
Appendix475

In this appendix, we provide additional details about the implementation and usage of the InterCode476

framework and the InterCodeEnv interface. We also provide visualizations and analyses of addi-477

tional experiments to demonstrate InterCode’s utility and garner further insight into the extent of478

current models’ performance on the interactive coding task. The full template for each prompting479

strategy is also included. Finally, we also discuss some of the impacts, risks, and limitations of480

our work. The webpage for InterCode is https://intercode-benchmark.github.io/. The481

code for InterCode is https://github.com/intercode-benchmark/intercode-benchmark;482

the link is also included on the InterCode webpage.483

A Environment Details484

A.1 InterCode Interface485

The InterCode interface inherits the OpenAI gym [5] environment API definition. Specifically,486

InterCodeEnv is written as an abstract class that primarily handles the main execution logic for487

processing code interactions, in addition to logging, data management, and sand-boxed execution,488

along with both environment-level and task-level customization.489

InterCodeEnv exposes the following API. Creating an interactive coding environment requires490

defining a subclass of InterCodeEnv. The methods denoted with an asterisk can be overridden for491

the purposes of customization.492

__init__(self, data_path: str, image_name: str, **kwargs)493

• Validates that the dataset specified by data_path is formatted correctly and can be used in494

an interactive setting.495

• Uses the Docker image specified by image_name to create and connect with a Docker496

container instance of the image.497

• Initializes Logging Handler498

• Keyword arguments:499

– verbose (bool): If true, logging is enabled and environment interactions are shown500

to standard output501

– traj_dir (str): If a valid path is provided, task episode summaries are saved to the502

given directory (generated by save_trajectory)503

– preprocess (callable): If provided, this function is run before every task episode.504

It is a way to provide task instance-specific customization of the execution environment.505

reset(self, index: int = None) -> Tuple[str, Dict]506

• Retrieves task record from data loader507

• Calls reset_container508

• Reset task level logger, instance variables509

step(self, action: str) -> Tuple[str, int, bool, Dict]510

• Log (action, observation)511

• Invoke exec_action on action argument512

• If action=submit, invoke get_reward, save_trajectory513

save_trajectory(self)514

• Saves task metadata, (action, obs.) sequence, and reward info to .json in traj_dir515

close(self)516

• Safely exit or stop any resources (i.e. docker container) used by the environment517

* execute_action(self, action: str)518

14

https://intercode-benchmark.github.io/
https://github.com/intercode-benchmark/intercode-benchmark

Figure 5: Visualization demonstrating the intended invocations and usage of the InterCodeEnv inter-
face, along with how the functions requiring implementation (get_reward(), execute_action(),
reset_container() are called by the methods of the main interactive loop.

• Defines how the action is executed within the context of the docker container.519

• Requires impl. because the Dockerfile definition, particularly its entrypoint, affects how an520

action would be invoked within the container.521

• Default impl. passes the action string directly into a self.container.exec(action)522

call, which invokes the action in the environment and returns execution output. A timeout is523

imposed on execution duration.524

* get_reward(self) -> Tuple[float, Dict]525

• Handles reward calculation of actions with respect to the gold command(s) for a task episode.526

• Requires impl. because the concept and scoring for task completion varies across datasets527

and environments.528

* reset_container(self)529

• Handles resetting of execution container (i.e. resetting file system to original state).530

• Requires impl. because the approach to restoring a setting to its initial state varies.531

Figure 5 conveys how each of these methods are invoked and how they related to one another. In532

summary, the technicalities for setting up an interactive coding task for a specific system with one or533

more programming languages as the action space involve:534

• Defining a Dockerfile535

• Providing a dataset with the query and gold fields536

• (Optional) Defining a reward (get_reward) function to define task completion.537

• (Optional) Creating an InterCodeEnv subclass that overrides the execute_action and538

get_reward methods539

A.2 Bash Environment540

Environment Definition. The Dockerfile defining the Bash-based environment is founded on the541

LTS version of the Ubuntu operating system. Several Linux dependencies that can potentially be used542

by an agent to address instructions in the InterCode-Bash Dataset are then installed via the Advanced543

Package Tool (apt) interface. Next, a shell script is invoked within the Dockerfile to initialize one544

of the three file systems displayed in Figure 6. The shell script consists of a simple sequence of mkdir,545

touch, and echo commands to deterministically create and populate the content of multiple files and546

folders. Finally, git is configured for the purposes of determining file diffs per task episode (git547

15

status -s) and resetting an environment to its original state (git reset –hard; git clean548

-fd;) before the beginning of a new task episode. The original code for the Dockerfile along with549

the file system creation scripts can be found on the project GitHub repository.550

Dataset Details. The log-frequency distribution of the top-50 utilities is displayed in Figure 7.551

The NL2Bash [29] dataset is made available for use under the GPLv3 License. To assess the552

generalizability of our approach, we designed three distinct file systems to accommodate the bash553

commands we collected. A key consideration during the construction of these file systems was to554

ensure that a significant portion of the executed commands would not result in operations that yield555

no changes. This deliberate design choice aimed to provide a more comprehensive assessment of our556

approach’s adaptability and effectiveness across various scenarios and command executions. The file557

systems encompass a wide range of file types, including text files (.txt), program files (.c, .java, .py),558

compressed files (.gz), shell scripts (.sh), PHP scripts (.php), JSON files (.json), documents (.doc),559

spreadsheets (.csv), webpages (.html), database schemas (.sql), hidden files, and files with special560

characters in their names, convoluted folder hierarchies. Their directory structures are illustrated in561

Figure 6. For simplicity, we consider the top-level folder created within the root directory (testbed,562

system, workspace) as the root of each file system. This root folder contains files and sub-folders563

that necessitate access and manipulation, while changes are monitored throughout the entire container564

to accurately evaluate the models’ actions. Notably, we intentionally designed file system 1 to be565

more intricate and encompass relatively challenging bash tasks compared to the other two file systems.566

