to construct
an approximation q using techniques available for the task at hand (e.g. in a Bayesian setting, one
may obtain q via variational inference, or via inference based on an approximate likelihood). These
recommended settings will be used for the application presented in Section 4.1, next.
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Figure 2: Failure modes: (a) q is substantially heavier than p in a tail; (b) q is substantially lighter
than p in a tail; (c) the dimension d is too high; (d) p has separated high-probability regions. [For
each of (a), (b) and (d), the colour and style of the curves refers to the same sense of convergence or
non-convergence (outward/inward/oblique) presented in Figure 1, and we plot the logarithm of the
gradient-free kernel Stein discrepancy as a function of the index n of the sequence (πn)n∈N. For (c)
we consider convergent sequences (πn)n∈N of distributions on Rd.

4 Applications

To demonstrate potential uses of GF-KSD, two applications to posterior approximation are now
presented; Stein importance sampling (Section 4.1) and Stein variational inference using measure
transport (Section 4.2). In each case, we extend the applicability of existing algorithms to statistical
models for which certain derivatives of p are either expensive or non-existent.

4.1 Gradient-Free Stein Importance Sampling

Stein importance sampling [Liu and Lee, 2017, Hodgkinson et al., 2020] operates by first sampling
independently from a tractable approximation of the target p and then correcting the bias in the sam-
ples so-obtained. To date, applications of Stein importance sampling have been limited to instances
where the statistical model p can be differentiated; our contribution is to remove this requirement.
In what follows we analyse Stein importance sampling in which independent samples (xn)n∈N are
generated from the same approximating distribution q that is employed within GF-KSD:
Theorem 3 (Gradient-Free Stein Importance Sampling). Let p ∈ P(Rd), q ∈ Q(Rd) be such that
p is continuous and infx∈Rd q(x)/p(x) > 0. Suppose that

∫
exp{γ∥∇ log q∥2} dq < ∞ for some

γ > 0. Let k be the inverse multi-quadric kernel in Equation (2). Let (xn)n∈N be independent
samples from q. To the sample, assign optimal weights

w∗ ∈ argmin

{
Dp,q

(
n∑

i=1

wiδ(xi)

)
: 0 ≤ w1, . . . , wn, w1 + · · ·+ wn = 1

}
.

Then πn :=
∑n

i=1 w
∗
i δ(xi) satisfies πn

d→ p almost surely as n → ∞.

The proof builds on earlier work in Riabiz et al. [2022]. Note that the optimal weights w∗ can be
computed without the normalisation constant of p, by solving a constrained quadratic programme at
cost O(n3).

As an illustration, we implemented gradient-free Stein importance sampling to approximate a pos-
terior arising from a discretely observed Lotka–Volterra model

u̇(t) = αu(t)− βu(t)v(t), v̇(t) = −γv(t) + δu(t)v(t), (u(0), v(0)) = (u0, v0),

with independent log-normal observations with covariance matrix diag(σ2
1 , σ

2
2). The parameters to

be inferred are {α, β, γ, δ, u0, v0, σ1, σ2} and therefore d = 8. The data analysed are due to Hewitt
[1921], and full details are contained in Appendix C.3. The direct application of Stein importance
sampling to this task requires the numerical calculation of sensitivities of the differential equation
at each of the n samples that are to be re-weighted. Aside from simple cases where automatic
differentiation or adjoint methods can be used, the stable computation of sensitivities can form a
major computational bottleneck; see [Riabiz et al., 2022]. In contrast, our approach required a
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(a) (b)

Figure 3: Gradient-Free Stein Importance Sampling: (a) The lower triangular panels display n = 20
independent (biased) samples from the Laplace approximation q, while the upper triangular panels
display the same number of re-weighted samples obtained using gradient-free Stein importance
sampling. [Samples are shown in blue, with their size proportional to the square of their weight,
to aid visualisation. The shaded background indicates the high probability regions of p, the target.]
(b) The approximation quality, as a function of the number n of samples from q, is measured as
the energy distance between the approximation and the target. [The solid line corresponds to the
output of gradient-free Stein importance sampling, while the dashed line corresponds to the output
of self-normalised importance sampling. Standard error regions are shaded.]

fixed number of gradient computations to construct a Laplace approximation3, independent of the
number n of samples required; see Appendix C.3 for detail. In the lower triangular portion of
Figure 3(a), biased samples from the Laplace approximation q (̸= p) are displayed, while in the
upper triangular portion the same samples are re-weighted using gradient-free Stein importance
sampling to form a consistent approximation of p. A visual reduction in bias and improvement
in approximation quality can be observed. As a baseline against which to assess the quality of
our approximation, we consider self-normalised importance sampling; i.e. the approximation with
weights w̄ such that w̄i ∝ p(xi)/q(xi). Figure 3(b) reports the accuracy of the approximations to p
as quantified using energy distance [Cramér, 1928]. These results indicate that the approximations
produced using gradient-free Stein importance sampling improve on those constructed using self-
normalised importance sampling. This may be explained by the fact that the optimal weights w∗

attempt to mitigate both bias due to q ̸= p and Monte Carlo error, while the weights w̄ only address
the bias due to q ̸= p, and do not attempt to mitigate error due to the randomness in Monte Carlo.
Additional experiments in Appendix C.5.3 confirm that gradient-free Stein importance sampling
achieves comparable performance with gradient-based Stein importance sampling in regimes where
the Laplace approximation can be justified.

Although our recommended default settings for GF-KSD were successful in this example, an inter-
esting theoretical question would be to characterise an optimal choice of q in this context. This ap-
pears to be a challenging problem but we hope to address it in future work. In addition, although we
focused on Stein importance sampling, our methodology offers the possibility to construct gradient-
free versions of other related algorithms, including the Stein points algorithms of Chen et al. [2018,
2019], and the Stein thinning algorithm of Riabiz et al. [2022].

4.2 Stein Variational Inference Without Second-Order Gradient

Stein discrepancy was proposed as a variational objective in Ranganath et al. [2016] and has demon-
strated comparable performance with the traditional Kullback–Leibler objective in certain applica-
tion areas, whilst abolishing the requirement that the variational family is absolutely continuous with

3In this case, 49 first order derivatives were computed, of which 48 were on the optimisation path and 1 was
used to construct a finite difference approximation to the Hessian.
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Figure 4: Stein Variational Inference Without Second Order Gradient: The top row concerns ap-
proximation of a distributional target p that is “banana” shaped, while the bottom row concerns a
“sinusoidal” target. The first four columns depict the variational approximation πθm to p constructed
using gradient descent applied to gradient-free kernel Stein discrepancy (i.e. first order derivatives of
p required) along the stochastic optimisation sample path (m ∈ {0, 2× 103, 104, 2× 104}), while
the final column reports the corresponding approximation (m = 2× 104) constructed using stan-
dard kernel Stein discrepancy (i.e. second order derivatives of p required).

respect to the statistical model [Fisher et al., 2021]. This offers an exciting, as yet largely unexplored
opportunity to construct flexible variational families outside the conventional setting of normalising
flows (which are constrained to be diffeomorphisms of Rd). However, gradient-based stochastic op-
timisation of the canonical Stein discrepancy objective function means that second-order derivatives
of the statistical model are required. GF-KSD reduces the order of derivatives that are required from
second-order to first-order, and in many cases (such as when differential equations appear in the
statistical model) this will correspond to a considerable reduction in computational cost.

In what follows we fix a reference distribution R ∈ P(Rd) and a parametric class of maps
T θ : Rd → Rd, θ ∈ Rp, and consider the variational family (πθ)θ∈Rp ⊂ P(Rd) whose elements
πθ := T θ

#R are the pushforwards of R through the maps T θ, θ ∈ Rp. The aim is to use stochas-
tic optimisation to minimise θ 7→ Dp,q(πθ) (or, equivalently, any strictly increasing transformation
thereof). For this purpose a low-cost unbiased estimate of the gradient of the objective function is
required; the details and sufficient theoretical conditions are contained in Appendix B.