Thereby, the models’ performance is relatively lower for file system 1.567

Reward Function. Evaluation of an agent’s trajectory across a single task episode towards carrying568

out the given instruction is determined by modifications to the file system and the latest execution569

output. The instructions found in the InterCode-Bash dataset fall under one of two buckets: it either570

1. Requests information about the file system that can be answered via execution output generated571

from a correct sequence of Bash actions (i.e. "How many files...", "What is the size of...", "Where is572

the .png image stored?") or 2. Requests a change to the location, configuration, or content of a file or573

folder (i.e. "Move the dir1 folder from...", "Set the permissions to...", "Append a line to..."). Any574

relevant correct changes are therefore captured by considering both execution output and file system575

modifications during evaluation.576

We define A and G as the outputs of the agent and gold commands respectively, where Aout and577

Gout refer to the execution output, and Afs and Gfs refer to a list of entries reflecting file system578

modifications, where each entry is [file path, modification type 2 [added, changed,579

deleted]]. We then formally define the reward function as follows:580

R = 0.34 ⇤ similarity(Aout, Gout)

+0.33 ⇤ (1� erf(|Afs [Gfs �Afs \Gfs|))+

+0.33 ⇤
is_correct(Afs \Gfs)

Afs \Gfs

(1)

Where similarity refers to lexical similarity, which is determined by the cosine similarity score581

between TF-IDF vectors (calculated with TfidfVectorizer from scikit-learn) of the two582

execution outputs. The second component of the reward function reflects the number of file system583

modifications that were either not completed or not necessary; the error associated with the total584

number of misses is constrained to the range [0,1] using the Gauss error function (erf), where 0585

corresponds to no file system modification mistakes. The third component checks what proportion of586

paths altered by both agent and gold were modified correctly. The is_correct function returns the587

number of file paths that were changed correctly, determined by checking whether the md5sum hashes588

of each file path are identical for agent and gold. If Afs \Gfs = ;, this reward is automatically 1.589

The scalar weights for each component are arbitrarily assigned.590

A max score of 1 is achieved only if the correct file paths are changed, the changes are correct,591

and the latest execution output matches the gold command output exactly. Figure 1 visualizes the592

reward function. While an exact match comparison would have been a simpler choice to satisfy the593

16

/testbed
FooBar.html
Hello.java
Hello1.java
NewClass.java
dir1

AnotherHello.java
info.php
subdir1

jsonfile1.json
pythonscript4.py
shellscript1.sh
subsubdir1

pythonscript1.py
shellscript4.sh

textfile4.txt
subdir2
textfile1.txt

dir2
shellscript2.sh
subdir1

javafile1.java
textfile2.txt

subdir2
pythonscript2.py
shellscript5.sh
subsubdir1
textfile5.txt

dir3
subdir1

pythonscript3.py
subsubdir1

FooBar
file.txt

file.txt
shellscript3.sh
textfile3.txt
tmp

tmp.txt
subdir2

csvfile1.csv
textfile6.txt

hello.c
hello.php
recent.txt
textfile7.txt

(a) File System 1

/system
.DS_Store
MANIFEST
a.out
folder1

a.out
data.csv
doc1.doc
doc2.doc
keep.txt
log1.log
new.sh
old2.txt
recent.txt
script1.sh
text2.txt
text3.txt
text4.txt

folder2
special
text3.txt
special_text1.txt
special_text2.txt
text1.txt

folder2.tar.gz
folder3

backup_dbg
backup
sql1.sql
text1_dbg.txt

special
text4.txt
temp

empty.txt
temp1

temp
temp_1
text1.txt

html1.html
temp

keep.txt
text1.txt
text3.txt

(b) File System 2

/workspace
.hidden.txt
archive.tar.gz
dir1

.hidden1.txt
a.txt
all.txt
file.c
file.txt
hello.c
hello.txt
long.txt
new1.sh
readonly.txt
script1.sh
sum.c
terminate.txt

dir2
csvfile1.csv
foo.txt
hello.txt
mysql

sql1.sql
files.txt
new.sh
old2.txt
recent1.txt
results.txt
test

2dir
3dir
dir1

(c) File System 3

Figure 6: File System structures designed for InterCode-Bash.

17

Figure 7: Top 30 most frequently occurring bash
utilities out of the 66 in InterCode-Bash with their
frequencies in log scale.

Figure 8: Distribution of gold command difficult
for InterCode-SQL task data adapted from the
Spider SQL dataset.

Success Rate metric put forth in the main paper, we design this reward function to 1. Demonstrate594

that InterCode can support complex reward functions that account for multiple forms of execution595

output, and 2. Provide practitioners who use the InterCode-Bash environment with a scalar reward596

that reflects how "similar" the given output is to the expected, rather than a flat 0/1 reward value that597

may over-penalize and discount the efforts of more capable reasoning abilities. These reasons also598

motivate the SQL-based environment’s reward function, discussed in the following section.599

A.3 SQL Environment600

Environment Definition. The Dockerfile defining the SQL-based environment inherits from the601

MySQL image and adds a .sql file setup script to the /docker-entrypoint-initdb.d directory602

within the Docker image; this is a special directory made for container initialization. On container603

start-up, the added .sql file, which creates and populates databases with tables and tables with604

records, is automatically invoked. Since the InterCode-SQL dataset does not feature any queries605

that involve modifying the database in any manner (i.e. no INSERT, UPDATE, or DELETE commands),606

there is no reset mechanism written into the Dockerfile definition that is invoked before each task607

episode; with that said, adding a reset script or version control to the Dockerfile is simple.608

InterCode-SQL Dataset. InterCode-SQL is adopted from the development set of the Spider dataset609

[51]. Spider 1.0 is a large-scale cross-domain dataset on generating SQL queries from natural610

language questions whose development set contains 1034 pairs of <instruction, gold> task611

instances spanning 20 databases. The distribution of queries according to their hardness criterion is612

shown in Figure 8. As discussed in Section 3.3, a filtering criterion narrows down the Spider dataset’s613

information to only the necessary components. We do not add anything to the Spider dataset that was614

not originally available. The Spider 1.0 dataset is available for use under the CC BY-SA 4.0 license.615

MySQL Databases. We first resolve data types for primary, foreign key pairs across the provided616

table schemas in Spider for conflicting instances and generate the corresponding SQLite databases.617

Next, to align with our Docker-supported environment, we convert the SQLite databases to MySQL618

format using sqlite3mysql [38], a Python library, and then generate a unified MySQL dump having619

schemas for all the tables. To handle case-sensitive table name discrepancies between the queries and620

the underlying schema in the original Spider dataset, we activate the lower_case_table_names621

setting in our evaluation environment. Additionally, for proper access controls, we create a test user622

and grant them all privileges for all the tables.623

18

Figure 9: Example of interactions between an
agent and the InterCode SQL Environment

Figure 10: Evaluation of the results of agent
interactions with the SQL Environment against
the gold command associated with the task. A
simple Intersection over Union formula that ac-
counts for duplicates is used to quantify answer
correctness. Task completion is a reward of 1.

Reward Function. The completion evaluation mechanism compares the output of the gold SQL624

command with the latest execution output (i.e. latest observation) from the agent’s interaction625

trajectory. The execution output of all gold SQL queries is a list of records. Each record is a tuple of626

one or more values that may be different types. For any single execution output, the order of types627

for every record is identical. Given the agent command(s)’ latest execution output A and the gold628

command’s execution output G, we formulate the reward function as follows:629

R =
A \G

A [G
⇤ (kendalltau((A \ (A \G)), (G \ (A \G))) + 1)/2 (2)

We employ Intersection over Union (IoU), or more formally the Jaccard Index, to quantify the630

correctness of the latest execution output generated by the agent against the gold output. If the631

latest execution output of the SQL query is not in the form of a list of records (i.e. a string error632

message), the reward is 0 by default. Among the items that lie in the intersection of the agent633

and gold execution outputs, we also apply a penalty if the records are in the incorrect order. Since634

achieving the correct order of fields in a record is of non-trivial importance to addressing many SQL635

queries correctly, we do not do any re-ordering or pre-processing of the list of records. Therefore,636

a record formatted as ("Ross", 29) is not awarded any credit against a gold output that includes637

(29, "Ross"). To quantify how sorted the agent output is relative to the gold output, we lean638

on Kendall’s ⌧ and adjust the output range to [0, 1]. The IoU score is then directly scaled by this639

coefficient.640

All in all, only a correctly ordered list with the exact set of records found in the gold output would641

receive a max score of 1, which corresponds to task completion. Figure 10 visualizes the reward642

function for an example set of outputs. Note that in the main paper, the Success Rate metric is used;643

the scalar 3/7 output shown in the figure is treated as a 0 when quantifying whether the task was644

completed via the 0/1 Success Rate metric. As mentioned in the discussion of the Bash reward645

function, this reward function also aims to be a richer and fairer continuous evaluation metric of a646

model’s reasoning abilities compared to a binary 0/1 task completion score.647

19

B Experiment Details648

B.1 Model Details649

We do not perform any model training for configuring the methods or running the experiments650

discussed in this project. Our evaluations use inference call requests to OpenAI, PaLM, and Hugging-651

Face API endpoints to run the baseline models on the InterCode tasks. For OpenAI models, we set652

temperature to 0, top_p to 1, max_tokens to 512, and n (number of completions) to 1. For PaLM653

models, we set temperature to 0, top_p to 1, and candidate_count (number of completions) to 1.654

For open source models, we set max_new_tokens (maximum number of tokens to generate) to 100655

and temperature to 0.01. Due to constraints in the context window size, we limit the length of each656

observation to a maximum of 1000 tokens across all inference calls. The code for configuring API657

calls can be found in the linked repository.658

B.2 Additional Experiments & Analysis659

InterCode-SQL additional results. Table 5 includes results for additional experiments on open-660

source models that were completed by the supplementary deadline. Again, the advantage of in-661

teractions offered in the Try Again scenario accounts for a multi-point disparity in successful task662

completion for the SQL task across all degrees of difficulty.663

InterCode-SQL Single Turn Try Again (n = 10)
Model / Hardness Easy Med Hard Extra All Easy Med Hard Extra All

Vicuna-13B 8.1 1.3 0.6 0.0 2.6 18.9 3.4 1.7 0.0 6.3
StarChat-16B 21.8 7.4 2.9 0.0 8.9 22.3 8.5 2.9 1.2 9.7

Table 5: (Additional Results) Success Rate for single vs. multi turn evaluation on InterCode-SQL
(refer §A.3). Query difficulty is adopted from Spider [51].

SQL schema ablation. To confirm that the benefits of interaction exceed a simple disparity in664

information between the Single Turn and Try Again settings, we add the full SQL database schema,665

providing holistic details of tables necessary to the given instruction, to the Question message666

of both prompts, then re-run the comparison for several. Table 6 indicates that while Single Turn667

performance improves drastically, a non-trivial difference in favor of Try Again remains. Manual668

inspection of task episode trajectories shows that selective and fine-grained context discovery (i.e.669

inspecting specific table records and file content that affect query construction) is still critical to670

solving tasks efficiently.671

InterCode-SQL
+ Schema Single Turn Try Again (max 10 turns)

Model / Hardness Easy Med Hard Extra All Easy Med Hard Extra All

gpt-3.5-turbo 90.7 70.2 59.2 37.3 67.9 92.7 74.9 67.2 43.4 72.8
text-bison-001 89.5 68.2 44.2 19.3 61.4 90.7 70.4 50.0 21.1 63.9
chat-bison-001 79.0 52.0 32.1 15.1 49.2 82.2 56.0 42.5 24.1 54.9

Table 6: Success Rate across difficulty for single vs. multi-turn evaluation on the InterCode-SQL
dataset, with the database schema relevant to each task episode’s instruction, also provided in the
Question message of the prompting strategy. Best metrics are in bold.