As an interesting methodological extension, that departs from the usual setting of stochastic op-
timisation, here we consider interlacing stochastic optimisation over θ and the selection of q,
leveraging the current value θm on the optimisation path to provide a natural candidate πθm for
q in this context4. Thus, for example, a vanilla stochastic gradient descent routine becomes
θm+1 = θm − ϵ ∇θDp,πθm

(πθ)
2
∣∣
θ=θm

for some learning rate ϵ > 0. (In this iterative setting, to
ensure the variational objective remains fixed, we do not perform the standardisation of the data
described in Section 3.2.)

To assess the performance of GF-KSD in this context, we re-instantiated an experiment from Fisher
et al. [2021]. The results, in Figure 4, concern the approximation of “banana” and “sinusoidal” dis-
tributions in dimension d = 2, and were obtained using the reference distribution R = N (0, 2I) and
taking T θ to be the inverse autoregressive flow of Kingma et al. [2016]. These are both toy prob-
lems, which do not themselves motivate our methodological development, but do enable us to have
an explicit ground truth to benchmark performance against. Full experimental detail is contained in
Appendix C.4; we highlight that gradient clipping was used, both to avoid extreme values of q/p
encountered on the optimisation path, and to accelerate the optimisation itself [Zhang et al., 2019].
The rightmost panel depicts the result of performing variational inference with the standard KSD
objective functional. It is interesting to observe that GF-KSD leads to a similar performance in both
examples, with the caveat that stochastic optimisation was more prone to occasional failure when
GF-KSD was used. The development of a robust optimisation technique in this context requires care
and a detailed empirical assessment, and is left as a promising avenue for further research.

4If the density of πθm is not available, for example because T is a complicated mapping, it can be consis-
tently estimated using independent samples from T θm

# .
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5 Conclusion

In this paper GF-KSD was proposed and studied. Theoretical and empirical results support the
use of GF-KSD in settings where an initial approximation to the distributional target can readily
be constructed, and where the distributional target itself does not contain distant high probability
regions, but poor performance can occur outside this context. Nevertheless, for many statistical
analyses the principal challenge is the cost of evaluating the statistical model and its derivatives,
rather than the complexity of the target itself, and in these settings the proposed discrepancy has
the potential to be usefully employed. The focus of this work was on posterior approximation, with
illustrative applications to sampling and variational inference being presented. A natural extension
to this work would involve a systematic empirical assessment of the performance of GF-KSD across
a broad range of applied contexts. However, we note that GF-KSD is not applicable to problems
such as estimation and composite hypothesis testing, where the target pθ ranges over a parametric
model class, and alternative strategies will be required to circumvent gradient computation in that
context.
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Appendices
These appendices supplement the paper Gradient Free Kernel Stein Discrepancy. The proofs for the-
oretical results stated in the main text are contained in Appendix A. Theoretical analysis of stochastic
gradient estimators for use in the context of Stein Variational Inference is contained in Appendix B,
as advertised in Section 4.2 of the main text. All additional details related to empirical assessment
are contained in Appendix C.

A Proof of Results in the Main Text

This appendix contains proofs for all novel theoretical results reported in the main text.

Proof of Proposition 1. First we show that the integral in the statement is well-defined. Since h
and its first derivatives are bounded, we can define the constants C0 := sup{∥h(x)∥ : x ∈ Rd} and
C1 := sup{|∇ · h(x)| : x ∈ Rd}. Then∫

|Sp,qh|dp =

∫ ∣∣∣∣qp [∇ · h+ h · ∇ log q]

∣∣∣∣ dp =

∫
|∇ · h+ h · ∇ log q| dq

≤ C1 + C0

∫
∥∇ log q∥ dq < ∞,

so indeed the integral is well-defined. Now, let Br = {x ∈ Rd : ∥x∥ ≤ r}, Sr = {x ∈ Rd : ∥x∥ =
r}, and t(r) := sup{q(x) : x ∈ Sr}, so that by assumption rd−1t(r) → 0 as r → ∞. Let 1B(x) =
1 if x ∈ B and 0 if x /∈ B. Then

∫
Sp,qh dp = limr→∞

∫
1Br

Sp,qh dp and, from the divergence
theorem, ∫

1Br
Sp,qh dp =

∫
1Br

q

p
[∇ · h+ h · ∇ log q] dp

=

∫
Br

[q∇ · h+ h · ∇q] dx

=

∫
Br

∇ · (qh) dx

=

∮
Sr

qh · n dx ≤ t(r)× 2πd/2

Γ(d/2)
rd−1 r→∞→ 0,

as required.

Proof of Proposition 2. Since k and its first derivatives are bounded, we can set

Ck
0 := sup

x∈Rd

√
k(x, x), Ck

1 := sup
x∈Rd

√√√√ d∑
i=1

(∂i ⊗ ∂i)k(x, x).

From Cauchy–Schwarz and the reproducing property, for any f ∈ H(k) it holds that
|f(x)| = |⟨f, k(·, x)⟩H(k)| ≤ ∥f∥H(k)∥k(·, x)∥H(k) = ∥f∥H(k)

√
⟨k(·, x), k(·, x)⟩H(k) =

∥f∥H(k)

√
k(x, x). Furthermore, using the fact that k is continuously differentiable, it can be

shown that |∂if(x)| ≤ ∥f∥H(k)

√
(∂i ⊗ ∂i)k(x, x); see Corollary 4.36 of Steinwart and Christmann

[2008]. As a consequence, for all h ∈ H(k)d we have that, for all x ∈ Rd,

∥h(x)∥ =

√√√√ d∑
i=1

hi(x)2 ≤

√√√√ d∑
i=1

k(x, x)∥hi∥2H(k) = Ck
0 ∥h∥H(k)d

|∇ · h(x)| =

∣∣∣∣∣
d∑

i=1

∂xi
hi(x)

∣∣∣∣∣ ≤
∣∣∣∣∣

d∑
i=1

√
(∂i ⊗ ∂i)k(x, x)∥hi∥H(k)

∣∣∣∣∣ ≤ Ck
1 ∥h∥H(k)d .
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To use analogous notation as in the proof of Proposition 1, set C0 := Ck
0 ∥h∥H(k)d and C1 :=

Ck
1 ∥h∥H(k)d . Then, using Hölder’s inequality and the fact that (a+ b)β ≤ 2β−1(aβ + bβ) with

β = α/(α− 1), we have

∥Sp,qh∥L1(π) =

∫
|Sp,qh|dπ =

∫ ∣∣∣∣qp [∇ · h+ h · ∇ log q]

∣∣∣∣ dπ
≤
(∫ (

q

p

)α

dπ

) 1
α
(∫

(∇ · h+ h · ∇ log q)
α

α−1 dπ

)α−1
α

≤ 2
1
α

(∫ (
q

p

)α

dπ

) 1
α
(
C

α
α−1

1 + C
α

α−1

0

∫
∥∇ log q∥

α
α−1 dπ

)α−1
α

≤ 2
1
α ∥h∥H(k)d

(∫ (
q

p

)α

dπ

)α−1
α
(
(Ck

1 )
α

α−1 + (Ck
0 )

α
α−1

∫
∥∇ log q∥

α
α−1 dπ

)α−1
α

as required.

To prove obtain explicit computable formulae for the GF-KSD, two intermediate results are required:
Proposition 4. Let k and π satisfy the preconditions of Proposition 2. Then the function

Rd ∋ x 7→ f(x) :=
q(x)

p(x)
[∇xk(x, ·) + k(x, ·)∇ log q(x)] (3)

takes values in H(k)d, is Bochner π-integrable and, thus, ξ :=
∫
f dπ ∈ H(k)d.

Proof. Since k has continuous first derivatives x 7→ (∂i ⊗ ∂i)k(x, x), Lemma 4.34 of Steinwart and
Christmann [2008] gives that (∂i ⊗ 1)k(x, ·) ∈ H(k), and, thus f ∈ H(k)d. Furthermore, f : Rd →
H(k)d is Bochner π-integrable since∫

∥f(x)∥H(k)d dπ(x) =

∫
q(x)

p(x)
∥∇xk(x, ·) + k(x, ·)∇ log q(x)∥H(k)ddπ(x)

≤
(∫ (

q

p

)α

dπ

) 1
α
(∫

∥∇xk(x, ·) + k(x, ·)∇ log q(x)∥
α

α−1

H(k)d
dπ(x)

)α−1
α

≤ 2
1
α

(∫ (
q

p

)α

dπ

) 1
α
(
(Ck

1 )
α

α−1 + (Ck
0 )

α
α−1

∫
∥∇ log q∥

α
α−1 dπ

)α−1
α

< ∞

where we have employed the same Ck
0 and Ck

1 notation as used in the proof of Proposition 2. Thus,
from the definition of the Bochner integral, ξ =

∫
f dπ exists and is an element of H(k)d.

Proposition 5. Let k and π satisfy the preconditions of Proposition 2. Then

Dp,q(π)
2 =

∫∫
q(x)

p(x)

q(y)

p(y)
kq(x, y) dπ(x)dπ(y) (4)

where
kq(x, y) = ∇x · ∇yk(x, y) + ⟨∇xk(x, y),∇y log q(y)⟩+ ⟨∇yk(x, y),∇x log q(x)⟩

+ k(x, y)⟨∇x log q(x),∇y log q(y)⟩. (5)

Proof. Let f be as in Equation (3). From Proposition 4, ξ =
∫
f dπ ∈ H(k)d. Moreover, since f is

Bochner π-integrable and Tf = ⟨h, f⟩H(k)d is a continuous linear functional on H(k)d, from basic
properties of Bochner integrals we have Tξ = T

∫
f dπ =

∫
Tf dπ. In particular,

⟨h, ξ⟩H(k)d =

〈
h,

∫
q(x)

p(x)
[∇xk(x, ·) + k(x, ·)∇ log q(x)] dπ(x)

〉
H(k)d

=

∫
q(x)

p(x)

[
∇x⟨h, k(x, ·)⟩H(k)d + ⟨h, k(x, ·)⟩H(k)d∇ log q(x)

]
dπ(x)

=

∫
q(x)

p(x)
[∇ · h(x) + h(x) · ∇ log q(x)] dπ(x) =

∫
Sp,qh dπ(x)
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which shows that ξ is the Riesz representer of the bounded linear functional h 7→
∫
Sp,qh dπ on

H(k)d. It follows from Cauchy–Schwarz that the (squared) operator norm of this functional is

Dp,q(π)
2 = ∥ξ∥2H(k)d = ⟨ξ, ξ⟩H(k)d =

〈∫
q(x)

p(x)
[∇xk(x, ·) + k(x, ·)∇ log q(x)] dπ(x),∫

q(y)

p(y)
[∇yk(y, ·) + k(y, ·)∇ log q(y)] dπ(y)

〉
H(k)d

=

∫∫
q(x)

p(x)

q(y)

p(y)
kq(x, y) dπ(x)dπ(y)

as claimed.

For concreteness, we instantiate Proposition 5 in the specific case of the inverse multi-quadric kernel,
since this is the kernel that we recommend in Section 2.2:
Corollary 1 (Explicit Form). For p, q, and π satisfying the preconditions of Proposition 2, and k
the inverse multi-quadric kernel in Equation (2), we have that

Dp,q(π)
2 =

∫∫
q(x)q(y)

p(x)p(y)

{
4β(β + 1)∥x− y∥2

(σ2 + ∥x− y∥2)β+2
+ 2β

[
d+ ⟨∇ log q(x)−∇ log q(y), x− y⟩

(σ2 + ∥x− y∥2)1+β

]
+
⟨∇ log q(x),∇ log q(y)⟩

(σ2 + ∥x− y∥2)β

}
dπ(x)dπ(y) (6)

Proof of Corollary 1. First we compute derivatives of the kernel k in Equation (2):

∇xk(x, y) = − 2β

(σ2 + ∥x− y∥2)β+1
(x− y)

∇yk(x, y) =
2β

(σ2 + ∥x− y∥2)β+1
(x− y)

∇x · ∇yk(x, y) = − 4β(β + 1)∥x− y∥2

(σ2 + ∥x− y∥2)β+2
+

2βd

(σ2 + ∥x− y∥2)β+1

Letting u(x) := ∇ log q(x) form a convenient shorthand, we have that

kq(x, y) := ∇x · ∇yk(x, y) + ⟨∇xk(x, y), u(y)⟩+ ⟨∇yk(x, y), u(x)⟩+ k(x, y)⟨u(x), u(y)⟩

= − 4β(β + 1)∥x− y∥2

(σ2 + ∥x− y∥2)β+2
+ 2β

[
d+ ⟨u(x)− u(y), x− y⟩
(σ2 + ∥x− y∥2)1+β

]
+

⟨u(x), u(y)⟩
(σ2 + ∥x− y∥2)β

which, combined with Proposition 5, gives the result.

In addition to the results in the main text, here we present a spectral characterisation of GF-KSD.
The following result was inspired by an impressive recent contribution to the literature on kernel
Stein discrepancy due to Wynne et al. [2022], and our (informal) proof is based on an essentially
identical argument:
Proposition 6 (Spectral Characterisation). Consider a positive definite isotropic kernel k, and recall
that Bochner’s theorem guarantees k(x, y) =

∫
e−i⟨s,x−y⟩dµ(s) for some µ ∈ P(Rd). Then, under

regularity conditions that we leave implicit,

Dp,q(π)
2 =

∫ ∥∥∥∥∫ 1

p(x)

{
e−i⟨s,x⟩∇q(x)− ise−i⟨s,x⟩q(x)

}
dπ(x)

∥∥∥∥2
C
dµ(s). (7)

The Fourier transform ∇̂q of ∇q is defined as
∫
e−i⟨s,x⟩∇q(x) dx, and a basic property of the

Fourier transform is that the transform of a derivative can be computed using the expression
is
∫
e−i⟨s,x⟩q(x) dx. This implies that the inner integral in (7) vanishes when π and p are equal.

Thus we can interpret GF-KSD as a quantification of the uniformity of dπ/dp, with a weighting
function based on the Fourier derivative identity with regard to ∇q.
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Proof of Proposition 6. From direct calculation, and assuming derivatives and integrals can be in-
terchanged, we have that

∇xk(x, y) = −
∫

ise−i⟨s,x−y⟩ dµ(s), (8)

∇yk(x, y) =

∫
ise−i⟨s,x−y⟩ dµ(s), (9)

∇x · ∇yk(x, y) =

∫
∥s∥2e−i⟨s,x−y⟩ dµ(s). (10)

Now, let

η(x, s) =
1

p(x)

{
e−i⟨s,x⟩∇q(x)− ise−i⟨s,x⟩q(x)

}
=

q(x)

p(x)

{
e−i⟨s,x⟩∇ log q(x)− ise−i⟨s,x⟩

}
and note through direct calculation and Equations (8) to (10) that∫

η(x, s) · η(y, s) dµ(s)

=
q(x)

p(x)

q(y)

p(y)

∫ {
∥s∥2 + is · ∇ log q(x)

−is · ∇ log q(y) +∇ log q(x) · ∇ log q(y)

}
e−i⟨s,x−y⟩ dµ(s)

=
q(x)

p(x)

q(y)

p(y)

{
∇x · ∇yk(x, y) +∇yk(x, y) · ∇ log q(x)

+∇xk(x, y) · ∇ log q(y) + k(x, y)∇ log q(x) · ∇ log q(y)

}
=

q(x)

p(x)

q(y)

p(y)
kq(x, y).

Thus, integrating with respect to π, and assuming that we may interchange the order of integrals, we
have that∫ ∥∥∥∥∫ η(x, s) dπ(x)

∥∥∥∥2
C
dµ(s) =

∫ ∫∫
η(x, s) · η(y, s) dπ(x)dπ(y) dµ(s)

=

∫∫ ∫
η(x, s) · η(y, s) dµ(s) dπ(x)dπ(y)

=

∫∫
q(x)

p(x)

q(y)

p(y)
kq(x, y) dπ(x)dπ(y) = Dp,q(π)

2,

where the final equality is Proposition 5. This establishes the result.