Trends of admissible actions. Table 7 shows that for the SQL task, models generate admissible672

actions with increasingly higher rates early on; in initial turns, models will tend to hallucinate a query673

with fabricated table and column names at a high frequency. The drop in error rate between the first674

and second turns can largely be attributed to the model’s decision to begin exploring context; 60.3%675

of second turn actions contain either the SHOW TABLES or DESC keywords. Prompting strategies (i.e.676

ReAct, Plan & Solve), explicit phrasing that encourages exploration, and demonstrations diminish677

20

a model’s default tendency to hallucinate a query in the first turn. This trend is not found in Bash.678

This can likely be attributed to the nature of the instructions; unlike the SQL instructions which679

simply pose a question and do not have any explicit references to SQL commands or clauses, Bash680

instructions will typically include keywords that correspond directly to useful Linux commands681

or give insight into the file system’s internal structure. These signals reduce the need for context682

discovery. Therefore, successful task completion in Bash tends to lean towards 1) Figuring out which683

flags, options, and arguments to configure a command with and 2) How to string together commands684

or pass outputs from one command to the next correctly.685

Turn 1 2 3 4 5 6 7 8 9 10

SQL 90.2 46.4 34.4 39.7 31.1 42.9 51.5 47.4 48.4 46.6
Bash 23.1 28.6 34.7 37.5 37.6 42.9 39.3 37.1 33.7 38.2

Table 7: Error % (Average ratio of non-admissible actions) per turn for the Try Again prompting
scheme using a GPT 3.5 model on the Bash and SQL InterCode datasets.

For both Bash and SQL, in later turns, the rate of admissible actions does not improve consistently.686

The actions in these later turns are usually attempts to answer the original instruction. At these stages,687

a model will tend to make small, cursory adjustments to the prior action based on execution feedback,688

often resulting in both a repetition of the same types of mistakes and hallucinations that introduce new689

issues. In these moments, compared to such minor perturbations, alternative reasoning capabilities690

such as context discovery and modularized problem solving are often more efficient ways to get691

the relevant insights needed to better decide how to fix the prior turns’ issues. As corroborated by692

Figure 3, models struggle to take advantage of additional context in longer task episodes or horizons.693

Making the most of multiple queries is an open challenge with exciting implications for solving more694

difficult coding tasks.695

Robustness results. We conducted an evaluation to assess the robustness of the reported accuracy696

metrics for the models. In order to maintain consistency in the evaluation, we focused on the697

performance across file systems 2, 3, and 4 (shown in Figure 6), which were designed to have similar698

difficulty levels. File system 1, intentionally made harder, was not included in this analysis. The699

standard errors for the Single Turn and Try Again modes are presented in Table 8. The Try Again700

mode leverages interaction to consistently outperform the Single Turn mode across all models.701

Model Single Turn Try Again (n = 10)

text-davinci-003 31.40± 1.35 43.13± 5.98
gpt-3.5-turbo 36.63± 1.83 47.40± 1.23
gpt-4 38.37± 1.20 52.70± 3.50
text-bison-001 18.83± 3.57 22.40± 3.35
chat-bison-001 20.47± 1.89 21.67± 1.81
Vicuna-13B 16.73± 5.00 27.67± 4.15
StarChat-16B 19.37± 3.04 27.17± 2.74

Table 8: (Robustness Results) Success Rate with standard errors for single vs. multi turn evaluation
on InterCode-Bash (refer §A.2). Best metrics are in bold. Both modes display significant standard
errors (as expected) but still Try Again outperforms Single Turn by a huge margin.

B.3 Additional Prompting Strategy702

To gauge the significance of designing prompting strategies that can successfully solve the interactive703

coding task, we attempt to devise a more performant approach by chaining together existing tech-704

niques, where each technique is meant to elicit a different, relevant reasoning skill. To this end, we705

design a hybrid prompting strategy that combines Plan & Solve and Try Again, which we refer to as706

"Plan & Solve + Refine". This strategy is meant to complement a model’s planning, modularized task707

completion, and context discovery abilities with error correction. Figure 11 visualizes this prompting708

strategy’s workflow. The full prompting template is included in § B.7.709

21

Figure 11: Visualization of the Plan & Solve + Refine strategy. This prompting strategy is a naive
combination of Plan & Solve and Try Again; the model is first asked to formulate and execute a plan.
If it fails, then the model asked to continue to work on generating the right solution until the reward
is 1 or the number of allowed turns (n = 3) is exhausted.

We run small-scale experiments in the same fashion as discussed in Section 5.2 on the SQL task710

for 44 randomly selected task instances. These preliminary tests have an average Success Rate of711

45.5, a Number of Turns of 6.34 (across both planning and refinement stages), and an Error % of712

22.4. Compared to the original Plan & Solve performance presented in Section 5.2, this strategy713

does not yield a significant improvement. Upon inspection of the trajectories, it is evident that while714

models are capable of specific reasoning techniques, it is not enough to elicit specific strategies in a715

pre-determined order. In addition, compared to human problem solvers, such reasoning frameworks716

do not intuitively allow for adjustment in strategy based on execution output. Therefore, mechanisms717

that allow a model to freely self-determine what strategies at any turn in task episode are integral to718

improving Success Rate and non-trivial because simple adjustments in existing prompting strategies719

are not enough to close this gap.720

B.4 Task Trajectory Analyses721

In this section, we discuss some of the behaviors and phenomena in different prompting schemes. We722

also include annotated trajectories that are representative of these observations.723

Inst: Count md5sum of all ’*.py’ files in /testbed folder with
subfolders.
Gold: find /testbed -type f -name "*.py " -exec
md5sum {} + | awk ’{print $1}’ | sort | md5sum
Out: ff48e395ab4e0acb8336c4afe4504 -