To prove Theorem 1, two intermediate results are required:
Proposition 7. For an element π ∈ P(Rd), assume Z :=

∫
(q/p) dπ ∈ (0,∞). Assume that k and

π satisfy the preconditions of Proposition 2, and that
∫
∥∇ log q∥α/(α−1)(q/p) dπ < ∞. Let π̄ :=

(qπ)/(pZ). Then π̄ ∈ P(Rd) and

Dp,q(π) = ZDq,q(π̄).

Proof. The assumption Z ∈ (0,∞) implies that π̄ ∈ P(Rd). Furthermore, the assumption∫
∥∇ log q∥α/(α−1)(q/p) dπ < ∞ implies that

∫
∥∇ log q∥α/(α−1) dπ̄ < ∞. Thus the assump-

tions of Proposition 2 are satisfied for both π and π̄, and thus both Dp,q(π) and Dq,q(π̄) are well-
defined. Now, with ξ as in Proposition 4, notice that

Dp,q(π) = ∥ξ∥H(k)s =

∥∥∥∥∫ q(x)

p(x)
[∇k(x, ·) + k(x, ·)∇ log q(x)] dπ(x)

∥∥∥∥
H(k)d

=

∥∥∥∥∫ [∇k(x, ·) + k(x, ·)∇ log q(x)]Zdπ̄(x)

∥∥∥∥
H(k)d

= ZDq,q(π̄),

as claimed.

Proposition 8. Let f : Rd → [0,∞) and π ∈ P(Rd). Then
∫
fα dπ > 0 ⇒

∫
f dπ > 0, for all

α ∈ (0,∞).
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Proof. From the definition of the Lebesgue integral, we have that
∫
fα dπ = sup{

∫
s dπ :

s a simple function with 0 ≤ s ≤ fα} > 0. Thus there exists a simple function s =
∑m

i=1 si1Si

with 0 ≤ s ≤ fα and
∫
s dπ > 0. Here the si ∈ R and the measurable sets Si ⊂ Rd are disjoint.

In particular, it must be the case that at least one of the coefficients si is positive; without loss of
generality suppose s1 > 0. Then s̃ := s

1/α
1 1S1

is a simple function with 0 ≤ s̃ ≤ f and
∫
s̃ dπ > 0.

It follows that
∫
f dπ = sup{

∫
s dπ : s a simple function with 0 ≤ s ≤ f} > 0.

Proof of Theorem 1. Since
∫
(q/p)α dπn ∈ (0,∞) and q/p ≥ 0, from Proposition 8 we have, for

each n, that Zn :=
∫
q/p dπn > 0. Thus the assumptions of Proposition 7 are satisfied by k and

each πn, which guarantees that Dp,q(πn) = ZnDq,q(π̄n) where π̄n := (qπn)/(pZn) ∈ P(Rd).

Now, since W1(πn, p; q/p) → 0, taking f = 1 we obtain Zn =
∫
fq/p dπn →

∫
fq/p dp = 1. In

addition, note that

W1(π̄n, q) = sup
L(f)≤1

∣∣∣∣∫ f dπ̄n −
∫

f dq

∣∣∣∣
= sup

L(f)≤1

∣∣∣∣∫ f(0) + [f(x)− f(0)] dπ̄n(x)−
∫

f(0) + [f(x)− f(0)] dq(x)

∣∣∣∣
= sup

L(f)≤1

∣∣∣∣∫ [f(x)− f(0)] dπ̄n(x)−
∫

[f(x)− f(0)] dq(x)

∣∣∣∣
= sup

L(f)≤1
f(0)=0

∣∣∣∣∫ f dπ̄n −
∫

f dq

∣∣∣∣
Thus, from the triangle inequality, we obtain the bound

W1(π̄n, q) = sup
L(f)≤1
f(0)=0

∣∣∣∣∫ f dπ̄n −
∫

f dq

∣∣∣∣
= sup

L(f)≤1
f(0)=0

∣∣∣∣∫ fq

pZn
dπn −

∫
fq

p
dp

∣∣∣∣
≤ sup

L(f)≤1
f(0)=0

∣∣∣∣∫ fq

pZn
dπn −

∫
fq

p
dπn

∣∣∣∣+ sup
L(f)≤1
f(0)=0

∣∣∣∣∫ fq

p
dπn −

∫
fq

p
dp

∣∣∣∣
=

(
1− Zn

Zn

)
︸ ︷︷ ︸

→0

sup
L(f)≤1
f(0)=0

∣∣∣∣∫ fq

p
dπn

∣∣∣∣
︸ ︷︷ ︸

(∗)

+W1

(
πn, p;

q

p

)
︸ ︷︷ ︸

→0

as n → ∞. For (∗), since q/p ≥ 0, the supremum is realised by f(x) = ∥x∥ and

(∗) =
∫

∥x∥q(x)
p(x)

dπn(x) < ∞.

Thus we have established that W1(π̄n, q) → 0. Since ∇ log q is Lipschitz with
∫
∥∇ log q∥2 dq <

∞ and k has continuous and bounded second derivatives, the standard kernel Stein discrepancy has
1-Wasserstein convergence detection [Proposition 9 of Gorham and Mackey, 2017], meaning that
W1(π̄n, q) → 0 implies that Dq,q(π̄n) → 0 and thus, since Zn → 1, Dp,q(πn) → 0. This completes
the proof.

To prove Proposition 3, an intermediate result is required:

Proposition 9. Let k(x, y) = ϕ(x− y) be a kernel with ϕ twice differentiable and let q ∈ P(Rd)
with ∇ log q well-defined. Then kq(x, x) = −∆ϕ(0) + ϕ(0)∥∇ log q(x)∥2, where ∆ = ∇ · ∇ and
kq was defined in Proposition 5.
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Proof. First, note that we must have ∇ϕ(0) = 0, else the symmetry property of k would be
violated. Now, ∇xk(x, y) = (∇ϕ)(x− y), ∇yk(x, y) = −(∇ϕ)(x− y) and ∇x · ∇yk(x, y) =
−∆ϕ(x− y). Thus ∇xk(x, y)|y=x = ∇yk(x, y)|x=y = 0 and ∇x · ∇yk(x, y)|x=y = −∆ϕ(0).
Plugging these expressions into Equation (5) yields the result.

Proof of Proposition 3. Let kq be defined as in Proposition 5. From Cauchy–Schwarz, we have that
kq(x, y) ≤

√
kq(x, x)

√
kq(y, y), and plugging this into Proposition 5 we obtain the bound

Dp,q(π) ≤
∫

q(x)

p(x)

√
kq(x, x) dπ(x) (11)

For a radial kernel k(x, y) = ϕ(x− y) with ϕ twice differentiable, we have ϕ(0) > 0 (else k must
be the zero kernel, since by Cauchy–Schwarz |k(x, y)| ≤

√
k(x, x)

√
k(y, y) = ϕ(0) for all x, y ∈

Rd), and kq(x, x) = −∆ϕ(0) + ϕ(0)∥∇ log q(x)∥2 (from Proposition 9). Plugging this expression
into Equation (11) and applying Jensen’s inequality gives that

Dp,q(π)
2 ≤

∫
q(x)2

p(x)2
[
−∆ϕ(0) + ϕ(0)∥∇ log q(x)∥2

]
dπ(x).

Now we may pick a choice of p, q and (πn)n∈N (πn
d↛ p) for which this bound can be made arbi-

trarily small. One example is q = N (0, 1), p = N (0, σ2) (any fixed σ > 1), for which we have

Dp,q(π)
2 ≤

∫
σ2 exp(−γ∥x∥2)

[
−∆ϕ(0) + ϕ(0)∥x∥2

]
dπ(x)

where γ = 1− σ−2 > 0. Then it is clear that, for example, the sequence πn = δ(ne1) (where e1 =
[1, 0, . . . , 0]⊤) satisfies the assumptions of Proposition 2 and, for this choice,

Dp,q(πn)
2 ≤ σ2 exp(−γn2)

[
−∆ϕ(0) + ϕ(0)n2

]
→ 0

and yet πn
d↛ p, as claimed.

Proof of Theorem 2. Since infx∈Rd q(x)/p(x) > 0, for each n we have Zn :=
∫
q/p dπn > 0

and, furthermore, the assumption
∫
∥∇ log q∥α/(α−1)(q/p) dπn < ∞ implies that∫

∥∇ log q∥α/(α−1) dπn < ∞. Thus the assumptions of Proposition 7 are satisfied by k and
each πn, and thus we have Dp,q(πn) = ZnDq,q(π̄n) where π̄n := (qπn)/(pZn) ∈ P(Rd).

From assumption, Zn ≥ infx∈Rd q(x)/p(x) is bounded away from 0. Thus if Dp,q(πn) → 0 then
Dq,q(π̄n) → 0. Furthermore, since q ∈ Q(Rd) and the inverse multi-quadric kernel k is used, the
standard kernel Stein discrepancy has convergence control, meaning that Dq,q(π̄n) → 0 implies

π̄n
d→ q [Theorem 8 of Gorham and Mackey, 2017]. It therefore suffices to show that π̄n

d→ q

implies πn
d→ p.

From the Portmanteau theorem, πn
d→ p is equivalent to

∫
g dπn →

∫
g dp for all functions g which

are continuous and bounded. Thus, for an arbitrary continuous and bounded function g, consider
f = gp/q, which is also continuous and bounded. Then, since π̄n

d→ q, we have (again from the
Portmanteau theorem) that Z−1

n

∫
g dπn =

∫
f dπ̄n →

∫
f dq =

∫
g dp. Furthermore, the specific

choice g = 1 shows that Z−1
n → 1, and thus

∫
g dπn →

∫
g dp in general. Since g was arbitrary,

we have established that πn
d→ p, completing the proof.

To prove Theorem 3, an intermediate result is required:
Proposition 10. Let Q ∈ P(Rd) and let kq : Rd × Rd → R be a reproducing kernel with∫
kq(x, ·) dq = 0 for all x ∈ Rd. Let (xn)n∈N be a sequence of random variables independently

sampled from q and assume that
∫
exp{γkq(x, x)} dq(x) < ∞ for some γ > 0. Then

Dq,q

(
1

n

n∑
i=1

δ(xi)

)
→ 0

almost surely as n → ∞.
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Proof. This is Lemma 4 in Riabiz et al. [2022], specialised to the case where samples are indepen-
dent and identically distributed. Although not identical to the statement in Riabiz et al. [2022], one
obtains this result by following an identical argument and noting that the expectation of kq(xi, xj)
is identically 0 when i ̸= j (due to independence of xi and xj), so that bounds on these terms are
not required.

Proof of Theorem 3. Since πn has finite support, all conditions of Theorem 2 are satisfied. Thus it is
sufficient to show that almost surely Dp,q(πn) → 0. To this end, we follow Theorem 3 of Riabiz et al.
[2022] and introduce the classical importance weights wi = p(xi)/q(xi), which are well-defined
since q > 0. The normalised weights w̄i = wi/Wn, Wn :=

∑n
j=1 wj satisfy 0 ≤ w̄1, . . . , w̄n and

w̄1 + · · ·+ w̄n = 1, and thus the optimality of w∗, together with the integral form of the GF-KSD
in Equation (4), gives that

Dp,q

(
n∑

i=1

w∗
i δ(xi)

)
≤ Dp,q

(
n∑

i=1

w̄iδ(xi)

)
=

1

Wn

√√√√ n∑
i=1

n∑
j=1

kq(xi, xj)

=

(
1

n
Wn

)−1

Dq,q

(
1

n

n∑
i=1

δ(xi)

)
(12)

From the strong law of large numbers, almost surely n−1Wn →
∫

p
q dq = 1. Thus it suffices to

show that the final term in Equation (12) converges almost surely to 0. To achieve this, we can
check the conditions of Proposition 10 are satisfied.

Since q and h(·) = Sp,qk(x, ·) satisfy the conditions of Proposition 1, the condition
∫
kq(x, ·) dq =

0 is satisfied. Let ϕ(z) = (1 + ∥z∥2)−β so that k(x, y) = ϕ(x− y) is the inverse multi-quadric
kernel. Note that ϕ(0) = 1 and ∆ϕ(0) = −d. Then, from Proposition 9, we have that kq(x, x) =
−∆ϕ(0) + ϕ(0)∥∇ log q∥2 = d+ ∥∇ log q∥2. Then∫

exp{γkq(x, x)} dq(x) = exp{γd}
∫

exp{γ∥∇ log q∥2} dq < ∞,

which establishes that the conditions of Proposition 10 are satisfied and completes the proof.

B Stein Variational Inference Without Second-Order Gradient

This section contains sufficient conditions for unbiased stochastic gradient estimators to exist in the
context of Stein Variational Inference; see Section 4.2 of the main text. The main result that we
prove is as follows:

Proposition 11 (Stochastic Gradients). Let p, q,R ∈ P(Rd) and T θ : Rd → Rd for each θ ∈ Rp.
Let θ 7→ ∇θT

θ(x) be bounded. Assume that for each ϑ ∈ Rp there is an open neighbourhood Nϑ ⊂
Rp such that ∫

sup
θ∈Nϑ

(q(T θ(x))

p(T θ(x))

)2
dR(x) < ∞,∫

sup
θ∈Nϑ

q(T θ(x))

p(T θ(x))
∥∇ log r(T θ(x))∥ dR(x) < ∞,∫

sup
θ∈Nϑ

q(T θ(x))

p(T θ(x))
∥∇2 log r(T θ(x))∥ dR(x) < ∞,

for each of r ∈ {p, q}. Let k be the inverse multi-quadric kernel in Equation (2) and let u(x, y)
denote the integrand in Equation (6). Then

∇θDp,q(πθ)
2 = E

 1

n(n− 1)

∑
i ̸=j

∇θu(T
θ(xi), T

θ(xj))


where the expectation is taken with respect to independent samples x1, . . . , xn ∼ R.
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The role of Proposition 11 is to demonstrate how an unbiased gradient estimator may be constructed,
whose computation requires first-order derivatives of p only, and whose cost is O(n2). Although
the assumption that θ 7→ ∇θT

θ(x) is bounded seems strong, it can typically be satisfied by re-
parametrisation of θ ∈ Rp.

To prove Proposition 11, we exploit the following general result due to Fisher et al. [2021]:
Proposition 12. Let R ∈ P(Rp). Let Θ ⊆ Rp be an open set and let u : Rd × Rd → R, T θ : Rd →
Rd, θ ∈ Θ, be functions such that, for all ϑ ∈ Θ,

(A1)
∫∫

|u(Tϑ(x), Tϑ(y))| dR(x)dR(y) < ∞;

(A2) there exists an open neighbourhood Nϑ ⊂ Θ of ϑ such that∫∫
sup
θ∈Nϑ

∥∇θu(T
θ(x), T θ(y))∥ dR(x)dR(y) < ∞.

Then F (θ) :=
∫∫

u(T θ(x), T θ(y)) dR(x)dR(y) is well-defined for all θ ∈ Θ and

∇θF (θ) = E

 1

n(n− 1)

∑
i ̸=j

∇θu(T
θ(xi), T

θ(xj))

 ,

where the expectation is taken with respect to independent samples x1, . . . , xn ∼ R.

Proof. This is Proposition 1 in Fisher et al. [2021].

Proof of Proposition 11. In what follows we aim to verify the conditions of Proposition 12 hold for
the choice u(x, y) = kq(x, y), where kq was defined in Equation (5).