Act: find /testbed -name "*.py" -type f -exec
md5sum {} + | wc -l
Obs: 4
Act: find /testbed -name "*.py" -type f -exec
md5sum {} + | awk ’END{print NR}’
Obs: 4
Act: find /testbed -name "*.py" -type f -exec
md5sum {} + | awk ’END{print}’ | cut -d’ ’ -f1
Obs: 0d1e201ac67b5a979c52f42eb8dd3702
Act: find /testbed -name "*.py" -type f -exec
md5sum {} + | awk ’{print $1}’ | sort | md5sum |
cut -d’ ’ -f1
Obs: 7e9ff48e395ab4e0acb8336c4afe4504
... (6 more turns)

Inst: For each continent, list its id, name, and how many countries
it has?
Gold: SELECT T1.ContId , T1.Continent , count(*)
FROM CONTINENTS AS T1 JOIN COUNTRIES AS T2 ON
T1.ContId = T2.Continent GROUP BY T1.ContId;

Act: SELECT continent.id, continent.na- me,
COUNT(country.id) AS num_countries FROM
continent LEFT JOIN country ON continent.id
= country.continent_id GROUP BY continent.id,
continent.name
Obs: Error: Table ’car_1.continent’ doesn’t exist
Act: SHOW TABLES
Obs: [(’car_makers’,), (’car_names’,)] + 4 more...
Act: DESC continents
Obs: [(’ContId’, ’int’, ’NO’, ’PRI’, None, ’auto_increment’),
(’Continent’, ’text’, ’YES’...
Act: SELECT ContId, Continent, COUNT(*) AS
NumCountries FROM countries GROUP BY Continent
...(5 more turns)

Table 9: Examples of Try Again interaction trajectories with GPT 3.5 based model from Bash
(left) and SQL (right). Without any reasoning framework, models will tend to hallucinate an initial
command, then make incremental adjustments (error correction) to the command based on the
execution feedback. On occasion, a model will write commands to gather context about the task
environment. For both trajectories, n = 10 turns was allotted and reward was 0 (max turns exhausted).

22

Inst: What is TV Channel of TV series with Episode "A Love of a Lifetime"? List TV Channel’s series name.
Gold: SELECT T1.series_name FROM TV_Channel AS T1 JOIN TV_series AS T2 ON T2.Channel
= T1.id WHERE T2.Episode = "A Love of a Lifetime";

Try Again (r = 0, length = 10, max turns = 10)

Act: SELECT t1.channel, t2.series_name
FROM table1 t1 JOIN table2 t2 ON
t1.series_id = t2.series_id WHERE
t2.episode_name = ’A Love of a
Lifetime’
Obs: Error: Table ’table1’ doesn’t exist
Act: SHOW TABLES
Obs: [(’cartoon’,), (’tv_channel’,), (’tv_series’,)]
Act: DESC tv_channel
Obs: [(’id’, ’varchar(255)’, ’NO’, ’PRI’, None, ”),
(’series_name’, ’text’, ’YES’, ”, None...] + 7 more...
Act: DESC tv_series
Obs: [(’id’, ’double’, ’NO’, ’PRI’, None, ”),
(’Episode’, ’text’, ’YES’, ” + 7 more...
Act: SELECT Channel,series_name FROM tv
_channel WHERE id IN (SELECT Channel
FROM tv_series WHERE Episode = ’A Love
of a Lifetime’)
Obs: Error: Unknown column ’Channel’
Act: SELECT channel_name,series_name
FROM tv_channel JOIN tv_series ON
tv_channel.id = tv_series. Channel
WHERE Episode = ’A Love of a Lifetime’
Obs: Error: Unknown column ’channel_name’
Act: SELECT Channel,series_name
FROM tv_channel JOIN tv_series ON
tv_channel.id = tv_series.Channel
WHERE Episode = ’A Love of a Lifetime’
Continued hallucinations in problem solving actions
for last 4 turns...

ReAct (r = 1, length = 7, max turns = 10)

Thought: I should check what tables are available
in this MySQL database that can help me answer
this question
Act: SHOW TABLES
Obs: [(’cartoon’,), (’tv_channel’,), (’tv_series’,)]
...(1 turn for context discovery with DESC)
Thought: The tv_series table has a Channel column
that might be helpful. I should check if there is a
row with the episode name "A Love of a Lifetime".
Act: SELECT Channel FROM tv_series
WHERE Episode = ’A Love of a Lifetime’
Obs: [(’700’,)]
Thought: I get a single value, 700, which is the TV
Channel of the TV series with the episode "A Love
of a Lifetime". Check what series is on this channel.
Act: SELECT series_name FROM tv_channel
WHERE channel_number = 700
Obs: Error: Unknown column ’channel_number’
Thought: I should check what columns are avail-
able in the tv_channel table.
Act: DESC tv_channel
Obs: [(’id’, ’varchar(255)’, ’NO’, ’PRI’, None, ”),
(’series_name’, ’text’, ’YES’, ”... + 7 more...
Thought: The tv_channel table does not have a
channel_number column. Check if there is another
way to get the series name for the TV Channel 700.
Act: SELECT series_name FROM tv_channel
WHERE id = ’700’
Obs: [(’Sky Radio’,)]
Thought: I get a single value, Sky Radio, which is
the series name for the TV Channel 700.
Act: submit

Table 10: Comparison of Try Again & ReAct interaction trajectories with GPT 3.5 based model
towards solving the same instruction. Without explicit strategy or task demonstrations for Try Again,
the model tends to hallucinate and doesn’t build upon prior observations as well. With ReAct, there
is greater evidence of context discovery, error correction, and problem solving.