(A1): From the first line in the proof of Proposition 4, the functions Sp,qk(x, ·), x ∈ Rd, are
in H(k)d. Since (x, y) 7→ u(x, y) = ⟨Sp,qk(x, ·),Sp,qk(y, ·)⟩H(k)d is positive semi-definite, from
Cauchy–Schwarz, |u(x, y)| ≤

√
u(x, x)

√
u(y, y). Thus∫

|u(T θ(x), T θ(y))| dR(x)dR(y) =

∫
|u(x, y)| dT θ

#R(x)dT θ
#R(y)

≤
(∫ √

u(x, x) dT θ
#R(x)

)2

.

Since k(x, y) = ϕ(x− y), we have from Proposition 9 that

u(x, x) =

(
q(x)

p(x)

)2 [
−∆ϕ(0) + ϕ(0)∥∇ log q(x)∥2

]
and ∫ √

u(x, x) dT θ
#R(x) ≤

√∫ (
q

p

)2

dT θ
#R

√∫
| −∆ϕ(0) + ϕ(0)∥∇ log q∥2| dT θ

#R

which is finite by assumption.

(A2): Fix x, y ∈ Rd and let Rx(θ) := q(T θ(x))/p(T θ(y)). From repeated application of the product
rule of differentiation, we have that

∇θu(T
θ(x), T θ(y)) = kq(T

θ(x), T θ(y))∇θ [Rx(θ)Ry(θ)]︸ ︷︷ ︸
(∗)

+Rx(θ)Ry(θ)∇θkq(T
θ(x), T θ(y))︸ ︷︷ ︸

(∗∗)

.

Let bp(x) := ∇ log p(x), bq(x) := ∇ log q(x), b(x) := bq(x)− bp(x), and [∇θT
θ(x)]i,j =

(∂/∂θi)T
θ
j (x). In what follows, we employ a matrix norm on Rd×d which is consistent with the Eu-

clidean norm on Rd, meaning that ∥∇θT
θ(x)b(T θ(x))∥ ≤ ∥∇θT

θ(x)∥∥b(T θ(x))∥ for each θ ∈ Θ
and x ∈ Rd. Considering the first term (∗), further applications of the chain rule yield that

∇θ [Rx(θ)Ry(θ)] = Rx(θ)Ry(θ)[∇θT
θ(x)b(T θ(x)) +∇θT

θ(y)b(T θ(y))]
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and from the triangle inequality we obtain a bound

∥∇θ [Rx(θ)Ry(θ)] ∥ ≤ Rx(θ)Ry(θ)
[
∥∇θT

θ(x)∥∥b(T θ(x))∥+ ∥∇θT
θ(y)∥∥b(T θ(y))∥

]
.

Let ≲ denote inequality up to an implicit multiplicative constant. Since we assumed that ∥∇θT
θ(x)∥

is bounded, and the inverse multi-quadric kernel k is bounded, we obtain that

|(∗)| ≲ Rx(θ)Ry(θ)
[
∥b(T θ(x))∥+ ∥b(T θ(y))∥

]
.

Similarly, from Equation (5), and using also the fact that the inverse multi-quadric kernel k has
derivatives or all orders [Lemma 4 of Fisher et al., 2021], we obtain a bound

∥∇θkq(T
θ(x), T θ(y))∥ ≲

[
1 + ∥bq(T θ(x))∥+ ∥∇bq(T

θ(x))∥
] [

1 + ∥bq(T θ(y))∥
]

+
[
1 + ∥bq(T θ(y))∥+ ∥∇bq(T

θ(y))∥
] [
1 + ∥bq(T θ(x))∥

]
which we multiply by Rx(θ)Ry(θ) to obtain a bound on (∗∗). Thus we have an overall bound

∥∇θu(T
θ(x), T θ(y))∥ ≲ Rx(θ)Ry(θ)

{[
1 + ∥bq(T θ(x))∥+ ∥∇bq(T

θ(x))∥
] [

1 + ∥bq(T θ(y))∥
]

+
[
1 + ∥bq(T θ(y))∥+ ∥∇bq(T

θ(y))∥
] [
1 + ∥bq(T θ(x))∥

]}
.

Substituting this bound into
∫∫

supθ∈Nϑ
∥∇θu(T

θ(x), T θ(y))∥ dR(x)dR(y), and factoring terms
into products of single integrals, we obtain an explicit bound on this double integral in terms of the
following quantities (where r ∈ {p, q}):∫

sup
θ∈Nϑ

Rx(θ) dR(x)∫
sup
θ∈Nϑ

Rx(θ)∥br(T θ(x))∥ dR(x)∫
sup
θ∈Nϑ

Rx(θ)∥∇br(T
θ(x))∥ dR(x)

which we have assumed exist.

Thus the conditions of Proposition 12 hold, and the result immediately follows.

C Experimental Details

These appendices contain the additional empirical results referred to in Section 3, together with full
details required to reproduce the experiments described in Section 4 of the main text.

C.1 Detection of Convergence and Non-Convergence

This appendix contains full details for the convergence plots of Figure 1. In Figure 1, we considered
the target distribution

p(x) =

3∑
i=1

wiN (x;µi, σ
2
i ),

where N (x;µ, σ2) is the univariate Gaussian density with mean µ and variance σ2. The parame-
ter choices used were (w1, w2, w3) = (0.375, 0.5625, 0.0625), (µ1, µ2, µ3) = (−0.4, 0.3, 0.06) and
(σ2

1 , σ
2
2 , σ

2
3) = (0.2, 0.2, 0.9).

The approximating sequences considered were location-scale sequences of the form Ln
#u, where

Ln(x) = an + bnx for some (an)n∈N and (bn)n∈N and u ∈ P(R). For the converging sequences,
we set u = p and for the non-converging sequences, we set u = N (0, 0.5). We considered three
different choices of (an)n∈N and (bn)n∈N, one for each colour. The sequences (an)n∈N and (bn)n∈N
used are shown in Figure S1. The specification of our choices of q is the following:

• Prior: We took q ∼ N (0, 0.752).
• Laplace: The Laplace approximation computed was q ∼ N (0.3, 0.20412).
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Figure S1: The sequences an and bn used in the location-scale sequences. (a) The sequences an
and bn used in the location-scale sequences in Figure 1. (b) The sequences an and bn used in the
location-scale sequences in Figure 2. In each case, the colour used of each curve indicates which of
the sequences (π)n∈N they correspond to.

• GMM: The Gaussian mixture model was computed using 100 samples from the target p. The number
of components used was 2, since this value minimised the Bayes information criterion [Schwarz,
1978].

• KDE: The kernel density estimate was computed using 100 samples from the target p. We utilised
a Gaussian kernel k(x, y) = exp(−(x− y)2/ℓ2) with the lengthscale or bandwidth parameter ℓ
determined by Silverman’s rule of thumb [Silverman, 1986].

The values of GF-KSD reported in Figure 1 were computed using a quasi Monte Carlo approxi-
mation to the integral (6), utilising a length 300 low-discrepancy sequence. The low discrepancy
sequences were obtained by first specifying a uniform grid over [0, 1] and then performing the in-
verse CDF transform for each member of the sequence πn.

C.2 Avoidance of Failure Modes

This appendix contains full details of the experiment reported in Section 3.3 and an explanation
of the failure mode reported in Figure 2a. The sequences considered are displayed in Figure S2.
Each sequence was a location-scale sequences of the form Ln

#u, where Ln(x) = an + bnx for some
(an)n∈N and (bn)n∈N and u ∈ P(R). For the converging sequences, we set u = p. The specification
of the settings of each failure mode are as follows:

• Failure mode (a) [Figure 2a]: We took p as the target used in Figure 1 and detailed in Appendix C.1
and took q ∼ N (0, 1.52). The an and bn sequences used are displayed in Figure S1a. The values
of GF-KSD reported were computed using a quasi Monte Carlo approximation, using a length
300 low discrepancy sequence. The low discrepancy sequences were obtained by first specifying
a uniform grid over [0, 1] and then performing the inverse CDF transform for each member of the
sequence πn.

• Failure mode (b) [Figure 2b]: We took p ∼ N (0, 1) and q ∼ N (−0.7, 0.12). The an and bn
sequences used are displayed in Figure S1b. The values of GF-KSD reported were computed
using a quasi Monte Carlo approximation, using a length 300 low discrepancy sequence. The
low discrepancy sequences were obtained by first specifying a uniform grid over [0, 1] and then
performing the inverse CDF transform for each member of the sequence πn.

• Failure Mode (c) [Figure 2c]: In each dimension d considered, we took p ∼ N (0, I) and q ∼
N (0, 1.1I). The an and bn sequences5 used are displayed in Figure S1b. The values of GF-KSD
reported were computed using a quasi Monte Carlo approximation, using a length 1, 024 Sobol
sequence in each dimension d.

5Note that for d > 1, we still considered location-scale sequences of the form Ln(x) = an + bnx.
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Figure S2: Test sequences (πn)n∈N used in Figure 2. The colour and style of each sequence indicates
which of the curves in Figure 2 is being considered. In the second row from the top, the sequence
used when d = 1 in Figure 2c is shown in the final column.

• Failure mode (d) [Figure 2d]: We took p = q, with p(x) = 0.5N (x;−1, 0.12) +
0.5N (x; 1, 0.12), where N (x;µ, σ2) is the univariate Gaussian density with mean µ and vari-
ance σ2. The an and bn sequences used are displayed in Figure S1b. For the non-converging
sequences we took u = N (1, 0.12) and used the an and bn sequences specified in Figure S1b.
The values of GF-KSD reported were computed using a quasi Monte Carlo approximation, using
a length 300 low discrepancy sequence. The low discrepancy sequences were obtained by first
specifying a uniform grid over [0, 1] and then performing the inverse CDF transform for each
member of the sequence πn.

In Figure S3, we provide an account of the degradation of convergence detection between q = Prior
considered in Figure 1 and q = N (0, 1.52) of Failure mode (a). In Figure S3a, it can be seen that the
value of the integrals

∫
(q/p)2 dπn are finite for each element of the pink sequence πn. However,

in Figure S3b, it can be seen that the values of the integrals
∫
(q/p)2 dπn are infinite for the last

members of the sequence πn, thus violating a condition of Theorem 1.

C.3 Gradient-Free Stein Importance Sampling

This appendix contains full details for the experiment reported in Section 4.1. We considered the
following Lotka–Volterra dynamical system:

u̇(t) = α′u(t)− β′u(t)v(t), v̇(t) = −γ′v(t) + δ′u(t)v(t), (u(0), v(0)) = (u′
0, v

′
0).
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Figure S3: Explanation of Failure Mode (a). (a) Values of (q/p)2πn for q = Prior and for the
converging pink sequence displayed in Figure 1. (b) Values of (q/p)2πn for q = N (0, 1.52) and for
the converging pink sequence displayed in the first column and first row of Figure S2. (c) Values of
q2/p for different choices of q.

Using 21 observations u1, . . . , u21 and v1, . . . , v21 over times t1 < . . . < t21, we considered the
probability model

ui ∼ Log-normal(log u(ti), (σ′
1)

2), vi ∼ Log-normal(log v(ti), (σ′
2)

2).

In order to satisfy positivity constraints, we performed inference on the logarithm of the parameters
(α, β, γ, δ, u0, v0, σ1, σ2) = (logα′, log β′, log γ′, log δ′, log u′

0, log v
′
0, log σ

′
1, log σ

′
2). We took the

following independent priors on the constrained parameters:

α′ ∼ Log-normal(log(0.7), 0.62), β′ ∼ Log-normal(log(0.02), 0.32),

γ′ ∼ Log-normal(log(0.7), 0.62), δ′ ∼ Log-normal(log(0.02), 0.32),

u′
0 ∼ Log-normal(log(10), 1), v′0 ∼ Log-normal(log(10), 1),

σ′
1 ∼ Log-normal(log(0.25), 0.022), σ′

2 ∼ Log-normal(log(0.25), 0.022).

In order to obtain independent samples from the posterior for comparison, we utilised Stan [Stan
Development Team, 2022] to obtain 8, 000 posterior samples using four Markov chain Monte Carlo
chains. Each chain was initialised at the prior mode. The data analysed are due to Hewitt [1921] and
can be seen, along with a posterior predictive check, in Figure S4.

The Laplace approximation was obtained by the use of 48 iterations of the L-BFGS optimisation
algorithm [Liu and Nocedal, 1989] initialised at the prior mode. The Hessian approximation was
obtained using Stan’s default numeric differentiation of the gradient.

Finally, the quadratic programme defining the optimal weights of gradient-free Stein importance
sampling (refer to Theorem 3) was solved using the splitting conic solver of O’Donoghue et al.
[2016].

C.4 Stein Variational Inference Without Second-Order Gradient

This appendix contains full details for the experiment reported in Section 4.2. We considered the
following bivariate densities

p1(x, y) := N (x; 0, η21) N (y; sin(ax), η22),

p2(x, y) := N (x; 0, σ2
1) N (y; bx2, σ2

2),

where N (x;µ, σ2) is the univariate Gaussian density with mean µ and variance σ2. The parameter
choices for the sinusoidal experiment p1 were η21 = 1.32, η22 = 0.092 and a = 1.2. The parameter
choices for the banana experiment p2 were σ2

1 = 1, σ2
2 = 0.22 and b = 0.5.

The development of a robust stochastic optimisation routine for measure transport with GF-KSD
is beyond the scope of this work, and in what follows we simply report one strategy that was suc-
cessfully used in the setting of the application reported in the main text. This strategy was based on
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Figure S4: Posterior predictive check for the Lotka–Volterra model. The shaded blue region indi-
cates the 50% interquartile range of the posterior samples.
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Figure S5: Tempering sequence (ϵm)m∈N used in each of the variational inference experiments.

tempering of p, the distributional target, to reduce a possibly rather challenging variational optimisa-
tion problem into a sequence of easier problems to be solved. Specifically, we considered tempered
distributions pm ∈ P(Rd) with log density

log pm(x) = ϵm log p0(x) + (1− ϵm) log p(x),

where (ϵm)m∈N ∈ [0, 1]N is the tempering sequence and p0 ∈ P(Rd) is fixed. In this case p0 was
taken to be N (0, 2I) in both the banana and sinusoidal experiment. Then, at iteration m of stochastic
optimisation, we considered the variational objective function

π 7→ logDpm,q(π)

where q = πθm , as explained in the main text. Tempering has been applied in the context of normal-
ising flows in Prangle and Viscardi [2023]. The tempering sequence used (ϵm)m∈N for each of the
experiments is displayed in Figure S5.

For each experiment, the stochastic optimisation routine used was Adam [Kingma and Ba, 2015]
with learning rate 0.001. Due to issues involving exploding gradients due to the q/p term in GF-
KSD, we utilised gradient clipping in each of the variational inference experiments, with the max-
imum 2-norm value taken to be 30. In both the banana and sinusoidal experiment, the parametric
class of transport maps T θ was the inverse autoregressive flow of Kingma et al. [2016]. In the
banana experiment, the dimensionality of the hidden units in the underlying autoregressive neural
network was taken as 20. In the sinusoidal experiment, the dimensionality of the hidden units in the
underlying autoregressive neural network was taken as 30. For the comparison with standard kernel
Stein discrepancy, the same parametric class T θ and the same initialisations of θ were used.
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Figure S6: The π0 and tempering sequences used in the additional convergence detection experi-
ments. The colour of each curve indicates which of the sequences in Figure S7 and Figure S8 they
correspond with. (a) The π0 choices of each tempered sequence of distributions. (b) The tempering
sequences (ϵm)m∈N considered.

C.5 Additional Experiments

Appendix C.5.1 explores the impact of p on the conclusions drawn in the main text. Appendix C.5.2
investigates the sensitivity of the proposed discrepancy to the choice of the parameters σ and β that
appear in the kernel. Appendix C.5.3 compares the performance of GF-KSD importance sampling,
KSD importance sampling and self-normalised importance sampling.