Default model behaviors. In both the Single Turn and Try Again setups, the templates describe724

the interactive coding task and do not provide the model with any reasoning framework or strategy,725

providing insight into a model’s default approach when given the instruction and task environment.726

As evident in Table 9, across both the Bash and SQL tasks, a model tends to directly generate an727

answer in the very first turn. For Try Again, the model will then perform error correction, then make728

slight adjustments to the answer to resolve the issue(s) reflected in prior execution output across729

the next several turns. With less frequency, for SQL, the model will also issue commands to get730

database and table descriptions. To the best of our knowledge, based on a close examination of the731

Try Again trajectories, current language models do not demonstrate any innate reasoning capacity for732

the interactive coding task beyond error correction and context discovery.733

Prompting strategy effects. In contrast with Try Again, the ReAct prompting strategy briefly734

introduces the interactive task environment and proposes a reasoning framework for the model to735

abide by. Table 10 presents a side-by-side comparison of the Try Again and ReAct [48] strategies.736

The figure reflects the richer types of problem-solving that a model exhibits when prompted to737

reason on its own thoughts about the execution output. This reflects that through better strategies,738

it may be possible to make significant advancements in the interactive coding task with prompting739

strategies that attempt to elicit reasoning via an appropriate framework that also permits the model to740

23

Figure 12: GPT-4’s interaction trajectory for a CTF forensics task. This requires proficiency in Bash
and sleuthkit, among additional knowledge and reasoning. Highlighted in orange are intermediate
logs/output observations that the agent intelligently captures and utilizes in the subsequent steps.

be expressive and creative in devising its own solutions. This is particularly necessary for interactive741

code tasks, which pose multiple challenges that cannot be overcome by any isolated reasoning742

technique. As demonstrated in § B.3, this direction is non-trivial, and InterCode is designed to743

facilitate the bench-marking of such approaches.744

B.5 Capture the Flag Analysis745

CTF challenges typically necessitate a trial-and-error methodology, where participants employ746

diverse techniques and exploit vectors to identify vulnerabilities to solve challenges. Processes such747

as exploring complex environments or executables, debugging, and dynamic exploitation, which748

involve sequential steps, require iterative interaction. Considering the inherently interactive nature of749

the task, it is crucial for an agent to employ an iterative approach and have access to an interactive750

platform to achieve success. In most instances, both humans and agents find it impracticable to solve751

a challenge in a single attempt.752

Similar to the aforementioned exploitation task (Figure 4), we now present a more intricate forensics753

task in Figure 12.754

It is important to note that without the provided hint regarding the usefulness of the "sleuthkit"755

library, the agent fails to solve the task and engages in incorrect reasoning. However, upon receiving756

the prompt’s hint, the agent adeptly utilizes this information to install the library and leverage its757

functionalities for its advantage. By analyzing a given disk image file, the agent employs the "mmls"758

command to inspect the corresponding partition table. From the partition table, it deduces that759

24

a significant portion of the space remains unallocated, while a Linux partition initiates at sector760

2048. Subsequently, the agent attempts to access the contents of this sector using the "fls" command,761

searching for the "down-at-the-bottom.txt" file, which it anticipates will contain the flag. When762

unable to locate the file, the agent speculates that a recursive search might be necessary and adds the763

"-r" flag to its command. Due to the immense output, it becomes arduous to track the file’s location,764

prompting the agent to employ the "grep" command to search for the file within the output. By765

examining the grep output, the agent identifies the file’s location (18291) and proceeds to inspect its766

contents. The flag, presented in a visual format, is accurately recognized and submitted by the agent.767

A human expert employs a very similar approach when provided with the hint. By furnishing an768

interactive framework, InterCode empowers agents to emulate human-like behavior, enabling them to769

explore the environment, decompose tasks into subtasks, debug using traces and logs, and iteratively770

accumulate knowledge to successfully solve challenges.771

B.6 Human Performance Baseline772

To explore the gap between human and agent performance on the interactive coding task, we the773

authors, all proficient in SQL, act as human task workers and perform the task on a random sample of774

15 InterCode-SQL task instances within the same task environment identical to the agent’s setting. A775

max number of n = 10 turns is imposed, as was done with the Try Again prompting strategy. Similar776

to ReAct and Plan & Solve, the human task worker decides when to submit; in other words, the777

task does not terminate automatically when reward = 1. The trajectories for these 15 instances and778

the code for facilitating human interaction with the InterCode-SQL environment are available in the779

codebase.780

The human task worker was able to complete 13 of 15 tasks (Success Rate = 0.87) with low Error781

%, most of the errors occurring not because of hallucinations of table columns and attributes, but782

rather because of SQL syntax errors that arose due to mistakes in relatively complex queries. What’s783

noteworthy about the human task worker’s trajectories is the presence of much more modularized784

problem-solving that deviates heavily from an agent’s approach of generating a query in a single785

go. Even with context discovery and error correction, an agent’s action to produce an answer for the786

instruction will tend to be a single, self-contained command that generates the answer in one go. On787

the other hand, a human task worker will tend to break up the query solution into multiple smaller788

sub-problems. This is particularly evident for instructions that must be answered with investigations789

across multiple tables with relations established by primary and foreign key columns. As an example,790

given an instruction "Find the average weight of the dog breed that is owned by the majority of pet791

owners", a human task worker might write commands that query the pet_owners table to determine792

what the most popular dog breed is, and then use the answer to this sub-problem as a field in the793

WHERE clause of a second query that then determines the average weight using the pets table.794

A more thorough and variegated study would be required to fully establish the performance gap795

between humans and agents. Nevertheless, from this small study, we are confident that humans796

generally exhibit more flexible and variegated reasoning capabilities compared to agents in the797

interactive coding task. Closing this gap is an exciting research direction, and beyond model-side798

improvements and scaling laws, incorporating human task reasoning and execution as guidance,799

feedback, or reward signals is a worthwhile consideration toward improving model performance.800

B.7 Prompt Templates801

As discussed in the paper, the main baseline evaluations for InterCode consist of presenting a language802

agent with an instruction and a prompting strategy that have been adapted for InterCode’s interactive803

task setting. Each prompting strategy is defined as a template with three components:804

• Initial Message: This is the first message presented to the agent. The initial message may805

describe the general task to accomplish, guidelines for interacting with the InterCode envi-806

ronment, the formats of the instruction and observation(s), and any additional information807

that pertains to the environment. In addition to the environment and task specifications, the808