C.5.1 Exploring the Effect of p

In this section we investigate the robustness of the convergence detection described in Figure 1
subject to different choices of the target p. We consider two further choices of p:

p1(x) =

4∑
i=1

ciN (x;µi, σ
2
i ),

p2(x) =

4∑
i=1

di Student-T(x; ν,mi, si),

where N (x;µ, σ2) is the univariate Gaussian density with mean µ and variance σ2 and
Student-T(x; ν,m, s) is the univariate Student-T density with degrees of freedom ν, location pa-
rameter m and scale parameter s. The parameter choices for p1 were

(c1, c2, c3, c4) = (0.3125, 0.3125, 0.3125, 0.0625),

(µ1, µ2, µ3, µ4) = (−0.3, 0, 0.3, 0),

(σ2
1 , σ

2
2 , σ

2
3 , σ

2
4) = (0.12, 0.052, 0.12, 1).

The parameter choices for p2 were ν = 10 and

(d1, d2, d3, d4) = (0.1, 0.2, 0.3, 0.4),

(m1,m2,m3,m4) = (−0.4,−0.2, 0, 0.3),

(s1, s2, s3, s4) = (0.05, 0.1, 0.1, 0.3).

Instead of using the location-scale sequences of Figure 1, we instead considered tempered sequences
of the form

log πn(x) = ϵn log π0(x) + (1− ϵn) log u(x).

For the converging sequences considered we set u to be the target (either u = p1 or u = p2) and set
u = N (x; 0, 0.42) for each of the non-converging sequences. The different sequences vary in choice
of π0 and tempering sequence (ϵn)n∈N. These choices are displayed in Figure S6 and are taken as
the same for both of the targets considered.

The specification of our choices of q is the following:
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• Prior: For p1, we took q ∼ N (0, 0.52). For p2, we took q ∼ Student-T(10, 0, 0.5).
• Laplace: For p1, the Laplace approximation computed was q ∼ N (0, 0.0512). For p2, the

Laplace approximation computed was q ∼ N (0, 0.1252).
• GMM: For both targets, the Gaussian mixture model was computed using 100 samples from the

target. In both cases, the number of components used was 3, since this value minimised the Bayes
information criterion [Schwarz, 1978].

• KDE: For both targets, the kernel density estimate was computed using 100 samples from the target.
In both cases, we utilised a Gaussian kernel k(x, y) = exp(−(x− y)2/ℓ2) with the lengthscale or
bandwidth parameter ℓ determined by Silverman’s rule of thumb [Silverman, 1986].

Results for p1 are displayed in Figure S7 and results for p2 are displayed in Figure S8. It can
be seen that for both target distributions and the different sequences considered, GF-KSD correctly
detects convergence in each case. For both targets and for q = Laplace, it can be seen that GF-KSD
exhibits the same behaviour of Failure Mode (b), displayed in Figure 2b.

The values of GF-KSD reported in Figure S7 and Figure S8 were computed using a quasi Monte
Carlo approximation to the integral (6), utilising a length 300 low-discrepancy sequence. Due to
the lack of an easily computable inverse CDF, we performed an importance sampling estimate of
GF-KSD as follows

Dp,q(π) =

∫∫
(Sp,q ⊗ Sp,q)k(x, y) dπ(x) dπ(y)

=

∫∫
(Sp,q ⊗ Sp,q)k(x, y)

π(x)π(y)

w(x)w(y)
dw(x) dw(y),

where w is the proposal distribution. For each element of a sequence πn, we used a Gaussian
proposal wn of the form:

logwn(x) = ϵn log π0(x) + (1− ϵn) logN (x; 0, 0.42).

Since π0 is Gaussian for each sequence, this construction ensures that each wn is both Gaussian
and a good proposal distribution for πn. The low-discrepancy sequences were then obtained by first
specifying a uniform grid over [0, 1] and the performing an inverse CDF transformation using wn.

C.5.2 Exploring the Effect of σ and β

In this section we investigate the effect on convergence detection that results from changing the
parameters σ and β in the inverse multi-quadric kernel (2). Utilising the same test sequences and
choices of q used in Figure 1, we plot the values of GF-KSD in Figure S9. It can be seen that the
convergence detection is robust to changing values of σ and β.

C.5.3 GF-KSD vs. KSD Importance Sampling

In this section we investigate the performance of gradient-free Stein importance sampling, standard
Stein importance sampling, and self-normalised importance sampling, as the distribution q varies in
quality as an approximation to p. We consider two different regimes:

1. p = N (0, I) and q = N (0, λI) for 0.7 ≤ λ ≤ 1.3.

2. p = N (0, I) and q = N (c1, I) for −0.6 ≤ c ≤ 0.6, where 1 = (1, . . . , 1)⊤.

In both cases, we consider the performance of each approach for varying dimension d and number
of samples n. Results are reported in Figure S10 and Figure S11 for each regime respectively.
The quadratic programme defining the optimal weights of gradient-free Stein importance sampling
and Stein importance sampling (refer to Theorem 3) was solved using the splitting conic solver of
O’Donoghue et al. [2016].
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Figure S7: Additional empirical assessment of gradient-free kernel Stein discrepancy using the
target p1 defined in Appendix C.5.1. (a) Test sequences (πn)n∈N, defined in Appendix C.5.1. The
first column displays sequences (solid) that converge to the distributional target p (black), while the
second column displays sequences (dashed) which converge instead to a fixed Gaussian target. (b)
Performance of gradient-free kernel Stein discrepancy, when different approaches to selecting q are
employed. The colour and style of each curve in (b) indicates which of the sequences in (a) is being
considered. [Here we fixed the kernel parameters σ = 1 and β = 1/2.]
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Figure S8: Additional empirical assessment of gradient-free kernel Stein discrepancy using the
target p2 defined in Appendix C.5.1. (a) Test sequences (πn)n∈N, defined in Appendix C.5.1. The
first column displays sequences (solid) that converge to the distributional target p (black), while the
second column displays sequences (dashed) which converge instead to a fixed Gaussian target. (b)
Performance of gradient-free kernel Stein discrepancy, when different approaches to selecting q are
employed. The colour and style of each curve in (b) indicates which of the sequences in (a) is being
considered. [Here we fixed the kernel parameters σ = 1 and β = 1/2.]
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Figure S9: Comparison of different values of σ and β in the inverse multiquadric kernel. Here the
vertical axis displays the logarithm of the gradient free kernel Stein discrepancy. The colour and
style of each of the curves indicates which of the sequences in Figure 1 is being considered.
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Figure S10: Comparison of the performance of importance sampling methodologies in varying di-
mension d and number of sample points considered n under the regime q = N (0, λI). The approx-
imation quality is quantified as the logarithm of the Energy Distance (ED).

30



3.50

3.25

3.00

2.75

2.50

2.25

2.00

lo
g 

ED
 (d

=
1)

n = 10

6.5

6.0

5.5

5.0

4.5

4.0
n = 100

9

8

7

6

5

4

3

2
n = 500

GF-KSD
KSD
Self-Normalised

1.5

1.0

0.5

0.0

lo
g 

ED
 (d

=
5)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

6.0

5.5

5.0

4.5

4.0

3.5

0.5 0.0 0.5

0.5

0.0

0.5

1.0

1.5

lo
g 

ED
 (d

=
20

)

0.5 0.0 0.5

3

2

1

0

0.5 0.0 0.5
5

4

3

2

1

0.5 0.0 0.5
c

0.0

0.5

1.0

1.5

2.0

lo
g 

ED
 (d

=
50

)

0.5 0.0 0.5
c

2

1

0

1

0.5 0.0 0.5
c

4

3

2

1

0

1

Figure S11: Comparison of the performance of importance sampling methodologies in varying di-
mension d and number of sample points considered n under the regime q = N (c, I). The approxi-
mation quality is quantified as the logarithm of the Energy Distance (ED).
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