25

general prompting strategy and useful demonstrations may also be discussed. The initial809

message is presented once as the first message of a task episode.810

• Instruction Message: This is the template for communicating the instructions that an agent811

is asked to solve for a particular task episode. The instruction message is presented once as812

the second message of a task episode.813

• Observation Message: This template is for communicating the standard output and any814

additional information for a single interaction. This observation is what the agent will use815

to generate the next action. The observation message may be presented multiple times816

depending on how many interactions the task episode lasts for.817

Figures 11, 12, 13, and 14 present the corresponding prompt templates for the Try Again, ReAct,818

and Plan & Solve experiments, along with a specific version for the toy Capture the Flag task.819

C Data Collection Risks820

The transformations performed to the NL2Bash [29] and Spider [51] datasets generally involve821

removing instructions with gold commands that are not supported by the given task environment,822

grounding instructions and commands to the environment, and removing unnecessary fields provided823

by the original dataset from the version adapted to InterCode. Given this technically based re-824

purposing of the dataset, we believe that these changes do not introduce any new risks that were not825

present in the original dataset.826

The human trajectories discussed in § B.6 are a small-scale study that again, was performed by the827

authors to gauge the performance gap between large language models and experts. These trajectories828

are available in the linked repository and created from the same logging mechanism that was used for829

the experiments performed on base models with different prompting strategies. The trajectories do830

not capture any personal information. With that said, given that these trajectories are the product of831

a small set of individuals, the problem-solving strategy reflected across trajectories may be biased832

towards some techniques and lean less heavily on others. Approaches that attempt to leverage human833

feedback and guidance toward training or tuning code models and language models should be founded834

on more extensive and thorough human demonstration data collection.835

D Potential Societal Impacts & Limitations836

InterCode’s goal of formulating tasks to advance the development decision-making and code agents837

is an exciting research direction that also warrants concerns about safety and fairness.838

Coverage of languages. The InterCode codebase currently features two tasks with Bash and SQL839

programming languages as action spaces. We plan to expand the number of InterCode based tasks to840

cover more programming languages as further demonstrations of the InterCodeEnv’s utility along841

with improving InterCode’s ease of use for practitioners interested in InterCode as a training platform.842

As well as programming languages, additional ongoing work also aims to feature more datasets, task843

environments, and types of tasks.844

Limitations of the CTF task. The Capture the Flag toy dataset showcases InterCode’s serviceability845

for developing novel tasks with new code understanding challenges that can easily be used for training846

and evaluating models. With that said, this demonstration currently only has four task instances. We847

hope to put forth a more thorough examination of the Capture the Flag task’s challenges, provide a848

clearer picture of the performance of existing models on this task, and release a more comprehensive849

dataset.850

Training agents with InterCode. While InterCode in its current state can be used as a training851

platform for decision-making code agents, the existing codebase does not currently include any852

examples of training code that uses InterCode in this manner. This is a direction we are interested in853

pursuing shortly. The InterCode task formulation and usage of the Gym API naturally lends itself to854

26

use for creating decision-making agents that can leverage techniques such as reinforcement learning855

or imitation learning.856

Safety of developing code agents. InterCode’s use of Docker containers ensures the safe execution857

of commands in a realistic simulated task environment. With this said, the Bash and SQL InterCode858

environments currently do not explicitly impose any strict limitations on the action space. While859

the execution of irreversibly detrimental commands is mitigated by Docker, a direct sim-to-real860

transfer of an InterCode-trained agent to a real system may put the system at risk. To combat this,861

the InterCodeEnv interface allows task designers to add their own execution logic that can provide862

guardrails on model behavior and define an allow-list of permissible commands to eliminate the risk863

of potentially disastrous commands.864

27

Initial Message

TASK DESCRIPTION
You are a {self.language} code generator helping a user answer a question using
{self.language}. The user will ask you a question, and your task is to interact
with a {self.setting} system using {self.language} commands to come up with the
answer.

RULES
1. Do NOT ask questions
2. Your response should only be {self.language} commands

RESPONSE FORMAT
Your response should be a {self.language} command. Format your {self.language}
command as follows:

���{self.language}
Your {self.language} code here
���

Write {self.language} commands to help you do two things:
1. Learn more about the {self.setting} you are interacting with. For example, if
you are interacting with a MySQL database, you can use the DESCRIBE command to learn
more about the tables you have access to.
2. Execute {self.language} commands based on these tables to generate the correct
output.

DO NOT WRITE ANYTHING EXCEPT FOR CODE in your response.

OUTPUT DESCRIPTION Given your {self.language} command input, the system will then
give back output formatted as follows:

Output: <string>
Reward: [0, 1]

The output is the standard output from executing your {self.language} command. The
reward is a decimal value between 0 and 1, which tells you how close your
{self.language} command is to the correct answer. The closer the reward is to 1,
the closer your {self.language} command is to the correct answer.

Instruction Message

Query: "<Task Episode Instruction>"

Observation Message

Output: <Observation from Intercode Environment>
Reward: <Value 2 [0, 1]>

Table 11: Initial, Query, and Retry Prompts for the Try Again Strategy Evaluation. {self.language}
is substituted with the programming language for interacting with the environment. {self.setting}
is substituted with a natural language description of the environment

28

Initial Message

Interact with a {self.setting} system using {self.language} queries to answer a
question.
Use interleaving Thought, Action, Observation steps.
Thought can reason about the current situation, and Action can be two types:
(1) execute, which executes {self.language} code on the {self.setting} system
(2) submit, which indicates that the previous observation is the answer
Here are some examples.

Question: What are the names and grades for each high schooler?
Thought 1: I should write a SQL command that selects the name and grade fields from
a table about high schoolers.
Action 1: execute[SELECT name, grade FROM high_schoolers]
Observation 1: Error executing query: Table ’network_1.high_schoolers’ doesn’t
exist
Thought 2: The high_schoolers table doesn’t exist, I need to check what tables are
available to use.
Action 2: execute[SHOW TABLES]
Observation 2: [(’friend’,), (’highschooler’,), (’likes’,)]
Thought 3: There is a table called highschooler. I should check what information
this table contains.
Action 3: execute[DESC highschooler]
Observation 3: [(’ID’, ’int’, ’NO’, ’PRI’, None, ’auto_increment’), (’name’,
’text’, ’YES’, ”, None, ”), (’grade’, ’int’, ’YES’, ”, None, ”)]
Thought 4: The highschooler table contains the name and grade columns. I can now
write a SQL command that answers the question
...

Instruction Message

Query: "<Task Episode Instruction>"

Observation Message

Output: <Observation from Intercode Environment>

Table 12: Initial, Query, and Retry Prompts for ReAct Strategy Evaluation. Additional ReAct style
demonstrations written for SQL and Bash can be found on the InterCode project GitHub.

Initial Message

You are an expert Capture the Flag (CTF) player.

Instruction Message

You are in the ’/ctf’ folder of a standard Ubuntu machine. <Task Episode
Instruction>. Your goal is to find this hidden flag by interacting with the bash
terminal step-by-step. The flag is in the format ’picoCTF...’. You can perform any
valid action in the terminal by starting your action with ’cmd <your_command>’. For
bash commands, prepend ’/bin/bash -c <̈your_command>’̈, for python commands, prepend
’python3 -c <̈your_command>’̈ and so on. For every action you take, you will receive
the corresponding standard output as observation. You can also explore/inspect the
file system or do anything that helps you find the flag. Once you feel you have
found the flag, you can choose to submit it by printing ’submit <your_flag>’. Do
NOT provide an explanation for your answer, only output the action you want.

Observation Message

Output: <Observation from Intercode Environment>

Table 13: Initial, Query, and Retry Prompts for Capture the Flag Evaluation.

29

Plan Message

For the following user question, let’s first understand the problem and devise a
plan to solve the problem. Then, let’s carry out the plan to solve the problem step
by step.

Your plan should describe a sequence of {self.language} queries you can write to
determine the answer. Here are three examples of coming up with a plan for a
question.

Question: What are the names and grades for each high schooler?
Plan:
1. Check what tables are available for use.
2. Inspect each table to identify which has information about high schoolers.
3. Use the table to write a query that selects the name and grade fields for each
high schooler.
...

Execute Plan Message

You will now execute your own plan. Interact with a {self.setting} system using
{self.language} queries to answer a question. Per turn, you will be given the
following information:

���
Observation: Standard output from executing previous instruction
Step: Current step
���

Your response should be {self.language} code, nothing else, formatted as follows:
���{self.language}
Your {self.language} code here
���

Observation Message

Output: <Observation from Intercode Environment>
Step: <Next step to execute from the plan>

Post-Plan Refinement Message

You have finished executing the plan, but it seems like there are still issues with
your answer. Please continue to work on getting the correct answer. Per turn, you
will be given the following information:

���
Observation: Standard output from executing previous instruction
���

Your response should be {self.language} code, nothing else, formatted as follows:
���{self.language}
Your {self.language} code here
���

Table 14: Initial, Query, and Retry Prompts for Plan & Solve Strategy Evaluation. Additional Plan &
Solve style demonstrations written for SQL and Bash can be found on the InterCode project GitHub.
Note that the Post-Plan Refinement Message is only used for the Plan & Solve + Refine strategy
discussed in § B.3. It is not used for the original Plan & Solve strategy.

30

Checklist865

1. For all authors...866

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s867

contributions and scope? [Yes]868

(b) Did you describe the limitations of your work? [Yes] (See §D)869

(c) Did you discuss any potential negative societal impacts of your work? [Yes] (See §D)870

(d) Have you read the ethics review guidelines and ensured that your paper conforms to871

them? [Yes]872

2. If you ran experiments (e.g. for benchmarks)...873

(a) Did you include the code, data, and instructions needed to reproduce the main experi-874

mental results (either in the supplemental material or as a URL)? [Yes] (See beginning875

of the appendix)876

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they877

were chosen)? [Yes] (See §B.1878

(c) Did you report error bars (e.g., with respect to the random seed after running experi-879

ments multiple times)? [Yes] (See §B.2)880

(d) Did you include the total amount of compute and the type of resources used (e.g., type881

of GPUs, internal cluster, or cloud provider)? [Yes] (See §B.1)882

3. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...883

(a) If your work uses existing assets, did you cite the creators? [Yes]884

(b) Did you mention the license of the assets? [Yes] (See §A.2 and §A.3)885

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]886

(See beginning of the appendix)887

(d) Did you discuss whether and how consent was obtained from people whose data you’re888

using/curating? [Yes] (See §B.6)889

(e) Did you discuss whether the data you are using/curating contains personally identifiable890

information or offensive content? [Yes] (See §C)891

4. If you used crowdsourcing or conducted research with human subjects...892

(a) Did you include the full text of instructions given to participants and screenshots, if893

applicable? [Yes] (See §B.6)894

(b) Did you describe any potential participant risks, with links to Institutional Review895

Board (IRB) approvals, if applicable? [Yes] (See §B.6)896

(c) Did you include the estimated hourly wage paid to participants and the total amount897

spent on participant compensation? [Yes] (See §B.6)898

31

	Introduction
	Related Work
	The InterCode Benchmark
	Formulation
	Construction pipeline
	Implementations

	Methods
	Experiments
	Base models comparison
	Prompting strategy comparison
	New tasks & datasets opportunities

	Discussion
	Environment Details
	InterCode Interface
	Bash Environment
	SQL Environment

	Experiment Details
	Model Details
	Additional Experiments & Analysis
	Additional Prompting Strategy
	Task Trajectory Analyses
	Capture the Flag Analysis
	Human Performance Baseline
	Prompt Templates

	Data Collection Risks
	Potential Societal Impacts & Limitations

